]> git.ipfire.org Git - thirdparty/git.git/blob - refs.c
Merge branch 'mh/write-refs-sooner-2.3' into mh/write-refs-sooner-2.4
[thirdparty/git.git] / refs.c
1 #include "cache.h"
2 #include "lockfile.h"
3 #include "refs.h"
4 #include "object.h"
5 #include "tag.h"
6 #include "dir.h"
7 #include "string-list.h"
8
9 struct ref_lock {
10 char *ref_name;
11 char *orig_ref_name;
12 struct lock_file *lk;
13 unsigned char old_sha1[20];
14 int lock_fd;
15 };
16
17 /*
18 * How to handle various characters in refnames:
19 * 0: An acceptable character for refs
20 * 1: End-of-component
21 * 2: ., look for a preceding . to reject .. in refs
22 * 3: {, look for a preceding @ to reject @{ in refs
23 * 4: A bad character: ASCII control characters, "~", "^", ":" or SP
24 */
25 static unsigned char refname_disposition[256] = {
26 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
27 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
28 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 1,
29 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4,
30 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
31 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0,
32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
33 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 4
34 };
35
36 /*
37 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
38 * refs (i.e., because the reference is about to be deleted anyway).
39 */
40 #define REF_DELETING 0x02
41
42 /*
43 * Used as a flag in ref_update::flags when a loose ref is being
44 * pruned.
45 */
46 #define REF_ISPRUNING 0x04
47
48 /*
49 * Used as a flag in ref_update::flags when the reference should be
50 * updated to new_sha1.
51 */
52 #define REF_HAVE_NEW 0x08
53
54 /*
55 * Used as a flag in ref_update::flags when old_sha1 should be
56 * checked.
57 */
58 #define REF_HAVE_OLD 0x10
59
60 /*
61 * Used as a flag in ref_update::flags when the lockfile needs to be
62 * committed.
63 */
64 #define REF_NEEDS_COMMIT 0x20
65
66 /*
67 * Try to read one refname component from the front of refname.
68 * Return the length of the component found, or -1 if the component is
69 * not legal. It is legal if it is something reasonable to have under
70 * ".git/refs/"; We do not like it if:
71 *
72 * - any path component of it begins with ".", or
73 * - it has double dots "..", or
74 * - it has ASCII control character, "~", "^", ":" or SP, anywhere, or
75 * - it ends with a "/".
76 * - it ends with ".lock"
77 * - it contains a "\" (backslash)
78 */
79 static int check_refname_component(const char *refname, int flags)
80 {
81 const char *cp;
82 char last = '\0';
83
84 for (cp = refname; ; cp++) {
85 int ch = *cp & 255;
86 unsigned char disp = refname_disposition[ch];
87 switch (disp) {
88 case 1:
89 goto out;
90 case 2:
91 if (last == '.')
92 return -1; /* Refname contains "..". */
93 break;
94 case 3:
95 if (last == '@')
96 return -1; /* Refname contains "@{". */
97 break;
98 case 4:
99 return -1;
100 }
101 last = ch;
102 }
103 out:
104 if (cp == refname)
105 return 0; /* Component has zero length. */
106 if (refname[0] == '.')
107 return -1; /* Component starts with '.'. */
108 if (cp - refname >= LOCK_SUFFIX_LEN &&
109 !memcmp(cp - LOCK_SUFFIX_LEN, LOCK_SUFFIX, LOCK_SUFFIX_LEN))
110 return -1; /* Refname ends with ".lock". */
111 return cp - refname;
112 }
113
114 int check_refname_format(const char *refname, int flags)
115 {
116 int component_len, component_count = 0;
117
118 if (!strcmp(refname, "@"))
119 /* Refname is a single character '@'. */
120 return -1;
121
122 while (1) {
123 /* We are at the start of a path component. */
124 component_len = check_refname_component(refname, flags);
125 if (component_len <= 0) {
126 if ((flags & REFNAME_REFSPEC_PATTERN) &&
127 refname[0] == '*' &&
128 (refname[1] == '\0' || refname[1] == '/')) {
129 /* Accept one wildcard as a full refname component. */
130 flags &= ~REFNAME_REFSPEC_PATTERN;
131 component_len = 1;
132 } else {
133 return -1;
134 }
135 }
136 component_count++;
137 if (refname[component_len] == '\0')
138 break;
139 /* Skip to next component. */
140 refname += component_len + 1;
141 }
142
143 if (refname[component_len - 1] == '.')
144 return -1; /* Refname ends with '.'. */
145 if (!(flags & REFNAME_ALLOW_ONELEVEL) && component_count < 2)
146 return -1; /* Refname has only one component. */
147 return 0;
148 }
149
150 struct ref_entry;
151
152 /*
153 * Information used (along with the information in ref_entry) to
154 * describe a single cached reference. This data structure only
155 * occurs embedded in a union in struct ref_entry, and only when
156 * (ref_entry->flag & REF_DIR) is zero.
157 */
158 struct ref_value {
159 /*
160 * The name of the object to which this reference resolves
161 * (which may be a tag object). If REF_ISBROKEN, this is
162 * null. If REF_ISSYMREF, then this is the name of the object
163 * referred to by the last reference in the symlink chain.
164 */
165 unsigned char sha1[20];
166
167 /*
168 * If REF_KNOWS_PEELED, then this field holds the peeled value
169 * of this reference, or null if the reference is known not to
170 * be peelable. See the documentation for peel_ref() for an
171 * exact definition of "peelable".
172 */
173 unsigned char peeled[20];
174 };
175
176 struct ref_cache;
177
178 /*
179 * Information used (along with the information in ref_entry) to
180 * describe a level in the hierarchy of references. This data
181 * structure only occurs embedded in a union in struct ref_entry, and
182 * only when (ref_entry.flag & REF_DIR) is set. In that case,
183 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
184 * in the directory have already been read:
185 *
186 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
187 * or packed references, already read.
188 *
189 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
190 * references that hasn't been read yet (nor has any of its
191 * subdirectories).
192 *
193 * Entries within a directory are stored within a growable array of
194 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
195 * sorted are sorted by their component name in strcmp() order and the
196 * remaining entries are unsorted.
197 *
198 * Loose references are read lazily, one directory at a time. When a
199 * directory of loose references is read, then all of the references
200 * in that directory are stored, and REF_INCOMPLETE stubs are created
201 * for any subdirectories, but the subdirectories themselves are not
202 * read. The reading is triggered by get_ref_dir().
203 */
204 struct ref_dir {
205 int nr, alloc;
206
207 /*
208 * Entries with index 0 <= i < sorted are sorted by name. New
209 * entries are appended to the list unsorted, and are sorted
210 * only when required; thus we avoid the need to sort the list
211 * after the addition of every reference.
212 */
213 int sorted;
214
215 /* A pointer to the ref_cache that contains this ref_dir. */
216 struct ref_cache *ref_cache;
217
218 struct ref_entry **entries;
219 };
220
221 /*
222 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
223 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
224 * public values; see refs.h.
225 */
226
227 /*
228 * The field ref_entry->u.value.peeled of this value entry contains
229 * the correct peeled value for the reference, which might be
230 * null_sha1 if the reference is not a tag or if it is broken.
231 */
232 #define REF_KNOWS_PEELED 0x10
233
234 /* ref_entry represents a directory of references */
235 #define REF_DIR 0x20
236
237 /*
238 * Entry has not yet been read from disk (used only for REF_DIR
239 * entries representing loose references)
240 */
241 #define REF_INCOMPLETE 0x40
242
243 /*
244 * A ref_entry represents either a reference or a "subdirectory" of
245 * references.
246 *
247 * Each directory in the reference namespace is represented by a
248 * ref_entry with (flags & REF_DIR) set and containing a subdir member
249 * that holds the entries in that directory that have been read so
250 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
251 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
252 * used for loose reference directories.
253 *
254 * References are represented by a ref_entry with (flags & REF_DIR)
255 * unset and a value member that describes the reference's value. The
256 * flag member is at the ref_entry level, but it is also needed to
257 * interpret the contents of the value field (in other words, a
258 * ref_value object is not very much use without the enclosing
259 * ref_entry).
260 *
261 * Reference names cannot end with slash and directories' names are
262 * always stored with a trailing slash (except for the top-level
263 * directory, which is always denoted by ""). This has two nice
264 * consequences: (1) when the entries in each subdir are sorted
265 * lexicographically by name (as they usually are), the references in
266 * a whole tree can be generated in lexicographic order by traversing
267 * the tree in left-to-right, depth-first order; (2) the names of
268 * references and subdirectories cannot conflict, and therefore the
269 * presence of an empty subdirectory does not block the creation of a
270 * similarly-named reference. (The fact that reference names with the
271 * same leading components can conflict *with each other* is a
272 * separate issue that is regulated by is_refname_available().)
273 *
274 * Please note that the name field contains the fully-qualified
275 * reference (or subdirectory) name. Space could be saved by only
276 * storing the relative names. But that would require the full names
277 * to be generated on the fly when iterating in do_for_each_ref(), and
278 * would break callback functions, who have always been able to assume
279 * that the name strings that they are passed will not be freed during
280 * the iteration.
281 */
282 struct ref_entry {
283 unsigned char flag; /* ISSYMREF? ISPACKED? */
284 union {
285 struct ref_value value; /* if not (flags&REF_DIR) */
286 struct ref_dir subdir; /* if (flags&REF_DIR) */
287 } u;
288 /*
289 * The full name of the reference (e.g., "refs/heads/master")
290 * or the full name of the directory with a trailing slash
291 * (e.g., "refs/heads/"):
292 */
293 char name[FLEX_ARRAY];
294 };
295
296 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
297
298 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
299 {
300 struct ref_dir *dir;
301 assert(entry->flag & REF_DIR);
302 dir = &entry->u.subdir;
303 if (entry->flag & REF_INCOMPLETE) {
304 read_loose_refs(entry->name, dir);
305 entry->flag &= ~REF_INCOMPLETE;
306 }
307 return dir;
308 }
309
310 /*
311 * Check if a refname is safe.
312 * For refs that start with "refs/" we consider it safe as long they do
313 * not try to resolve to outside of refs/.
314 *
315 * For all other refs we only consider them safe iff they only contain
316 * upper case characters and '_' (like "HEAD" AND "MERGE_HEAD", and not like
317 * "config").
318 */
319 static int refname_is_safe(const char *refname)
320 {
321 if (starts_with(refname, "refs/")) {
322 char *buf;
323 int result;
324
325 buf = xmalloc(strlen(refname) + 1);
326 /*
327 * Does the refname try to escape refs/?
328 * For example: refs/foo/../bar is safe but refs/foo/../../bar
329 * is not.
330 */
331 result = !normalize_path_copy(buf, refname + strlen("refs/"));
332 free(buf);
333 return result;
334 }
335 while (*refname) {
336 if (!isupper(*refname) && *refname != '_')
337 return 0;
338 refname++;
339 }
340 return 1;
341 }
342
343 static struct ref_entry *create_ref_entry(const char *refname,
344 const unsigned char *sha1, int flag,
345 int check_name)
346 {
347 int len;
348 struct ref_entry *ref;
349
350 if (check_name &&
351 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
352 die("Reference has invalid format: '%s'", refname);
353 if (!check_name && !refname_is_safe(refname))
354 die("Reference has invalid name: '%s'", refname);
355 len = strlen(refname) + 1;
356 ref = xmalloc(sizeof(struct ref_entry) + len);
357 hashcpy(ref->u.value.sha1, sha1);
358 hashclr(ref->u.value.peeled);
359 memcpy(ref->name, refname, len);
360 ref->flag = flag;
361 return ref;
362 }
363
364 static void clear_ref_dir(struct ref_dir *dir);
365
366 static void free_ref_entry(struct ref_entry *entry)
367 {
368 if (entry->flag & REF_DIR) {
369 /*
370 * Do not use get_ref_dir() here, as that might
371 * trigger the reading of loose refs.
372 */
373 clear_ref_dir(&entry->u.subdir);
374 }
375 free(entry);
376 }
377
378 /*
379 * Add a ref_entry to the end of dir (unsorted). Entry is always
380 * stored directly in dir; no recursion into subdirectories is
381 * done.
382 */
383 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
384 {
385 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
386 dir->entries[dir->nr++] = entry;
387 /* optimize for the case that entries are added in order */
388 if (dir->nr == 1 ||
389 (dir->nr == dir->sorted + 1 &&
390 strcmp(dir->entries[dir->nr - 2]->name,
391 dir->entries[dir->nr - 1]->name) < 0))
392 dir->sorted = dir->nr;
393 }
394
395 /*
396 * Clear and free all entries in dir, recursively.
397 */
398 static void clear_ref_dir(struct ref_dir *dir)
399 {
400 int i;
401 for (i = 0; i < dir->nr; i++)
402 free_ref_entry(dir->entries[i]);
403 free(dir->entries);
404 dir->sorted = dir->nr = dir->alloc = 0;
405 dir->entries = NULL;
406 }
407
408 /*
409 * Create a struct ref_entry object for the specified dirname.
410 * dirname is the name of the directory with a trailing slash (e.g.,
411 * "refs/heads/") or "" for the top-level directory.
412 */
413 static struct ref_entry *create_dir_entry(struct ref_cache *ref_cache,
414 const char *dirname, size_t len,
415 int incomplete)
416 {
417 struct ref_entry *direntry;
418 direntry = xcalloc(1, sizeof(struct ref_entry) + len + 1);
419 memcpy(direntry->name, dirname, len);
420 direntry->name[len] = '\0';
421 direntry->u.subdir.ref_cache = ref_cache;
422 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
423 return direntry;
424 }
425
426 static int ref_entry_cmp(const void *a, const void *b)
427 {
428 struct ref_entry *one = *(struct ref_entry **)a;
429 struct ref_entry *two = *(struct ref_entry **)b;
430 return strcmp(one->name, two->name);
431 }
432
433 static void sort_ref_dir(struct ref_dir *dir);
434
435 struct string_slice {
436 size_t len;
437 const char *str;
438 };
439
440 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
441 {
442 const struct string_slice *key = key_;
443 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
444 int cmp = strncmp(key->str, ent->name, key->len);
445 if (cmp)
446 return cmp;
447 return '\0' - (unsigned char)ent->name[key->len];
448 }
449
450 /*
451 * Return the index of the entry with the given refname from the
452 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
453 * no such entry is found. dir must already be complete.
454 */
455 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
456 {
457 struct ref_entry **r;
458 struct string_slice key;
459
460 if (refname == NULL || !dir->nr)
461 return -1;
462
463 sort_ref_dir(dir);
464 key.len = len;
465 key.str = refname;
466 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
467 ref_entry_cmp_sslice);
468
469 if (r == NULL)
470 return -1;
471
472 return r - dir->entries;
473 }
474
475 /*
476 * Search for a directory entry directly within dir (without
477 * recursing). Sort dir if necessary. subdirname must be a directory
478 * name (i.e., end in '/'). If mkdir is set, then create the
479 * directory if it is missing; otherwise, return NULL if the desired
480 * directory cannot be found. dir must already be complete.
481 */
482 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
483 const char *subdirname, size_t len,
484 int mkdir)
485 {
486 int entry_index = search_ref_dir(dir, subdirname, len);
487 struct ref_entry *entry;
488 if (entry_index == -1) {
489 if (!mkdir)
490 return NULL;
491 /*
492 * Since dir is complete, the absence of a subdir
493 * means that the subdir really doesn't exist;
494 * therefore, create an empty record for it but mark
495 * the record complete.
496 */
497 entry = create_dir_entry(dir->ref_cache, subdirname, len, 0);
498 add_entry_to_dir(dir, entry);
499 } else {
500 entry = dir->entries[entry_index];
501 }
502 return get_ref_dir(entry);
503 }
504
505 /*
506 * If refname is a reference name, find the ref_dir within the dir
507 * tree that should hold refname. If refname is a directory name
508 * (i.e., ends in '/'), then return that ref_dir itself. dir must
509 * represent the top-level directory and must already be complete.
510 * Sort ref_dirs and recurse into subdirectories as necessary. If
511 * mkdir is set, then create any missing directories; otherwise,
512 * return NULL if the desired directory cannot be found.
513 */
514 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
515 const char *refname, int mkdir)
516 {
517 const char *slash;
518 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
519 size_t dirnamelen = slash - refname + 1;
520 struct ref_dir *subdir;
521 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
522 if (!subdir) {
523 dir = NULL;
524 break;
525 }
526 dir = subdir;
527 }
528
529 return dir;
530 }
531
532 /*
533 * Find the value entry with the given name in dir, sorting ref_dirs
534 * and recursing into subdirectories as necessary. If the name is not
535 * found or it corresponds to a directory entry, return NULL.
536 */
537 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
538 {
539 int entry_index;
540 struct ref_entry *entry;
541 dir = find_containing_dir(dir, refname, 0);
542 if (!dir)
543 return NULL;
544 entry_index = search_ref_dir(dir, refname, strlen(refname));
545 if (entry_index == -1)
546 return NULL;
547 entry = dir->entries[entry_index];
548 return (entry->flag & REF_DIR) ? NULL : entry;
549 }
550
551 /*
552 * Remove the entry with the given name from dir, recursing into
553 * subdirectories as necessary. If refname is the name of a directory
554 * (i.e., ends with '/'), then remove the directory and its contents.
