]> git.ipfire.org Git - thirdparty/git.git/blob - run-command.c
The twelfth batch
[thirdparty/git.git] / run-command.c
1 #include "git-compat-util.h"
2 #include "run-command.h"
3 #include "environment.h"
4 #include "exec-cmd.h"
5 #include "gettext.h"
6 #include "sigchain.h"
7 #include "strvec.h"
8 #include "symlinks.h"
9 #include "thread-utils.h"
10 #include "strbuf.h"
11 #include "string-list.h"
12 #include "trace.h"
13 #include "trace2.h"
14 #include "quote.h"
15 #include "config.h"
16 #include "packfile.h"
17 #include "compat/nonblock.h"
18
19 void child_process_init(struct child_process *child)
20 {
21 struct child_process blank = CHILD_PROCESS_INIT;
22 memcpy(child, &blank, sizeof(*child));
23 }
24
25 void child_process_clear(struct child_process *child)
26 {
27 strvec_clear(&child->args);
28 strvec_clear(&child->env);
29 }
30
31 struct child_to_clean {
32 pid_t pid;
33 struct child_process *process;
34 struct child_to_clean *next;
35 };
36 static struct child_to_clean *children_to_clean;
37 static int installed_child_cleanup_handler;
38
39 static void cleanup_children(int sig, int in_signal)
40 {
41 struct child_to_clean *children_to_wait_for = NULL;
42
43 while (children_to_clean) {
44 struct child_to_clean *p = children_to_clean;
45 children_to_clean = p->next;
46
47 if (p->process && !in_signal) {
48 struct child_process *process = p->process;
49 if (process->clean_on_exit_handler) {
50 trace_printf(
51 "trace: run_command: running exit handler for pid %"
52 PRIuMAX, (uintmax_t)p->pid
53 );
54 process->clean_on_exit_handler(process);
55 }
56 }
57
58 kill(p->pid, sig);
59
60 if (p->process && p->process->wait_after_clean) {
61 p->next = children_to_wait_for;
62 children_to_wait_for = p;
63 } else {
64 if (!in_signal)
65 free(p);
66 }
67 }
68
69 while (children_to_wait_for) {
70 struct child_to_clean *p = children_to_wait_for;
71 children_to_wait_for = p->next;
72
73 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
74 ; /* spin waiting for process exit or error */
75
76 if (!in_signal)
77 free(p);
78 }
79 }
80
81 static void cleanup_children_on_signal(int sig)
82 {
83 cleanup_children(sig, 1);
84 sigchain_pop(sig);
85 raise(sig);
86 }
87
88 static void cleanup_children_on_exit(void)
89 {
90 cleanup_children(SIGTERM, 0);
91 }
92
93 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
94 {
95 struct child_to_clean *p = xmalloc(sizeof(*p));
96 p->pid = pid;
97 p->process = process;
98 p->next = children_to_clean;
99 children_to_clean = p;
100
101 if (!installed_child_cleanup_handler) {
102 atexit(cleanup_children_on_exit);
103 sigchain_push_common(cleanup_children_on_signal);
104 installed_child_cleanup_handler = 1;
105 }
106 }
107
108 static void clear_child_for_cleanup(pid_t pid)
109 {
110 struct child_to_clean **pp;
111
112 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
113 struct child_to_clean *clean_me = *pp;
114
115 if (clean_me->pid == pid) {
116 *pp = clean_me->next;
117 free(clean_me);
118 return;
119 }
120 }
121 }
122
123 static inline void close_pair(int fd[2])
124 {
125 close(fd[0]);
126 close(fd[1]);
127 }
128
129 int is_executable(const char *name)
130 {
131 struct stat st;
132
133 if (stat(name, &st) || /* stat, not lstat */
134 !S_ISREG(st.st_mode))
135 return 0;
136
137 #if defined(GIT_WINDOWS_NATIVE)
138 /*
139 * On Windows there is no executable bit. The file extension
140 * indicates whether it can be run as an executable, and Git
141 * has special-handling to detect scripts and launch them
142 * through the indicated script interpreter. We test for the
143 * file extension first because virus scanners may make
144 * it quite expensive to open many files.
145 */
146 if (ends_with(name, ".exe"))
147 return S_IXUSR;
148
149 {
150 /*
151 * Now that we know it does not have an executable extension,
152 * peek into the file instead.
153 */
154 char buf[3] = { 0 };
155 int n;
156 int fd = open(name, O_RDONLY);
157 st.st_mode &= ~S_IXUSR;
158 if (fd >= 0) {
159 n = read(fd, buf, 2);
160 if (n == 2)
161 /* look for a she-bang */
162 if (!strcmp(buf, "#!"))
163 st.st_mode |= S_IXUSR;
164 close(fd);
165 }
166 }
167 #endif
168 return st.st_mode & S_IXUSR;
169 }
170
171 #ifndef locate_in_PATH
172 /*
173 * Search $PATH for a command. This emulates the path search that
174 * execvp would perform, without actually executing the command so it
175 * can be used before fork() to prepare to run a command using
176 * execve() or after execvp() to diagnose why it failed.
177 *
178 * The caller should ensure that file contains no directory
179 * separators.
180 *
181 * Returns the path to the command, as found in $PATH or NULL if the
182 * command could not be found. The caller inherits ownership of the memory
183 * used to store the resultant path.
184 *
185 * This should not be used on Windows, where the $PATH search rules
186 * are more complicated (e.g., a search for "foo" should find
187 * "foo.exe").
188 */
189 static char *locate_in_PATH(const char *file)
190 {
191 const char *p = getenv("PATH");
192 struct strbuf buf = STRBUF_INIT;
193
194 if (!p || !*p)
195 return NULL;
196
197 while (1) {
198 const char *end = strchrnul(p, ':');
199
200 strbuf_reset(&buf);
201
202 /* POSIX specifies an empty entry as the current directory. */
203 if (end != p) {
204 strbuf_add(&buf, p, end - p);
205 strbuf_addch(&buf, '/');
206 }
207 strbuf_addstr(&buf, file);
208
209 if (is_executable(buf.buf))
210 return strbuf_detach(&buf, NULL);
211
212 if (!*end)
213 break;
214 p = end + 1;
215 }
216
217 strbuf_release(&buf);
218 return NULL;
219 }
220 #endif
221
222 int exists_in_PATH(const char *command)
223 {
224 char *r = locate_in_PATH(command);
225 int found = r != NULL;
226 free(r);
227 return found;
228 }
229
230 int sane_execvp(const char *file, char * const argv[])
231 {
232 #ifndef GIT_WINDOWS_NATIVE
233 /*
234 * execvp() doesn't return, so we all we can do is tell trace2
235 * what we are about to do and let it leave a hint in the log
236 * (unless of course the execvp() fails).
237 *
238 * we skip this for Windows because the compat layer already
239 * has to emulate the execvp() call anyway.
