]> git.ipfire.org Git - thirdparty/git.git/blob - refs/refs-internal.h
test_cmp: diagnose incorrect arguments
[thirdparty/git.git] / refs / refs-internal.h
1 #ifndef REFS_REFS_INTERNAL_H
2 #define REFS_REFS_INTERNAL_H
3
4 #include "cache.h"
5 #include "refs.h"
6 #include "iterator.h"
7
8 struct ref_transaction;
9
10 /*
11 * Data structures and functions for the internal use of the refs
12 * module. Code outside of the refs module should use only the public
13 * functions defined in "refs.h", and should *not* include this file.
14 */
15
16 /*
17 * The following flags can appear in `ref_update::flags`. Their
18 * numerical values must not conflict with those of REF_NO_DEREF and
19 * REF_FORCE_CREATE_REFLOG, which are also stored in
20 * `ref_update::flags`.
21 */
22
23 /*
24 * The reference should be updated to new_oid.
25 */
26 #define REF_HAVE_NEW (1 << 2)
27
28 /*
29 * The current reference's value should be checked to make sure that
30 * it agrees with old_oid.
31 */
32 #define REF_HAVE_OLD (1 << 3)
33
34 /*
35 * Return the length of time to retry acquiring a loose reference lock
36 * before giving up, in milliseconds:
37 */
38 long get_files_ref_lock_timeout_ms(void);
39
40 /*
41 * Return true iff refname is minimally safe. "Safe" here means that
42 * deleting a loose reference by this name will not do any damage, for
43 * example by causing a file that is not a reference to be deleted.
44 * This function does not check that the reference name is legal; for
45 * that, use check_refname_format().
46 *
47 * A refname that starts with "refs/" is considered safe iff it
48 * doesn't contain any "." or ".." components or consecutive '/'
49 * characters, end with '/', or (on Windows) contain any '\'
50 * characters. Names that do not start with "refs/" are considered
51 * safe iff they consist entirely of upper case characters and '_'
52 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
53 */
54 int refname_is_safe(const char *refname);
55
56 /*
57 * Helper function: return true if refname, which has the specified
58 * oid and flags, can be resolved to an object in the database. If the
59 * referred-to object does not exist, emit a warning and return false.
60 */
61 int ref_resolves_to_object(const char *refname,
62 const struct object_id *oid,
63 unsigned int flags);
64
65 enum peel_status {
66 /* object was peeled successfully: */
67 PEEL_PEELED = 0,
68
69 /*
70 * object cannot be peeled because the named object (or an
71 * object referred to by a tag in the peel chain), does not
72 * exist.
73 */
74 PEEL_INVALID = -1,
75
76 /* object cannot be peeled because it is not a tag: */
77 PEEL_NON_TAG = -2,
78
79 /* ref_entry contains no peeled value because it is a symref: */
80 PEEL_IS_SYMREF = -3,
81
82 /*
83 * ref_entry cannot be peeled because it is broken (i.e., the
84 * symbolic reference cannot even be resolved to an object
85 * name):
86 */
87 PEEL_BROKEN = -4
88 };
89
90 /*
91 * Peel the named object; i.e., if the object is a tag, resolve the
92 * tag recursively until a non-tag is found. If successful, store the
93 * result to oid and return PEEL_PEELED. If the object is not a tag
94 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
95 * and leave oid unchanged.
96 */
97 enum peel_status peel_object(const struct object_id *name, struct object_id *oid);
98
99 /*
100 * Copy the reflog message msg to sb while cleaning up the whitespaces.
101 * Especially, convert LF to space, because reflog file is one line per entry.
102 */
103 void copy_reflog_msg(struct strbuf *sb, const char *msg);
104
105 /**
106 * Information needed for a single ref update. Set new_oid to the new
107 * value or to null_oid to delete the ref. To check the old value
108 * while the ref is locked, set (flags & REF_HAVE_OLD) and set old_oid
109 * to the old value, or to null_oid to ensure the ref does not exist
110 * before update.
111 */
112 struct ref_update {
113 /*
114 * If (flags & REF_HAVE_NEW), set the reference to this value
115 * (or delete it, if `new_oid` is `null_oid`).