555 * If the removal was successful, return the number of entries
556 * remaining in the directory entry that contained the deleted entry.
557 * If the name was not found, return -1. Please note that this
558 * function only deletes the entry from the cache; it does not delete
559 * it from the filesystem or ensure that other cache entries (which
560 * might be symbolic references to the removed entry) are updated.
561 * Nor does it remove any containing dir entries that might be made
562 * empty by the removal. dir must represent the top-level directory
563 * and must already be complete.
564 */
565 static int remove_entry(struct ref_dir *dir, const char *refname)
566 {
567 int refname_len = strlen(refname);
568 int entry_index;
569 struct ref_entry *entry;
570 int is_dir = refname[refname_len - 1] == '/';
571 if (is_dir) {
572 /*
573 * refname represents a reference directory. Remove
574 * the trailing slash; otherwise we will get the
575 * directory *representing* refname rather than the
576 * one *containing* it.
577 */
578 char *dirname = xmemdupz(refname, refname_len - 1);
579 dir = find_containing_dir(dir, dirname, 0);
580 free(dirname);
581 } else {
582 dir = find_containing_dir(dir, refname, 0);
583 }
584 if (!dir)
585 return -1;
586 entry_index = search_ref_dir(dir, refname, refname_len);
587 if (entry_index == -1)
588 return -1;
589 entry = dir->entries[entry_index];
590
591 memmove(&dir->entries[entry_index],
592 &dir->entries[entry_index + 1],
593 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
594 );
595 dir->nr--;
596 if (dir->sorted > entry_index)
597 dir->sorted--;
598 free_ref_entry(entry);
599 return dir->nr;
600 }
601
602 /*
603 * Add a ref_entry to the ref_dir (unsorted), recursing into
604 * subdirectories as necessary. dir must represent the top-level
605 * directory. Return 0 on success.
606 */
607 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
608 {
609 dir = find_containing_dir(dir, ref->name, 1);
610 if (!dir)
611 return -1;
612 add_entry_to_dir(dir, ref);
613 return 0;
614 }
615
616 /*
617 * Emit a warning and return true iff ref1 and ref2 have the same name
618 * and the same sha1. Die if they have the same name but different
619 * sha1s.
620 */
621 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
622 {
623 if (strcmp(ref1->name, ref2->name))
624 return 0;
625
626 /* Duplicate name; make sure that they don't conflict: */
627
628 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
629 /* This is impossible by construction */
630 die("Reference directory conflict: %s", ref1->name);
631
632 if (hashcmp(ref1->u.value.sha1, ref2->u.value.sha1))
633 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
634
635 warning("Duplicated ref: %s", ref1->name);
636 return 1;
637 }
638
639 /*
640 * Sort the entries in dir non-recursively (if they are not already
641 * sorted) and remove any duplicate entries.
642 */
643 static void sort_ref_dir(struct ref_dir *dir)
644 {
645 int i, j;
646 struct ref_entry *last = NULL;
647
648 /*
649 * This check also prevents passing a zero-length array to qsort(),
650 * which is a problem on some platforms.
651 */
652 if (dir->sorted == dir->nr)
653 return;
654
655 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
656
657 /* Remove any duplicates: */
658 for (i = 0, j = 0; j < dir->nr; j++) {
659 struct ref_entry *entry = dir->entries[j];
660 if (last && is_dup_ref(last, entry))
661 free_ref_entry(entry);
662 else
663 last = dir->entries[i++] = entry;
664 }
665 dir->sorted = dir->nr = i;
666 }
667
668 /* Include broken references in a do_for_each_ref*() iteration: */
669 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
670
671 /*
672 * Return true iff the reference described by entry can be resolved to
673 * an object in the database. Emit a warning if the referred-to
674 * object does not exist.
675 */
676 static int ref_resolves_to_object(struct ref_entry *entry)
677 {
678 if (entry->flag & REF_ISBROKEN)
679 return 0;
680 if (!has_sha1_file(entry->u.value.sha1)) {
681 error("%s does not point to a valid object!", entry->name);
682 return 0;
683 }
684 return 1;
685 }
686
687 /*
688 * current_ref is a performance hack: when iterating over references
689 * using the for_each_ref*() functions, current_ref is set to the
690 * current reference's entry before calling the callback function. If
691 * the callback function calls peel_ref(), then peel_ref() first
692 * checks whether the reference to be peeled is the current reference
693 * (it usually is) and if so, returns that reference's peeled version
694 * if it is available. This avoids a refname lookup in a common case.
695 */
696 static struct ref_entry *current_ref;
697
698 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
699
700 struct ref_entry_cb {
701 const char *base;
702 int trim;
703 int flags;
704 each_ref_fn *fn;
705 void *cb_data;
706 };
707
708 /*
709 * Handle one reference in a do_for_each_ref*()-style iteration,
710 * calling an each_ref_fn for each entry.
711 */
712 static int do_one_ref(struct ref_entry *entry, void *cb_data)
713 {
714 struct ref_entry_cb *data = cb_data;
715 struct ref_entry *old_current_ref;
716 int retval;
717
718 if (!starts_with(entry->name, data->base))
719 return 0;
720
721 if (!(data->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
722 !ref_resolves_to_object(entry))
723 return 0;
724
725 /* Store the old value, in case this is a recursive call: */
726 old_current_ref = current_ref;
727 current_ref = entry;
728 retval = data->fn(entry->name + data->trim, entry->u.value.sha1,
729 entry->flag, data->cb_data);
730 current_ref = old_current_ref;
731 return retval;
732 }
733
734 /*
735 * Call fn for each reference in dir that has index in the range
736 * offset <= index < dir->nr. Recurse into subdirectories that are in
737 * that index range, sorting them before iterating. This function
738 * does not sort dir itself; it should be sorted beforehand. fn is
739 * called for all references, including broken ones.
740 */
741 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
742 each_ref_entry_fn fn, void *cb_data)
743 {
744 int i;
745 assert(dir->sorted == dir->nr);
746 for (i = offset; i < dir->nr; i++) {
747 struct ref_entry *entry = dir->entries[i];
748 int retval;
749 if (entry->flag & REF_DIR) {
750 struct ref_dir *subdir = get_ref_dir(entry);
751 sort_ref_dir(subdir);
752 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
753 } else {
754 retval = fn(entry, cb_data);
755 }
756 if (retval)
757 return retval;
758 }
759 return 0;
760 }
761
762 /*
763 * Call fn for each reference in the union of dir1 and dir2, in order
764 * by refname. Recurse into subdirectories. If a value entry appears
765 * in both dir1 and dir2, then only process the version that is in
766 * dir2. The input dirs must already be sorted, but subdirs will be
767 * sorted as needed. fn is called for all references, including
768 * broken ones.
769 */
770 static int do_for_each_entry_in_dirs(struct ref_dir *dir1,
771 struct ref_dir *dir2,
772 each_ref_entry_fn fn, void *cb_data)
773 {
774 int retval;
775 int i1 = 0, i2 = 0;
776
777 assert(dir1->sorted == dir1->nr);
778 assert(dir2->sorted == dir2->nr);
779 while (1) {
780 struct ref_entry *e1, *e2;
781 int cmp;
782 if (i1 == dir1->nr) {
783 return do_for_each_entry_in_dir(dir2, i2, fn, cb_data);
784 }
785 if (i2 == dir2->nr) {
786 return do_for_each_entry_in_dir(dir1, i1, fn, cb_data);
787 }
788 e1 = dir1->entries[i1];
789 e2 = dir2->entries[i2];
790 cmp = strcmp(e1->name, e2->name);
791 if (cmp == 0) {
792 if ((e1->flag & REF_DIR) && (e2->flag & REF_DIR)) {
793 /* Both are directories; descend them in parallel. */
794 struct ref_dir *subdir1 = get_ref_dir(e1);
795 struct ref_dir *subdir2 = get_ref_dir(e2);
796 sort_ref_dir(subdir1);
797 sort_ref_dir(subdir2);
798 retval = do_for_each_entry_in_dirs(
799 subdir1, subdir2, fn, cb_data);
800 i1++;
801 i2++;
802 } else if (!(e1->flag & REF_DIR) && !(e2->flag & REF_DIR)) {
803 /* Both are references; ignore the one from dir1. */
804 retval = fn(e2, cb_data);
805 i1++;
806 i2++;
807 } else {
808 die("conflict between reference and directory: %s",
809 e1->name);
810 }
811 } else {
812 struct ref_entry *e;
813 if (cmp < 0) {
814 e = e1;
815 i1++;
816 } else {
817 e = e2;
818 i2++;
819 }
820 if (e->flag & REF_DIR) {
821 struct ref_dir *subdir = get_ref_dir(e);
822 sort_ref_dir(subdir);
823 retval = do_for_each_entry_in_dir(
824 subdir, 0, fn, cb_data);
825 } else {
826 retval = fn(e, cb_data);
827 }
828 }
829 if (retval)
830 return retval;
831 }
832 }
833
834 /*
835 * Load all of the refs from the dir into our in-memory cache. The hard work
836 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
837 * through all of the sub-directories. We do not even need to care about
838 * sorting, as traversal order does not matter to us.
839 */
840 static void prime_ref_dir(struct ref_dir *dir)
841 {
842 int i;
843 for (i = 0; i < dir->nr; i++) {
844 struct ref_entry *entry = dir->entries[i];
845 if (entry->flag & REF_DIR)
846 prime_ref_dir(get_ref_dir(entry));
847 }
848 }
849
850 static int entry_matches(struct ref_entry *entry, const struct string_list *list)
851 {
852 return list && string_list_has_string(list, entry->name);
853 }
854
855 struct nonmatching_ref_data {
856 const struct string_list *skip;
857 struct ref_entry *found;
858 };
859
860 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
861 {
862 struct nonmatching_ref_data *data = vdata;
863
864 if (entry_matches(entry, data->skip))
865 return 0;
866
867 data->found = entry;
868 return 1;
869 }
870
871 static void report_refname_conflict(struct ref_entry *entry,
872 const char *refname)
873 {
874 error("'%s' exists; cannot create '%s'", entry->name, refname);
875 }
876
877 /*
878 * Return true iff a reference named refname could be created without
879 * conflicting with the name of an existing reference in dir. If
880 * skip is non-NULL, ignore potential conflicts with refs in skip
881 * (e.g., because they are scheduled for deletion in the same
882 * operation).
883 *
884 * Two reference names conflict if one of them exactly matches the
885 * leading components of the other; e.g., "foo/bar" conflicts with
886 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or
887 * "foo/barbados".
888 *
889 * skip must be sorted.
890 */
891 static int is_refname_available(const char *refname,
892 const struct string_list *skip,
893 struct ref_dir *dir)
894 {
895 const char *slash;
896 size_t len;
897 int pos;
898 char *dirname;
899
900 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
901 /*
902 * We are still at a leading dir of the refname; we are
903 * looking for a conflict with a leaf entry.
904 *
905 * If we find one, we still must make sure it is
906 * not in "skip".
907 */
908 pos = search_ref_dir(dir, refname, slash - refname);
909 if (pos >= 0) {
910 struct ref_entry *entry = dir->entries[pos];
911 if (entry_matches(entry, skip))
912 return 1;
913 report_refname_conflict(entry, refname);
914 return 0;
915 }
916
917
918 /*
919 * Otherwise, we can try to continue our search with
920 * the next component; if we come up empty, we know
921 * there is nothing under this whole prefix.
922 */
923 pos = search_ref_dir(dir, refname, slash + 1 - refname);
924 if (pos < 0)
925 return 1;
926
927 dir = get_ref_dir(dir->entries[pos]);
928 }
929
930 /*
931 * We are at the leaf of our refname; we want to
932 * make sure there are no directories which match it.
933 */
934 len = strlen(refname);
935 dirname = xmallocz(len + 1);
936 sprintf(dirname, "%s/", refname);
937 pos = search_ref_dir(dir, dirname, len + 1);
938 free(dirname);
939
940 if (pos >= 0) {
941 /*
942 * We found a directory named "refname". It is a
943 * problem iff it contains any ref that is not
944 * in "skip".
945 */
946 struct ref_entry *entry = dir->entries[pos];
947 struct ref_dir *dir = get_ref_dir(entry);
948 struct nonmatching_ref_data data;
949
950 data.skip = skip;
951 sort_ref_dir(dir);
952 if (!do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data))
953 return 1;
954
955 report_refname_conflict(data.found, refname);
956 return 0;
957 }
958
959 /*
960 * There is no point in searching for another leaf
961 * node which matches it; such an entry would be the
962 * ref we are looking for, not a conflict.
963 */
964 return 1;
965 }
966
967 struct packed_ref_cache {
968 struct ref_entry *root;
969
970 /*
971 * Count of references to the data structure in this instance,
972 * including the pointer from ref_cache::packed if any. The
973 * data will not be freed as long as the reference count is
974 * nonzero.
975 */
976 unsigned int referrers;
977
978 /*
979 * Iff the packed-refs file associated with this instance is
980 * currently locked for writing, this points at the associated
981 * lock (which is owned by somebody else). The referrer count
982 * is also incremented when the file is locked and decremented
983 * when it is unlocked.
984 */
985 struct lock_file *lock;
986
987 /* The metadata from when this packed-refs cache was read */
988 struct stat_validity validity;
989 };
990
991 /*
992 * Future: need to be in "struct repository"
993 * when doing a full libification.
994 */
995 static struct ref_cache {
996 struct ref_cache *next;
997 struct ref_entry *loose;
998 struct packed_ref_cache *packed;
999 /*
1000 * The submodule name, or "" for the main repo. We allocate
1001 * length 1 rather than FLEX_ARRAY so that the main ref_cache
1002 * is initialized correctly.
1003 */
1004 char name[1];
1005 } ref_cache, *submodule_ref_caches;
1006
1007 /* Lock used for the main packed-refs file: */
1008 static struct lock_file packlock;
1009
1010 /*
1011 * Increment the reference count of *packed_refs.
1012 */
1013 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
1014 {
1015 packed_refs->referrers++;
1016 }
1017
1018 /*
1019 * Decrease the reference count of *packed_refs. If it goes to zero,
1020 * free *packed_refs and return true; otherwise return false.
1021 */
1022 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
1023 {
1024 if (!--packed_refs->referrers) {
1025 free_ref_entry(packed_refs->root);
1026 stat_validity_clear(&packed_refs->validity);
1027 free(packed_refs);
1028 return 1;
1029 } else {
1030 return 0;
1031 }
1032 }
1033
1034 static void clear_packed_ref_cache(struct ref_cache *refs)
1035 {
1036 if (refs->packed) {
1037 struct packed_ref_cache *packed_refs = refs->packed;
1038
1039 if (packed_refs->lock)
1040 die("internal error: packed-ref cache cleared while locked");
1041 refs->packed = NULL;
1042 release_packed_ref_cache(packed_refs);
1043 }
1044 }
1045
1046 static void clear_loose_ref_cache(struct ref_cache *refs)
1047 {
1048 if (refs->loose) {
1049 free_ref_entry(refs->loose);
1050 refs->loose = NULL;
1051 }
1052 }
1053
1054 static struct ref_cache *create_ref_cache(const char *submodule)
1055 {
1056 int len;
1057 struct ref_cache *refs;
1058 if (!submodule)
1059 submodule = "";
1060 len = strlen(submodule) + 1;
1061 refs = xcalloc(1, sizeof(struct ref_cache) + len);
1062 memcpy(refs->name, submodule, len);
1063 return refs;
1064 }
1065
1066 /*
1067 * Return a pointer to a ref_cache for the specified submodule. For
1068 * the main repository, use submodule==NULL. The returned structure
1069 * will be allocated and initialized but not necessarily populated; it
1070 * should not be freed.
1071 */
1072 static struct ref_cache *get_ref_cache(const char *submodule)
1073 {
1074 struct ref_cache *refs;
1075
1076 if (!submodule || !*submodule)
1077 return &ref_cache;
1078
1079 for (refs = submodule_ref_caches; refs; refs = refs->next)
1080 if (!strcmp(submodule, refs->name))
1081 return refs;
1082
1083 refs = create_ref_cache(submodule);
1084 refs->next = submodule_ref_caches;
1085 submodule_ref_caches = refs;
1086 return refs;
1087 }
1088
1089 /* The length of a peeled reference line in packed-refs, including EOL: */
1090 #define PEELED_LINE_LENGTH 42
1091
1092 /*
1093 * The packed-refs header line that we write out. Perhaps other
1094 * traits will be added later. The trailing space is required.
1095 */
1096 static const char PACKED_REFS_HEADER[] =
1097 "# pack-refs with: peeled fully-peeled \n";
1098
1099 /*
1100 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
1101 * Return a pointer to the refname within the line (null-terminated),
1102 * or NULL if there was a problem.
1103 */
1104 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1105 {
1106 const char *ref;
1107
1108 /*
1109 * 42: the answer to everything.