240 */
241 int exec_id = trace2_exec(file, (const char **)argv);
242 #endif
243
244 if (!execvp(file, argv))
245 return 0; /* cannot happen ;-) */
246
247 #ifndef GIT_WINDOWS_NATIVE
248 {
249 int ec = errno;
250 trace2_exec_result(exec_id, ec);
251 errno = ec;
252 }
253 #endif
254
255 /*
256 * When a command can't be found because one of the directories
257 * listed in $PATH is unsearchable, execvp reports EACCES, but
258 * careful usability testing (read: analysis of occasional bug
259 * reports) reveals that "No such file or directory" is more
260 * intuitive.
261 *
262 * We avoid commands with "/", because execvp will not do $PATH
263 * lookups in that case.
264 *
265 * The reassignment of EACCES to errno looks like a no-op below,
266 * but we need to protect against exists_in_PATH overwriting errno.
267 */
268 if (errno == EACCES && !strchr(file, '/'))
269 errno = exists_in_PATH(file) ? EACCES : ENOENT;
270 else if (errno == ENOTDIR && !strchr(file, '/'))
271 errno = ENOENT;
272 return -1;
273 }
274
275 static const char **prepare_shell_cmd(struct strvec *out, const char **argv)
276 {
277 if (!argv[0])
278 BUG("shell command is empty");
279
280 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
281 #ifndef GIT_WINDOWS_NATIVE
282 strvec_push(out, SHELL_PATH);
283 #else
284 strvec_push(out, "sh");
285 #endif
286 strvec_push(out, "-c");
287
288 /*
289 * If we have no extra arguments, we do not even need to
290 * bother with the "$@" magic.
291 */
292 if (!argv[1])
293 strvec_push(out, argv[0]);
294 else
295 strvec_pushf(out, "%s \"$@\"", argv[0]);
296 }
297
298 strvec_pushv(out, argv);
299 return out->v;
300 }
301
302 #ifndef GIT_WINDOWS_NATIVE
303 static int child_notifier = -1;
304
305 enum child_errcode {
306 CHILD_ERR_CHDIR,
307 CHILD_ERR_DUP2,
308 CHILD_ERR_CLOSE,
309 CHILD_ERR_SIGPROCMASK,
310 CHILD_ERR_SILENT,
311 CHILD_ERR_ERRNO
312 };
313
314 struct child_err {
315 enum child_errcode err;
316 int syserr; /* errno */
317 };
318
319 static void child_die(enum child_errcode err)
320 {
321 struct child_err buf;
322
323 buf.err = err;
324 buf.syserr = errno;
325
326 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
327 xwrite(child_notifier, &buf, sizeof(buf));
328 _exit(1);
329 }
330
331 static void child_dup2(int fd, int to)
332 {
333 if (dup2(fd, to) < 0)
334 child_die(CHILD_ERR_DUP2);
335 }
336
337 static void child_close(int fd)
338 {
339 if (close(fd))
340 child_die(CHILD_ERR_CLOSE);
341 }
342
343 static void child_close_pair(int fd[2])
344 {
345 child_close(fd[0]);
346 child_close(fd[1]);
347 }
348
349 static void child_error_fn(const char *err UNUSED, va_list params UNUSED)
350 {
351 const char msg[] = "error() should not be called in child\n";
352 xwrite(2, msg, sizeof(msg) - 1);
353 }
354
355 static void child_warn_fn(const char *err UNUSED, va_list params UNUSED)
356 {
357 const char msg[] = "warn() should not be called in child\n";
358 xwrite(2, msg, sizeof(msg) - 1);
359 }
360
361 static void NORETURN child_die_fn(const char *err UNUSED, va_list params UNUSED)
362 {
363 const char msg[] = "die() should not be called in child\n";
364 xwrite(2, msg, sizeof(msg) - 1);
365 _exit(2);
366 }
367
368 /* this runs in the parent process */
369 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
370 {
371 static void (*old_errfn)(const char *err, va_list params);
372 report_fn die_message_routine = get_die_message_routine();
373
374 old_errfn = get_error_routine();
375 set_error_routine(die_message_routine);
376 errno = cerr->syserr;
377
378 switch (cerr->err) {
379 case CHILD_ERR_CHDIR:
380 error_errno("exec '%s': cd to '%s' failed",
381 cmd->args.v[0], cmd->dir);
382 break;
383 case CHILD_ERR_DUP2:
384 error_errno("dup2() in child failed");
385 break;
386 case CHILD_ERR_CLOSE:
387 error_errno("close() in child failed");
388 break;
389 case CHILD_ERR_SIGPROCMASK:
390 error_errno("sigprocmask failed restoring signals");
391 break;
392 case CHILD_ERR_SILENT:
393 break;
394 case CHILD_ERR_ERRNO:
395 error_errno("cannot exec '%s'", cmd->args.v[0]);
396 break;
397 }
398 set_error_routine(old_errfn);
399 }
400
401 static int prepare_cmd(struct strvec *out, const struct child_process *cmd)
402 {
403 if (!cmd->args.v[0])
404 BUG("command is empty");
405
406 /*
407 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
408 * attempt to interpret the command with 'sh'.
409 */
410 strvec_push(out, SHELL_PATH);
411
412 if (cmd->git_cmd) {
413 prepare_git_cmd(out, cmd->args.v);
414 } else if (cmd->use_shell) {
415 prepare_shell_cmd(out, cmd->args.v);
416 } else {
417 strvec_pushv(out, cmd->args.v);
418 }
419
420 /*
421 * If there are no dir separator characters in the command then perform
422 * a path lookup and use the resolved path as the command to exec. If
423 * there are dir separator characters, we have exec attempt to invoke
424 * the command directly.