116 */
117 struct object_id new_oid;
118
119 /*
120 * If (flags & REF_HAVE_OLD), check that the reference
121 * previously had this value (or didn't previously exist, if
122 * `old_oid` is `null_oid`).
123 */
124 struct object_id old_oid;
125
126 /*
127 * One or more of REF_NO_DEREF, REF_FORCE_CREATE_REFLOG,
128 * REF_HAVE_NEW, REF_HAVE_OLD, or backend-specific flags.
129 */
130 unsigned int flags;
131
132 void *backend_data;
133 unsigned int type;
134 char *msg;
135
136 /*
137 * If this ref_update was split off of a symref update via
138 * split_symref_update(), then this member points at that
139 * update. This is used for two purposes:
140 * 1. When reporting errors, we report the refname under which
141 * the update was originally requested.
142 * 2. When we read the old value of this reference, we
143 * propagate it back to its parent update for recording in
144 * the latter's reflog.
145 */
146 struct ref_update *parent_update;
147
148 const char refname[FLEX_ARRAY];
149 };
150
151 int refs_read_raw_ref(struct ref_store *ref_store,
152 const char *refname, struct object_id *oid,
153 struct strbuf *referent, unsigned int *type);
154
155 /*
156 * Write an error to `err` and return a nonzero value iff the same
157 * refname appears multiple times in `refnames`. `refnames` must be
158 * sorted on entry to this function.
159 */
160 int ref_update_reject_duplicates(struct string_list *refnames,
161 struct strbuf *err);
162
163 /*
164 * Add a ref_update with the specified properties to transaction, and
165 * return a pointer to the new object. This function does not verify
166 * that refname is well-formed. new_oid and old_oid are only
167 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
168 * respectively, are set in flags.
169 */
170 struct ref_update *ref_transaction_add_update(
171 struct ref_transaction *transaction,
172 const char *refname, unsigned int flags,
173 const struct object_id *new_oid,
174 const struct object_id *old_oid,
175 const char *msg);
176
177 /*
178 * Transaction states.
179 *
180 * OPEN: The transaction is initialized and new updates can still be
181 * added to it. An OPEN transaction can be prepared,
182 * committed, freed, or aborted (freeing and aborting an open
183 * transaction are equivalent).
184 *
185 * PREPARED: ref_transaction_prepare(), which locks all of the
186 * references involved in the update and checks that the
187 * update has no errors, has been called successfully for the
188 * transaction. A PREPARED transaction can be committed or
189 * aborted.
190 *
191 * CLOSED: The transaction is no longer active. A transaction becomes
192 * CLOSED if there is a failure while building the transaction
193 * or if a transaction is committed or aborted. A CLOSED
194 * transaction can only be freed.
195 */
196 enum ref_transaction_state {
197 REF_TRANSACTION_OPEN = 0,
198 REF_TRANSACTION_PREPARED = 1,
199 REF_TRANSACTION_CLOSED = 2
200 };
201
202 /*
203 * Data structure for holding a reference transaction, which can
204 * consist of checks and updates to multiple references, carried out
205 * as atomically as possible. This structure is opaque to callers.
206 */
207 struct ref_transaction {
208 struct ref_store *ref_store;
209 struct ref_update **updates;
210 size_t alloc;
211 size_t nr;
212 enum ref_transaction_state state;
213 void *backend_data;
214 };
215
216 /*
217 * Check for entries in extras that are within the specified
218 * directory, where dirname is a reference directory name including
219 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
220 * conflicting references that are found in skip. If there is a
221 * conflicting reference, return its name.
222 *
223 * extras and skip must be sorted lists of reference names. Either one
224 * can be NULL, signifying the empty list.
225 */
226 const char *find_descendant_ref(const char *dirname,
227 const struct string_list *extras,
228 const struct string_list *skip);
229
230 /*
231 * Check whether an attempt to rename old_refname to new_refname would
232 * cause a D/F conflict with any existing reference (other than
233 * possibly old_refname). If there would be a conflict, emit an error
234 * message and return false; otherwise, return true.
235 *
236 * Note that this function is not safe against all races with other
237 * processes (though rename_ref() catches some races that might get by
238 * this check).
