]> git.ipfire.org Git - thirdparty/git.git/blob - run-command.c
Sync with 2.21.4
[thirdparty/git.git] / run-command.c
1 #include "cache.h"
2 #include "run-command.h"
3 #include "exec-cmd.h"
4 #include "sigchain.h"
5 #include "argv-array.h"
6 #include "thread-utils.h"
7 #include "strbuf.h"
8 #include "string-list.h"
9 #include "quote.h"
10
11 void child_process_init(struct child_process *child)
12 {
13 memset(child, 0, sizeof(*child));
14 argv_array_init(&child->args);
15 argv_array_init(&child->env_array);
16 }
17
18 void child_process_clear(struct child_process *child)
19 {
20 argv_array_clear(&child->args);
21 argv_array_clear(&child->env_array);
22 }
23
24 struct child_to_clean {
25 pid_t pid;
26 struct child_process *process;
27 struct child_to_clean *next;
28 };
29 static struct child_to_clean *children_to_clean;
30 static int installed_child_cleanup_handler;
31
32 static void cleanup_children(int sig, int in_signal)
33 {
34 struct child_to_clean *children_to_wait_for = NULL;
35
36 while (children_to_clean) {
37 struct child_to_clean *p = children_to_clean;
38 children_to_clean = p->next;
39
40 if (p->process && !in_signal) {
41 struct child_process *process = p->process;
42 if (process->clean_on_exit_handler) {
43 trace_printf(
44 "trace: run_command: running exit handler for pid %"
45 PRIuMAX, (uintmax_t)p->pid
46 );
47 process->clean_on_exit_handler(process);
48 }
49 }
50
51 kill(p->pid, sig);
52
53 if (p->process && p->process->wait_after_clean) {
54 p->next = children_to_wait_for;
55 children_to_wait_for = p;
56 } else {
57 if (!in_signal)
58 free(p);
59 }
60 }
61
62 while (children_to_wait_for) {
63 struct child_to_clean *p = children_to_wait_for;
64 children_to_wait_for = p->next;
65
66 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
67 ; /* spin waiting for process exit or error */
68
69 if (!in_signal)
70 free(p);
71 }
72 }
73
74 static void cleanup_children_on_signal(int sig)
75 {
76 cleanup_children(sig, 1);
77 sigchain_pop(sig);
78 raise(sig);
79 }
80
81 static void cleanup_children_on_exit(void)
82 {
83 cleanup_children(SIGTERM, 0);
84 }
85
86 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
87 {
88 struct child_to_clean *p = xmalloc(sizeof(*p));
89 p->pid = pid;
90 p->process = process;
91 p->next = children_to_clean;
92 children_to_clean = p;
93
94 if (!installed_child_cleanup_handler) {
95 atexit(cleanup_children_on_exit);
96 sigchain_push_common(cleanup_children_on_signal);
97 installed_child_cleanup_handler = 1;
98 }
99 }
100
101 static void clear_child_for_cleanup(pid_t pid)
102 {
103 struct child_to_clean **pp;
104
105 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
106 struct child_to_clean *clean_me = *pp;
107
108 if (clean_me->pid == pid) {
109 *pp = clean_me->next;
110 free(clean_me);
111 return;
112 }
113 }
114 }
115
116 static inline void close_pair(int fd[2])
117 {
118 close(fd[0]);
119 close(fd[1]);
120 }
121
122 int is_executable(const char *name)
123 {
124 struct stat st;
125
126 if (stat(name, &st) || /* stat, not lstat */
127 !S_ISREG(st.st_mode))
128 return 0;
129
130 #if defined(GIT_WINDOWS_NATIVE)
131 /*
132 * On Windows there is no executable bit. The file extension
133 * indicates whether it can be run as an executable, and Git
134 * has special-handling to detect scripts and launch them
135 * through the indicated script interpreter. We test for the
136 * file extension first because virus scanners may make
137 * it quite expensive to open many files.
138 */
139 if (ends_with(name, ".exe"))
140 return S_IXUSR;
141
142 {
143 /*
144 * Now that we know it does not have an executable extension,
145 * peek into the file instead.
146 */
147 char buf[3] = { 0 };
148 int n;
149 int fd = open(name, O_RDONLY);
150 st.st_mode &= ~S_IXUSR;
151 if (fd >= 0) {
152 n = read(fd, buf, 2);
153 if (n == 2)
154 /* look for a she-bang */
155 if (!strcmp(buf, "#!"))
156 st.st_mode |= S_IXUSR;
157 close(fd);
158 }
159 }
160 #endif
161 return st.st_mode & S_IXUSR;
162 }
163
164 /*
165 * Search $PATH for a command. This emulates the path search that
166 * execvp would perform, without actually executing the command so it
167 * can be used before fork() to prepare to run a command using
168 * execve() or after execvp() to diagnose why it failed.
169 *
170 * The caller should ensure that file contains no directory
171 * separators.
172 *
173 * Returns the path to the command, as found in $PATH or NULL if the
174 * command could not be found. The caller inherits ownership of the memory
175 * used to store the resultant path.
176 *
177 * This should not be used on Windows, where the $PATH search rules
178 * are more complicated (e.g., a search for "foo" should find
179 * "foo.exe").
180 */
181 static char *locate_in_PATH(const char *file)
182 {
183 const char *p = getenv("PATH");
184 struct strbuf buf = STRBUF_INIT;
185
186 if (!p || !*p)
187 return NULL;
188
189 while (1) {
190 const char *end = strchrnul(p, ':');
191
192 strbuf_reset(&buf);
193
194 /* POSIX specifies an empty entry as the current directory. */
195 if (end != p) {
196 strbuf_add(&buf, p, end - p);
197 strbuf_addch(&buf, '/');
198 }
199 strbuf_addstr(&buf, file);
200
201 if (is_executable(buf.buf))
202 return strbuf_detach(&buf, NULL);
203
204 if (!*end)
205 break;
206 p = end + 1;
207 }
208
209 strbuf_release(&buf);
210 return NULL;
211 }
212
213 static int exists_in_PATH(const char *file)
214 {
215 char *r = locate_in_PATH(file);
216 free(r);
217 return r != NULL;
218 }
219
220 int sane_execvp(const char *file, char * const argv[])
221 {
222 #ifndef GIT_WINDOWS_NATIVE
223 /*
224 * execvp() doesn't return, so we all we can do is tell trace2
225 * what we are about to do and let it leave a hint in the log
226 * (unless of course the execvp() fails).
227 *
228 * we skip this for Windows because the compat layer already
229 * has to emulate the execvp() call anyway.
230 */
231 int exec_id = trace2_exec(file, (const char **)argv);
232 #endif
233
234 if (!execvp(file, argv))
235 return 0; /* cannot happen ;-) */
236
237 #ifndef GIT_WINDOWS_NATIVE
238 {
239 int ec = errno;
240 trace2_exec_result(exec_id, ec);
241 errno = ec;
242 }
243 #endif
244
245 /*
246 * When a command can't be found because one of the directories
247 * listed in $PATH is unsearchable, execvp reports EACCES, but
248 * careful usability testing (read: analysis of occasional bug
249 * reports) reveals that "No such file or directory" is more
250 * intuitive.