425 */
426 if (!has_dir_sep(out->v[1])) {
427 char *program = locate_in_PATH(out->v[1]);
428 if (program) {
429 free((char *)out->v[1]);
430 out->v[1] = program;
431 } else {
432 strvec_clear(out);
433 errno = ENOENT;
434 return -1;
435 }
436 }
437
438 return 0;
439 }
440
441 static char **prep_childenv(const char *const *deltaenv)
442 {
443 extern char **environ;
444 char **childenv;
445 struct string_list env = STRING_LIST_INIT_DUP;
446 struct strbuf key = STRBUF_INIT;
447 const char *const *p;
448 int i;
449
450 /* Construct a sorted string list consisting of the current environ */
451 for (p = (const char *const *) environ; p && *p; p++) {
452 const char *equals = strchr(*p, '=');
453
454 if (equals) {
455 strbuf_reset(&key);
456 strbuf_add(&key, *p, equals - *p);
457 string_list_append(&env, key.buf)->util = (void *) *p;
458 } else {
459 string_list_append(&env, *p)->util = (void *) *p;
460 }
461 }
462 string_list_sort(&env);
463
464 /* Merge in 'deltaenv' with the current environ */
465 for (p = deltaenv; p && *p; p++) {
466 const char *equals = strchr(*p, '=');
467
468 if (equals) {
469 /* ('key=value'), insert or replace entry */
470 strbuf_reset(&key);
471 strbuf_add(&key, *p, equals - *p);
472 string_list_insert(&env, key.buf)->util = (void *) *p;
473 } else {
474 /* otherwise ('key') remove existing entry */
475 string_list_remove(&env, *p, 0);
476 }
477 }
478
479 /* Create an array of 'char *' to be used as the childenv */
480 ALLOC_ARRAY(childenv, env.nr + 1);
481 for (i = 0; i < env.nr; i++)
482 childenv[i] = env.items[i].util;
483 childenv[env.nr] = NULL;
484
485 string_list_clear(&env, 0);
486 strbuf_release(&key);
487 return childenv;
488 }
489
490 struct atfork_state {
491 #ifndef NO_PTHREADS
492 int cs;
493 #endif
494 sigset_t old;
495 };
496
497 #define CHECK_BUG(err, msg) \
498 do { \
499 int e = (err); \
500 if (e) \
501 BUG("%s: %s", msg, strerror(e)); \
502 } while(0)
503
504 static void atfork_prepare(struct atfork_state *as)
505 {
506 sigset_t all;
507
508 if (sigfillset(&all))
509 die_errno("sigfillset");
510 #ifdef NO_PTHREADS
511 if (sigprocmask(SIG_SETMASK, &all, &as->old))
512 die_errno("sigprocmask");
513 #else
514 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
515 "blocking all signals");
516 CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
517 "disabling cancellation");
518 #endif
519 }
520
521 static void atfork_parent(struct atfork_state *as)
522 {
523 #ifdef NO_PTHREADS
524 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
525 die_errno("sigprocmask");
526 #else
527 CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
528 "re-enabling cancellation");
529 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
530 "restoring signal mask");
531 #endif
532 }
533 #endif /* GIT_WINDOWS_NATIVE */
534
535 static inline void set_cloexec(int fd)
536 {
537 int flags = fcntl(fd, F_GETFD);
538 if (flags >= 0)
539 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
540 }
541
542 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
543 {
544 int status, code = -1;
545 pid_t waiting;
546 int failed_errno = 0;
547
548 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
549 ; /* nothing */
550
551 if (waiting < 0) {
552 failed_errno = errno;
553 if (!in_signal)
554 error_errno("waitpid for %s failed", argv0);
555 } else if (waiting != pid) {
556 if (!in_signal)
557 error("waitpid is confused (%s)", argv0);
558 } else if (WIFSIGNALED(status)) {
559 code = WTERMSIG(status);
560 if (!in_signal && code != SIGINT && code != SIGQUIT && code != SIGPIPE)
561 error("%s died of signal %d", argv0, code);
562 /*
563 * This return value is chosen so that code & 0xff
564 * mimics the exit code that a POSIX shell would report for
565 * a program that died from this signal.
566 */
567 code += 128;
568 } else if (WIFEXITED(status)) {
569 code = WEXITSTATUS(status);
570 } else {
571 if (!in_signal)
572 error("waitpid is confused (%s)", argv0);
573 }
574
575 if (!in_signal)
576 clear_child_for_cleanup(pid);
577
578 errno = failed_errno;
579 return code;
580 }
581
582 static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
583 {
584 struct string_list envs = STRING_LIST_INIT_DUP;
585 const char *const *e;
586 int i;
587 int printed_unset = 0;
588
589 /* Last one wins, see run-command.c:prep_childenv() for context */
590 for (e = deltaenv; e && *e; e++) {
591 struct strbuf key = STRBUF_INIT;
592 char *equals = strchr(*e, '=');
593
594 if (equals) {
595 strbuf_add(&key, *e, equals - *e);
596 string_list_insert(&envs, key.buf)->util = equals + 1;
597 } else {
598 string_list_insert(&envs, *e)->util = NULL;
599 }
600 strbuf_release(&key);
601 }
602
603 /* "unset X Y...;" */
604 for (i = 0; i < envs.nr; i++) {
605 const char *var = envs.items[i].string;
606 const char *val = envs.items[i].util;
607
608 if (val || !getenv(var))
609 continue;
610
611 if (!printed_unset) {
612 strbuf_addstr(dst, " unset");
613 printed_unset = 1;
614 }
615 strbuf_addf(dst, " %s", var);
616 }
617 if (printed_unset)
618 strbuf_addch(dst, ';');
619
620 /* ... followed by "A=B C=D ..." */
621 for (i = 0; i < envs.nr; i++) {
622 const char *var = envs.items[i].string;
623 const char *val = envs.items[i].util;
624 const char *oldval;
625
626 if (!val)
627 continue;
628
629 oldval = getenv(var);
630 if (oldval && !strcmp(val, oldval))
631 continue;
632
633 strbuf_addf(dst, " %s=", var);
634 sq_quote_buf_pretty(dst, val);
635 }
636 string_list_clear(&envs, 0);
637 }
638
639 static void trace_run_command(const struct child_process *cp)
640 {
641 struct strbuf buf = STRBUF_INIT;
642
643 if (!trace_want(&trace_default_key))
644 return;
645
646 strbuf_addstr(&buf, "trace: run_command:");
647 if (cp->dir) {
648 strbuf_addstr(&buf, " cd ");
649 sq_quote_buf_pretty(&buf, cp->dir);
650 strbuf_addch(&buf, ';');
651 }
652 trace_add_env(&buf, cp->env.v);
653 if (cp->git_cmd)
654 strbuf_addstr(&buf, " git");
655 sq_quote_argv_pretty(&buf, cp->args.v);
656
657 trace_printf("%s", buf.buf);
658 strbuf_release(&buf);
659 }
660
661 int start_command(struct child_process *cmd)
662 {
663 int need_in, need_out, need_err;
664 int fdin[2], fdout[2], fderr[2];
665 int failed_errno;
666 char *str;
667
668 /*
669 * In case of errors we must keep the promise to close FDs
670 * that have been passed in via ->in and ->out.