1110 *
1111 * In this case, it happens to be the answer to
1112 * 40 (length of sha1 hex representation)
1113 * +1 (space in between hex and name)
1114 * +1 (newline at the end of the line)
1115 */
1116 if (line->len <= 42)
1117 return NULL;
1118
1119 if (get_sha1_hex(line->buf, sha1) < 0)
1120 return NULL;
1121 if (!isspace(line->buf[40]))
1122 return NULL;
1123
1124 ref = line->buf + 41;
1125 if (isspace(*ref))
1126 return NULL;
1127
1128 if (line->buf[line->len - 1] != '\n')
1129 return NULL;
1130 line->buf[--line->len] = 0;
1131
1132 return ref;
1133 }
1134
1135 /*
1136 * Read f, which is a packed-refs file, into dir.
1137 *
1138 * A comment line of the form "# pack-refs with: " may contain zero or
1139 * more traits. We interpret the traits as follows:
1140 *
1141 * No traits:
1142 *
1143 * Probably no references are peeled. But if the file contains a
1144 * peeled value for a reference, we will use it.
1145 *
1146 * peeled:
1147 *
1148 * References under "refs/tags/", if they *can* be peeled, *are*
1149 * peeled in this file. References outside of "refs/tags/" are
1150 * probably not peeled even if they could have been, but if we find
1151 * a peeled value for such a reference we will use it.
1152 *
1153 * fully-peeled:
1154 *
1155 * All references in the file that can be peeled are peeled.
1156 * Inversely (and this is more important), any references in the
1157 * file for which no peeled value is recorded is not peelable. This
1158 * trait should typically be written alongside "peeled" for
1159 * compatibility with older clients, but we do not require it
1160 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1161 */
1162 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1163 {
1164 struct ref_entry *last = NULL;
1165 struct strbuf line = STRBUF_INIT;
1166 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1167
1168 while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1169 unsigned char sha1[20];
1170 const char *refname;
1171 const char *traits;
1172
1173 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1174 if (strstr(traits, " fully-peeled "))
1175 peeled = PEELED_FULLY;
1176 else if (strstr(traits, " peeled "))
1177 peeled = PEELED_TAGS;
1178 /* perhaps other traits later as well */
1179 continue;
1180 }
1181
1182 refname = parse_ref_line(&line, sha1);
1183 if (refname) {
1184 int flag = REF_ISPACKED;
1185
1186 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1187 hashclr(sha1);
1188 flag |= REF_BAD_NAME | REF_ISBROKEN;
1189 }
1190 last = create_ref_entry(refname, sha1, flag, 0);
1191 if (peeled == PEELED_FULLY ||
1192 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1193 last->flag |= REF_KNOWS_PEELED;
1194 add_ref(dir, last);
1195 continue;
1196 }
1197 if (last &&
1198 line.buf[0] == '^' &&
1199 line.len == PEELED_LINE_LENGTH &&
1200 line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1201 !get_sha1_hex(line.buf + 1, sha1)) {
1202 hashcpy(last->u.value.peeled, sha1);
1203 /*
1204 * Regardless of what the file header said,
1205 * we definitely know the value of *this*
1206 * reference:
1207 */
1208 last->flag |= REF_KNOWS_PEELED;
1209 }
1210 }
1211
1212 strbuf_release(&line);
1213 }
1214
1215 /*
1216 * Get the packed_ref_cache for the specified ref_cache, creating it
1217 * if necessary.
1218 */
1219 static struct packed_ref_cache *get_packed_ref_cache(struct ref_cache *refs)
1220 {
1221 const char *packed_refs_file;
1222
1223 if (*refs->name)
1224 packed_refs_file = git_path_submodule(refs->name, "packed-refs");
1225 else
1226 packed_refs_file = git_path("packed-refs");
1227
1228 if (refs->packed &&
1229 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1230 clear_packed_ref_cache(refs);
1231
1232 if (!refs->packed) {
1233 FILE *f;
1234
1235 refs->packed = xcalloc(1, sizeof(*refs->packed));
1236 acquire_packed_ref_cache(refs->packed);
1237 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1238 f = fopen(packed_refs_file, "r");
1239 if (f) {
1240 stat_validity_update(&refs->packed->validity, fileno(f));
1241 read_packed_refs(f, get_ref_dir(refs->packed->root));
1242 fclose(f);
1243 }
1244 }
1245 return refs->packed;
1246 }
1247
1248 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1249 {
1250 return get_ref_dir(packed_ref_cache->root);
1251 }
1252
1253 static struct ref_dir *get_packed_refs(struct ref_cache *refs)
1254 {
1255 return get_packed_ref_dir(get_packed_ref_cache(refs));
1256 }
1257
1258 void add_packed_ref(const char *refname, const unsigned char *sha1)
1259 {
1260 struct packed_ref_cache *packed_ref_cache =
1261 get_packed_ref_cache(&ref_cache);
1262
1263 if (!packed_ref_cache->lock)
1264 die("internal error: packed refs not locked");
1265 add_ref(get_packed_ref_dir(packed_ref_cache),
1266 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1267 }
1268
1269 /*
1270 * Read the loose references from the namespace dirname into dir
1271 * (without recursing). dirname must end with '/'. dir must be the
1272 * directory entry corresponding to dirname.
1273 */
1274 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1275 {
1276 struct ref_cache *refs = dir->ref_cache;
1277 DIR *d;
1278 const char *path;
1279 struct dirent *de;
1280 int dirnamelen = strlen(dirname);
1281 struct strbuf refname;
1282
1283 if (*refs->name)
1284 path = git_path_submodule(refs->name, "%s", dirname);
1285 else
1286 path = git_path("%s", dirname);
1287
1288 d = opendir(path);
1289 if (!d)
1290 return;
1291
1292 strbuf_init(&refname, dirnamelen + 257);
1293 strbuf_add(&refname, dirname, dirnamelen);
1294
1295 while ((de = readdir(d)) != NULL) {
1296 unsigned char sha1[20];
1297 struct stat st;
1298 int flag;
1299 const char *refdir;
1300
1301 if (de->d_name[0] == '.')
1302 continue;
1303 if (ends_with(de->d_name, ".lock"))
1304 continue;
1305 strbuf_addstr(&refname, de->d_name);
1306 refdir = *refs->name
1307 ? git_path_submodule(refs->name, "%s", refname.buf)
1308 : git_path("%s", refname.buf);
1309 if (stat(refdir, &st) < 0) {
1310 ; /* silently ignore */
1311 } else if (S_ISDIR(st.st_mode)) {
1312 strbuf_addch(&refname, '/');
1313 add_entry_to_dir(dir,
1314 create_dir_entry(refs, refname.buf,
1315 refname.len, 1));
1316 } else {
1317 if (*refs->name) {
1318 hashclr(sha1);
1319 flag = 0;
1320 if (resolve_gitlink_ref(refs->name, refname.buf, sha1) < 0) {
1321 hashclr(sha1);
1322 flag |= REF_ISBROKEN;
1323 }
1324 } else if (read_ref_full(refname.buf,
1325 RESOLVE_REF_READING,
1326 sha1, &flag)) {
1327 hashclr(sha1);
1328 flag |= REF_ISBROKEN;
1329 }
1330 if (check_refname_format(refname.buf,
1331 REFNAME_ALLOW_ONELEVEL)) {
1332 hashclr(sha1);
1333 flag |= REF_BAD_NAME | REF_ISBROKEN;
1334 }
1335 add_entry_to_dir(dir,
1336 create_ref_entry(refname.buf, sha1, flag, 0));
1337 }
1338 strbuf_setlen(&refname, dirnamelen);
1339 }
1340 strbuf_release(&refname);
1341 closedir(d);
1342 }
1343
1344 static struct ref_dir *get_loose_refs(struct ref_cache *refs)
1345 {
1346 if (!refs->loose) {
1347 /*
1348 * Mark the top-level directory complete because we
1349 * are about to read the only subdirectory that can
1350 * hold references:
1351 */
1352 refs->loose = create_dir_entry(refs, "", 0, 0);
1353 /*
1354 * Create an incomplete entry for "refs/":
1355 */
1356 add_entry_to_dir(get_ref_dir(refs->loose),
1357 create_dir_entry(refs, "refs/", 5, 1));
1358 }
1359 return get_ref_dir(refs->loose);
1360 }
1361
1362 /* We allow "recursive" symbolic refs. Only within reason, though */
1363 #define MAXDEPTH 5
1364 #define MAXREFLEN (1024)
1365
1366 /*
1367 * Called by resolve_gitlink_ref_recursive() after it failed to read
1368 * from the loose refs in ref_cache refs. Find <refname> in the
1369 * packed-refs file for the submodule.
1370 */
1371 static int resolve_gitlink_packed_ref(struct ref_cache *refs,
1372 const char *refname, unsigned char *sha1)
1373 {
1374 struct ref_entry *ref;
1375 struct ref_dir *dir = get_packed_refs(refs);
1376
1377 ref = find_ref(dir, refname);
1378 if (ref == NULL)
1379 return -1;
1380
1381 hashcpy(sha1, ref->u.value.sha1);
1382 return 0;
1383 }
1384
1385 static int resolve_gitlink_ref_recursive(struct ref_cache *refs,
1386 const char *refname, unsigned char *sha1,
1387 int recursion)
1388 {
1389 int fd, len;
1390 char buffer[128], *p;
1391 char *path;
1392
1393 if (recursion > MAXDEPTH || strlen(refname) > MAXREFLEN)
1394 return -1;
1395 path = *refs->name
1396 ? git_path_submodule(refs->name, "%s", refname)
1397 : git_path("%s", refname);
1398 fd = open(path, O_RDONLY);
1399 if (fd < 0)
1400 return resolve_gitlink_packed_ref(refs, refname, sha1);
1401
1402 len = read(fd, buffer, sizeof(buffer)-1);
1403 close(fd);
1404 if (len < 0)
1405 return -1;
1406 while (len && isspace(buffer[len-1]))
1407 len--;
1408 buffer[len] = 0;
1409
1410 /* Was it a detached head or an old-fashioned symlink? */
1411 if (!get_sha1_hex(buffer, sha1))
1412 return 0;
1413
1414 /* Symref? */
1415 if (strncmp(buffer, "ref:", 4))
1416 return -1;
1417 p = buffer + 4;
1418 while (isspace(*p))
1419 p++;
1420
1421 return resolve_gitlink_ref_recursive(refs, p, sha1, recursion+1);
1422 }
1423
1424 int resolve_gitlink_ref(const char *path, const char *refname, unsigned char *sha1)
1425 {
1426 int len = strlen(path), retval;
1427 char *submodule;
1428 struct ref_cache *refs;
1429
1430 while (len && path[len-1] == '/')
1431 len--;
1432 if (!len)
1433 return -1;
1434 submodule = xstrndup(path, len);
1435 refs = get_ref_cache(submodule);
1436 free(submodule);
1437
1438 retval = resolve_gitlink_ref_recursive(refs, refname, sha1, 0);
1439 return retval;
1440 }
1441
1442 /*
1443 * Return the ref_entry for the given refname from the packed
1444 * references. If it does not exist, return NULL.
1445 */
1446 static struct ref_entry *get_packed_ref(const char *refname)
1447 {
1448 return find_ref(get_packed_refs(&ref_cache), refname);
1449 }
1450
1451 /*
1452 * A loose ref file doesn't exist; check for a packed ref. The
1453 * options are forwarded from resolve_safe_unsafe().
1454 */
1455 static int resolve_missing_loose_ref(const char *refname,
1456 int resolve_flags,
1457 unsigned char *sha1,
1458 int *flags)
1459 {
1460 struct ref_entry *entry;
1461
1462 /*
1463 * The loose reference file does not exist; check for a packed
1464 * reference.
1465 */
1466 entry = get_packed_ref(refname);
1467 if (entry) {
1468 hashcpy(sha1, entry->u.value.sha1);
1469 if (flags)
1470 *flags |= REF_ISPACKED;
1471 return 0;
1472 }
1473 /* The reference is not a packed reference, either. */
1474 if (resolve_flags & RESOLVE_REF_READING) {
1475 errno = ENOENT;
1476 return -1;
1477 } else {
1478 hashclr(sha1);
1479 return 0;
1480 }
1481 }
1482
1483 /* This function needs to return a meaningful errno on failure */
1484 const char *resolve_ref_unsafe(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
1485 {
1486 int depth = MAXDEPTH;
1487 ssize_t len;
1488 char buffer[256];
1489 static char refname_buffer[256];
1490 int bad_name = 0;
1491
1492 if (flags)
1493 *flags = 0;
1494
1495 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1496 if (flags)
1497 *flags |= REF_BAD_NAME;
1498
1499 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1500 !refname_is_safe(refname)) {
1501 errno = EINVAL;
1502 return NULL;
1503 }
1504 /*
1505 * dwim_ref() uses REF_ISBROKEN to distinguish between
1506 * missing refs and refs that were present but invalid,
1507 * to complain about the latter to stderr.
1508 *
1509 * We don't know whether the ref exists, so don't set
1510 * REF_ISBROKEN yet.
1511 */
1512 bad_name = 1;
1513 }
1514 for (;;) {
1515 char path[PATH_MAX];
1516 struct stat st;
1517 char *buf;
1518 int fd;
1519
1520 if (--depth < 0) {
1521 errno = ELOOP;
1522 return NULL;
1523 }
1524
1525 git_snpath(path, sizeof(path), "%s", refname);
1526
1527 /*
1528 * We might have to loop back here to avoid a race
1529 * condition: first we lstat() the file, then we try
1530 * to read it as a link or as a file. But if somebody
1531 * changes the type of the file (file <-> directory
1532 * <-> symlink) between the lstat() and reading, then
1533 * we don't want to report that as an error but rather
1534 * try again starting with the lstat().
1535 */
1536 stat_ref:
1537 if (lstat(path, &st) < 0) {
1538 if (errno != ENOENT)
1539 return NULL;
1540 if (resolve_missing_loose_ref(refname, resolve_flags,
1541 sha1, flags))
1542 return NULL;
1543 if (bad_name) {
1544 hashclr(sha1);
1545 if (flags)
1546 *flags |= REF_ISBROKEN;
1547 }
1548 return refname;
1549 }
1550
1551 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1552 if (S_ISLNK(st.st_mode)) {
1553 len = readlink(path, buffer, sizeof(buffer)-1);
1554 if (len < 0) {
1555 if (errno == ENOENT || errno == EINVAL)
1556 /* inconsistent with lstat; retry */
1557 goto stat_ref;
1558 else
1559 return NULL;
1560 }
1561 buffer[len] = 0;
1562 if (starts_with(buffer, "refs/") &&
1563 !check_refname_format(buffer, 0)) {
1564 strcpy(refname_buffer, buffer);
1565 refname = refname_buffer;
1566 if (flags)
1567 *flags |= REF_ISSYMREF;
1568 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1569 hashclr(sha1);
1570 return refname;
1571 }
1572 continue;
1573 }
1574 }
1575
1576 /* Is it a directory? */
1577 if (S_ISDIR(st.st_mode)) {
1578 errno = EISDIR;
1579 return NULL;
1580 }
1581
1582 /*
1583 * Anything else, just open it and try to use it as
1584 * a ref
1585 */
1586 fd = open(path, O_RDONLY);
1587 if (fd < 0) {
1588 if (errno == ENOENT)
1589 /* inconsistent with lstat; retry */
1590 goto stat_ref;
1591 else
1592 return NULL;
1593 }
1594 len = read_in_full(fd, buffer, sizeof(buffer)-1);
1595 if (len < 0) {
1596 int save_errno = errno;
1597 close(fd);
1598 errno = save_errno;
1599 return NULL;
1600 }
1601 close(fd);
1602 while (len && isspace(buffer[len-1]))
1603 len--;
1604 buffer[len] = '\0';
1605
1606 /*
1607 * Is it a symbolic ref?
1608 */
1609 if (!starts_with(buffer, "ref:")) {
1610 /*
1611 * Please note that FETCH_HEAD has a second
1612 * line containing other data.
1613 */
1614 if (get_sha1_hex(buffer, sha1) ||
1615 (buffer[40] != '\0' && !isspace(buffer[40]))) {
1616 if (flags)
1617 *flags |= REF_ISBROKEN;
1618 errno = EINVAL;
1619 return NULL;
1620 }
1621 if (bad_name) {
1622 hashclr(sha1);
1623 if (flags)
1624 *flags |= REF_ISBROKEN;
1625 }
1626 return refname;
1627 }
1628 if (flags)
1629 *flags |= REF_ISSYMREF;
1630 buf = buffer + 4;
1631 while (isspace(*buf))
1632 buf++;
1633 refname = strcpy(refname_buffer, buf);
1634 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1635 hashclr(sha1);
1636 return refname;
1637 }
1638 if (check_refname_format(buf, REFNAME_ALLOW_ONELEVEL)) {
1639 if (flags)
1640 *flags |= REF_ISBROKEN;
1641
1642 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1643 !refname_is_safe(buf)) {
1644 errno = EINVAL;
1645 return NULL;
1646 }
1647 bad_name = 1;
1648 }
1649 }
1650 }
1651
1652 char *resolve_refdup(const char *ref, int resolve_flags, unsigned char *sha1, int *flags)
1653 {
1654 return xstrdup_or_null(resolve_ref_unsafe(ref, resolve_flags, sha1, flags));
1655 }
1656
1657 /* The argument to filter_refs */
1658 struct ref_filter {
1659 const char *pattern;
1660 each_ref_fn *fn;
1661 void *cb_data;
1662 };
1663
1664 int read_ref_full(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
1665 {
1666 if (resolve_ref_unsafe(refname, resolve_flags, sha1, flags))
1667 return 0;
1668 return -1;
1669 }
1670
1671 int read_ref(const char *refname, unsigned char *sha1)
1672 {
1673 return read_ref_full(refname, RESOLVE_REF_READING, sha1, NULL);
1674 }
1675
1676 int ref_exists(const char *refname)
1677 {
1678 unsigned char sha1[20];
1679 return !!resolve_ref_unsafe(refname, RESOLVE_REF_READING, sha1, NULL);
1680 }
1681
1682 static int filter_refs(const char *refname, const unsigned char *sha1, int flags,
1683 void *data)
1684 {
1685 struct ref_filter *filter = (struct ref_filter *)data;
1686 if (wildmatch(filter->pattern, refname, 0, NULL))
1687 return 0;
1688 return filter->fn(refname, sha1, flags, filter->cb_data);
1689 }
1690
1691 enum peel_status {
1692 /* object was peeled successfully: */
1693 PEEL_PEELED = 0,
1694
1695 /*
1696 * object cannot be peeled because the named object (or an
1697 * object referred to by a tag in the peel chain), does not
1698 * exist.