239 */
240 int refs_rename_ref_available(struct ref_store *refs,
241 const char *old_refname,
242 const char *new_refname);
243
244 /* We allow "recursive" symbolic refs. Only within reason, though */
245 #define SYMREF_MAXDEPTH 5
246
247 /* Include broken references in a do_for_each_ref*() iteration: */
248 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
249
250 /*
251 * Reference iterators
252 *
253 * A reference iterator encapsulates the state of an in-progress
254 * iteration over references. Create an instance of `struct
255 * ref_iterator` via one of the functions in this module.
256 *
257 * A freshly-created ref_iterator doesn't yet point at a reference. To
258 * advance the iterator, call ref_iterator_advance(). If successful,
259 * this sets the iterator's refname, oid, and flags fields to describe
260 * the next reference and returns ITER_OK. The data pointed at by
261 * refname and oid belong to the iterator; if you want to retain them
262 * after calling ref_iterator_advance() again or calling
263 * ref_iterator_abort(), you must make a copy. When the iteration has
264 * been exhausted, ref_iterator_advance() releases any resources
265 * associated with the iteration, frees the ref_iterator object, and
266 * returns ITER_DONE. If you want to abort the iteration early, call
267 * ref_iterator_abort(), which also frees the ref_iterator object and
268 * any associated resources. If there was an internal error advancing
269 * to the next entry, ref_iterator_advance() aborts the iteration,
270 * frees the ref_iterator, and returns ITER_ERROR.
271 *
272 * The reference currently being looked at can be peeled by calling
273 * ref_iterator_peel(). This function is often faster than peel_ref(),
274 * so it should be preferred when iterating over references.
275 *
276 * Putting it all together, a typical iteration looks like this:
277 *
278 * int ok;
279 * struct ref_iterator *iter = ...;
280 *
281 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
282 * if (want_to_stop_iteration()) {
283 * ok = ref_iterator_abort(iter);
284 * break;
285 * }
286 *
287 * // Access information about the current reference:
288 * if (!(iter->flags & REF_ISSYMREF))
289 * printf("%s is %s\n", iter->refname, oid_to_hex(iter->oid));
290 *
291 * // If you need to peel the reference:
292 * ref_iterator_peel(iter, &oid);
293 * }
294 *
295 * if (ok != ITER_DONE)
296 * handle_error();
297 */
298 struct ref_iterator {
299 struct ref_iterator_vtable *vtable;
300
301 /*
302 * Does this `ref_iterator` iterate over references in order
303 * by refname?
304 */
305 unsigned int ordered : 1;
306
307 const char *refname;
308 const struct object_id *oid;
309 unsigned int flags;
310 };
311
312 /*
313 * Advance the iterator to the first or next item and return ITER_OK.
314 * If the iteration is exhausted, free the resources associated with
315 * the ref_iterator and return ITER_DONE. On errors, free the iterator
316 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
317 * call this function again after it has returned ITER_DONE or
318 * ITER_ERROR.
319 */
320 int ref_iterator_advance(struct ref_iterator *ref_iterator);
321
322 /*
323 * If possible, peel the reference currently being viewed by the
324 * iterator. Return 0 on success.
325 */
326 int ref_iterator_peel(struct ref_iterator *ref_iterator,
327 struct object_id *peeled);
328
329 /*
330 * End the iteration before it has been exhausted, freeing the
331 * reference iterator and any associated resources and returning
332 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
333 */
334 int ref_iterator_abort(struct ref_iterator *ref_iterator);
335
336 /*
337 * An iterator over nothing (its first ref_iterator_advance() call
338 * returns ITER_DONE).
339 */
340 struct ref_iterator *empty_ref_iterator_begin(void);
341
342 /*
343 * Return true iff ref_iterator is an empty_ref_iterator.
344 */
345 int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
346
347 /*
348 * Return an iterator that goes over each reference in `refs` for
349 * which the refname begins with prefix. If trim is non-zero, then
350 * trim that many characters off the beginning of each refname.
351 * The output is ordered by refname. The following flags are supported:
352 *
353 * DO_FOR_EACH_INCLUDE_BROKEN: include broken references in
354 * the iteration.
355 *
356 * DO_FOR_EACH_PER_WORKTREE_ONLY: only produce REF_TYPE_PER_WORKTREE refs.