251 *
252 * We avoid commands with "/", because execvp will not do $PATH
253 * lookups in that case.
254 *
255 * The reassignment of EACCES to errno looks like a no-op below,
256 * but we need to protect against exists_in_PATH overwriting errno.
257 */
258 if (errno == EACCES && !strchr(file, '/'))
259 errno = exists_in_PATH(file) ? EACCES : ENOENT;
260 else if (errno == ENOTDIR && !strchr(file, '/'))
261 errno = ENOENT;
262 return -1;
263 }
264
265 static const char **prepare_shell_cmd(struct argv_array *out, const char **argv)
266 {
267 if (!argv[0])
268 BUG("shell command is empty");
269
270 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
271 #ifndef GIT_WINDOWS_NATIVE
272 argv_array_push(out, SHELL_PATH);
273 #else
274 argv_array_push(out, "sh");
275 #endif
276 argv_array_push(out, "-c");
277
278 /*
279 * If we have no extra arguments, we do not even need to
280 * bother with the "$@" magic.
281 */
282 if (!argv[1])
283 argv_array_push(out, argv[0]);
284 else
285 argv_array_pushf(out, "%s \"$@\"", argv[0]);
286 }
287
288 argv_array_pushv(out, argv);
289 return out->argv;
290 }
291
292 #ifndef GIT_WINDOWS_NATIVE
293 static int child_notifier = -1;
294
295 enum child_errcode {
296 CHILD_ERR_CHDIR,
297 CHILD_ERR_DUP2,
298 CHILD_ERR_CLOSE,
299 CHILD_ERR_SIGPROCMASK,
300 CHILD_ERR_ENOENT,
301 CHILD_ERR_SILENT,
302 CHILD_ERR_ERRNO
303 };
304
305 struct child_err {
306 enum child_errcode err;
307 int syserr; /* errno */
308 };
309
310 static void child_die(enum child_errcode err)
311 {
312 struct child_err buf;
313
314 buf.err = err;
315 buf.syserr = errno;
316
317 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
318 xwrite(child_notifier, &buf, sizeof(buf));
319 _exit(1);
320 }
321
322 static void child_dup2(int fd, int to)
323 {
324 if (dup2(fd, to) < 0)
325 child_die(CHILD_ERR_DUP2);
326 }
327
328 static void child_close(int fd)
329 {
330 if (close(fd))
331 child_die(CHILD_ERR_CLOSE);
332 }
333
334 static void child_close_pair(int fd[2])
335 {
336 child_close(fd[0]);
337 child_close(fd[1]);
338 }
339
340 /*
341 * parent will make it look like the child spewed a fatal error and died
342 * this is needed to prevent changes to t0061.
343 */
344 static void fake_fatal(const char *err, va_list params)
345 {
346 vreportf("fatal: ", err, params);
347 }
348
349 static void child_error_fn(const char *err, va_list params)
350 {
351 const char msg[] = "error() should not be called in child\n";
352 xwrite(2, msg, sizeof(msg) - 1);
353 }
354
355 static void child_warn_fn(const char *err, va_list params)
356 {
357 const char msg[] = "warn() should not be called in child\n";
358 xwrite(2, msg, sizeof(msg) - 1);
359 }
360
361 static void NORETURN child_die_fn(const char *err, va_list params)
362 {
363 const char msg[] = "die() should not be called in child\n";
364 xwrite(2, msg, sizeof(msg) - 1);
365 _exit(2);
366 }
367
368 /* this runs in the parent process */
369 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
370 {
371 static void (*old_errfn)(const char *err, va_list params);
372
373 old_errfn = get_error_routine();
374 set_error_routine(fake_fatal);
375 errno = cerr->syserr;
376
377 switch (cerr->err) {
378 case CHILD_ERR_CHDIR:
379 error_errno("exec '%s': cd to '%s' failed",
380 cmd->argv[0], cmd->dir);
381 break;
382 case CHILD_ERR_DUP2:
383 error_errno("dup2() in child failed");
384 break;
385 case CHILD_ERR_CLOSE:
386 error_errno("close() in child failed");
387 break;
388 case CHILD_ERR_SIGPROCMASK:
389 error_errno("sigprocmask failed restoring signals");
390 break;
391 case CHILD_ERR_ENOENT:
392 error_errno("cannot run %s", cmd->argv[0]);
393 break;
394 case CHILD_ERR_SILENT:
395 break;
396 case CHILD_ERR_ERRNO:
397 error_errno("cannot exec '%s'", cmd->argv[0]);
398 break;
399 }
400 set_error_routine(old_errfn);
401 }
402
403 static int prepare_cmd(struct argv_array *out, const struct child_process *cmd)
404 {
405 if (!cmd->argv[0])
406 BUG("command is empty");
407
408 /*
409 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
410 * attempt to interpret the command with 'sh'.
411 */
412 argv_array_push(out, SHELL_PATH);
413
414 if (cmd->git_cmd) {
415 argv_array_push(out, "git");
416 argv_array_pushv(out, cmd->argv);
417 } else if (cmd->use_shell) {
418 prepare_shell_cmd(out, cmd->argv);
419 } else {
420 argv_array_pushv(out, cmd->argv);
421 }
422
423 /*
424 * If there are no '/' characters in the command then perform a path
425 * lookup and use the resolved path as the command to exec. If there
426 * are '/' characters, we have exec attempt to invoke the command
427 * directly.