1699 */
1700 PEEL_INVALID = -1,
1701
1702 /* object cannot be peeled because it is not a tag: */
1703 PEEL_NON_TAG = -2,
1704
1705 /* ref_entry contains no peeled value because it is a symref: */
1706 PEEL_IS_SYMREF = -3,
1707
1708 /*
1709 * ref_entry cannot be peeled because it is broken (i.e., the
1710 * symbolic reference cannot even be resolved to an object
1711 * name):
1712 */
1713 PEEL_BROKEN = -4
1714 };
1715
1716 /*
1717 * Peel the named object; i.e., if the object is a tag, resolve the
1718 * tag recursively until a non-tag is found. If successful, store the
1719 * result to sha1 and return PEEL_PEELED. If the object is not a tag
1720 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
1721 * and leave sha1 unchanged.
1722 */
1723 static enum peel_status peel_object(const unsigned char *name, unsigned char *sha1)
1724 {
1725 struct object *o = lookup_unknown_object(name);
1726
1727 if (o->type == OBJ_NONE) {
1728 int type = sha1_object_info(name, NULL);
1729 if (type < 0 || !object_as_type(o, type, 0))
1730 return PEEL_INVALID;
1731 }
1732
1733 if (o->type != OBJ_TAG)
1734 return PEEL_NON_TAG;
1735
1736 o = deref_tag_noverify(o);
1737 if (!o)
1738 return PEEL_INVALID;
1739
1740 hashcpy(sha1, o->sha1);
1741 return PEEL_PEELED;
1742 }
1743
1744 /*
1745 * Peel the entry (if possible) and return its new peel_status. If
1746 * repeel is true, re-peel the entry even if there is an old peeled
1747 * value that is already stored in it.
1748 *
1749 * It is OK to call this function with a packed reference entry that
1750 * might be stale and might even refer to an object that has since
1751 * been garbage-collected. In such a case, if the entry has
1752 * REF_KNOWS_PEELED then leave the status unchanged and return
1753 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1754 */
1755 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1756 {
1757 enum peel_status status;
1758
1759 if (entry->flag & REF_KNOWS_PEELED) {
1760 if (repeel) {
1761 entry->flag &= ~REF_KNOWS_PEELED;
1762 hashclr(entry->u.value.peeled);
1763 } else {
1764 return is_null_sha1(entry->u.value.peeled) ?
1765 PEEL_NON_TAG : PEEL_PEELED;
1766 }
1767 }
1768 if (entry->flag & REF_ISBROKEN)
1769 return PEEL_BROKEN;
1770 if (entry->flag & REF_ISSYMREF)
1771 return PEEL_IS_SYMREF;
1772
1773 status = peel_object(entry->u.value.sha1, entry->u.value.peeled);
1774 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1775 entry->flag |= REF_KNOWS_PEELED;
1776 return status;
1777 }
1778
1779 int peel_ref(const char *refname, unsigned char *sha1)
1780 {
1781 int flag;
1782 unsigned char base[20];
1783
1784 if (current_ref && (current_ref->name == refname
1785 || !strcmp(current_ref->name, refname))) {
1786 if (peel_entry(current_ref, 0))
1787 return -1;
1788 hashcpy(sha1, current_ref->u.value.peeled);
1789 return 0;
1790 }
1791
1792 if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1793 return -1;
1794
1795 /*
1796 * If the reference is packed, read its ref_entry from the
1797 * cache in the hope that we already know its peeled value.
1798 * We only try this optimization on packed references because
1799 * (a) forcing the filling of the loose reference cache could
1800 * be expensive and (b) loose references anyway usually do not
1801 * have REF_KNOWS_PEELED.
1802 */
1803 if (flag & REF_ISPACKED) {
1804 struct ref_entry *r = get_packed_ref(refname);
1805 if (r) {
1806 if (peel_entry(r, 0))
1807 return -1;
1808 hashcpy(sha1, r->u.value.peeled);
1809 return 0;
1810 }
1811 }
1812
1813 return peel_object(base, sha1);
1814 }
1815
1816 struct warn_if_dangling_data {
1817 FILE *fp;
1818 const char *refname;
1819 const struct string_list *refnames;
1820 const char *msg_fmt;
1821 };
1822
1823 static int warn_if_dangling_symref(const char *refname, const unsigned char *sha1,
1824 int flags, void *cb_data)
1825 {
1826 struct warn_if_dangling_data *d = cb_data;
1827 const char *resolves_to;
1828 unsigned char junk[20];
1829
1830 if (!(flags & REF_ISSYMREF))
1831 return 0;
1832
1833 resolves_to = resolve_ref_unsafe(refname, 0, junk, NULL);
1834 if (!resolves_to
1835 || (d->refname
1836 ? strcmp(resolves_to, d->refname)
1837 : !string_list_has_string(d->refnames, resolves_to))) {
1838 return 0;
1839 }
1840
1841 fprintf(d->fp, d->msg_fmt, refname);
1842 fputc('\n', d->fp);
1843 return 0;
1844 }
1845
1846 void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname)
1847 {
1848 struct warn_if_dangling_data data;
1849
1850 data.fp = fp;
1851 data.refname = refname;
1852 data.refnames = NULL;
1853 data.msg_fmt = msg_fmt;
1854 for_each_rawref(warn_if_dangling_symref, &data);
1855 }
1856
1857 void warn_dangling_symrefs(FILE *fp, const char *msg_fmt, const struct string_list *refnames)
1858 {
1859 struct warn_if_dangling_data data;
1860
1861 data.fp = fp;
1862 data.refname = NULL;
1863 data.refnames = refnames;
1864 data.msg_fmt = msg_fmt;
1865 for_each_rawref(warn_if_dangling_symref, &data);
1866 }
1867
1868 /*
1869 * Call fn for each reference in the specified ref_cache, omitting
1870 * references not in the containing_dir of base. fn is called for all
1871 * references, including broken ones. If fn ever returns a non-zero
1872 * value, stop the iteration and return that value; otherwise, return
1873 * 0.
1874 */
1875 static int do_for_each_entry(struct ref_cache *refs, const char *base,
1876 each_ref_entry_fn fn, void *cb_data)
1877 {
1878 struct packed_ref_cache *packed_ref_cache;
1879 struct ref_dir *loose_dir;
1880 struct ref_dir *packed_dir;
1881 int retval = 0;
1882
1883 /*
1884 * We must make sure that all loose refs are read before accessing the
1885 * packed-refs file; this avoids a race condition in which loose refs
1886 * are migrated to the packed-refs file by a simultaneous process, but
1887 * our in-memory view is from before the migration. get_packed_ref_cache()
1888 * takes care of making sure our view is up to date with what is on
1889 * disk.
1890 */
1891 loose_dir = get_loose_refs(refs);
1892 if (base && *base) {
1893 loose_dir = find_containing_dir(loose_dir, base, 0);
1894 }
1895 if (loose_dir)
1896 prime_ref_dir(loose_dir);
1897
1898 packed_ref_cache = get_packed_ref_cache(refs);
1899 acquire_packed_ref_cache(packed_ref_cache);
1900 packed_dir = get_packed_ref_dir(packed_ref_cache);
1901 if (base && *base) {
1902 packed_dir = find_containing_dir(packed_dir, base, 0);
1903 }
1904
1905 if (packed_dir && loose_dir) {
1906 sort_ref_dir(packed_dir);
1907 sort_ref_dir(loose_dir);
1908 retval = do_for_each_entry_in_dirs(
1909 packed_dir, loose_dir, fn, cb_data);
1910 } else if (packed_dir) {
1911 sort_ref_dir(packed_dir);
1912 retval = do_for_each_entry_in_dir(
1913 packed_dir, 0, fn, cb_data);
1914 } else if (loose_dir) {
1915 sort_ref_dir(loose_dir);
1916 retval = do_for_each_entry_in_dir(
1917 loose_dir, 0, fn, cb_data);
1918 }
1919
1920 release_packed_ref_cache(packed_ref_cache);
1921 return retval;
1922 }
1923
1924 /*
1925 * Call fn for each reference in the specified ref_cache for which the
1926 * refname begins with base. If trim is non-zero, then trim that many
1927 * characters off the beginning of each refname before passing the
1928 * refname to fn. flags can be DO_FOR_EACH_INCLUDE_BROKEN to include
1929 * broken references in the iteration. If fn ever returns a non-zero
1930 * value, stop the iteration and return that value; otherwise, return
1931 * 0.
1932 */
1933 static int do_for_each_ref(struct ref_cache *refs, const char *base,
1934 each_ref_fn fn, int trim, int flags, void *cb_data)
1935 {
1936 struct ref_entry_cb data;
1937 data.base = base;
1938 data.trim = trim;
1939 data.flags = flags;
1940 data.fn = fn;
1941 data.cb_data = cb_data;
1942
1943 if (ref_paranoia < 0)
1944 ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1945 if (ref_paranoia)
1946 data.flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1947
1948 return do_for_each_entry(refs, base, do_one_ref, &data);
1949 }
1950
1951 static int do_head_ref(const char *submodule, each_ref_fn fn, void *cb_data)
1952 {
1953 unsigned char sha1[20];
1954 int flag;
1955
1956 if (submodule) {
1957 if (resolve_gitlink_ref(submodule, "HEAD", sha1) == 0)
1958 return fn("HEAD", sha1, 0, cb_data);
1959
1960 return 0;
1961 }
1962
1963 if (!read_ref_full("HEAD", RESOLVE_REF_READING, sha1, &flag))
1964 return fn("HEAD", sha1, flag, cb_data);
1965
1966 return 0;
1967 }
1968
1969 int head_ref(each_ref_fn fn, void *cb_data)
1970 {
1971 return do_head_ref(NULL, fn, cb_data);
1972 }
1973
1974 int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1975 {
1976 return do_head_ref(submodule, fn, cb_data);
1977 }
1978
1979 int for_each_ref(each_ref_fn fn, void *cb_data)
1980 {
1981 return do_for_each_ref(&ref_cache, "", fn, 0, 0, cb_data);
1982 }
1983
1984 int for_each_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1985 {
1986 return do_for_each_ref(get_ref_cache(submodule), "", fn, 0, 0, cb_data);
1987 }
1988
1989 int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data)
1990 {
1991 return do_for_each_ref(&ref_cache, prefix, fn, strlen(prefix), 0, cb_data);
1992 }
1993
1994 int for_each_ref_in_submodule(const char *submodule, const char *prefix,
1995 each_ref_fn fn, void *cb_data)
1996 {
1997 return do_for_each_ref(get_ref_cache(submodule), prefix, fn, strlen(prefix), 0, cb_data);
1998 }
1999
2000 int for_each_tag_ref(each_ref_fn fn, void *cb_data)
2001 {
2002 return for_each_ref_in("refs/tags/", fn, cb_data);
2003 }
2004
2005 int for_each_tag_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2006 {
2007 return for_each_ref_in_submodule(submodule, "refs/tags/", fn, cb_data);
2008 }
2009
2010 int for_each_branch_ref(each_ref_fn fn, void *cb_data)
2011 {
2012 return for_each_ref_in("refs/heads/", fn, cb_data);
2013 }
2014
2015 int for_each_branch_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2016 {
2017 return for_each_ref_in_submodule(submodule, "refs/heads/", fn, cb_data);
2018 }
2019
2020 int for_each_remote_ref(each_ref_fn fn, void *cb_data)
2021 {
2022 return for_each_ref_in("refs/remotes/", fn, cb_data);
2023 }
2024
2025 int for_each_remote_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2026 {
2027 return for_each_ref_in_submodule(submodule, "refs/remotes/", fn, cb_data);
2028 }
2029
2030 int for_each_replace_ref(each_ref_fn fn, void *cb_data)
2031 {
2032 return do_for_each_ref(&ref_cache, "refs/replace/", fn, 13, 0, cb_data);
2033 }
2034
2035 int head_ref_namespaced(each_ref_fn fn, void *cb_data)
2036 {
2037 struct strbuf buf = STRBUF_INIT;
2038 int ret = 0;
2039 unsigned char sha1[20];
2040 int flag;
2041
2042 strbuf_addf(&buf, "%sHEAD", get_git_namespace());
2043 if (!read_ref_full(buf.buf, RESOLVE_REF_READING, sha1, &flag))
2044 ret = fn(buf.buf, sha1, flag, cb_data);
2045 strbuf_release(&buf);
2046
2047 return ret;
2048 }
2049
2050 int for_each_namespaced_ref(each_ref_fn fn, void *cb_data)
2051 {
2052 struct strbuf buf = STRBUF_INIT;
2053 int ret;
2054 strbuf_addf(&buf, "%srefs/", get_git_namespace());
2055 ret = do_for_each_ref(&ref_cache, buf.buf, fn, 0, 0, cb_data);
2056 strbuf_release(&buf);
2057 return ret;
2058 }
2059
2060 int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
2061 const char *prefix, void *cb_data)
2062 {
2063 struct strbuf real_pattern = STRBUF_INIT;
2064 struct ref_filter filter;
2065 int ret;
2066
2067 if (!prefix && !starts_with(pattern, "refs/"))
2068 strbuf_addstr(&real_pattern, "refs/");
2069 else if (prefix)
2070 strbuf_addstr(&real_pattern, prefix);
2071 strbuf_addstr(&real_pattern, pattern);
2072
2073 if (!has_glob_specials(pattern)) {
2074 /* Append implied '/' '*' if not present. */
2075 if (real_pattern.buf[real_pattern.len - 1] != '/')
2076 strbuf_addch(&real_pattern, '/');
2077 /* No need to check for '*', there is none. */
2078 strbuf_addch(&real_pattern, '*');
2079 }
2080
2081 filter.pattern = real_pattern.buf;
2082 filter.fn = fn;
2083 filter.cb_data = cb_data;
2084 ret = for_each_ref(filter_refs, &filter);
2085
2086 strbuf_release(&real_pattern);
2087 return ret;
2088 }
2089
2090 int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data)
2091 {
2092 return for_each_glob_ref_in(fn, pattern, NULL, cb_data);
2093 }
2094
2095 int for_each_rawref(each_ref_fn fn, void *cb_data)
2096 {
2097 return do_for_each_ref(&ref_cache, "", fn, 0,
2098 DO_FOR_EACH_INCLUDE_BROKEN, cb_data);
2099 }
2100
2101 const char *prettify_refname(const char *name)
2102 {
2103 return name + (
2104 starts_with(name, "refs/heads/") ? 11 :
2105 starts_with(name, "refs/tags/") ? 10 :
2106 starts_with(name, "refs/remotes/") ? 13 :
2107 0);
2108 }
2109
2110 static const char *ref_rev_parse_rules[] = {
2111 "%.*s",
2112 "refs/%.*s",
2113 "refs/tags/%.*s",
2114 "refs/heads/%.*s",
2115 "refs/remotes/%.*s",
2116 "refs/remotes/%.*s/HEAD",
2117 NULL
2118 };
2119
2120 int refname_match(const char *abbrev_name, const char *full_name)
2121 {
2122 const char **p;
2123 const int abbrev_name_len = strlen(abbrev_name);
2124
2125 for (p = ref_rev_parse_rules; *p; p++) {
2126 if (!strcmp(full_name, mkpath(*p, abbrev_name_len, abbrev_name))) {
2127 return 1;
2128 }
2129 }
2130
2131 return 0;
2132 }
2133
2134 static void unlock_ref(struct ref_lock *lock)
2135 {
2136 /* Do not free lock->lk -- atexit() still looks at them */
2137 if (lock->lk)
2138 rollback_lock_file(lock->lk);
2139 free(lock->ref_name);
2140 free(lock->orig_ref_name);
2141 free(lock);
2142 }
2143
2144 /* This function should make sure errno is meaningful on error */
2145 static struct ref_lock *verify_lock(struct ref_lock *lock,
2146 const unsigned char *old_sha1, int mustexist)
2147 {
2148 if (read_ref_full(lock->ref_name,
2149 mustexist ? RESOLVE_REF_READING : 0,
2150 lock->old_sha1, NULL)) {
2151 int save_errno = errno;
2152 error("Can't verify ref %s", lock->ref_name);
2153 unlock_ref(lock);
2154 errno = save_errno;
2155 return NULL;
2156 }
2157 if (hashcmp(lock->old_sha1, old_sha1)) {
2158 error("Ref %s is at %s but expected %s", lock->ref_name,
2159 sha1_to_hex(lock->old_sha1), sha1_to_hex(old_sha1));
2160 unlock_ref(lock);
2161 errno = EBUSY;
2162 return NULL;
2163 }
2164 return lock;
2165 }
2166
2167 static int remove_empty_directories(const char *file)
2168 {
2169 /* we want to create a file but there is a directory there;
2170 * if that is an empty directory (or a directory that contains
2171 * only empty directories), remove them.