671 */
672
673 need_in = !cmd->no_stdin && cmd->in < 0;
674 if (need_in) {
675 if (pipe(fdin) < 0) {
676 failed_errno = errno;
677 if (cmd->out > 0)
678 close(cmd->out);
679 str = "standard input";
680 goto fail_pipe;
681 }
682 cmd->in = fdin[1];
683 }
684
685 need_out = !cmd->no_stdout
686 && !cmd->stdout_to_stderr
687 && cmd->out < 0;
688 if (need_out) {
689 if (pipe(fdout) < 0) {
690 failed_errno = errno;
691 if (need_in)
692 close_pair(fdin);
693 else if (cmd->in)
694 close(cmd->in);
695 str = "standard output";
696 goto fail_pipe;
697 }
698 cmd->out = fdout[0];
699 }
700
701 need_err = !cmd->no_stderr && cmd->err < 0;
702 if (need_err) {
703 if (pipe(fderr) < 0) {
704 failed_errno = errno;
705 if (need_in)
706 close_pair(fdin);
707 else if (cmd->in)
708 close(cmd->in);
709 if (need_out)
710 close_pair(fdout);
711 else if (cmd->out)
712 close(cmd->out);
713 str = "standard error";
714 fail_pipe:
715 error("cannot create %s pipe for %s: %s",
716 str, cmd->args.v[0], strerror(failed_errno));
717 child_process_clear(cmd);
718 errno = failed_errno;
719 return -1;
720 }
721 cmd->err = fderr[0];
722 }
723
724 trace2_child_start(cmd);
725 trace_run_command(cmd);
726
727 fflush(NULL);
728
729 if (cmd->close_object_store)
730 close_object_store(the_repository->objects);
731
732 #ifndef GIT_WINDOWS_NATIVE
733 {
734 int notify_pipe[2];
735 int null_fd = -1;
736 char **childenv;
737 struct strvec argv = STRVEC_INIT;
738 struct child_err cerr;
739 struct atfork_state as;
740
741 if (prepare_cmd(&argv, cmd) < 0) {
742 failed_errno = errno;
743 cmd->pid = -1;
744 if (!cmd->silent_exec_failure)
745 error_errno("cannot run %s", cmd->args.v[0]);
746 goto end_of_spawn;
747 }
748
749 trace_argv_printf(&argv.v[1], "trace: start_command:");
750
751 if (pipe(notify_pipe))
752 notify_pipe[0] = notify_pipe[1] = -1;
753
754 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
755 null_fd = xopen("/dev/null", O_RDWR | O_CLOEXEC);
756 set_cloexec(null_fd);
757 }
758
759 childenv = prep_childenv(cmd->env.v);
760 atfork_prepare(&as);
761
762 /*
763 * NOTE: In order to prevent deadlocking when using threads special
764 * care should be taken with the function calls made in between the
765 * fork() and exec() calls. No calls should be made to functions which
766 * require acquiring a lock (e.g. malloc) as the lock could have been
767 * held by another thread at the time of forking, causing the lock to
768 * never be released in the child process. This means only
769 * Async-Signal-Safe functions are permitted in the child.
770 */
771 cmd->pid = fork();
772 failed_errno = errno;
773 if (!cmd->pid) {
774 int sig;
775 /*
776 * Ensure the default die/error/warn routines do not get
777 * called, they can take stdio locks and malloc.
778 */
779 set_die_routine(child_die_fn);
780 set_error_routine(child_error_fn);
781 set_warn_routine(child_warn_fn);
782
783 close(notify_pipe[0]);
784 set_cloexec(notify_pipe[1]);
785 child_notifier = notify_pipe[1];
786
787 if (cmd->no_stdin)
788 child_dup2(null_fd, 0);
789 else if (need_in) {
790 child_dup2(fdin[0], 0);
791 child_close_pair(fdin);
792 } else if (cmd->in) {
793 child_dup2(cmd->in, 0);
794 child_close(cmd->in);
795 }
796
797 if (cmd->no_stderr)
798 child_dup2(null_fd, 2);
799 else if (need_err) {
800 child_dup2(fderr[1], 2);
801 child_close_pair(fderr);
802 } else if (cmd->err > 1) {
803 child_dup2(cmd->err, 2);
804 child_close(cmd->err);
805 }
806
807 if (cmd->no_stdout)
808 child_dup2(null_fd, 1);
809 else if (cmd->stdout_to_stderr)
810 child_dup2(2, 1);
811 else if (need_out) {
812 child_dup2(fdout[1], 1);
813 child_close_pair(fdout);
814 } else if (cmd->out > 1) {
815 child_dup2(cmd->out, 1);
816 child_close(cmd->out);
817 }
818
819 if (cmd->dir && chdir(cmd->dir))
820 child_die(CHILD_ERR_CHDIR);
821
822 /*
823 * restore default signal handlers here, in case
824 * we catch a signal right before execve below
825 */
826 for (sig = 1; sig < NSIG; sig++) {
827 /* ignored signals get reset to SIG_DFL on execve */
828 if (signal(sig, SIG_DFL) == SIG_IGN)
829 signal(sig, SIG_IGN);
830 }
831
832 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
833 child_die(CHILD_ERR_SIGPROCMASK);
834
835 /*
836 * Attempt to exec using the command and arguments starting at
837 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
838 * be used in the event exec failed with ENOEXEC at which point
839 * we will try to interpret the command using 'sh'.
840 */
841 execve(argv.v[1], (char *const *) argv.v + 1,
842 (char *const *) childenv);
843 if (errno == ENOEXEC)
844 execve(argv.v[0], (char *const *) argv.v,
845 (char *const *) childenv);
846
847 if (cmd->silent_exec_failure && errno == ENOENT)
848 child_die(CHILD_ERR_SILENT);
849 child_die(CHILD_ERR_ERRNO);
850 }
851 atfork_parent(&as);
852 if (cmd->pid < 0)
853 error_errno("cannot fork() for %s", cmd->args.v[0]);
854 else if (cmd->clean_on_exit)
855 mark_child_for_cleanup(cmd->pid, cmd);
856
857 /*
858 * Wait for child's exec. If the exec succeeds (or if fork()
859 * failed), EOF is seen immediately by the parent. Otherwise, the
860 * child process sends a child_err struct.
861 * Note that use of this infrastructure is completely advisory,
862 * therefore, we keep error checks minimal.
863 */
864 close(notify_pipe[1]);
865 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
866 /*
867 * At this point we know that fork() succeeded, but exec()
868 * failed. Errors have been reported to our stderr.