428 */
429 if (!strchr(out->argv[1], '/')) {
430 char *program = locate_in_PATH(out->argv[1]);
431 if (program) {
432 free((char *)out->argv[1]);
433 out->argv[1] = program;
434 } else {
435 argv_array_clear(out);
436 errno = ENOENT;
437 return -1;
438 }
439 }
440
441 return 0;
442 }
443
444 static char **prep_childenv(const char *const *deltaenv)
445 {
446 extern char **environ;
447 char **childenv;
448 struct string_list env = STRING_LIST_INIT_DUP;
449 struct strbuf key = STRBUF_INIT;
450 const char *const *p;
451 int i;
452
453 /* Construct a sorted string list consisting of the current environ */
454 for (p = (const char *const *) environ; p && *p; p++) {
455 const char *equals = strchr(*p, '=');
456
457 if (equals) {
458 strbuf_reset(&key);
459 strbuf_add(&key, *p, equals - *p);
460 string_list_append(&env, key.buf)->util = (void *) *p;
461 } else {
462 string_list_append(&env, *p)->util = (void *) *p;
463 }
464 }
465 string_list_sort(&env);
466
467 /* Merge in 'deltaenv' with the current environ */
468 for (p = deltaenv; p && *p; p++) {
469 const char *equals = strchr(*p, '=');
470
471 if (equals) {
472 /* ('key=value'), insert or replace entry */
473 strbuf_reset(&key);
474 strbuf_add(&key, *p, equals - *p);
475 string_list_insert(&env, key.buf)->util = (void *) *p;
476 } else {
477 /* otherwise ('key') remove existing entry */
478 string_list_remove(&env, *p, 0);
479 }
480 }
481
482 /* Create an array of 'char *' to be used as the childenv */
483 ALLOC_ARRAY(childenv, env.nr + 1);
484 for (i = 0; i < env.nr; i++)
485 childenv[i] = env.items[i].util;
486 childenv[env.nr] = NULL;
487
488 string_list_clear(&env, 0);
489 strbuf_release(&key);
490 return childenv;
491 }
492
493 struct atfork_state {
494 #ifndef NO_PTHREADS
495 int cs;
496 #endif
497 sigset_t old;
498 };
499
500 #define CHECK_BUG(err, msg) \
501 do { \
502 int e = (err); \
503 if (e) \
504 BUG("%s: %s", msg, strerror(e)); \
505 } while(0)
506
507 static void atfork_prepare(struct atfork_state *as)
508 {
509 sigset_t all;
510
511 if (sigfillset(&all))
512 die_errno("sigfillset");
513 #ifdef NO_PTHREADS
514 if (sigprocmask(SIG_SETMASK, &all, &as->old))
515 die_errno("sigprocmask");
516 #else
517 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
518 "blocking all signals");
519 CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
520 "disabling cancellation");
521 #endif
522 }
523
524 static void atfork_parent(struct atfork_state *as)
525 {
526 #ifdef NO_PTHREADS
527 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
528 die_errno("sigprocmask");
529 #else
530 CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
531 "re-enabling cancellation");
532 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
533 "restoring signal mask");
534 #endif
535 }
536 #endif /* GIT_WINDOWS_NATIVE */
537
538 static inline void set_cloexec(int fd)
539 {
540 int flags = fcntl(fd, F_GETFD);
541 if (flags >= 0)
542 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
543 }
544
545 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
546 {
547 int status, code = -1;
548 pid_t waiting;
549 int failed_errno = 0;
550
551 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
552 ; /* nothing */
553 if (in_signal)
554 return 0;
555
556 if (waiting < 0) {
557 failed_errno = errno;
558 error_errno("waitpid for %s failed", argv0);
559 } else if (waiting != pid) {
560 error("waitpid is confused (%s)", argv0);
561 } else if (WIFSIGNALED(status)) {
562 code = WTERMSIG(status);
563 if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
564 error("%s died of signal %d", argv0, code);
565 /*
566 * This return value is chosen so that code & 0xff
567 * mimics the exit code that a POSIX shell would report for
568 * a program that died from this signal.
569 */
570 code += 128;
571 } else if (WIFEXITED(status)) {
572 code = WEXITSTATUS(status);
573 } else {
574 error("waitpid is confused (%s)", argv0);
575 }
576
577 clear_child_for_cleanup(pid);
578
579 errno = failed_errno;
580 return code;
581 }
582
583 static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
584 {
585 struct string_list envs = STRING_LIST_INIT_DUP;
586 const char *const *e;
587 int i;
588 int printed_unset = 0;
589
590 /* Last one wins, see run-command.c:prep_childenv() for context */
591 for (e = deltaenv; e && *e; e++) {
592 struct strbuf key = STRBUF_INIT;
593 char *equals = strchr(*e, '=');
594
595 if (equals) {
596 strbuf_add(&key, *e, equals - *e);
597 string_list_insert(&envs, key.buf)->util = equals + 1;
598 } else {
599 string_list_insert(&envs, *e)->util = NULL;
600 }
601 strbuf_release(&key);
602 }
603
604 /* "unset X Y...;" */
605 for (i = 0; i < envs.nr; i++) {
606 const char *var = envs.items[i].string;
607 const char *val = envs.items[i].util;
608
609 if (val || !getenv(var))
610 continue;
611
612 if (!printed_unset) {
613 strbuf_addstr(dst, " unset");
614 printed_unset = 1;
615 }
616 strbuf_addf(dst, " %s", var);
617 }
618 if (printed_unset)
619 strbuf_addch(dst, ';');
620
621 /* ... followed by "A=B C=D ..." */
622 for (i = 0; i < envs.nr; i++) {
623 const char *var = envs.items[i].string;
624 const char *val = envs.items[i].util;
625 const char *oldval;
626
627 if (!val)
628 continue;
629
630 oldval = getenv(var);
631 if (oldval && !strcmp(val, oldval))
632 continue;
633
634 strbuf_addf(dst, " %s=", var);
635 sq_quote_buf_pretty(dst, val);
636 }
637 string_list_clear(&envs, 0);
638 }
639
640 static void trace_run_command(const struct child_process *cp)
641 {
642 struct strbuf buf = STRBUF_INIT;
643
644 if (!trace_want(&trace_default_key))
645 return;
646
647 strbuf_addstr(&buf, "trace: run_command:");
648 if (cp->dir) {
649 strbuf_addstr(&buf, " cd ");
650 sq_quote_buf_pretty(&buf, cp->dir);
651 strbuf_addch(&buf, ';');
652 }
653 /*
654 * The caller is responsible for initializing cp->env from
655 * cp->env_array if needed. We only check one place.
656 */
657 if (cp->env)
658 trace_add_env(&buf, cp->env);
659 if (cp->git_cmd)
660 strbuf_addstr(&buf, " git");
661 sq_quote_argv_pretty(&buf, cp->argv);
662
663 trace_printf("%s", buf.buf);
664 strbuf_release(&buf);
665 }
666
667 int start_command(struct child_process *cmd)
668 {
669 int need_in, need_out, need_err;
670 int fdin[2], fdout[2], fderr[2];
671 int failed_errno;
672 char *str;
673
674 if (!cmd->argv)
675 cmd->argv = cmd->args.argv;
676 if (!cmd->env)
677 cmd->env = cmd->env_array.argv;
678
679 /*
680 * In case of errors we must keep the promise to close FDs
681 * that have been passed in via ->in and ->out.