2172 */
2173 struct strbuf path;
2174 int result, save_errno;
2175
2176 strbuf_init(&path, 20);
2177 strbuf_addstr(&path, file);
2178
2179 result = remove_dir_recursively(&path, REMOVE_DIR_EMPTY_ONLY);
2180 save_errno = errno;
2181
2182 strbuf_release(&path);
2183 errno = save_errno;
2184
2185 return result;
2186 }
2187
2188 /*
2189 * *string and *len will only be substituted, and *string returned (for
2190 * later free()ing) if the string passed in is a magic short-hand form
2191 * to name a branch.
2192 */
2193 static char *substitute_branch_name(const char **string, int *len)
2194 {
2195 struct strbuf buf = STRBUF_INIT;
2196 int ret = interpret_branch_name(*string, *len, &buf);
2197
2198 if (ret == *len) {
2199 size_t size;
2200 *string = strbuf_detach(&buf, &size);
2201 *len = size;
2202 return (char *)*string;
2203 }
2204
2205 return NULL;
2206 }
2207
2208 int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref)
2209 {
2210 char *last_branch = substitute_branch_name(&str, &len);
2211 const char **p, *r;
2212 int refs_found = 0;
2213
2214 *ref = NULL;
2215 for (p = ref_rev_parse_rules; *p; p++) {
2216 char fullref[PATH_MAX];
2217 unsigned char sha1_from_ref[20];
2218 unsigned char *this_result;
2219 int flag;
2220
2221 this_result = refs_found ? sha1_from_ref : sha1;
2222 mksnpath(fullref, sizeof(fullref), *p, len, str);
2223 r = resolve_ref_unsafe(fullref, RESOLVE_REF_READING,
2224 this_result, &flag);
2225 if (r) {
2226 if (!refs_found++)
2227 *ref = xstrdup(r);
2228 if (!warn_ambiguous_refs)
2229 break;
2230 } else if ((flag & REF_ISSYMREF) && strcmp(fullref, "HEAD")) {
2231 warning("ignoring dangling symref %s.", fullref);
2232 } else if ((flag & REF_ISBROKEN) && strchr(fullref, '/')) {
2233 warning("ignoring broken ref %s.", fullref);
2234 }
2235 }
2236 free(last_branch);
2237 return refs_found;
2238 }
2239
2240 int dwim_log(const char *str, int len, unsigned char *sha1, char **log)
2241 {
2242 char *last_branch = substitute_branch_name(&str, &len);
2243 const char **p;
2244 int logs_found = 0;
2245
2246 *log = NULL;
2247 for (p = ref_rev_parse_rules; *p; p++) {
2248 unsigned char hash[20];
2249 char path[PATH_MAX];
2250 const char *ref, *it;
2251
2252 mksnpath(path, sizeof(path), *p, len, str);
2253 ref = resolve_ref_unsafe(path, RESOLVE_REF_READING,
2254 hash, NULL);
2255 if (!ref)
2256 continue;
2257 if (reflog_exists(path))
2258 it = path;
2259 else if (strcmp(ref, path) && reflog_exists(ref))
2260 it = ref;
2261 else
2262 continue;
2263 if (!logs_found++) {
2264 *log = xstrdup(it);
2265 hashcpy(sha1, hash);
2266 }
2267 if (!warn_ambiguous_refs)
2268 break;
2269 }
2270 free(last_branch);
2271 return logs_found;
2272 }
2273
2274 /*
2275 * Locks a ref returning the lock on success and NULL on failure.
2276 * On failure errno is set to something meaningful.
2277 */
2278 static struct ref_lock *lock_ref_sha1_basic(const char *refname,
2279 const unsigned char *old_sha1,
2280 const struct string_list *skip,
2281 unsigned int flags, int *type_p)
2282 {
2283 char *ref_file;
2284 const char *orig_refname = refname;
2285 struct ref_lock *lock;
2286 int last_errno = 0;
2287 int type, lflags;
2288 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2289 int resolve_flags = 0;
2290 int attempts_remaining = 3;
2291
2292 lock = xcalloc(1, sizeof(struct ref_lock));
2293 lock->lock_fd = -1;
2294
2295 if (mustexist)
2296 resolve_flags |= RESOLVE_REF_READING;
2297 if (flags & REF_DELETING) {
2298 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2299 if (flags & REF_NODEREF)
2300 resolve_flags |= RESOLVE_REF_NO_RECURSE;
2301 }
2302
2303 refname = resolve_ref_unsafe(refname, resolve_flags,
2304 lock->old_sha1, &type);
2305 if (!refname && errno == EISDIR) {
2306 /* we are trying to lock foo but we used to
2307 * have foo/bar which now does not exist;
2308 * it is normal for the empty directory 'foo'
2309 * to remain.
2310 */
2311 ref_file = git_path("%s", orig_refname);
2312 if (remove_empty_directories(ref_file)) {
2313 last_errno = errno;
2314 error("there are still refs under '%s'", orig_refname);
2315 goto error_return;
2316 }
2317 refname = resolve_ref_unsafe(orig_refname, resolve_flags,
2318 lock->old_sha1, &type);
2319 }
2320 if (type_p)
2321 *type_p = type;
2322 if (!refname) {
2323 last_errno = errno;
2324 error("unable to resolve reference %s: %s",
2325 orig_refname, strerror(errno));
2326 goto error_return;
2327 }
2328 /*
2329 * If the ref did not exist and we are creating it, make sure
2330 * there is no existing packed ref whose name begins with our
2331 * refname, nor a packed ref whose name is a proper prefix of
2332 * our refname.
2333 */
2334 if (is_null_sha1(lock->old_sha1) &&
2335 !is_refname_available(refname, skip, get_packed_refs(&ref_cache))) {
2336 last_errno = ENOTDIR;
2337 goto error_return;
2338 }
2339
2340 lock->lk = xcalloc(1, sizeof(struct lock_file));
2341
2342 lflags = 0;
2343 if (flags & REF_NODEREF) {
2344 refname = orig_refname;
2345 lflags |= LOCK_NO_DEREF;
2346 }
2347 lock->ref_name = xstrdup(refname);
2348 lock->orig_ref_name = xstrdup(orig_refname);
2349 ref_file = git_path("%s", refname);
2350
2351 retry:
2352 switch (safe_create_leading_directories(ref_file)) {
2353 case SCLD_OK:
2354 break; /* success */
2355 case SCLD_VANISHED:
2356 if (--attempts_remaining > 0)
2357 goto retry;
2358 /* fall through */
2359 default:
2360 last_errno = errno;
2361 error("unable to create directory for %s", ref_file);
2362 goto error_return;
2363 }
2364
2365 lock->lock_fd = hold_lock_file_for_update(lock->lk, ref_file, lflags);
2366 if (lock->lock_fd < 0) {
2367 last_errno = errno;
2368 if (errno == ENOENT && --attempts_remaining > 0)
2369 /*
2370 * Maybe somebody just deleted one of the
2371 * directories leading to ref_file. Try
2372 * again:
2373 */
2374 goto retry;
2375 else {
2376 struct strbuf err = STRBUF_INIT;
2377 unable_to_lock_message(ref_file, errno, &err);
2378 error("%s", err.buf);
2379 strbuf_release(&err);
2380 goto error_return;
2381 }
2382 }
2383 return old_sha1 ? verify_lock(lock, old_sha1, mustexist) : lock;
2384
2385 error_return:
2386 unlock_ref(lock);
2387 errno = last_errno;
2388 return NULL;
2389 }
2390
2391 /*
2392 * Write an entry to the packed-refs file for the specified refname.
2393 * If peeled is non-NULL, write it as the entry's peeled value.
2394 */
2395 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2396 unsigned char *peeled)
2397 {
2398 fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2399 if (peeled)
2400 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2401 }
2402
2403 /*
2404 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2405 */
2406 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2407 {
2408 enum peel_status peel_status = peel_entry(entry, 0);
2409
2410 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2411 error("internal error: %s is not a valid packed reference!",
2412 entry->name);
2413 write_packed_entry(cb_data, entry->name, entry->u.value.sha1,
2414 peel_status == PEEL_PEELED ?
2415 entry->u.value.peeled : NULL);
2416 return 0;
2417 }
2418
2419 /* This should return a meaningful errno on failure */
2420 int lock_packed_refs(int flags)
2421 {
2422 struct packed_ref_cache *packed_ref_cache;
2423
2424 if (hold_lock_file_for_update(&packlock, git_path("packed-refs"), flags) < 0)
2425 return -1;
2426 /*
2427 * Get the current packed-refs while holding the lock. If the
2428 * packed-refs file has been modified since we last read it,
2429 * this will automatically invalidate the cache and re-read
2430 * the packed-refs file.
2431 */
2432 packed_ref_cache = get_packed_ref_cache(&ref_cache);
2433 packed_ref_cache->lock = &packlock;
2434 /* Increment the reference count to prevent it from being freed: */
2435 acquire_packed_ref_cache(packed_ref_cache);
2436 return 0;
2437 }
2438
2439 /*
2440 * Commit the packed refs changes.
2441 * On error we must make sure that errno contains a meaningful value.
2442 */
2443 int commit_packed_refs(void)
2444 {
2445 struct packed_ref_cache *packed_ref_cache =
2446 get_packed_ref_cache(&ref_cache);
2447 int error = 0;
2448 int save_errno = 0;
2449 FILE *out;
2450
2451 if (!packed_ref_cache->lock)
2452 die("internal error: packed-refs not locked");
2453
2454 out = fdopen_lock_file(packed_ref_cache->lock, "w");
2455 if (!out)
2456 die_errno("unable to fdopen packed-refs descriptor");
2457
2458 fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2459 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2460 0, write_packed_entry_fn, out);
2461
2462 if (commit_lock_file(packed_ref_cache->lock)) {
2463 save_errno = errno;
2464 error = -1;
2465 }
2466 packed_ref_cache->lock = NULL;
2467 release_packed_ref_cache(packed_ref_cache);
2468 errno = save_errno;
2469 return error;
2470 }
2471
2472 void rollback_packed_refs(void)
2473 {
2474 struct packed_ref_cache *packed_ref_cache =
2475 get_packed_ref_cache(&ref_cache);
2476
2477 if (!packed_ref_cache->lock)
2478 die("internal error: packed-refs not locked");
2479 rollback_lock_file(packed_ref_cache->lock);
2480 packed_ref_cache->lock = NULL;
2481 release_packed_ref_cache(packed_ref_cache);
2482 clear_packed_ref_cache(&ref_cache);
2483 }
2484
2485 struct ref_to_prune {
2486 struct ref_to_prune *next;
2487 unsigned char sha1[20];
2488 char name[FLEX_ARRAY];
2489 };
2490
2491 struct pack_refs_cb_data {
2492 unsigned int flags;
2493 struct ref_dir *packed_refs;
2494 struct ref_to_prune *ref_to_prune;
2495 };
2496
2497 /*
2498 * An each_ref_entry_fn that is run over loose references only. If
2499 * the loose reference can be packed, add an entry in the packed ref
2500 * cache. If the reference should be pruned, also add it to
2501 * ref_to_prune in the pack_refs_cb_data.
2502 */
2503 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2504 {
2505 struct pack_refs_cb_data *cb = cb_data;
2506 enum peel_status peel_status;
2507 struct ref_entry *packed_entry;
2508 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2509
2510 /* ALWAYS pack tags */
2511 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2512 return 0;
2513
2514 /* Do not pack symbolic or broken refs: */
2515 if ((entry->flag & REF_ISSYMREF) || !ref_resolves_to_object(entry))
2516 return 0;
2517
2518 /* Add a packed ref cache entry equivalent to the loose entry. */
2519 peel_status = peel_entry(entry, 1);
2520 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2521 die("internal error peeling reference %s (%s)",
2522 entry->name, sha1_to_hex(entry->u.value.sha1));
2523 packed_entry = find_ref(cb->packed_refs, entry->name);
2524 if (packed_entry) {
2525 /* Overwrite existing packed entry with info from loose entry */
2526 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2527 hashcpy(packed_entry->u.value.sha1, entry->u.value.sha1);
2528 } else {
2529 packed_entry = create_ref_entry(entry->name, entry->u.value.sha1,
2530 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2531 add_ref(cb->packed_refs, packed_entry);
2532 }
2533 hashcpy(packed_entry->u.value.peeled, entry->u.value.peeled);
2534
2535 /* Schedule the loose reference for pruning if requested. */
2536 if ((cb->flags & PACK_REFS_PRUNE)) {
2537 int namelen = strlen(entry->name) + 1;
2538 struct ref_to_prune *n = xcalloc(1, sizeof(*n) + namelen);
2539 hashcpy(n->sha1, entry->u.value.sha1);
2540 strcpy(n->name, entry->name);
2541 n->next = cb->ref_to_prune;
2542 cb->ref_to_prune = n;
2543 }
2544 return 0;
2545 }
2546
2547 /*
2548 * Remove empty parents, but spare refs/ and immediate subdirs.
2549 * Note: munges *name.
2550 */
2551 static void try_remove_empty_parents(char *name)
2552 {
2553 char *p, *q;
2554 int i;
2555 p = name;
2556 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2557 while (*p && *p != '/')
2558 p++;
2559 /* tolerate duplicate slashes; see check_refname_format() */
2560 while (*p == '/')
2561 p++;
2562 }
2563 for (q = p; *q; q++)
2564 ;
2565 while (1) {
2566 while (q > p && *q != '/')
2567 q--;
2568 while (q > p && *(q-1) == '/')
2569 q--;
2570 if (q == p)
2571 break;
2572 *q = '\0';
2573 if (rmdir(git_path("%s", name)))
2574 break;
2575 }
2576 }
2577
2578 /* make sure nobody touched the ref, and unlink */
2579 static void prune_ref(struct ref_to_prune *r)
2580 {
2581 struct ref_transaction *transaction;
2582 struct strbuf err = STRBUF_INIT;
2583
2584 if (check_refname_format(r->name, 0))
2585 return;
2586
2587 transaction = ref_transaction_begin(&err);
2588 if (!transaction ||
2589 ref_transaction_delete(transaction, r->name, r->sha1,
2590 REF_ISPRUNING, NULL, &err) ||
2591 ref_transaction_commit(transaction, &err)) {
2592 ref_transaction_free(transaction);
2593 error("%s", err.buf);
2594 strbuf_release(&err);
2595 return;
2596 }
2597 ref_transaction_free(transaction);
2598 strbuf_release(&err);
2599 try_remove_empty_parents(r->name);
2600 }
2601
2602 static void prune_refs(struct ref_to_prune *r)
2603 {
2604 while (r) {
2605 prune_ref(r);
2606 r = r->next;
2607 }
2608 }
2609
2610 int pack_refs(unsigned int flags)
2611 {
2612 struct pack_refs_cb_data cbdata;
2613
2614 memset(&cbdata, 0, sizeof(cbdata));
2615 cbdata.flags = flags;
2616
2617 lock_packed_refs(LOCK_DIE_ON_ERROR);
2618 cbdata.packed_refs = get_packed_refs(&ref_cache);
2619
2620 do_for_each_entry_in_dir(get_loose_refs(&ref_cache), 0,
2621 pack_if_possible_fn, &cbdata);
2622
2623 if (commit_packed_refs())
2624 die_errno("unable to overwrite old ref-pack file");
2625
2626 prune_refs(cbdata.ref_to_prune);
2627 return 0;
2628 }
2629
2630 int repack_without_refs(struct string_list *refnames, struct strbuf *err)
2631 {
2632 struct ref_dir *packed;
2633 struct string_list_item *refname;
2634 int ret, needs_repacking = 0, removed = 0;
2635
2636 assert(err);
2637
2638 /* Look for a packed ref */
2639 for_each_string_list_item(refname, refnames) {
2640 if (get_packed_ref(refname->string)) {
2641 needs_repacking = 1;
2642 break;
2643 }
2644 }
2645
2646 /* Avoid locking if we have nothing to do */
2647 if (!needs_repacking)
2648 return 0; /* no refname exists in packed refs */
2649
2650 if (lock_packed_refs(0)) {
2651 unable_to_lock_message(git_path("packed-refs"), errno, err);
2652 return -1;
2653 }
2654 packed = get_packed_refs(&ref_cache);
2655
2656 /* Remove refnames from the cache */
2657 for_each_string_list_item(refname, refnames)
2658 if (remove_entry(packed, refname->string) != -1)
2659 removed = 1;
2660 if (!removed) {
2661 /*
2662 * All packed entries disappeared while we were
2663 * acquiring the lock.