357 */
358 struct ref_iterator *refs_ref_iterator_begin(
359 struct ref_store *refs,
360 const char *prefix, int trim, int flags);
361
362 /*
363 * A callback function used to instruct merge_ref_iterator how to
364 * interleave the entries from iter0 and iter1. The function should
365 * return one of the constants defined in enum iterator_selection. It
366 * must not advance either of the iterators itself.
367 *
368 * The function must be prepared to handle the case that iter0 and/or
369 * iter1 is NULL, which indicates that the corresponding sub-iterator
370 * has been exhausted. Its return value must be consistent with the
371 * current states of the iterators; e.g., it must not return
372 * ITER_SKIP_1 if iter1 has already been exhausted.
373 */
374 typedef enum iterator_selection ref_iterator_select_fn(
375 struct ref_iterator *iter0, struct ref_iterator *iter1,
376 void *cb_data);
377
378 /*
379 * Iterate over the entries from iter0 and iter1, with the values
380 * interleaved as directed by the select function. The iterator takes
381 * ownership of iter0 and iter1 and frees them when the iteration is
382 * over. A derived class should set `ordered` to 1 or 0 based on
383 * whether it generates its output in order by reference name.
384 */
385 struct ref_iterator *merge_ref_iterator_begin(
386 int ordered,
387 struct ref_iterator *iter0, struct ref_iterator *iter1,
388 ref_iterator_select_fn *select, void *cb_data);
389
390 /*
391 * An iterator consisting of the union of the entries from front and
392 * back. If there are entries common to the two sub-iterators, use the
393 * one from front. Each iterator must iterate over its entries in
394 * strcmp() order by refname for this to work.
395 *
396 * The new iterator takes ownership of its arguments and frees them
397 * when the iteration is over. As a convenience to callers, if front
398 * or back is an empty_ref_iterator, then abort that one immediately
399 * and return the other iterator directly, without wrapping it.
400 */
401 struct ref_iterator *overlay_ref_iterator_begin(
402 struct ref_iterator *front, struct ref_iterator *back);
403
404 /*
405 * Wrap iter0, only letting through the references whose names start
406 * with prefix. If trim is set, set iter->refname to the name of the
407 * reference with that many characters trimmed off the front;
408 * otherwise set it to the full refname. The new iterator takes over
409 * ownership of iter0 and frees it when iteration is over. It makes
410 * its own copy of prefix.
411 *
412 * As an convenience to callers, if prefix is the empty string and
413 * trim is zero, this function returns iter0 directly, without
414 * wrapping it.
415 *
416 * The resulting ref_iterator is ordered if iter0 is.
417 */
418 struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
419 const char *prefix,
420 int trim);
421
422 /* Internal implementation of reference iteration: */
423
424 /*
425 * Base class constructor for ref_iterators. Initialize the
426 * ref_iterator part of iter, setting its vtable pointer as specified.
427 * `ordered` should be set to 1 if the iterator will iterate over
428 * references in order by refname; otherwise it should be set to 0.
429 * This is meant to be called only by the initializers of derived
430 * classes.
431 */
432 void base_ref_iterator_init(struct ref_iterator *iter,
433 struct ref_iterator_vtable *vtable,
434 int ordered);
435
436 /*
437 * Base class destructor for ref_iterators. Destroy the ref_iterator
438 * part of iter and shallow-free the object. This is meant to be
439 * called only by the destructors of derived classes.
440 */
441 void base_ref_iterator_free(struct ref_iterator *iter);
442
443 /* Virtual function declarations for ref_iterators: */
444
445 /*
446 * backend-specific implementation of ref_iterator_advance. For symrefs, the
447 * function should set REF_ISSYMREF, and it should also dereference the symref
448 * to provide the OID referent. If DO_FOR_EACH_INCLUDE_BROKEN is set, symrefs
449 * with non-existent referents and refs pointing to non-existent object names
450 * should also be returned. If DO_FOR_EACH_PER_WORKTREE_ONLY, only
451 * REF_TYPE_PER_WORKTREE refs should be returned.
452 */
453 typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
454
455 typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
456 struct object_id *peeled);
457
458 /*
459 * Implementations of this function should free any resources specific
460 * to the derived class, then call base_ref_iterator_free() to clean
461 * up and free the ref_iterator object.