682 */
683
684 need_in = !cmd->no_stdin && cmd->in < 0;
685 if (need_in) {
686 if (pipe(fdin) < 0) {
687 failed_errno = errno;
688 if (cmd->out > 0)
689 close(cmd->out);
690 str = "standard input";
691 goto fail_pipe;
692 }
693 cmd->in = fdin[1];
694 }
695
696 need_out = !cmd->no_stdout
697 && !cmd->stdout_to_stderr
698 && cmd->out < 0;
699 if (need_out) {
700 if (pipe(fdout) < 0) {
701 failed_errno = errno;
702 if (need_in)
703 close_pair(fdin);
704 else if (cmd->in)
705 close(cmd->in);
706 str = "standard output";
707 goto fail_pipe;
708 }
709 cmd->out = fdout[0];
710 }
711
712 need_err = !cmd->no_stderr && cmd->err < 0;
713 if (need_err) {
714 if (pipe(fderr) < 0) {
715 failed_errno = errno;
716 if (need_in)
717 close_pair(fdin);
718 else if (cmd->in)
719 close(cmd->in);
720 if (need_out)
721 close_pair(fdout);
722 else if (cmd->out)
723 close(cmd->out);
724 str = "standard error";
725 fail_pipe:
726 error("cannot create %s pipe for %s: %s",
727 str, cmd->argv[0], strerror(failed_errno));
728 child_process_clear(cmd);
729 errno = failed_errno;
730 return -1;
731 }
732 cmd->err = fderr[0];
733 }
734
735 trace2_child_start(cmd);
736 trace_run_command(cmd);
737
738 fflush(NULL);
739
740 #ifndef GIT_WINDOWS_NATIVE
741 {
742 int notify_pipe[2];
743 int null_fd = -1;
744 char **childenv;
745 struct argv_array argv = ARGV_ARRAY_INIT;
746 struct child_err cerr;
747 struct atfork_state as;
748
749 if (prepare_cmd(&argv, cmd) < 0) {
750 failed_errno = errno;
751 cmd->pid = -1;
752 if (!cmd->silent_exec_failure)
753 error_errno("cannot run %s", cmd->argv[0]);
754 goto end_of_spawn;
755 }
756
757 if (pipe(notify_pipe))
758 notify_pipe[0] = notify_pipe[1] = -1;
759
760 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
761 null_fd = open("/dev/null", O_RDWR | O_CLOEXEC);
762 if (null_fd < 0)
763 die_errno(_("open /dev/null failed"));
764 set_cloexec(null_fd);
765 }
766
767 childenv = prep_childenv(cmd->env);
768 atfork_prepare(&as);
769
770 /*
771 * NOTE: In order to prevent deadlocking when using threads special
772 * care should be taken with the function calls made in between the
773 * fork() and exec() calls. No calls should be made to functions which
774 * require acquiring a lock (e.g. malloc) as the lock could have been
775 * held by another thread at the time of forking, causing the lock to
776 * never be released in the child process. This means only
777 * Async-Signal-Safe functions are permitted in the child.
778 */
779 cmd->pid = fork();
780 failed_errno = errno;
781 if (!cmd->pid) {
782 int sig;
783 /*
784 * Ensure the default die/error/warn routines do not get
785 * called, they can take stdio locks and malloc.
786 */
787 set_die_routine(child_die_fn);
788 set_error_routine(child_error_fn);
789 set_warn_routine(child_warn_fn);
790
791 close(notify_pipe[0]);
792 set_cloexec(notify_pipe[1]);
793 child_notifier = notify_pipe[1];
794
795 if (cmd->no_stdin)
796 child_dup2(null_fd, 0);
797 else if (need_in) {
798 child_dup2(fdin[0], 0);
799 child_close_pair(fdin);
800 } else if (cmd->in) {
801 child_dup2(cmd->in, 0);
802 child_close(cmd->in);
803 }
804
805 if (cmd->no_stderr)
806 child_dup2(null_fd, 2);
807 else if (need_err) {
808 child_dup2(fderr[1], 2);
809 child_close_pair(fderr);
810 } else if (cmd->err > 1) {
811 child_dup2(cmd->err, 2);
812 child_close(cmd->err);
813 }
814
815 if (cmd->no_stdout)
816 child_dup2(null_fd, 1);
817 else if (cmd->stdout_to_stderr)
818 child_dup2(2, 1);
819 else if (need_out) {
820 child_dup2(fdout[1], 1);
821 child_close_pair(fdout);
822 } else if (cmd->out > 1) {
823 child_dup2(cmd->out, 1);
824 child_close(cmd->out);
825 }
826
827 if (cmd->dir && chdir(cmd->dir))
828 child_die(CHILD_ERR_CHDIR);
829
830 /*
831 * restore default signal handlers here, in case
832 * we catch a signal right before execve below
833 */
834 for (sig = 1; sig < NSIG; sig++) {
835 /* ignored signals get reset to SIG_DFL on execve */
836 if (signal(sig, SIG_DFL) == SIG_IGN)
837 signal(sig, SIG_IGN);
838 }
839
840 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
841 child_die(CHILD_ERR_SIGPROCMASK);
842
843 /*
844 * Attempt to exec using the command and arguments starting at
845 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
846 * be used in the event exec failed with ENOEXEC at which point
847 * we will try to interpret the command using 'sh'.
848 */
849 execve(argv.argv[1], (char *const *) argv.argv + 1,
850 (char *const *) childenv);
851 if (errno == ENOEXEC)
852 execve(argv.argv[0], (char *const *) argv.argv,
853 (char *const *) childenv);
854
855 if (errno == ENOENT) {
856 if (cmd->silent_exec_failure)
857 child_die(CHILD_ERR_SILENT);
858 child_die(CHILD_ERR_ENOENT);
859 } else {
860 child_die(CHILD_ERR_ERRNO);
861 }
862 }
863 atfork_parent(&as);
864 if (cmd->pid < 0)
865 error_errno("cannot fork() for %s", cmd->argv[0]);
866 else if (cmd->clean_on_exit)
867 mark_child_for_cleanup(cmd->pid, cmd);
868
869 /*
870 * Wait for child's exec. If the exec succeeds (or if fork()
871 * failed), EOF is seen immediately by the parent. Otherwise, the
872 * child process sends a child_err struct.
873 * Note that use of this infrastructure is completely advisory,
874 * therefore, we keep error checks minimal.
875 */
876 close(notify_pipe[1]);
877 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
878 /*
879 * At this point we know that fork() succeeded, but exec()
880 * failed. Errors have been reported to our stderr.