2664 */
2665 rollback_packed_refs();
2666 return 0;
2667 }
2668
2669 /* Write what remains */
2670 ret = commit_packed_refs();
2671 if (ret)
2672 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2673 strerror(errno));
2674 return ret;
2675 }
2676
2677 static int delete_ref_loose(struct ref_lock *lock, int flag, struct strbuf *err)
2678 {
2679 assert(err);
2680
2681 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2682 /*
2683 * loose. The loose file name is the same as the
2684 * lockfile name, minus ".lock":
2685 */
2686 char *loose_filename = get_locked_file_path(lock->lk);
2687 int res = unlink_or_msg(loose_filename, err);
2688 free(loose_filename);
2689 if (res)
2690 return 1;
2691 }
2692 return 0;
2693 }
2694
2695 int delete_ref(const char *refname, const unsigned char *sha1, unsigned int flags)
2696 {
2697 struct ref_transaction *transaction;
2698 struct strbuf err = STRBUF_INIT;
2699
2700 transaction = ref_transaction_begin(&err);
2701 if (!transaction ||
2702 ref_transaction_delete(transaction, refname,
2703 (sha1 && !is_null_sha1(sha1)) ? sha1 : NULL,
2704 flags, NULL, &err) ||
2705 ref_transaction_commit(transaction, &err)) {
2706 error("%s", err.buf);
2707 ref_transaction_free(transaction);
2708 strbuf_release(&err);
2709 return 1;
2710 }
2711 ref_transaction_free(transaction);
2712 strbuf_release(&err);
2713 return 0;
2714 }
2715
2716 /*
2717 * People using contrib's git-new-workdir have .git/logs/refs ->
2718 * /some/other/path/.git/logs/refs, and that may live on another device.
2719 *
2720 * IOW, to avoid cross device rename errors, the temporary renamed log must
2721 * live into logs/refs.
2722 */
2723 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2724
2725 static int rename_tmp_log(const char *newrefname)
2726 {
2727 int attempts_remaining = 4;
2728
2729 retry:
2730 switch (safe_create_leading_directories(git_path("logs/%s", newrefname))) {
2731 case SCLD_OK:
2732 break; /* success */
2733 case SCLD_VANISHED:
2734 if (--attempts_remaining > 0)
2735 goto retry;
2736 /* fall through */
2737 default:
2738 error("unable to create directory for %s", newrefname);
2739 return -1;
2740 }
2741
2742 if (rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", newrefname))) {
2743 if ((errno==EISDIR || errno==ENOTDIR) && --attempts_remaining > 0) {
2744 /*
2745 * rename(a, b) when b is an existing
2746 * directory ought to result in ISDIR, but
2747 * Solaris 5.8 gives ENOTDIR. Sheesh.
2748 */
2749 if (remove_empty_directories(git_path("logs/%s", newrefname))) {
2750 error("Directory not empty: logs/%s", newrefname);
2751 return -1;
2752 }
2753 goto retry;
2754 } else if (errno == ENOENT && --attempts_remaining > 0) {
2755 /*
2756 * Maybe another process just deleted one of
2757 * the directories in the path to newrefname.
2758 * Try again from the beginning.
2759 */
2760 goto retry;
2761 } else {
2762 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2763 newrefname, strerror(errno));
2764 return -1;
2765 }
2766 }
2767 return 0;
2768 }
2769
2770 static int rename_ref_available(const char *oldname, const char *newname)
2771 {
2772 struct string_list skip = STRING_LIST_INIT_NODUP;
2773 int ret;
2774
2775 string_list_insert(&skip, oldname);
2776 ret = is_refname_available(newname, &skip, get_packed_refs(&ref_cache))
2777 && is_refname_available(newname, &skip, get_loose_refs(&ref_cache));
2778 string_list_clear(&skip, 0);
2779 return ret;
2780 }
2781
2782 static int write_ref_to_lockfile(struct ref_lock *lock, const unsigned char *sha1);
2783 static int commit_ref_update(struct ref_lock *lock,
2784 const unsigned char *sha1, const char *logmsg);
2785
2786 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2787 {
2788 unsigned char sha1[20], orig_sha1[20];
2789 int flag = 0, logmoved = 0;
2790 struct ref_lock *lock;
2791 struct stat loginfo;
2792 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2793 const char *symref = NULL;
2794
2795 if (log && S_ISLNK(loginfo.st_mode))
2796 return error("reflog for %s is a symlink", oldrefname);
2797
2798 symref = resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING,
2799 orig_sha1, &flag);
2800 if (flag & REF_ISSYMREF)
2801 return error("refname %s is a symbolic ref, renaming it is not supported",
2802 oldrefname);
2803 if (!symref)
2804 return error("refname %s not found", oldrefname);
2805
2806 if (!rename_ref_available(oldrefname, newrefname))
2807 return 1;
2808
2809 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2810 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2811 oldrefname, strerror(errno));
2812
2813 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2814 error("unable to delete old %s", oldrefname);
2815 goto rollback;
2816 }
2817
2818 if (!read_ref_full(newrefname, RESOLVE_REF_READING, sha1, NULL) &&
2819 delete_ref(newrefname, sha1, REF_NODEREF)) {
2820 if (errno==EISDIR) {
2821 if (remove_empty_directories(git_path("%s", newrefname))) {
2822 error("Directory not empty: %s", newrefname);
2823 goto rollback;
2824 }
2825 } else {
2826 error("unable to delete existing %s", newrefname);
2827 goto rollback;
2828 }
2829 }
2830
2831 if (log && rename_tmp_log(newrefname))
2832 goto rollback;
2833
2834 logmoved = log;
2835
2836 lock = lock_ref_sha1_basic(newrefname, NULL, NULL, 0, NULL);
2837 if (!lock) {
2838 error("unable to lock %s for update", newrefname);
2839 goto rollback;
2840 }
2841 hashcpy(lock->old_sha1, orig_sha1);
2842
2843 if (write_ref_to_lockfile(lock, orig_sha1) ||
2844 commit_ref_update(lock, orig_sha1, logmsg)) {
2845 error("unable to write current sha1 into %s", newrefname);
2846 goto rollback;
2847 }
2848
2849 return 0;
2850
2851 rollback:
2852 lock = lock_ref_sha1_basic(oldrefname, NULL, NULL, 0, NULL);
2853 if (!lock) {
2854 error("unable to lock %s for rollback", oldrefname);
2855 goto rollbacklog;
2856 }
2857
2858 flag = log_all_ref_updates;
2859 log_all_ref_updates = 0;
2860 if (write_ref_to_lockfile(lock, orig_sha1) ||
2861 commit_ref_update(lock, orig_sha1, NULL))
2862 error("unable to write current sha1 into %s", oldrefname);
2863 log_all_ref_updates = flag;
2864
2865 rollbacklog:
2866 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2867 error("unable to restore logfile %s from %s: %s",
2868 oldrefname, newrefname, strerror(errno));
2869 if (!logmoved && log &&
2870 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2871 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2872 oldrefname, strerror(errno));
2873
2874 return 1;
2875 }
2876
2877 static int close_ref(struct ref_lock *lock)
2878 {
2879 if (close_lock_file(lock->lk))
2880 return -1;
2881 lock->lock_fd = -1;
2882 return 0;
2883 }
2884
2885 static int commit_ref(struct ref_lock *lock)
2886 {
2887 if (commit_lock_file(lock->lk))
2888 return -1;
2889 lock->lock_fd = -1;
2890 return 0;
2891 }
2892
2893 /*
2894 * copy the reflog message msg to buf, which has been allocated sufficiently
2895 * large, while cleaning up the whitespaces. Especially, convert LF to space,
2896 * because reflog file is one line per entry.
2897 */
2898 static int copy_msg(char *buf, const char *msg)
2899 {
2900 char *cp = buf;
2901 char c;
2902 int wasspace = 1;
2903
2904 *cp++ = '\t';
2905 while ((c = *msg++)) {
2906 if (wasspace && isspace(c))
2907 continue;
2908 wasspace = isspace(c);
2909 if (wasspace)
2910 c = ' ';
2911 *cp++ = c;
2912 }
2913 while (buf < cp && isspace(cp[-1]))
2914 cp--;
2915 *cp++ = '\n';
2916 return cp - buf;
2917 }
2918
2919 /* This function must set a meaningful errno on failure */
2920 int log_ref_setup(const char *refname, char *logfile, int bufsize)
2921 {
2922 int logfd, oflags = O_APPEND | O_WRONLY;
2923
2924 git_snpath(logfile, bufsize, "logs/%s", refname);
2925 if (log_all_ref_updates &&
2926 (starts_with(refname, "refs/heads/") ||
2927 starts_with(refname, "refs/remotes/") ||
2928 starts_with(refname, "refs/notes/") ||
2929 !strcmp(refname, "HEAD"))) {
2930 if (safe_create_leading_directories(logfile) < 0) {
2931 int save_errno = errno;
2932 error("unable to create directory for %s", logfile);
2933 errno = save_errno;
2934 return -1;
2935 }
2936 oflags |= O_CREAT;
2937 }
2938
2939 logfd = open(logfile, oflags, 0666);
2940 if (logfd < 0) {
2941 if (!(oflags & O_CREAT) && (errno == ENOENT || errno == EISDIR))
2942 return 0;
2943
2944 if (errno == EISDIR) {
2945 if (remove_empty_directories(logfile)) {
2946 int save_errno = errno;
2947 error("There are still logs under '%s'",
2948 logfile);
2949 errno = save_errno;
2950 return -1;
2951 }
2952 logfd = open(logfile, oflags, 0666);
2953 }
2954
2955 if (logfd < 0) {
2956 int save_errno = errno;
2957 error("Unable to append to %s: %s", logfile,
2958 strerror(errno));
2959 errno = save_errno;
2960 return -1;
2961 }
2962 }
2963
2964 adjust_shared_perm(logfile);
2965 close(logfd);
2966 return 0;
2967 }
2968
2969 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2970 const unsigned char *new_sha1,
2971 const char *committer, const char *msg)
2972 {
2973 int msglen, written;
2974 unsigned maxlen, len;
2975 char *logrec;
2976
2977 msglen = msg ? strlen(msg) : 0;
2978 maxlen = strlen(committer) + msglen + 100;
2979 logrec = xmalloc(maxlen);
2980 len = sprintf(logrec, "%s %s %s\n",
2981 sha1_to_hex(old_sha1),
2982 sha1_to_hex(new_sha1),
2983 committer);
2984 if (msglen)
2985 len += copy_msg(logrec + len - 1, msg) - 1;
2986
2987 written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2988 free(logrec);
2989 if (written != len)
2990 return -1;
2991
2992 return 0;
2993 }
2994
2995 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
2996 const unsigned char *new_sha1, const char *msg)
2997 {
2998 int logfd, result, oflags = O_APPEND | O_WRONLY;
2999 char log_file[PATH_MAX];
3000
3001 if (log_all_ref_updates < 0)
3002 log_all_ref_updates = !is_bare_repository();
3003
3004 result = log_ref_setup(refname, log_file, sizeof(log_file));
3005 if (result)
3006 return result;
3007
3008 logfd = open(log_file, oflags);
3009 if (logfd < 0)
3010 return 0;
3011 result = log_ref_write_fd(logfd, old_sha1, new_sha1,
3012 git_committer_info(0), msg);
3013 if (result) {
3014 int save_errno = errno;
3015 close(logfd);
3016 error("Unable to append to %s", log_file);
3017 errno = save_errno;
3018 return -1;
3019 }
3020 if (close(logfd)) {
3021 int save_errno = errno;
3022 error("Unable to append to %s", log_file);
3023 errno = save_errno;
3024 return -1;
3025 }
3026 return 0;
3027 }
3028
3029 int is_branch(const char *refname)
3030 {
3031 return !strcmp(refname, "HEAD") || starts_with(refname, "refs/heads/");
3032 }
3033
3034 /*
3035 * Write sha1 into the open lockfile, then close the lockfile. On
3036 * errors, rollback the lockfile and set errno to reflect the problem.
3037 */
3038 static int write_ref_to_lockfile(struct ref_lock *lock,
3039 const unsigned char *sha1)
3040 {
3041 static char term = '\n';
3042 struct object *o;
3043
3044 o = parse_object(sha1);
3045 if (!o) {
3046 error("Trying to write ref %s with nonexistent object %s",
3047 lock->ref_name, sha1_to_hex(sha1));
3048 unlock_ref(lock);
3049 errno = EINVAL;
3050 return -1;
3051 }
3052 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
3053 error("Trying to write non-commit object %s to branch %s",
3054 sha1_to_hex(sha1), lock->ref_name);
3055 unlock_ref(lock);
3056 errno = EINVAL;
3057 return -1;
3058 }
3059 if (write_in_full(lock->lock_fd, sha1_to_hex(sha1), 40) != 40 ||
3060 write_in_full(lock->lock_fd, &term, 1) != 1 ||
3061 close_ref(lock) < 0) {
3062 int save_errno = errno;
3063 error("Couldn't write %s", lock->lk->filename.buf);
3064 unlock_ref(lock);
3065 errno = save_errno;
3066 return -1;
3067 }
3068 return 0;
3069 }
3070
3071 /*
3072 * Commit a change to a loose reference that has already been written
3073 * to the loose reference lockfile. Also update the reflogs if
3074 * necessary, using the specified lockmsg (which can be NULL).
3075 */
3076 static int commit_ref_update(struct ref_lock *lock,
3077 const unsigned char *sha1, const char *logmsg)
3078 {
3079 clear_loose_ref_cache(&ref_cache);
3080 if (log_ref_write(lock->ref_name, lock->old_sha1, sha1, logmsg) < 0 ||
3081 (strcmp(lock->ref_name, lock->orig_ref_name) &&
3082 log_ref_write(lock->orig_ref_name, lock->old_sha1, sha1, logmsg) < 0)) {
3083 unlock_ref(lock);
3084 return -1;
3085 }
3086 if (strcmp(lock->orig_ref_name, "HEAD") != 0) {
3087 /*
3088 * Special hack: If a branch is updated directly and HEAD
3089 * points to it (may happen on the remote side of a push
3090 * for example) then logically the HEAD reflog should be
3091 * updated too.
3092 * A generic solution implies reverse symref information,
3093 * but finding all symrefs pointing to the given branch
3094 * would be rather costly for this rare event (the direct
3095 * update of a branch) to be worth it. So let's cheat and
3096 * check with HEAD only which should cover 99% of all usage
3097 * scenarios (even 100% of the default ones).
3098 */
3099 unsigned char head_sha1[20];
3100 int head_flag;
3101 const char *head_ref;
3102 head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
3103 head_sha1, &head_flag);
3104 if (head_ref && (head_flag & REF_ISSYMREF) &&
3105 !strcmp(head_ref, lock->ref_name))
3106 log_ref_write("HEAD", lock->old_sha1, sha1, logmsg);
3107 }
3108 if (commit_ref(lock)) {
3109 error("Couldn't set %s", lock->ref_name);
3110 unlock_ref(lock);
3111 return -1;
3112 }
3113 unlock_ref(lock);
3114 return 0;
3115 }
3116
3117 int create_symref(const char *ref_target, const char *refs_heads_master,
3118 const char *logmsg)
3119 {
3120 const char *lockpath;
3121 char ref[1000];
3122 int fd, len, written;
3123 char *git_HEAD = git_pathdup("%s", ref_target);
3124 unsigned char old_sha1[20], new_sha1[20];
3125
3126 if (logmsg && read_ref(ref_target, old_sha1))
3127 hashclr(old_sha1);
3128
3129 if (safe_create_leading_directories(git_HEAD) < 0)
3130 return error("unable to create directory for %s", git_HEAD);
3131
3132 #ifndef NO_SYMLINK_HEAD
3133 if (prefer_symlink_refs) {
3134 unlink(git_HEAD);
3135 if (!symlink(refs_heads_master, git_HEAD))
3136 goto done;
3137 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3138 }
3139 #endif
3140
3141 len = snprintf(ref, sizeof(ref), "ref: %s\n", refs_heads_master);
3142 if (sizeof(ref) <= len) {
3143 error("refname too long: %s", refs_heads_master);
3144 goto error_free_return;
3145 }
3146 lockpath = mkpath("%s.lock", git_HEAD);
3147 fd = open(lockpath, O_CREAT | O_EXCL | O_WRONLY, 0666);
3148 if (fd < 0) {
3149 error("Unable to open %s for writing", lockpath);
3150 goto error_free_return;
3151 }
3152 written = write_in_full(fd, ref, len);
3153 if (close(fd) != 0 || written != len) {
3154 error("Unable to write to %s", lockpath);
3155 goto error_unlink_return;
3156 }
3157 if (rename(lockpath, git_HEAD) < 0) {
3158 error("Unable to create %s", git_HEAD);
3159 goto error_unlink_return;
3160 }
3161 if (adjust_shared_perm(git_HEAD)) {
3162 error("Unable to fix permissions on %s", lockpath);
3163 error_unlink_return:
3164 unlink_or_warn(lockpath);
3165 error_free_return:
3166 free(git_HEAD);
3167 return -1;
3168 }
3169
3170 #ifndef NO_SYMLINK_HEAD
3171 done:
3172 #endif
3173 if (logmsg && !read_ref(refs_heads_master, new_sha1))
3174 log_ref_write(ref_target, old_sha1, new_sha1, logmsg);
3175
3176 free(git_HEAD);
3177 return 0;
3178 }
3179
3180 struct read_ref_at_cb {
3181 const char *refname;
3182 unsigned long at_time;
3183 int cnt;
3184 int reccnt;
3185 unsigned char *sha1;
3186 int found_it;
3187
3188 unsigned char osha1[20];
3189 unsigned char nsha1[20];
3190 int tz;
3191 unsigned long date;
3192 char **msg;
3193 unsigned long *cutoff_time;
3194 int *cutoff_tz;
3195 int *cutoff_cnt;
3196 };
3197
3198 static int read_ref_at_ent(unsigned char *osha1, unsigned char *nsha1,
3199 const char *email, unsigned long timestamp, int tz,
3200 const char *message, void *cb_data)
3201 {
3202 struct read_ref_at_cb *cb = cb_data;
3203
3204 cb->reccnt++;
3205 cb->tz = tz;
3206 cb->date = timestamp;
3207
3208 if (timestamp <= cb->at_time || cb->cnt == 0) {
3209 if (cb->msg)
3210 *cb->msg = xstrdup(message);
3211 if (cb->cutoff_time)
3212 *cb->cutoff_time = timestamp;
3213 if (cb->cutoff_tz)
3214 *cb->cutoff_tz = tz;
3215 if (cb->cutoff_cnt)
3216 *cb->cutoff_cnt = cb->reccnt - 1;
3217 /*
3218 * we have not yet updated cb->[n|o]sha1 so they still
3219 * hold the values for the previous record.