869 */
870 wait_or_whine(cmd->pid, cmd->args.v[0], 0);
871 child_err_spew(cmd, &cerr);
872 failed_errno = errno;
873 cmd->pid = -1;
874 }
875 close(notify_pipe[0]);
876
877 if (null_fd >= 0)
878 close(null_fd);
879 strvec_clear(&argv);
880 free(childenv);
881 }
882 end_of_spawn:
883
884 #else
885 {
886 int fhin = 0, fhout = 1, fherr = 2;
887 const char **sargv = cmd->args.v;
888 struct strvec nargv = STRVEC_INIT;
889
890 if (cmd->no_stdin)
891 fhin = open("/dev/null", O_RDWR);
892 else if (need_in)
893 fhin = dup(fdin[0]);
894 else if (cmd->in)
895 fhin = dup(cmd->in);
896
897 if (cmd->no_stderr)
898 fherr = open("/dev/null", O_RDWR);
899 else if (need_err)
900 fherr = dup(fderr[1]);
901 else if (cmd->err > 2)
902 fherr = dup(cmd->err);
903
904 if (cmd->no_stdout)
905 fhout = open("/dev/null", O_RDWR);
906 else if (cmd->stdout_to_stderr)
907 fhout = dup(fherr);
908 else if (need_out)
909 fhout = dup(fdout[1]);
910 else if (cmd->out > 1)
911 fhout = dup(cmd->out);
912
913 if (cmd->git_cmd)
914 cmd->args.v = prepare_git_cmd(&nargv, sargv);
915 else if (cmd->use_shell)
916 cmd->args.v = prepare_shell_cmd(&nargv, sargv);
917
918 trace_argv_printf(cmd->args.v, "trace: start_command:");
919 cmd->pid = mingw_spawnvpe(cmd->args.v[0], cmd->args.v,
920 (char**) cmd->env.v,
921 cmd->dir, fhin, fhout, fherr);
922 failed_errno = errno;
923 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
924 error_errno("cannot spawn %s", cmd->args.v[0]);
925 if (cmd->clean_on_exit && cmd->pid >= 0)
926 mark_child_for_cleanup(cmd->pid, cmd);
927
928 strvec_clear(&nargv);
929 cmd->args.v = sargv;
930 if (fhin != 0)
931 close(fhin);
932 if (fhout != 1)
933 close(fhout);
934 if (fherr != 2)
935 close(fherr);
936 }
937 #endif
938
939 if (cmd->pid < 0) {
940 trace2_child_exit(cmd, -1);
941
942 if (need_in)
943 close_pair(fdin);
944 else if (cmd->in)
945 close(cmd->in);
946 if (need_out)
947 close_pair(fdout);
948 else if (cmd->out)
949 close(cmd->out);
950 if (need_err)
951 close_pair(fderr);
952 else if (cmd->err)
953 close(cmd->err);
954 child_process_clear(cmd);
955 errno = failed_errno;
956 return -1;
957 }
958
959 if (need_in)
960 close(fdin[0]);
961 else if (cmd->in)
962 close(cmd->in);
963
964 if (need_out)
965 close(fdout[1]);
966 else if (cmd->out)
967 close(cmd->out);
968
969 if (need_err)
970 close(fderr[1]);
971 else if (cmd->err)
972 close(cmd->err);
973
974 return 0;
975 }
976
977 int finish_command(struct child_process *cmd)
978 {
979 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 0);
980 trace2_child_exit(cmd, ret);
981 child_process_clear(cmd);
982 invalidate_lstat_cache();
983 return ret;
984 }
985
986 int finish_command_in_signal(struct child_process *cmd)
987 {
988 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 1);
989 if (ret != -1)
990 trace2_child_exit(cmd, ret);
991 return ret;
992 }
993
994
995 int run_command(struct child_process *cmd)
996 {
997 int code;
998
999 if (cmd->out < 0 || cmd->err < 0)
1000 BUG("run_command with a pipe can cause deadlock");
1001
1002 code = start_command(cmd);
1003 if (code)
1004 return code;
1005 return finish_command(cmd);
1006 }
1007
1008 #ifndef NO_PTHREADS
1009 static pthread_t main_thread;
1010 static int main_thread_set;
1011 static pthread_key_t async_key;
1012 static pthread_key_t async_die_counter;
1013
1014 static void *run_thread(void *data)
1015 {
1016 struct async *async = data;
1017 intptr_t ret;
1018
1019 if (async->isolate_sigpipe) {
1020 sigset_t mask;
1021 sigemptyset(&mask);
1022 sigaddset(&mask, SIGPIPE);
1023 if (pthread_sigmask(SIG_BLOCK, &mask, NULL)) {
1024 ret = error("unable to block SIGPIPE in async thread");
1025 return (void *)ret;
1026 }
1027 }
1028
1029 pthread_setspecific(async_key, async);
1030 ret = async->proc(async->proc_in, async->proc_out, async->data);
1031 return (void *)ret;
1032 }
1033
1034 static NORETURN void die_async(const char *err, va_list params)
1035 {
1036 report_fn die_message_fn = get_die_message_routine();
1037
1038 die_message_fn(err, params);
1039
1040 if (in_async()) {
1041 struct async *async = pthread_getspecific(async_key);
1042 if (async->proc_in >= 0)
1043 close(async->proc_in);
1044 if (async->proc_out >= 0)
1045 close(async->proc_out);
1046 pthread_exit((void *)128);
1047 }
1048
1049 exit(128);
1050 }
1051
1052 static int async_die_is_recursing(void)
1053 {
1054 void *ret = pthread_getspecific(async_die_counter);
1055 pthread_setspecific(async_die_counter, &async_die_counter); /* set to any non-NULL valid pointer */
1056 return ret != NULL;
1057 }
1058
1059 int in_async(void)
1060 {
1061 if (!main_thread_set)
1062 return 0; /* no asyncs started yet */
1063 return !pthread_equal(main_thread, pthread_self());
1064 }
1065
1066 static void NORETURN async_exit(int code)
1067 {
1068 pthread_exit((void *)(intptr_t)code);
1069 }
1070
1071 #else
1072
1073 static struct {
1074 void (**handlers)(void);
1075 size_t nr;
1076 size_t alloc;
1077 } git_atexit_hdlrs;
1078
1079 static int git_atexit_installed;
1080
1081 static void git_atexit_dispatch(void)
1082 {
1083 size_t i;
1084
1085 for (i=git_atexit_hdlrs.nr ; i ; i--)
1086 git_atexit_hdlrs.handlers[i-1]();
1087 }
1088
1089 static void git_atexit_clear(void)
1090 {
1091 free(git_atexit_hdlrs.handlers);
1092 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1093 git_atexit_installed = 0;
1094 }
1095
1096 #undef atexit
1097 int git_atexit(void (*handler)(void))
1098 {
1099 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1100 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1101 if (!git_atexit_installed) {
1102 if (atexit(&git_atexit_dispatch))
1103 return -1;
1104 git_atexit_installed = 1;
1105 }
1106 return 0;
1107 }
1108 #define atexit git_atexit
1109
1110 static int process_is_async;
1111 int in_async(void)
1112 {
1113 return process_is_async;
1114 }
1115
1116 static void NORETURN async_exit(int code)
1117 {
1118 exit(code);
1119 }
1120
1121 #endif
1122
1123 void check_pipe(int err)
1124 {
1125 if (err == EPIPE) {
1126 if (in_async())
1127 async_exit(141);
1128
1129 signal(SIGPIPE, SIG_DFL);
1130 raise(SIGPIPE);
1131 /* Should never happen, but just in case... */
1132 exit(141);
1133 }
1134 }
1135
1136 int start_async(struct async *async)
1137 {
1138 int need_in, need_out;
1139 int fdin[2], fdout[2];
1140 int proc_in, proc_out;
1141
1142 need_in = async->in < 0;
1143 if (need_in) {
1144 if (pipe(fdin) < 0) {
1145 if (async->out > 0)
1146 close(async->out);
1147 return error_errno("cannot create pipe");
1148 }
1149 async->in = fdin[1];
1150 }
1151
1152 need_out = async->out < 0;
1153 if (need_out) {
1154 if (pipe(fdout) < 0) {
1155 if (need_in)
1156 close_pair(fdin);
1157 else if (async->in)
1158 close(async->in);
1159 return error_errno("cannot create pipe");
1160 }
1161 async->out = fdout[0];
1162 }
1163
1164 if (need_in)
1165 proc_in = fdin[0];
1166 else if (async->in)
1167 proc_in = async->in;
1168 else
1169 proc_in = -1;
1170
1171 if (need_out)
1172 proc_out = fdout[1];
1173 else if (async->out)
1174 proc_out = async->out;
1175 else
1176 proc_out = -1;
1177
1178 #ifdef NO_PTHREADS
1179 /* Flush stdio before fork() to avoid cloning buffers */
1180 fflush(NULL);
1181
1182 async->pid = fork();
1183 if (async->pid < 0) {
1184 error_errno("fork (async) failed");
1185 goto error;
1186 }
1187 if (!async->pid) {
1188 if (need_in)
1189 close(fdin[1]);
1190 if (need_out)
1191 close(fdout[0]);
1192 git_atexit_clear();
1193 process_is_async = 1;
1194 exit(!!async->proc(proc_in, proc_out, async->data));
1195 }
1196
1197 mark_child_for_cleanup(async->pid, NULL);
1198
1199 if (need_in)
1200 close(fdin[0]);
1201 else if (async->in)
1202 close(async->in);
1203
1204 if (need_out)
1205 close(fdout[1]);
1206 else if (async->out)
1207 close(async->out);
1208 #else
1209 if (!main_thread_set) {
1210 /*
1211 * We assume that the first time that start_async is called
1212 * it is from the main thread.