462 */
463 typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
464
465 struct ref_iterator_vtable {
466 ref_iterator_advance_fn *advance;
467 ref_iterator_peel_fn *peel;
468 ref_iterator_abort_fn *abort;
469 };
470
471 /*
472 * current_ref_iter is a performance hack: when iterating over
473 * references using the for_each_ref*() functions, current_ref_iter is
474 * set to the reference iterator before calling the callback function.
475 * If the callback function calls peel_ref(), then peel_ref() first
476 * checks whether the reference to be peeled is the one referred to by
477 * the iterator (it usually is) and if so, asks the iterator for the
478 * peeled version of the reference if it is available. This avoids a
479 * refname lookup in a common case. current_ref_iter is set to NULL
480 * when the iteration is over.
481 */
482 extern struct ref_iterator *current_ref_iter;
483
484 /*
485 * The common backend for the for_each_*ref* functions. Call fn for
486 * each reference in iter. If the iterator itself ever returns
487 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
488 * the iteration and return that value. Otherwise, return 0. In any
489 * case, free the iterator when done. This function is basically an
490 * adapter between the callback style of reference iteration and the
491 * iterator style.
492 */
493 int do_for_each_repo_ref_iterator(struct repository *r,
494 struct ref_iterator *iter,
495 each_repo_ref_fn fn, void *cb_data);
496
497 /*
498 * Only include per-worktree refs in a do_for_each_ref*() iteration.
499 * Normally this will be used with a files ref_store, since that's
500 * where all reference backends will presumably store their
501 * per-worktree refs.
502 */
503 #define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
504
505 struct ref_store;
506
507 /* refs backends */
508
509 /* ref_store_init flags */
510 #define REF_STORE_READ (1 << 0)
511 #define REF_STORE_WRITE (1 << 1) /* can perform update operations */
512 #define REF_STORE_ODB (1 << 2) /* has access to object database */
513 #define REF_STORE_MAIN (1 << 3)
514 #define REF_STORE_ALL_CAPS (REF_STORE_READ | \
515 REF_STORE_WRITE | \
516 REF_STORE_ODB | \
517 REF_STORE_MAIN)
518
519 /*
520 * Initialize the ref_store for the specified gitdir. These functions
521 * should call base_ref_store_init() to initialize the shared part of
522 * the ref_store and to record the ref_store for later lookup.
523 */
524 typedef struct ref_store *ref_store_init_fn(const char *gitdir,
525 unsigned int flags);
526
527 typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
528
529 typedef int ref_transaction_prepare_fn(struct ref_store *refs,
530 struct ref_transaction *transaction,
531 struct strbuf *err);
532
533 typedef int ref_transaction_finish_fn(struct ref_store *refs,
534 struct ref_transaction *transaction,
535 struct strbuf *err);
536
537 typedef int ref_transaction_abort_fn(struct ref_store *refs,
538 struct ref_transaction *transaction,
539 struct strbuf *err);
540
541 typedef int ref_transaction_commit_fn(struct ref_store *refs,
542 struct ref_transaction *transaction,
543 struct strbuf *err);
544
545 typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
546 typedef int create_symref_fn(struct ref_store *ref_store,
547 const char *ref_target,
548 const char *refs_heads_master,
549 const char *logmsg);
550 typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg,
551 struct string_list *refnames, unsigned int flags);
552 typedef int rename_ref_fn(struct ref_store *ref_store,
553 const char *oldref, const char *newref,
554 const char *logmsg);
555 typedef int copy_ref_fn(struct ref_store *ref_store,
556 const char *oldref, const char *newref,
557 const char *logmsg);
558
559 /*
560 * Iterate over the references in `ref_store` whose names start with
561 * `prefix`. `prefix` is matched as a literal string, without regard
562 * for path separators. If prefix is NULL or the empty string, iterate
563 * over all references in `ref_store`. The output is ordered by
564 * refname.
565 */
566 typedef struct ref_iterator *ref_iterator_begin_fn(
567 struct ref_store *ref_store,
568 const char *prefix, unsigned int flags);
569
570 /* reflog functions */
571
572 /*
573 * Iterate over the references in the specified ref_store that have a
574 * reflog. The refs are iterated over in arbitrary order.