3220 */
3221 if (!is_null_sha1(cb->osha1)) {
3222 hashcpy(cb->sha1, nsha1);
3223 if (hashcmp(cb->osha1, nsha1))
3224 warning("Log for ref %s has gap after %s.",
3225 cb->refname, show_date(cb->date, cb->tz, DATE_RFC2822));
3226 }
3227 else if (cb->date == cb->at_time)
3228 hashcpy(cb->sha1, nsha1);
3229 else if (hashcmp(nsha1, cb->sha1))
3230 warning("Log for ref %s unexpectedly ended on %s.",
3231 cb->refname, show_date(cb->date, cb->tz,
3232 DATE_RFC2822));
3233 hashcpy(cb->osha1, osha1);
3234 hashcpy(cb->nsha1, nsha1);
3235 cb->found_it = 1;
3236 return 1;
3237 }
3238 hashcpy(cb->osha1, osha1);
3239 hashcpy(cb->nsha1, nsha1);
3240 if (cb->cnt > 0)
3241 cb->cnt--;
3242 return 0;
3243 }
3244
3245 static int read_ref_at_ent_oldest(unsigned char *osha1, unsigned char *nsha1,
3246 const char *email, unsigned long timestamp,
3247 int tz, const char *message, void *cb_data)
3248 {
3249 struct read_ref_at_cb *cb = cb_data;
3250
3251 if (cb->msg)
3252 *cb->msg = xstrdup(message);
3253 if (cb->cutoff_time)
3254 *cb->cutoff_time = timestamp;
3255 if (cb->cutoff_tz)
3256 *cb->cutoff_tz = tz;
3257 if (cb->cutoff_cnt)
3258 *cb->cutoff_cnt = cb->reccnt;
3259 hashcpy(cb->sha1, osha1);
3260 if (is_null_sha1(cb->sha1))
3261 hashcpy(cb->sha1, nsha1);
3262 /* We just want the first entry */
3263 return 1;
3264 }
3265
3266 int read_ref_at(const char *refname, unsigned int flags, unsigned long at_time, int cnt,
3267 unsigned char *sha1, char **msg,
3268 unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt)
3269 {
3270 struct read_ref_at_cb cb;
3271
3272 memset(&cb, 0, sizeof(cb));
3273 cb.refname = refname;
3274 cb.at_time = at_time;
3275 cb.cnt = cnt;
3276 cb.msg = msg;
3277 cb.cutoff_time = cutoff_time;
3278 cb.cutoff_tz = cutoff_tz;
3279 cb.cutoff_cnt = cutoff_cnt;
3280 cb.sha1 = sha1;
3281
3282 for_each_reflog_ent_reverse(refname, read_ref_at_ent, &cb);
3283
3284 if (!cb.reccnt) {
3285 if (flags & GET_SHA1_QUIETLY)
3286 exit(128);
3287 else
3288 die("Log for %s is empty.", refname);
3289 }
3290 if (cb.found_it)
3291 return 0;
3292
3293 for_each_reflog_ent(refname, read_ref_at_ent_oldest, &cb);
3294
3295 return 1;
3296 }
3297
3298 int reflog_exists(const char *refname)
3299 {
3300 struct stat st;
3301
3302 return !lstat(git_path("logs/%s", refname), &st) &&
3303 S_ISREG(st.st_mode);
3304 }
3305
3306 int delete_reflog(const char *refname)
3307 {
3308 return remove_path(git_path("logs/%s", refname));
3309 }
3310
3311 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3312 {
3313 unsigned char osha1[20], nsha1[20];
3314 char *email_end, *message;
3315 unsigned long timestamp;
3316 int tz;
3317
3318 /* old SP new SP name <email> SP time TAB msg LF */
3319 if (sb->len < 83 || sb->buf[sb->len - 1] != '\n' ||
3320 get_sha1_hex(sb->buf, osha1) || sb->buf[40] != ' ' ||
3321 get_sha1_hex(sb->buf + 41, nsha1) || sb->buf[81] != ' ' ||
3322 !(email_end = strchr(sb->buf + 82, '>')) ||
3323 email_end[1] != ' ' ||
3324 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3325 !message || message[0] != ' ' ||
3326 (message[1] != '+' && message[1] != '-') ||
3327 !isdigit(message[2]) || !isdigit(message[3]) ||
3328 !isdigit(message[4]) || !isdigit(message[5]))
3329 return 0; /* corrupt? */
3330 email_end[1] = '\0';
3331 tz = strtol(message + 1, NULL, 10);
3332 if (message[6] != '\t')
3333 message += 6;
3334 else
3335 message += 7;
3336 return fn(osha1, nsha1, sb->buf + 82, timestamp, tz, message, cb_data);
3337 }
3338
3339 static char *find_beginning_of_line(char *bob, char *scan)
3340 {
3341 while (bob < scan && *(--scan) != '\n')
3342 ; /* keep scanning backwards */
3343 /*
3344 * Return either beginning of the buffer, or LF at the end of
3345 * the previous line.
3346 */
3347 return scan;
3348 }
3349
3350 int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3351 {
3352 struct strbuf sb = STRBUF_INIT;
3353 FILE *logfp;
3354 long pos;
3355 int ret = 0, at_tail = 1;
3356
3357 logfp = fopen(git_path("logs/%s", refname), "r");
3358 if (!logfp)
3359 return -1;
3360
3361 /* Jump to the end */
3362 if (fseek(logfp, 0, SEEK_END) < 0)
3363 return error("cannot seek back reflog for %s: %s",
3364 refname, strerror(errno));
3365 pos = ftell(logfp);
3366 while (!ret && 0 < pos) {
3367 int cnt;
3368 size_t nread;
3369 char buf[BUFSIZ];
3370 char *endp, *scanp;
3371
3372 /* Fill next block from the end */
3373 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3374 if (fseek(logfp, pos - cnt, SEEK_SET))
3375 return error("cannot seek back reflog for %s: %s",
3376 refname, strerror(errno));
3377 nread = fread(buf, cnt, 1, logfp);
3378 if (nread != 1)
3379 return error("cannot read %d bytes from reflog for %s: %s",
3380 cnt, refname, strerror(errno));
3381 pos -= cnt;
3382
3383 scanp = endp = buf + cnt;
3384 if (at_tail && scanp[-1] == '\n')
3385 /* Looking at the final LF at the end of the file */
3386 scanp--;
3387 at_tail = 0;
3388
3389 while (buf < scanp) {
3390 /*
3391 * terminating LF of the previous line, or the beginning
3392 * of the buffer.
3393 */
3394 char *bp;
3395
3396 bp = find_beginning_of_line(buf, scanp);
3397
3398 if (*bp == '\n') {
3399 /*
3400 * The newline is the end of the previous line,
3401 * so we know we have complete line starting
3402 * at (bp + 1). Prefix it onto any prior data
3403 * we collected for the line and process it.
3404 */
3405 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3406 scanp = bp;
3407 endp = bp + 1;
3408 ret = show_one_reflog_ent(&sb, fn, cb_data);
3409 strbuf_reset(&sb);
3410 if (ret)
3411 break;
3412 } else if (!pos) {
3413 /*
3414 * We are at the start of the buffer, and the
3415 * start of the file; there is no previous
3416 * line, and we have everything for this one.
3417 * Process it, and we can end the loop.
3418 */
3419 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3420 ret = show_one_reflog_ent(&sb, fn, cb_data);
3421 strbuf_reset(&sb);
3422 break;
3423 }
3424
3425 if (bp == buf) {
3426 /*
3427 * We are at the start of the buffer, and there
3428 * is more file to read backwards. Which means
3429 * we are in the middle of a line. Note that we
3430 * may get here even if *bp was a newline; that
3431 * just means we are at the exact end of the
3432 * previous line, rather than some spot in the
3433 * middle.
3434 *
3435 * Save away what we have to be combined with
3436 * the data from the next read.
3437 */
3438 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3439 break;
3440 }
3441 }
3442
3443 }
3444 if (!ret && sb.len)
3445 die("BUG: reverse reflog parser had leftover data");
3446
3447 fclose(logfp);
3448 strbuf_release(&sb);
3449 return ret;
3450 }
3451
3452 int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3453 {
3454 FILE *logfp;
3455 struct strbuf sb = STRBUF_INIT;
3456 int ret = 0;
3457
3458 logfp = fopen(git_path("logs/%s", refname), "r");
3459 if (!logfp)
3460 return -1;
3461
3462 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3463 ret = show_one_reflog_ent(&sb, fn, cb_data);
3464 fclose(logfp);
3465 strbuf_release(&sb);
3466 return ret;
3467 }
3468 /*
3469 * Call fn for each reflog in the namespace indicated by name. name
3470 * must be empty or end with '/'. Name will be used as a scratch
3471 * space, but its contents will be restored before return.
3472 */
3473 static int do_for_each_reflog(struct strbuf *name, each_ref_fn fn, void *cb_data)
3474 {
3475 DIR *d = opendir(git_path("logs/%s", name->buf));
3476 int retval = 0;
3477 struct dirent *de;
3478 int oldlen = name->len;
3479
3480 if (!d)
3481 return name->len ? errno : 0;
3482
3483 while ((de = readdir(d)) != NULL) {
3484 struct stat st;
3485
3486 if (de->d_name[0] == '.')
3487 continue;
3488 if (ends_with(de->d_name, ".lock"))
3489 continue;
3490 strbuf_addstr(name, de->d_name);
3491 if (stat(git_path("logs/%s", name->buf), &st) < 0) {
3492 ; /* silently ignore */
3493 } else {
3494 if (S_ISDIR(st.st_mode)) {
3495 strbuf_addch(name, '/');
3496 retval = do_for_each_reflog(name, fn, cb_data);
3497 } else {
3498 unsigned char sha1[20];
3499 if (read_ref_full(name->buf, 0, sha1, NULL))
3500 retval = error("bad ref for %s", name->buf);
3501 else
3502 retval = fn(name->buf, sha1, 0, cb_data);
3503 }
3504 if (retval)
3505 break;
3506 }
3507 strbuf_setlen(name, oldlen);
3508 }
3509 closedir(d);
3510 return retval;
3511 }
3512
3513 int for_each_reflog(each_ref_fn fn, void *cb_data)
3514 {
3515 int retval;
3516 struct strbuf name;
3517 strbuf_init(&name, PATH_MAX);
3518 retval = do_for_each_reflog(&name, fn, cb_data);
3519 strbuf_release(&name);
3520 return retval;
3521 }
3522
3523 /**
3524 * Information needed for a single ref update. Set new_sha1 to the new
3525 * value or to null_sha1 to delete the ref. To check the old value
3526 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
3527 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
3528 * not exist before update.
3529 */
3530 struct ref_update {
3531 /*
3532 * If (flags & REF_HAVE_NEW), set the reference to this value:
3533 */
3534 unsigned char new_sha1[20];
3535 /*
3536 * If (flags & REF_HAVE_OLD), check that the reference
3537 * previously had this value:
3538 */
3539 unsigned char old_sha1[20];
3540 /*
3541 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
3542 * REF_DELETING, and REF_ISPRUNING:
3543 */
3544 unsigned int flags;
3545 struct ref_lock *lock;
3546 int type;
3547 char *msg;
3548 const char refname[FLEX_ARRAY];
3549 };
3550
3551 /*
3552 * Transaction states.
3553 * OPEN: The transaction is in a valid state and can accept new updates.
3554 * An OPEN transaction can be committed.
3555 * CLOSED: A closed transaction is no longer active and no other operations
3556 * than free can be used on it in this state.
3557 * A transaction can either become closed by successfully committing
3558 * an active transaction or if there is a failure while building
3559 * the transaction thus rendering it failed/inactive.
3560 */
3561 enum ref_transaction_state {
3562 REF_TRANSACTION_OPEN = 0,
3563 REF_TRANSACTION_CLOSED = 1
3564 };
3565
3566 /*
3567 * Data structure for holding a reference transaction, which can
3568 * consist of checks and updates to multiple references, carried out
3569 * as atomically as possible. This structure is opaque to callers.