881 */
882 wait_or_whine(cmd->pid, cmd->argv[0], 0);
883 child_err_spew(cmd, &cerr);
884 failed_errno = errno;
885 cmd->pid = -1;
886 }
887 close(notify_pipe[0]);
888
889 if (null_fd >= 0)
890 close(null_fd);
891 argv_array_clear(&argv);
892 free(childenv);
893 }
894 end_of_spawn:
895
896 #else
897 {
898 int fhin = 0, fhout = 1, fherr = 2;
899 const char **sargv = cmd->argv;
900 struct argv_array nargv = ARGV_ARRAY_INIT;
901
902 if (cmd->no_stdin)
903 fhin = open("/dev/null", O_RDWR);
904 else if (need_in)
905 fhin = dup(fdin[0]);
906 else if (cmd->in)
907 fhin = dup(cmd->in);
908
909 if (cmd->no_stderr)
910 fherr = open("/dev/null", O_RDWR);
911 else if (need_err)
912 fherr = dup(fderr[1]);
913 else if (cmd->err > 2)
914 fherr = dup(cmd->err);
915
916 if (cmd->no_stdout)
917 fhout = open("/dev/null", O_RDWR);
918 else if (cmd->stdout_to_stderr)
919 fhout = dup(fherr);
920 else if (need_out)
921 fhout = dup(fdout[1]);
922 else if (cmd->out > 1)
923 fhout = dup(cmd->out);
924
925 if (cmd->git_cmd)
926 cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
927 else if (cmd->use_shell)
928 cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
929
930 cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
931 cmd->dir, fhin, fhout, fherr);
932 failed_errno = errno;
933 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
934 error_errno("cannot spawn %s", cmd->argv[0]);
935 if (cmd->clean_on_exit && cmd->pid >= 0)
936 mark_child_for_cleanup(cmd->pid, cmd);
937
938 argv_array_clear(&nargv);
939 cmd->argv = sargv;
940 if (fhin != 0)
941 close(fhin);
942 if (fhout != 1)
943 close(fhout);
944 if (fherr != 2)
945 close(fherr);
946 }
947 #endif
948
949 if (cmd->pid < 0) {
950 trace2_child_exit(cmd, -1);
951
952 if (need_in)
953 close_pair(fdin);
954 else if (cmd->in)
955 close(cmd->in);
956 if (need_out)
957 close_pair(fdout);
958 else if (cmd->out)
959 close(cmd->out);
960 if (need_err)
961 close_pair(fderr);
962 else if (cmd->err)
963 close(cmd->err);
964 child_process_clear(cmd);
965 errno = failed_errno;
966 return -1;
967 }
968
969 if (need_in)
970 close(fdin[0]);
971 else if (cmd->in)
972 close(cmd->in);
973
974 if (need_out)
975 close(fdout[1]);
976 else if (cmd->out)
977 close(cmd->out);
978
979 if (need_err)
980 close(fderr[1]);
981 else if (cmd->err)
982 close(cmd->err);
983
984 return 0;
985 }
986
987 int finish_command(struct child_process *cmd)
988 {
989 int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
990 trace2_child_exit(cmd, ret);
991 child_process_clear(cmd);
992 invalidate_lstat_cache();
993 return ret;
994 }
995
996 int finish_command_in_signal(struct child_process *cmd)
997 {
998 int ret = wait_or_whine(cmd->pid, cmd->argv[0], 1);
999 trace2_child_exit(cmd, ret);
1000 return ret;
1001 }
1002
1003
1004 int run_command(struct child_process *cmd)
1005 {
1006 int code;
1007
1008 if (cmd->out < 0 || cmd->err < 0)
1009 BUG("run_command with a pipe can cause deadlock");
1010
1011 code = start_command(cmd);
1012 if (code)
1013 return code;
1014 return finish_command(cmd);
1015 }
1016
1017 int run_command_v_opt(const char **argv, int opt)
1018 {
1019 return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
1020 }
1021
1022 int run_command_v_opt_tr2(const char **argv, int opt, const char *tr2_class)
1023 {
1024 return run_command_v_opt_cd_env_tr2(argv, opt, NULL, NULL, tr2_class);
1025 }
1026
1027 int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
1028 {
1029 return run_command_v_opt_cd_env_tr2(argv, opt, dir, env, NULL);
1030 }
1031
1032 int run_command_v_opt_cd_env_tr2(const char **argv, int opt, const char *dir,
1033 const char *const *env, const char *tr2_class)
1034 {
1035 struct child_process cmd = CHILD_PROCESS_INIT;
1036 cmd.argv = argv;
1037 cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
1038 cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
1039 cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
1040 cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
1041 cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
1042 cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
1043 cmd.dir = dir;
1044 cmd.env = env;
1045 cmd.trace2_child_class = tr2_class;
1046 return run_command(&cmd);
1047 }
1048
1049 #ifndef NO_PTHREADS
1050 static pthread_t main_thread;
1051 static int main_thread_set;
1052 static pthread_key_t async_key;
1053 static pthread_key_t async_die_counter;
1054
1055 static void *run_thread(void *data)
1056 {
1057 struct async *async = data;
1058 intptr_t ret;
1059
1060 if (async->isolate_sigpipe) {
1061 sigset_t mask;
1062 sigemptyset(&mask);
1063 sigaddset(&mask, SIGPIPE);
1064 if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1065 ret = error("unable to block SIGPIPE in async thread");
1066 return (void *)ret;
1067 }
1068 }
1069
1070 pthread_setspecific(async_key, async);
1071 ret = async->proc(async->proc_in, async->proc_out, async->data);
1072 return (void *)ret;
1073 }
1074
1075 static NORETURN void die_async(const char *err, va_list params)
1076 {
1077 vreportf("fatal: ", err, params);
1078
1079 if (in_async()) {
1080 struct async *async = pthread_getspecific(async_key);
1081 if (async->proc_in >= 0)
1082 close(async->proc_in);
1083 if (async->proc_out >= 0)
1084 close(async->proc_out);
1085 pthread_exit((void *)128);
1086 }
1087
1088 exit(128);
1089 }
1090
1091 static int async_die_is_recursing(void)
1092 {
1093 void *ret = pthread_getspecific(async_die_counter);
1094 pthread_setspecific(async_die_counter, (void *)1);
1095 return ret != NULL;
1096 }
1097
1098 int in_async(void)
1099 {
1100 if (!main_thread_set)
1101 return 0; /* no asyncs started yet */
1102 return !pthread_equal(main_thread, pthread_self());
1103 }
1104
1105 static void NORETURN async_exit(int code)
1106 {
1107 pthread_exit((void *)(intptr_t)code);
1108 }
1109
1110 #else
1111
1112 static struct {
1113 void (**handlers)(void);
1114 size_t nr;