575 */
576 typedef struct ref_iterator *reflog_iterator_begin_fn(
577 struct ref_store *ref_store);
578
579 typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
580 const char *refname,
581 each_reflog_ent_fn fn,
582 void *cb_data);
583 typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
584 const char *refname,
585 each_reflog_ent_fn fn,
586 void *cb_data);
587 typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
588 typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
589 int force_create, struct strbuf *err);
590 typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
591 typedef int reflog_expire_fn(struct ref_store *ref_store,
592 const char *refname, const struct object_id *oid,
593 unsigned int flags,
594 reflog_expiry_prepare_fn prepare_fn,
595 reflog_expiry_should_prune_fn should_prune_fn,
596 reflog_expiry_cleanup_fn cleanup_fn,
597 void *policy_cb_data);
598
599 /*
600 * Read a reference from the specified reference store, non-recursively.
601 * Set type to describe the reference, and:
602 *
603 * - If refname is the name of a normal reference, fill in oid
604 * (leaving referent unchanged).
605 *
606 * - If refname is the name of a symbolic reference, write the full
607 * name of the reference to which it refers (e.g.
608 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in
609 * type (leaving oid unchanged). The caller is responsible for
610 * validating that referent is a valid reference name.
611 *
612 * WARNING: refname might be used as part of a filename, so it is
613 * important from a security standpoint that it be safe in the sense
614 * of refname_is_safe(). Moreover, for symrefs this function sets
615 * referent to whatever the repository says, which might not be a
616 * properly-formatted or even safe reference name. NEITHER INPUT NOR
617 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
618 *
619 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
620 * and return -1. If the ref exists but is neither a symbolic ref nor
621 * an object ID, it is broken; set REF_ISBROKEN in type, set errno to
622 * EINVAL, and return -1. If there is another error reading the ref,
623 * set errno appropriately and return -1.
624 *
625 * Backend-specific flags might be set in type as well, regardless of
626 * outcome.
627 *
628 * It is OK for refname to point into referent. If so:
629 *
630 * - if the function succeeds with REF_ISSYMREF, referent will be
631 * overwritten and the memory formerly pointed to by it might be
632 * changed or even freed.
633 *
634 * - in all other cases, referent will be untouched, and therefore
635 * refname will still be valid and unchanged.
636 */
637 typedef int read_raw_ref_fn(struct ref_store *ref_store,
638 const char *refname, struct object_id *oid,
639 struct strbuf *referent, unsigned int *type);
640
641 struct ref_storage_be {
642 struct ref_storage_be *next;
643 const char *name;
644 ref_store_init_fn *init;
645 ref_init_db_fn *init_db;
646
647 ref_transaction_prepare_fn *transaction_prepare;
648 ref_transaction_finish_fn *transaction_finish;
649 ref_transaction_abort_fn *transaction_abort;
650 ref_transaction_commit_fn *initial_transaction_commit;
651
652 pack_refs_fn *pack_refs;
653 create_symref_fn *create_symref;
654 delete_refs_fn *delete_refs;
655 rename_ref_fn *rename_ref;
656 copy_ref_fn *copy_ref;
657
658 ref_iterator_begin_fn *iterator_begin;
659 read_raw_ref_fn *read_raw_ref;
660
661 reflog_iterator_begin_fn *reflog_iterator_begin;
662 for_each_reflog_ent_fn *for_each_reflog_ent;
663 for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
664 reflog_exists_fn *reflog_exists;
665 create_reflog_fn *create_reflog;
666 delete_reflog_fn *delete_reflog;
667 reflog_expire_fn *reflog_expire;
668 };
669
670 extern struct ref_storage_be refs_be_files;
671 extern struct ref_storage_be refs_be_packed;
672
673 /*
674 * A representation of the reference store for the main repository or
675 * a submodule. The ref_store instances for submodules are kept in a
676 * linked list.
677 */
678 struct ref_store {
679 /* The backend describing this ref_store's storage scheme: */
680 const struct ref_storage_be *be;
681 };
682
683 /*
684 * Fill in the generic part of refs and add it to our collection of
685 * reference stores.
686 */
687 void base_ref_store_init(struct ref_store *refs,
688 const struct ref_storage_be *be);
689
690 #endif /* REFS_REFS_INTERNAL_H */