3570 */
3571 struct ref_transaction {
3572 struct ref_update **updates;
3573 size_t alloc;
3574 size_t nr;
3575 enum ref_transaction_state state;
3576 };
3577
3578 struct ref_transaction *ref_transaction_begin(struct strbuf *err)
3579 {
3580 assert(err);
3581
3582 return xcalloc(1, sizeof(struct ref_transaction));
3583 }
3584
3585 void ref_transaction_free(struct ref_transaction *transaction)
3586 {
3587 int i;
3588
3589 if (!transaction)
3590 return;
3591
3592 for (i = 0; i < transaction->nr; i++) {
3593 free(transaction->updates[i]->msg);
3594 free(transaction->updates[i]);
3595 }
3596 free(transaction->updates);
3597 free(transaction);
3598 }
3599
3600 static struct ref_update *add_update(struct ref_transaction *transaction,
3601 const char *refname)
3602 {
3603 size_t len = strlen(refname);
3604 struct ref_update *update = xcalloc(1, sizeof(*update) + len + 1);
3605
3606 strcpy((char *)update->refname, refname);
3607 ALLOC_GROW(transaction->updates, transaction->nr + 1, transaction->alloc);
3608 transaction->updates[transaction->nr++] = update;
3609 return update;
3610 }
3611
3612 int ref_transaction_update(struct ref_transaction *transaction,
3613 const char *refname,
3614 const unsigned char *new_sha1,
3615 const unsigned char *old_sha1,
3616 unsigned int flags, const char *msg,
3617 struct strbuf *err)
3618 {
3619 struct ref_update *update;
3620
3621 assert(err);
3622
3623 if (transaction->state != REF_TRANSACTION_OPEN)
3624 die("BUG: update called for transaction that is not open");
3625
3626 if (new_sha1 && !is_null_sha1(new_sha1) &&
3627 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
3628 strbuf_addf(err, "refusing to update ref with bad name %s",
3629 refname);
3630 return -1;
3631 }
3632
3633 update = add_update(transaction, refname);
3634 if (new_sha1) {
3635 hashcpy(update->new_sha1, new_sha1);
3636 flags |= REF_HAVE_NEW;
3637 }
3638 if (old_sha1) {
3639 hashcpy(update->old_sha1, old_sha1);
3640 flags |= REF_HAVE_OLD;
3641 }
3642 update->flags = flags;
3643 if (msg)
3644 update->msg = xstrdup(msg);
3645 return 0;
3646 }
3647
3648 int ref_transaction_create(struct ref_transaction *transaction,
3649 const char *refname,
3650 const unsigned char *new_sha1,
3651 unsigned int flags, const char *msg,
3652 struct strbuf *err)
3653 {
3654 if (!new_sha1 || is_null_sha1(new_sha1))
3655 die("BUG: create called without valid new_sha1");
3656 return ref_transaction_update(transaction, refname, new_sha1,
3657 null_sha1, flags, msg, err);
3658 }
3659
3660 int ref_transaction_delete(struct ref_transaction *transaction,
3661 const char *refname,
3662 const unsigned char *old_sha1,
3663 unsigned int flags, const char *msg,
3664 struct strbuf *err)
3665 {
3666 if (old_sha1 && is_null_sha1(old_sha1))
3667 die("BUG: delete called with old_sha1 set to zeros");
3668 return ref_transaction_update(transaction, refname,
3669 null_sha1, old_sha1,
3670 flags, msg, err);
3671 }
3672
3673 int ref_transaction_verify(struct ref_transaction *transaction,
3674 const char *refname,
3675 const unsigned char *old_sha1,
3676 unsigned int flags,
3677 struct strbuf *err)
3678 {
3679 if (!old_sha1)
3680 die("BUG: verify called with old_sha1 set to NULL");
3681 return ref_transaction_update(transaction, refname,
3682 NULL, old_sha1,
3683 flags, NULL, err);
3684 }
3685
3686 int update_ref(const char *msg, const char *refname,
3687 const unsigned char *new_sha1, const unsigned char *old_sha1,
3688 unsigned int flags, enum action_on_err onerr)
3689 {
3690 struct ref_transaction *t;
3691 struct strbuf err = STRBUF_INIT;
3692
3693 t = ref_transaction_begin(&err);
3694 if (!t ||
3695 ref_transaction_update(t, refname, new_sha1, old_sha1,
3696 flags, msg, &err) ||
3697 ref_transaction_commit(t, &err)) {
3698 const char *str = "update_ref failed for ref '%s': %s";
3699
3700 ref_transaction_free(t);
3701 switch (onerr) {
3702 case UPDATE_REFS_MSG_ON_ERR:
3703 error(str, refname, err.buf);
3704 break;
3705 case UPDATE_REFS_DIE_ON_ERR:
3706 die(str, refname, err.buf);
3707 break;
3708 case UPDATE_REFS_QUIET_ON_ERR:
3709 break;
3710 }
3711 strbuf_release(&err);
3712 return 1;
3713 }
3714 strbuf_release(&err);
3715 ref_transaction_free(t);
3716 return 0;
3717 }
3718
3719 static int ref_update_compare(const void *r1, const void *r2)
3720 {
3721 const struct ref_update * const *u1 = r1;
3722 const struct ref_update * const *u2 = r2;
3723 return strcmp((*u1)->refname, (*u2)->refname);
3724 }
3725
3726 static int ref_update_reject_duplicates(struct ref_update **updates, int n,
3727 struct strbuf *err)
3728 {
3729 int i;
3730
3731 assert(err);
3732
3733 for (i = 1; i < n; i++)
3734 if (!strcmp(updates[i - 1]->refname, updates[i]->refname)) {
3735 strbuf_addf(err,
3736 "Multiple updates for ref '%s' not allowed.",
3737 updates[i]->refname);
3738 return 1;
3739 }
3740 return 0;
3741 }
3742
3743 int ref_transaction_commit(struct ref_transaction *transaction,
3744 struct strbuf *err)
3745 {
3746 int ret = 0, i;
3747 int n = transaction->nr;
3748 struct ref_update **updates = transaction->updates;
3749 struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3750 struct string_list_item *ref_to_delete;
3751
3752 assert(err);
3753
3754 if (transaction->state != REF_TRANSACTION_OPEN)
3755 die("BUG: commit called for transaction that is not open");
3756
3757 if (!n) {
3758 transaction->state = REF_TRANSACTION_CLOSED;
3759 return 0;
3760 }
3761
3762 /* Copy, sort, and reject duplicate refs */
3763 qsort(updates, n, sizeof(*updates), ref_update_compare);
3764 if (ref_update_reject_duplicates(updates, n, err)) {
3765 ret = TRANSACTION_GENERIC_ERROR;
3766 goto cleanup;
3767 }
3768
3769 /*
3770 * Acquire all locks, verify old values if provided, check
3771 * that new values are valid, and write new values to the
3772 * lockfiles, ready to be activated. Only keep one lockfile
3773 * open at a time to avoid running out of file descriptors.
3774 */
3775 for (i = 0; i < n; i++) {
3776 struct ref_update *update = updates[i];
3777
3778 if ((update->flags & REF_HAVE_NEW) &&
3779 is_null_sha1(update->new_sha1))
3780 update->flags |= REF_DELETING;
3781 update->lock = lock_ref_sha1_basic(
3782 update->refname,
3783 ((update->flags & REF_HAVE_OLD) ?
3784 update->old_sha1 : NULL),
3785 NULL,
3786 update->flags,
3787 &update->type);
3788 if (!update->lock) {
3789 ret = (errno == ENOTDIR)
3790 ? TRANSACTION_NAME_CONFLICT
3791 : TRANSACTION_GENERIC_ERROR;
3792 strbuf_addf(err, "Cannot lock the ref '%s'.",
3793 update->refname);
3794 goto cleanup;
3795 }
3796 if ((update->flags & REF_HAVE_NEW) &&
3797 !(update->flags & REF_DELETING)) {
3798 int overwriting_symref = ((update->type & REF_ISSYMREF) &&
3799 (update->flags & REF_NODEREF));
3800
3801 if (!overwriting_symref &&
3802 !hashcmp(update->lock->old_sha1, update->new_sha1)) {
3803 /*
3804 * The reference already has the desired
3805 * value, so we don't need to write it.
3806 */
3807 } else if (write_ref_to_lockfile(update->lock,
3808 update->new_sha1)) {
3809 /*
3810 * The lock was freed upon failure of
3811 * write_ref_to_lockfile():
3812 */
3813 update->lock = NULL;
3814 strbuf_addf(err, "Cannot update the ref '%s'.",
3815 update->refname);
3816 ret = TRANSACTION_GENERIC_ERROR;
3817 goto cleanup;
3818 } else {
3819 update->flags |= REF_NEEDS_COMMIT;
3820 }
3821 }
3822 if (!(update->flags & REF_NEEDS_COMMIT)) {
3823 /*
3824 * We didn't have to write anything to the lockfile.
3825 * Close it to free up the file descriptor:
3826 */
3827 if (close_ref(update->lock)) {
3828 strbuf_addf(err, "Couldn't close %s.lock",
3829 update->refname);
3830 goto cleanup;
3831 }
3832 }
3833 }
3834
3835 /* Perform updates first so live commits remain referenced */
3836 for (i = 0; i < n; i++) {
3837 struct ref_update *update = updates[i];
3838
3839 if (update->flags & REF_NEEDS_COMMIT) {
3840 if (commit_ref_update(update->lock,
3841 update->new_sha1, update->msg)) {
3842 /* freed by commit_ref_update(): */
3843 update->lock = NULL;
3844 strbuf_addf(err, "Cannot update the ref '%s'.",
3845 update->refname);
3846 ret = TRANSACTION_GENERIC_ERROR;
3847 goto cleanup;
3848 } else {
3849 /* freed by commit_ref_update(): */
3850 update->lock = NULL;
3851 }
3852 }
3853 }
3854
3855 /* Perform deletes now that updates are safely completed */
3856 for (i = 0; i < n; i++) {
3857 struct ref_update *update = updates[i];
3858
3859 if (update->flags & REF_DELETING) {
3860 if (delete_ref_loose(update->lock, update->type, err)) {
3861 ret = TRANSACTION_GENERIC_ERROR;
3862 goto cleanup;
3863 }
3864
3865 if (!(update->flags & REF_ISPRUNING))
3866 string_list_append(&refs_to_delete,
3867 update->lock->ref_name);
3868 }
3869 }
3870
3871 if (repack_without_refs(&refs_to_delete, err)) {
3872 ret = TRANSACTION_GENERIC_ERROR;
3873 goto cleanup;
3874 }
3875 for_each_string_list_item(ref_to_delete, &refs_to_delete)
3876 unlink_or_warn(git_path("logs/%s", ref_to_delete->string));
3877 clear_loose_ref_cache(&ref_cache);
3878
3879 cleanup:
3880 transaction->state = REF_TRANSACTION_CLOSED;
3881
3882 for (i = 0; i < n; i++)
3883 if (updates[i]->lock)
3884 unlock_ref(updates[i]->lock);
3885 string_list_clear(&refs_to_delete, 0);
3886 return ret;
3887 }
3888
3889 char *shorten_unambiguous_ref(const char *refname, int strict)
3890 {
3891 int i;
3892 static char **scanf_fmts;
3893 static int nr_rules;
3894 char *short_name;
3895
3896 if (!nr_rules) {
3897 /*
3898 * Pre-generate scanf formats from ref_rev_parse_rules[].
3899 * Generate a format suitable for scanf from a
3900 * ref_rev_parse_rules rule by interpolating "%s" at the
3901 * location of the "%.*s".
3902 */
3903 size_t total_len = 0;
3904 size_t offset = 0;
3905
3906 /* the rule list is NULL terminated, count them first */
3907 for (nr_rules = 0; ref_rev_parse_rules[nr_rules]; nr_rules++)
3908 /* -2 for strlen("%.*s") - strlen("%s"); +1 for NUL */
3909 total_len += strlen(ref_rev_parse_rules[nr_rules]) - 2 + 1;
3910
3911 scanf_fmts = xmalloc(nr_rules * sizeof(char *) + total_len);
3912
3913 offset = 0;
3914 for (i = 0; i < nr_rules; i++) {
3915 assert(offset < total_len);
3916 scanf_fmts[i] = (char *)&scanf_fmts[nr_rules] + offset;
3917 offset += snprintf(scanf_fmts[i], total_len - offset,
3918 ref_rev_parse_rules[i], 2, "%s") + 1;
3919 }
3920 }
3921
3922 /* bail out if there are no rules */
3923 if (!nr_rules)
3924 return xstrdup(refname);
3925
3926 /* buffer for scanf result, at most refname must fit */
3927 short_name = xstrdup(refname);
3928
3929 /* skip first rule, it will always match */
3930 for (i = nr_rules - 1; i > 0 ; --i) {
3931 int j;
3932 int rules_to_fail = i;
3933 int short_name_len;
3934
3935 if (1 != sscanf(refname, scanf_fmts[i], short_name))
3936 continue;
3937
3938 short_name_len = strlen(short_name);
3939
3940 /*
3941 * in strict mode, all (except the matched one) rules
3942 * must fail to resolve to a valid non-ambiguous ref
3943 */
3944 if (strict)
3945 rules_to_fail = nr_rules;
3946
3947 /*
3948 * check if the short name resolves to a valid ref,
3949 * but use only rules prior to the matched one
3950 */
3951 for (j = 0; j < rules_to_fail; j++) {
3952 const char *rule = ref_rev_parse_rules[j];
3953 char refname[PATH_MAX];
3954
3955 /* skip matched rule */
3956 if (i == j)
3957 continue;
3958
3959 /*
3960 * the short name is ambiguous, if it resolves
3961 * (with this previous rule) to a valid ref
3962 * read_ref() returns 0 on success
3963 */
3964 mksnpath(refname, sizeof(refname),
3965 rule, short_name_len, short_name);
3966 if (ref_exists(refname))
3967 break;
3968 }
3969
3970 /*
3971 * short name is non-ambiguous if all previous rules
3972 * haven't resolved to a valid ref
3973 */
3974 if (j == rules_to_fail)
3975 return short_name;
3976 }
3977
3978 free(short_name);
3979 return xstrdup(refname);
3980 }
3981
3982 static struct string_list *hide_refs;
3983
3984 int parse_hide_refs_config(const char *var, const char *value, const char *section)
3985 {
3986 if (!strcmp("transfer.hiderefs", var) ||
3987 /* NEEDSWORK: use parse_config_key() once both are merged */
3988 (starts_with(var, section) && var[strlen(section)] == '.' &&
3989 !strcmp(var + strlen(section), ".hiderefs"))) {
3990 char *ref;
3991 int len;
3992
3993 if (!value)
3994 return config_error_nonbool(var);
3995 ref = xstrdup(value);
3996 len = strlen(ref);
3997 while (len && ref[len - 1] == '/')
3998 ref[--len] = '\0';
3999 if (!hide_refs) {
4000 hide_refs = xcalloc(1, sizeof(*hide_refs));
4001 hide_refs->strdup_strings = 1;
4002 }
4003 string_list_append(hide_refs, ref);
4004 }
4005 return 0;
4006 }
4007
4008 int ref_is_hidden(const char *refname)
4009 {
4010 struct string_list_item *item;
4011
4012 if (!hide_refs)
4013 return 0;
4014 for_each_string_list_item(item, hide_refs) {
4015 int len;
4016 if (!starts_with(refname, item->string))
4017 continue;
4018 len = strlen(item->string);
4019 if (!refname[len] || refname[len] == '/')
4020 return 1;
4021 }
4022 return 0;
4023 }
4024
4025 struct expire_reflog_cb {
4026 unsigned int flags;
4027 reflog_expiry_should_prune_fn *should_prune_fn;
4028 void *policy_cb;
4029 FILE *newlog;
4030 unsigned char last_kept_sha1[20];
4031 };
4032
4033 static int expire_reflog_ent(unsigned char *osha1, unsigned char *nsha1,
4034 const char *email, unsigned long timestamp, int tz,
4035 const char *message, void *cb_data)
4036 {
4037 struct expire_reflog_cb *cb = cb_data;
4038 struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
4039
4040 if (cb->flags & EXPIRE_REFLOGS_REWRITE)
4041 osha1 = cb->last_kept_sha1;
4042
4043 if ((*cb->should_prune_fn)(osha1, nsha1, email, timestamp, tz,
4044 message, policy_cb)) {
4045 if (!cb->newlog)
4046 printf("would prune %s", message);
4047 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4048 printf("prune %s", message);
4049 } else {
4050 if (cb->newlog) {
4051 fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4052 sha1_to_hex(osha1), sha1_to_hex(nsha1),
4053 email, timestamp, tz, message);
4054 hashcpy(cb->last_kept_sha1, nsha1);
4055 }
4056 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4057 printf("keep %s", message);
4058 }
4059 return 0;
4060 }
4061
4062 int reflog_expire(const char *refname, const unsigned char *sha1,
4063 unsigned int flags,
4064 reflog_expiry_prepare_fn prepare_fn,
4065 reflog_expiry_should_prune_fn should_prune_fn,
4066 reflog_expiry_cleanup_fn cleanup_fn,
4067 void *policy_cb_data)
4068 {
4069 static struct lock_file reflog_lock;
4070 struct expire_reflog_cb cb;
4071 struct ref_lock *lock;
4072 char *log_file;
4073 int status = 0;
4074 int type;
4075
4076 memset(&cb, 0, sizeof(cb));
4077 cb.flags = flags;
4078 cb.policy_cb = policy_cb_data;
4079 cb.should_prune_fn = should_prune_fn;
4080
4081 /*
4082 * The reflog file is locked by holding the lock on the
4083 * reference itself, plus we might need to update the
4084 * reference if --updateref was specified:
4085 */
4086 lock = lock_ref_sha1_basic(refname, sha1, NULL, 0, &type);
4087 if (!lock)
4088 return error("cannot lock ref '%s'", refname);
4089 if (!reflog_exists(refname)) {
4090 unlock_ref(lock);
4091 return 0;
4092 }
4093
4094 log_file = git_pathdup("logs/%s", refname);
4095 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4096 /*
4097 * Even though holding $GIT_DIR/logs/$reflog.lock has
4098 * no locking implications, we use the lock_file
4099 * machinery here anyway because it does a lot of the
4100 * work we need, including cleaning up if the program
4101 * exits unexpectedly.
4102 */
4103 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4104 struct strbuf err = STRBUF_INIT;
4105 unable_to_lock_message(log_file, errno, &err);
4106 error("%s", err.buf);
4107 strbuf_release(&err);
4108 goto failure;
4109 }
4110 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4111 if (!cb.newlog) {
4112 error("cannot fdopen %s (%s)",
4113 reflog_lock.filename.buf, strerror(errno));
4114 goto failure;
4115 }
4116 }
4117
4118 (*prepare_fn)(refname, sha1, cb.policy_cb);
4119 for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4120 (*cleanup_fn)(cb.policy_cb);
4121
4122 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4123 /*
4124 * It doesn't make sense to adjust a reference pointed
4125 * to by a symbolic ref based on expiring entries in
4126 * the symbolic reference's reflog. Nor can we update
4127 * a reference if there are no remaining reflog
4128 * entries.
4129 */
4130 int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4131 !(type & REF_ISSYMREF) &&
4132 !is_null_sha1(cb.last_kept_sha1);
4133
4134 if (close_lock_file(&reflog_lock)) {
4135 status |= error("couldn't write %s: %s", log_file,
4136 strerror(errno));
4137 } else if (update &&
4138 (write_in_full(lock->lock_fd,
4139 sha1_to_hex(cb.last_kept_sha1), 40) != 40 ||
4140 write_str_in_full(lock->lock_fd, "\n") != 1 ||
4141 close_ref(lock) < 0)) {
4142 status |= error("couldn't write %s",
4143 lock->lk->filename.buf);
4144 rollback_lock_file(&reflog_lock);
4145 } else if (commit_lock_file(&reflog_lock)) {
4146 status |= error("unable to commit reflog '%s' (%s)",
4147 log_file, strerror(errno));
4148 } else if (update && commit_ref(lock)) {
4149 status |= error("couldn't set %s", lock->ref_name);
4150 }
4151 }
4152 free(log_file);
4153 unlock_ref(lock);
4154 return status;
4155
4156 failure:
4157 rollback_lock_file(&reflog_lock);
4158 free(log_file);
4159 unlock_ref(lock);
4160 return -1;
4161 }