1115 size_t alloc;
1116 } git_atexit_hdlrs;
1117
1118 static int git_atexit_installed;
1119
1120 static void git_atexit_dispatch(void)
1121 {
1122 size_t i;
1123
1124 for (i=git_atexit_hdlrs.nr ; i ; i--)
1125 git_atexit_hdlrs.handlers[i-1]();
1126 }
1127
1128 static void git_atexit_clear(void)
1129 {
1130 free(git_atexit_hdlrs.handlers);
1131 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1132 git_atexit_installed = 0;
1133 }
1134
1135 #undef atexit
1136 int git_atexit(void (*handler)(void))
1137 {
1138 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1139 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1140 if (!git_atexit_installed) {
1141 if (atexit(&git_atexit_dispatch))
1142 return -1;
1143 git_atexit_installed = 1;
1144 }
1145 return 0;
1146 }
1147 #define atexit git_atexit
1148
1149 static int process_is_async;
1150 int in_async(void)
1151 {
1152 return process_is_async;
1153 }
1154
1155 static void NORETURN async_exit(int code)
1156 {
1157 exit(code);
1158 }
1159
1160 #endif
1161
1162 void check_pipe(int err)
1163 {
1164 if (err == EPIPE) {
1165 if (in_async())
1166 async_exit(141);
1167
1168 signal(SIGPIPE, SIG_DFL);
1169 raise(SIGPIPE);
1170 /* Should never happen, but just in case... */
1171 exit(141);
1172 }
1173 }
1174
1175 int start_async(struct async *async)
1176 {
1177 int need_in, need_out;
1178 int fdin[2], fdout[2];
1179 int proc_in, proc_out;
1180
1181 need_in = async->in < 0;
1182 if (need_in) {
1183 if (pipe(fdin) < 0) {
1184 if (async->out > 0)
1185 close(async->out);
1186 return error_errno("cannot create pipe");
1187 }
1188 async->in = fdin[1];
1189 }
1190
1191 need_out = async->out < 0;
1192 if (need_out) {
1193 if (pipe(fdout) < 0) {
1194 if (need_in)
1195 close_pair(fdin);
1196 else if (async->in)
1197 close(async->in);
1198 return error_errno("cannot create pipe");
1199 }
1200 async->out = fdout[0];
1201 }
1202
1203 if (need_in)
1204 proc_in = fdin[0];
1205 else if (async->in)
1206 proc_in = async->in;
1207 else
1208 proc_in = -1;
1209
1210 if (need_out)
1211 proc_out = fdout[1];
1212 else if (async->out)
1213 proc_out = async->out;
1214 else
1215 proc_out = -1;
1216
1217 #ifdef NO_PTHREADS
1218 /* Flush stdio before fork() to avoid cloning buffers */
1219 fflush(NULL);
1220
1221 async->pid = fork();
1222 if (async->pid < 0) {
1223 error_errno("fork (async) failed");
1224 goto error;
1225 }
1226 if (!async->pid) {
1227 if (need_in)
1228 close(fdin[1]);
1229 if (need_out)
1230 close(fdout[0]);
1231 git_atexit_clear();
1232 process_is_async = 1;
1233 exit(!!async->proc(proc_in, proc_out, async->data));
1234 }
1235
1236 mark_child_for_cleanup(async->pid, NULL);
1237
1238 if (need_in)
1239 close(fdin[0]);
1240 else if (async->in)
1241 close(async->in);
1242
1243 if (need_out)
1244 close(fdout[1]);
1245 else if (async->out)
1246 close(async->out);
1247 #else
1248 if (!main_thread_set) {
1249 /*
1250 * We assume that the first time that start_async is called
1251 * it is from the main thread.
1252 */
1253 main_thread_set = 1;
1254 main_thread = pthread_self();
1255 pthread_key_create(&async_key, NULL);
1256 pthread_key_create(&async_die_counter, NULL);
1257 set_die_routine(die_async);
1258 set_die_is_recursing_routine(async_die_is_recursing);
1259 }
1260
1261 if (proc_in >= 0)
1262 set_cloexec(proc_in);
1263 if (proc_out >= 0)
1264 set_cloexec(proc_out);
1265 async->proc_in = proc_in;
1266 async->proc_out = proc_out;
1267 {
1268 int err = pthread_create(&async->tid, NULL, run_thread, async);
1269 if (err) {
1270 error(_("cannot create async thread: %s"), strerror(err));
1271 goto error;
1272 }
1273 }
1274 #endif
1275 return 0;
1276
1277 error:
1278 if (need_in)
1279 close_pair(fdin);
1280 else if (async->in)
1281 close(async->in);
1282
1283 if (need_out)
1284 close_pair(fdout);
1285 else if (async->out)
1286 close(async->out);
1287 return -1;
1288 }
1289
1290 int finish_async(struct async *async)
1291 {
1292 #ifdef NO_PTHREADS
1293 int ret = wait_or_whine(async->pid, "child process", 0);
1294
1295 invalidate_lstat_cache();
1296
1297 return ret;
1298 #else
1299 void *ret = (void *)(intptr_t)(-1);
1300
1301 if (pthread_join(async->tid, &ret))
1302 error("pthread_join failed");
1303 invalidate_lstat_cache();
1304 return (int)(intptr_t)ret;
1305
1306 #endif
1307 }
1308
1309 int async_with_fork(void)
1310 {
1311 #ifdef NO_PTHREADS
1312 return 1;
1313 #else
1314 return 0;
1315 #endif
1316 }
1317
1318 const char *find_hook(const char *name)
1319 {
1320 static struct strbuf path = STRBUF_INIT;
1321
1322 strbuf_reset(&path);
1323 strbuf_git_path(&path, "hooks/%s", name);
1324 if (access(path.buf, X_OK) < 0) {
1325 int err = errno;
1326
1327 #ifdef STRIP_EXTENSION
1328 strbuf_addstr(&path, STRIP_EXTENSION);
1329 if (access(path.buf, X_OK) >= 0)
1330 return path.buf;
1331 if (errno == EACCES)
1332 err = errno;
1333 #endif
1334
1335 if (err == EACCES && advice_ignored_hook) {
1336 static struct string_list advise_given = STRING_LIST_INIT_DUP;
1337
1338 if (!string_list_lookup(&advise_given, name)) {
1339 string_list_insert(&advise_given, name);
1340 advise(_("The '%s' hook was ignored because "
1341 "it's not set as executable.\n"
1342 "You can disable this warning with "
1343 "`git config advice.ignoredHook false`."),
1344 path.buf);
1345 }
1346 }
1347 return NULL;
1348 }
1349 return path.buf;
1350 }
1351
1352 int run_hook_ve(const char *const *env, const char *name, va_list args)
1353 {
1354 struct child_process hook = CHILD_PROCESS_INIT;
1355 const char *p;
1356
1357 p = find_hook(name);
1358 if (!p)
1359 return 0;
1360
1361 argv_array_push(&hook.args, p);
1362 while ((p = va_arg(args, const char *)))
1363 argv_array_push(&hook.args, p);
1364 hook.env = env;
1365 hook.no_stdin = 1;
1366 hook.stdout_to_stderr = 1;
1367 hook.trace2_hook_name = name;
1368
1369 return run_command(&hook);
1370 }
1371
1372 int run_hook_le(const char *const *env, const char *name, ...)