1213 */
1214 main_thread_set = 1;
1215 main_thread = pthread_self();
1216 pthread_key_create(&async_key, NULL);
1217 pthread_key_create(&async_die_counter, NULL);
1218 set_die_routine(die_async);
1219 set_die_is_recursing_routine(async_die_is_recursing);
1220 }
1221
1222 if (proc_in >= 0)
1223 set_cloexec(proc_in);
1224 if (proc_out >= 0)
1225 set_cloexec(proc_out);
1226 async->proc_in = proc_in;
1227 async->proc_out = proc_out;
1228 {
1229 int err = pthread_create(&async->tid, NULL, run_thread, async);
1230 if (err) {
1231 error(_("cannot create async thread: %s"), strerror(err));
1232 goto error;
1233 }
1234 }
1235 #endif
1236 return 0;
1237
1238 error:
1239 if (need_in)
1240 close_pair(fdin);
1241 else if (async->in)
1242 close(async->in);
1243
1244 if (need_out)
1245 close_pair(fdout);
1246 else if (async->out)
1247 close(async->out);
1248 return -1;
1249 }
1250
1251 int finish_async(struct async *async)
1252 {
1253 #ifdef NO_PTHREADS
1254 int ret = wait_or_whine(async->pid, "child process", 0);
1255
1256 invalidate_lstat_cache();
1257
1258 return ret;
1259 #else
1260 void *ret = (void *)(intptr_t)(-1);
1261
1262 if (pthread_join(async->tid, &ret))
1263 error("pthread_join failed");
1264 invalidate_lstat_cache();
1265 return (int)(intptr_t)ret;
1266
1267 #endif
1268 }
1269
1270 int async_with_fork(void)
1271 {
1272 #ifdef NO_PTHREADS
1273 return 1;
1274 #else
1275 return 0;
1276 #endif
1277 }
1278
1279 struct io_pump {
1280 /* initialized by caller */
1281 int fd;
1282 int type; /* POLLOUT or POLLIN */
1283 union {
1284 struct {
1285 const char *buf;
1286 size_t len;
1287 } out;
1288 struct {
1289 struct strbuf *buf;
1290 size_t hint;
1291 } in;
1292 } u;
1293
1294 /* returned by pump_io */
1295 int error; /* 0 for success, otherwise errno */
1296
1297 /* internal use */
1298 struct pollfd *pfd;
1299 };
1300
1301 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1302 {
1303 int pollsize = 0;
1304 int i;
1305
1306 for (i = 0; i < nr; i++) {
1307 struct io_pump *io = &slots[i];
1308 if (io->fd < 0)
1309 continue;
1310 pfd[pollsize].fd = io->fd;
1311 pfd[pollsize].events = io->type;
1312 io->pfd = &pfd[pollsize++];
1313 }
1314
1315 if (!pollsize)
1316 return 0;
1317
1318 if (poll(pfd, pollsize, -1) < 0) {
1319 if (errno == EINTR)
1320 return 1;
1321 die_errno("poll failed");
1322 }
1323
1324 for (i = 0; i < nr; i++) {
1325 struct io_pump *io = &slots[i];
1326
1327 if (io->fd < 0)
1328 continue;
1329
1330 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1331 continue;
1332
1333 if (io->type == POLLOUT) {
1334 ssize_t len;
1335
1336 /*
1337 * Don't use xwrite() here. It loops forever on EAGAIN,
1338 * and we're in our own poll() loop here.
1339 *
1340 * Note that we lose xwrite()'s handling of MAX_IO_SIZE
1341 * and EINTR, so we have to implement those ourselves.
1342 */
1343 len = write(io->fd, io->u.out.buf,
1344 io->u.out.len <= MAX_IO_SIZE ?