1373 {
1374 va_list args;
1375 int ret;
1376
1377 va_start(args, name);
1378 ret = run_hook_ve(env, name, args);
1379 va_end(args);
1380
1381 return ret;
1382 }
1383
1384 struct io_pump {
1385 /* initialized by caller */
1386 int fd;
1387 int type; /* POLLOUT or POLLIN */
1388 union {
1389 struct {
1390 const char *buf;
1391 size_t len;
1392 } out;
1393 struct {
1394 struct strbuf *buf;
1395 size_t hint;
1396 } in;
1397 } u;
1398
1399 /* returned by pump_io */
1400 int error; /* 0 for success, otherwise errno */
1401
1402 /* internal use */
1403 struct pollfd *pfd;
1404 };
1405
1406 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1407 {
1408 int pollsize = 0;
1409 int i;
1410
1411 for (i = 0; i < nr; i++) {
1412 struct io_pump *io = &slots[i];
1413 if (io->fd < 0)
1414 continue;
1415 pfd[pollsize].fd = io->fd;
1416 pfd[pollsize].events = io->type;
1417 io->pfd = &pfd[pollsize++];
1418 }
1419
1420 if (!pollsize)
1421 return 0;
1422
1423 if (poll(pfd, pollsize, -1) < 0) {
1424 if (errno == EINTR)
1425 return 1;
1426 die_errno("poll failed");
1427 }
1428
1429 for (i = 0; i < nr; i++) {
1430 struct io_pump *io = &slots[i];
1431
1432 if (io->fd < 0)
1433 continue;
1434
1435 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1436 continue;
1437
1438 if (io->type == POLLOUT) {
1439 ssize_t len = xwrite(io->fd,
1440 io->u.out.buf, io->u.out.len);
1441 if (len < 0) {
1442 io->error = errno;
1443 close(io->fd);
1444 io->fd = -1;
1445 } else {
1446 io->u.out.buf += len;
1447 io->u.out.len -= len;
1448 if (!io->u.out.len) {
1449 close(io->fd);
1450 io->fd = -1;
1451 }
1452 }
1453 }
1454
1455 if (io->type == POLLIN) {
1456 ssize_t len = strbuf_read_once(io->u.in.buf,
1457 io->fd, io->u.in.hint);
1458 if (len < 0)
1459 io->error = errno;
1460 if (len <= 0) {
1461 close(io->fd);
1462 io->fd = -1;
1463 }
1464 }
1465 }
1466
1467 return 1;
1468 }
1469
1470 static int pump_io(struct io_pump *slots, int nr)
1471 {
1472 struct pollfd *pfd;
1473 int i;
1474
1475 for (i = 0; i < nr; i++)
1476 slots[i].error = 0;
1477
1478 ALLOC_ARRAY(pfd, nr);
1479 while (pump_io_round(slots, nr, pfd))
1480 ; /* nothing */
1481 free(pfd);
1482
1483 /* There may be multiple errno values, so just pick the first. */
1484 for (i = 0; i < nr; i++) {
1485 if (slots[i].error) {
1486 errno = slots[i].error;
1487 return -1;
1488 }
1489 }
1490 return 0;
1491 }
1492
1493
1494 int pipe_command(struct child_process *cmd,
1495 const char *in, size_t in_len,
1496 struct strbuf *out, size_t out_hint,
1497 struct strbuf *err, size_t err_hint)
1498 {
1499 struct io_pump io[3];
1500 int nr = 0;
1501
1502 if (in)
1503 cmd->in = -1;
1504 if (out)
1505 cmd->out = -1;
1506 if (err)
1507 cmd->err = -1;
1508
1509 if (start_command(cmd) < 0)
1510 return -1;
1511
1512 if (in) {
1513 io[nr].fd = cmd->in;
1514 io[nr].type = POLLOUT;
1515 io[nr].u.out.buf = in;
1516 io[nr].u.out.len = in_len;
1517 nr++;
1518 }
1519 if (out) {
1520 io[nr].fd = cmd->out;
1521 io[nr].type = POLLIN;
1522 io[nr].u.in.buf = out;
1523 io[nr].u.in.hint = out_hint;
1524 nr++;
1525 }
1526 if (err) {
1527 io[nr].fd = cmd->err;
1528 io[nr].type = POLLIN;
1529 io[nr].u.in.buf = err;
1530 io[nr].u.in.hint = err_hint;
1531 nr++;
1532 }
1533
1534 if (pump_io(io, nr) < 0) {
1535 finish_command(cmd); /* throw away exit code */
1536 return -1;
1537 }
1538
1539 return finish_command(cmd);
1540 }
1541
1542 enum child_state {
1543 GIT_CP_FREE,
1544 GIT_CP_WORKING,
1545 GIT_CP_WAIT_CLEANUP,
1546 };
1547
1548 struct parallel_processes {
1549 void *data;
1550
1551 int max_processes;
1552 int nr_processes;
1553
1554 get_next_task_fn get_next_task;
1555 start_failure_fn start_failure;
1556 task_finished_fn task_finished;
1557
1558 struct {
1559 enum child_state state;
1560 struct child_process process;
1561 struct strbuf err;
1562 void *data;
1563 } *children;
1564 /*
1565 * The struct pollfd is logically part of *children,
1566 * but the system call expects it as its own array.
1567 */
1568 struct pollfd *pfd;
1569
1570 unsigned shutdown : 1;
1571
1572 int output_owner;
1573 struct strbuf buffered_output; /* of finished children */
1574 };
1575
1576 static int default_start_failure(struct strbuf *out,
1577 void *pp_cb,
1578 void *pp_task_cb)
1579 {
1580 return 0;
1581 }
1582
1583 static int default_task_finished(int result,
1584 struct strbuf *out,
1585 void *pp_cb,
1586 void *pp_task_cb)
1587 {
1588 return 0;
1589 }
1590
1591 static void kill_children(struct parallel_processes *pp, int signo)
1592 {
1593 int i, n = pp->max_processes;
1594
1595 for (i = 0; i < n; i++)
1596 if (pp->children[i].state == GIT_CP_WORKING)
1597 kill(pp->children[i].process.pid, signo);
1598 }
1599
1600 static struct parallel_processes *pp_for_signal;
1601
1602 static void handle_children_on_signal(int signo)
1603 {
1604 kill_children(pp_for_signal, signo);
1605 sigchain_pop(signo);
1606 raise(signo);
1607 }
1608
1609 static void pp_init(struct parallel_processes *pp,
1610 int n,
1611 get_next_task_fn get_next_task,
1612 start_failure_fn start_failure,
1613 task_finished_fn task_finished,
1614 void *data)
1615 {
1616 int i;
1617
1618 if (n < 1)
1619 n = online_cpus();
1620
1621 pp->max_processes = n;
1622
1623 trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1624
1625 pp->data = data;
1626 if (!get_next_task)
1627 BUG("you need to specify a get_next_task function");
1628 pp->get_next_task = get_next_task;
1629
1630 pp->start_failure = start_failure ? start_failure : default_start_failure;
1631 pp->task_finished = task_finished ? task_finished : default_task_finished;
1632
1633 pp->nr_processes = 0;
1634 pp->output_owner = 0;
1635 pp->shutdown = 0;
1636 pp->children = xcalloc(n, sizeof(*pp->children));
1637 pp->pfd = xcalloc(n, sizeof(*pp->pfd));
1638 strbuf_init(&pp->buffered_output, 0);
1639
1640 for (i = 0; i < n; i++) {
1641 strbuf_init(&pp->children[i].err, 0);
1642 child_process_init(&pp->children[i].process);
1643 pp->pfd[i].events = POLLIN | POLLHUP;
1644 pp->pfd[i].fd = -1;
1645 }
1646
1647 pp_for_signal = pp;
1648 sigchain_push_common(handle_children_on_signal);
1649 }
1650
1651 static void pp_cleanup(struct parallel_processes *pp)
1652 {
1653 int i;
1654
1655 trace_printf("run_processes_parallel: done");
1656 for (i = 0; i < pp->max_processes; i++) {
1657 strbuf_release(&pp->children[i].err);
1658 child_process_clear(&pp->children[i].process);
1659 }
1660
1661 free(pp->children);
1662 free(pp->pfd);
1663
1664 /*
1665 * When get_next_task added messages to the buffer in its last
1666 * iteration, the buffered output is non empty.