1345 io->u.out.len : MAX_IO_SIZE);
1346 if (len < 0) {
1347 if (errno != EINTR && errno != EAGAIN &&
1348 errno != ENOSPC) {
1349 io->error = errno;
1350 close(io->fd);
1351 io->fd = -1;
1352 }
1353 } else {
1354 io->u.out.buf += len;
1355 io->u.out.len -= len;
1356 if (!io->u.out.len) {
1357 close(io->fd);
1358 io->fd = -1;
1359 }
1360 }
1361 }
1362
1363 if (io->type == POLLIN) {
1364 ssize_t len = strbuf_read_once(io->u.in.buf,
1365 io->fd, io->u.in.hint);
1366 if (len < 0)
1367 io->error = errno;
1368 if (len <= 0) {
1369 close(io->fd);
1370 io->fd = -1;
1371 }
1372 }
1373 }
1374
1375 return 1;
1376 }
1377
1378 static int pump_io(struct io_pump *slots, int nr)
1379 {
1380 struct pollfd *pfd;
1381 int i;
1382
1383 for (i = 0; i < nr; i++)
1384 slots[i].error = 0;
1385
1386 ALLOC_ARRAY(pfd, nr);
1387 while (pump_io_round(slots, nr, pfd))
1388 ; /* nothing */
1389 free(pfd);
1390
1391 /* There may be multiple errno values, so just pick the first. */
1392 for (i = 0; i < nr; i++) {
1393 if (slots[i].error) {
1394 errno = slots[i].error;
1395 return -1;
1396 }
1397 }
1398 return 0;
1399 }
1400
1401
1402 int pipe_command(struct child_process *cmd,
1403 const char *in, size_t in_len,
1404 struct strbuf *out, size_t out_hint,
1405 struct strbuf *err, size_t err_hint)
1406 {
1407 struct io_pump io[3];
1408 int nr = 0;
1409
1410 if (in)
1411 cmd->in = -1;
1412 if (out)
1413 cmd->out = -1;
1414 if (err)
1415 cmd->err = -1;
1416
1417 if (start_command(cmd) < 0)
1418 return -1;
1419
1420 if (in) {
1421 if (enable_pipe_nonblock(cmd->in) < 0) {
1422 error_errno("unable to make pipe non-blocking");
1423 close(cmd->in);
1424 if (out)
1425 close(cmd->out);
1426 if (err)
1427 close(cmd->err);
1428 return -1;
1429 }
1430 io[nr].fd = cmd->in;
1431 io[nr].type = POLLOUT;
1432 io[nr].u.out.buf = in;
1433 io[nr].u.out.len = in_len;
1434 nr++;
1435 }
1436 if (out) {
1437 io[nr].fd = cmd->out;
1438 io[nr].type = POLLIN;
1439 io[nr].u.in.buf = out;
1440 io[nr].u.in.hint = out_hint;
1441 nr++;
1442 }
1443 if (err) {
1444 io[nr].fd = cmd->err;
1445 io[nr].type = POLLIN;
1446 io[nr].u.in.buf = err;
1447 io[nr].u.in.hint = err_hint;
1448 nr++;
1449 }
1450
1451 if (pump_io(io, nr) < 0) {
1452 finish_command(cmd); /* throw away exit code */
1453 return -1;
1454 }
1455
1456 return finish_command(cmd);
1457 }
1458
1459 enum child_state {
1460 GIT_CP_FREE,
1461 GIT_CP_WORKING,
1462 GIT_CP_WAIT_CLEANUP,
1463 };
1464
1465 struct parallel_processes {
1466 size_t nr_processes;
1467
1468 struct {
1469 enum child_state state;
1470 struct child_process process;
1471 struct strbuf err;
1472 void *data;
1473 } *children;
1474 /*
1475 * The struct pollfd is logically part of *children,
1476 * but the system call expects it as its own array.
1477 */
1478 struct pollfd *pfd;
1479
1480 unsigned shutdown : 1;
1481
1482 size_t output_owner;
1483 struct strbuf buffered_output; /* of finished children */
1484 };
1485
1486 struct parallel_processes_for_signal {
1487 const struct run_process_parallel_opts *opts;
1488 const struct parallel_processes *pp;
1489 };
1490
1491 static void kill_children(const struct parallel_processes *pp,
1492 const struct run_process_parallel_opts *opts,
1493 int signo)
1494 {
1495 for (size_t i = 0; i < opts->processes; i++)
1496 if (pp->children[i].state == GIT_CP_WORKING)
1497 kill(pp->children[i].process.pid, signo);
1498 }
1499
1500 static void kill_children_signal(const struct parallel_processes_for_signal *pp_sig,
1501 int signo)
1502 {
1503 kill_children(pp_sig->pp, pp_sig->opts, signo);
1504 }
1505
1506 static struct parallel_processes_for_signal *pp_for_signal;
1507
1508 static void handle_children_on_signal(int signo)
1509 {
1510 kill_children_signal(pp_for_signal, signo);
1511 sigchain_pop(signo);
1512 raise(signo);
1513 }
1514
1515 static void pp_init(struct parallel_processes *pp,
1516 const struct run_process_parallel_opts *opts,
1517 struct parallel_processes_for_signal *pp_sig)
1518 {
1519 const size_t n = opts->processes;
1520
1521 if (!n)
1522 BUG("you must provide a non-zero number of processes!");
1523
1524 trace_printf("run_processes_parallel: preparing to run up to %"PRIuMAX" tasks",
1525 (uintmax_t)n);
1526
1527 if (!opts->get_next_task)
1528 BUG("you need to specify a get_next_task function");
1529
1530 CALLOC_ARRAY(pp->children, n);
1531 if (!opts->ungroup)
1532 CALLOC_ARRAY(pp->pfd, n);
1533
1534 for (size_t i = 0; i < n; i++) {
1535 strbuf_init(&pp->children[i].err, 0);
1536 child_process_init(&pp->children[i].process);
1537 if (pp->pfd) {
1538 pp->pfd[i].events = POLLIN | POLLHUP;
1539 pp->pfd[i].fd = -1;
1540 }
1541 }
1542
1543 pp_sig->pp = pp;
1544 pp_sig->opts = opts;
1545 pp_for_signal = pp_sig;
1546 sigchain_push_common(handle_children_on_signal);
1547 }
1548
1549 static void pp_cleanup(struct parallel_processes *pp,
1550 const struct run_process_parallel_opts *opts)
1551 {
1552 trace_printf("run_processes_parallel: done");
1553 for (size_t i = 0; i < opts->processes; i++) {
1554 strbuf_release(&pp->children[i].err);
1555 child_process_clear(&pp->children[i].process);
1556 }
1557
1558 free(pp->children);
1559 free(pp->pfd);
1560
1561 /*
1562 * When get_next_task added messages to the buffer in its last
1563 * iteration, the buffered output is non empty.
1564 */
1565 strbuf_write(&pp->buffered_output, stderr);
1566 strbuf_release(&pp->buffered_output);
1567
1568 sigchain_pop_common();
1569 }
1570
1571 /* returns
1572 * 0 if a new task was started.
1573 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1574 * problem with starting a new command)
1575 * <0 no new job was started, user wishes to shutdown early. Use negative code
1576 * to signal the children.
1577 */
1578 static int pp_start_one(struct parallel_processes *pp,
1579 const struct run_process_parallel_opts *opts)
1580 {
1581 size_t i;
1582 int code;
1583
1584 for (i = 0; i < opts->processes; i++)
1585 if (pp->children[i].state == GIT_CP_FREE)
1586 break;
1587 if (i == opts->processes)
1588 BUG("bookkeeping is hard");
1589
1590 /*
1591 * By default, do not inherit stdin from the parent process - otherwise,
1592 * all children would share stdin! Users may overwrite this to provide
1593 * something to the child's stdin by having their 'get_next_task'
1594 * callback assign 0 to .no_stdin and an appropriate integer to .in.