1667 */
1668 strbuf_write(&pp->buffered_output, stderr);
1669 strbuf_release(&pp->buffered_output);
1670
1671 sigchain_pop_common();
1672 }
1673
1674 /* returns
1675 * 0 if a new task was started.
1676 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1677 * problem with starting a new command)
1678 * <0 no new job was started, user wishes to shutdown early. Use negative code
1679 * to signal the children.
1680 */
1681 static int pp_start_one(struct parallel_processes *pp)
1682 {
1683 int i, code;
1684
1685 for (i = 0; i < pp->max_processes; i++)
1686 if (pp->children[i].state == GIT_CP_FREE)
1687 break;
1688 if (i == pp->max_processes)
1689 BUG("bookkeeping is hard");
1690
1691 code = pp->get_next_task(&pp->children[i].process,
1692 &pp->children[i].err,
1693 pp->data,
1694 &pp->children[i].data);
1695 if (!code) {
1696 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1697 strbuf_reset(&pp->children[i].err);
1698 return 1;
1699 }
1700 pp->children[i].process.err = -1;
1701 pp->children[i].process.stdout_to_stderr = 1;
1702 pp->children[i].process.no_stdin = 1;
1703
1704 if (start_command(&pp->children[i].process)) {
1705 code = pp->start_failure(&pp->children[i].err,
1706 pp->data,
1707 pp->children[i].data);
1708 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1709 strbuf_reset(&pp->children[i].err);
1710 if (code)
1711 pp->shutdown = 1;
1712 return code;
1713 }
1714
1715 pp->nr_processes++;
1716 pp->children[i].state = GIT_CP_WORKING;
1717 pp->pfd[i].fd = pp->children[i].process.err;
1718 return 0;
1719 }
1720
1721 static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1722 {
1723 int i;
1724
1725 while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1726 if (errno == EINTR)
1727 continue;
1728 pp_cleanup(pp);
1729 die_errno("poll");
1730 }
1731
1732 /* Buffer output from all pipes. */
1733 for (i = 0; i < pp->max_processes; i++) {
1734 if (pp->children[i].state == GIT_CP_WORKING &&
1735 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1736 int n = strbuf_read_once(&pp->children[i].err,
1737 pp->children[i].process.err, 0);
1738 if (n == 0) {
1739 close(pp->children[i].process.err);
1740 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1741 } else if (n < 0)
1742 if (errno != EAGAIN)
1743 die_errno("read");
1744 }
1745 }
1746 }
1747
1748 static void pp_output(struct parallel_processes *pp)
1749 {
1750 int i = pp->output_owner;
1751 if (pp->children[i].state == GIT_CP_WORKING &&
1752 pp->children[i].err.len) {
1753 strbuf_write(&pp->children[i].err, stderr);
1754 strbuf_reset(&pp->children[i].err);
1755 }
1756 }
1757
1758 static int pp_collect_finished(struct parallel_processes *pp)
1759 {
1760 int i, code;
1761 int n = pp->max_processes;
1762 int result = 0;
1763
1764 while (pp->nr_processes > 0) {
1765 for (i = 0; i < pp->max_processes; i++)
1766 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1767 break;
1768 if (i == pp->max_processes)
1769 break;
1770
1771 code = finish_command(&pp->children[i].process);
1772
1773 code = pp->task_finished(code,
1774 &pp->children[i].err, pp->data,
1775 pp->children[i].data);
1776
1777 if (code)
1778 result = code;
1779 if (code < 0)
1780 break;
1781
1782 pp->nr_processes--;
1783 pp->children[i].state = GIT_CP_FREE;
1784 pp->pfd[i].fd = -1;
1785 child_process_init(&pp->children[i].process);
1786
1787 if (i != pp->output_owner) {
1788 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1789 strbuf_reset(&pp->children[i].err);
1790 } else {
1791 strbuf_write(&pp->children[i].err, stderr);
1792 strbuf_reset(&pp->children[i].err);
1793
1794 /* Output all other finished child processes */
1795 strbuf_write(&pp->buffered_output, stderr);
1796 strbuf_reset(&pp->buffered_output);
1797
1798 /*
1799 * Pick next process to output live.
1800 * NEEDSWORK:
1801 * For now we pick it randomly by doing a round
1802 * robin. Later we may want to pick the one with
1803 * the most output or the longest or shortest
1804 * running process time.
1805 */
1806 for (i = 0; i < n; i++)
1807 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1808 break;
1809 pp->output_owner = (pp->output_owner + i) % n;
1810 }
1811 }
1812 return result;
1813 }
1814
1815 int run_processes_parallel(int n,
1816 get_next_task_fn get_next_task,
1817 start_failure_fn start_failure,
1818 task_finished_fn task_finished,
1819 void *pp_cb)
1820 {
1821 int i, code;
1822 int output_timeout = 100;
1823 int spawn_cap = 4;
1824 struct parallel_processes pp;
1825
1826 pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1827 while (1) {
1828 for (i = 0;
1829 i < spawn_cap && !pp.shutdown &&
1830 pp.nr_processes < pp.max_processes;
1831 i++) {
1832 code = pp_start_one(&pp);
1833 if (!code)
1834 continue;
1835 if (code < 0) {
1836 pp.shutdown = 1;
1837 kill_children(&pp, -code);
1838 }
1839 break;
1840 }
1841 if (!pp.nr_processes)
1842 break;
1843 pp_buffer_stderr(&pp, output_timeout);
1844 pp_output(&pp);
1845 code = pp_collect_finished(&pp);
1846 if (code) {
1847 pp.shutdown = 1;
1848 if (code < 0)
1849 kill_children(&pp, -code);
1850 }
1851 }
1852
1853 pp_cleanup(&pp);
1854 return 0;
1855 }
1856
1857 int run_processes_parallel_tr2(int n, get_next_task_fn get_next_task,
1858 start_failure_fn start_failure,
1859 task_finished_fn task_finished, void *pp_cb,
1860 const char *tr2_category, const char *tr2_label)
1861 {
1862 int result;
1863
1864 trace2_region_enter_printf(tr2_category, tr2_label, NULL, "max:%d",
1865 ((n < 1) ? online_cpus() : n));
1866
1867 result = run_processes_parallel(n, get_next_task, start_failure,
1868 task_finished, pp_cb);
1869
1870 trace2_region_leave(tr2_category, tr2_label, NULL);
1871
1872 return result;
1873 }