1595 */
1596 pp->children[i].process.no_stdin = 1;
1597
1598 code = opts->get_next_task(&pp->children[i].process,
1599 opts->ungroup ? NULL : &pp->children[i].err,
1600 opts->data,
1601 &pp->children[i].data);
1602 if (!code) {
1603 if (!opts->ungroup) {
1604 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1605 strbuf_reset(&pp->children[i].err);
1606 }
1607 return 1;
1608 }
1609 if (!opts->ungroup) {
1610 pp->children[i].process.err = -1;
1611 pp->children[i].process.stdout_to_stderr = 1;
1612 }
1613
1614 if (start_command(&pp->children[i].process)) {
1615 if (opts->start_failure)
1616 code = opts->start_failure(opts->ungroup ? NULL :
1617 &pp->children[i].err,
1618 opts->data,
1619 pp->children[i].data);
1620 else
1621 code = 0;
1622
1623 if (!opts->ungroup) {
1624 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1625 strbuf_reset(&pp->children[i].err);
1626 }
1627 if (code)
1628 pp->shutdown = 1;
1629 return code;
1630 }
1631
1632 pp->nr_processes++;
1633 pp->children[i].state = GIT_CP_WORKING;
1634 if (pp->pfd)
1635 pp->pfd[i].fd = pp->children[i].process.err;
1636 return 0;
1637 }
1638
1639 static void pp_buffer_stderr(struct parallel_processes *pp,
1640 const struct run_process_parallel_opts *opts,
1641 int output_timeout)
1642 {
1643 while (poll(pp->pfd, opts->processes, output_timeout) < 0) {
1644 if (errno == EINTR)
1645 continue;
1646 pp_cleanup(pp, opts);
1647 die_errno("poll");
1648 }
1649
1650 /* Buffer output from all pipes. */
1651 for (size_t i = 0; i < opts->processes; i++) {
1652 if (pp->children[i].state == GIT_CP_WORKING &&
1653 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1654 int n = strbuf_read_once(&pp->children[i].err,
1655 pp->children[i].process.err, 0);
1656 if (n == 0) {
1657 close(pp->children[i].process.err);
1658 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1659 } else if (n < 0)
1660 if (errno != EAGAIN)
1661 die_errno("read");
1662 }
1663 }
1664 }
1665
1666 static void pp_output(const struct parallel_processes *pp)
1667 {
1668 size_t i = pp->output_owner;
1669
1670 if (pp->children[i].state == GIT_CP_WORKING &&
1671 pp->children[i].err.len) {
1672 strbuf_write(&pp->children[i].err, stderr);
1673 strbuf_reset(&pp->children[i].err);
1674 }
1675 }
1676
1677 static int pp_collect_finished(struct parallel_processes *pp,
1678 const struct run_process_parallel_opts *opts)
1679 {
1680 int code;
1681 size_t i;
1682 int result = 0;
1683
1684 while (pp->nr_processes > 0) {
1685 for (i = 0; i < opts->processes; i++)
1686 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1687 break;
1688 if (i == opts->processes)
1689 break;
1690
1691 code = finish_command(&pp->children[i].process);
1692
1693 if (opts->task_finished)
1694 code = opts->task_finished(code, opts->ungroup ? NULL :
1695 &pp->children[i].err, opts->data,
1696 pp->children[i].data);
1697 else
1698 code = 0;
1699
1700 if (code)
1701 result = code;
1702 if (code < 0)
1703 break;
1704
1705 pp->nr_processes--;
1706 pp->children[i].state = GIT_CP_FREE;
1707 if (pp->pfd)
1708 pp->pfd[i].fd = -1;
1709 child_process_init(&pp->children[i].process);
1710
1711 if (opts->ungroup) {
1712 ; /* no strbuf_*() work to do here */
1713 } else if (i != pp->output_owner) {
1714 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1715 strbuf_reset(&pp->children[i].err);
1716 } else {
1717 const size_t n = opts->processes;
1718
1719 strbuf_write(&pp->children[i].err, stderr);
1720 strbuf_reset(&pp->children[i].err);
1721
1722 /* Output all other finished child processes */
1723 strbuf_write(&pp->buffered_output, stderr);
1724 strbuf_reset(&pp->buffered_output);
1725
1726 /*
1727 * Pick next process to output live.
1728 * NEEDSWORK:
1729 * For now we pick it randomly by doing a round
1730 * robin. Later we may want to pick the one with
1731 * the most output or the longest or shortest
1732 * running process time.
1733 */
1734 for (i = 0; i < n; i++)
1735 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1736 break;
1737 pp->output_owner = (pp->output_owner + i) % n;
1738 }
1739 }
1740 return result;
1741 }
1742
1743 void run_processes_parallel(const struct run_process_parallel_opts *opts)
1744 {
1745 int i, code;
1746 int output_timeout = 100;
1747 int spawn_cap = 4;
1748 struct parallel_processes_for_signal pp_sig;
1749 struct parallel_processes pp = {
1750 .buffered_output = STRBUF_INIT,
1751 };
1752 /* options */
1753 const char *tr2_category = opts->tr2_category;
1754 const char *tr2_label = opts->tr2_label;
1755 const int do_trace2 = tr2_category && tr2_label;
1756
1757 if (do_trace2)
1758 trace2_region_enter_printf(tr2_category, tr2_label, NULL,
1759 "max:%d", opts->processes);
1760
1761 pp_init(&pp, opts, &pp_sig);
1762 while (1) {
1763 for (i = 0;
1764 i < spawn_cap && !pp.shutdown &&
1765 pp.nr_processes < opts->processes;
1766 i++) {
1767 code = pp_start_one(&pp, opts);
1768 if (!code)
1769 continue;
1770 if (code < 0) {
1771 pp.shutdown = 1;
1772 kill_children(&pp, opts, -code);
1773 }
1774 break;
1775 }
1776 if (!pp.nr_processes)
1777 break;
1778 if (opts->ungroup) {
1779 for (size_t i = 0; i < opts->processes; i++)
1780 pp.children[i].state = GIT_CP_WAIT_CLEANUP;
1781 } else {
1782 pp_buffer_stderr(&pp, opts, output_timeout);
1783 pp_output(&pp);
1784 }
1785 code = pp_collect_finished(&pp, opts);
1786 if (code) {
1787 pp.shutdown = 1;
1788 if (code < 0)
1789 kill_children(&pp, opts,-code);
1790 }
1791 }
1792
1793 pp_cleanup(&pp, opts);
1794
1795 if (do_trace2)
1796 trace2_region_leave(tr2_category, tr2_label, NULL);
1797 }
1798
1799 int prepare_auto_maintenance(int quiet, struct child_process *maint)
1800 {
1801 int enabled;
1802
1803 if (!git_config_get_bool("maintenance.auto", &enabled) &&
1804 !enabled)
1805 return 0;
1806
1807 maint->git_cmd = 1;
1808 maint->close_object_store = 1;
1809 strvec_pushl(&maint->args, "maintenance", "run", "--auto", NULL);
1810 strvec_push(&maint->args, quiet ? "--quiet" : "--no-quiet");
1811
1812 return 1;
1813 }
1814
1815 int run_auto_maintenance(int quiet)
1816 {
1817 struct child_process maint = CHILD_PROCESS_INIT;
1818 if (!prepare_auto_maintenance(quiet, &maint))
1819 return 0;
1820 return run_command(&maint);
1821 }
1822
1823 void prepare_other_repo_env(struct strvec *env, const char *new_git_dir)
1824 {
1825 const char * const *var;
1826
1827 for (var = local_repo_env; *var; var++) {
1828 if (strcmp(*var, CONFIG_DATA_ENVIRONMENT) &&
1829 strcmp(*var, CONFIG_COUNT_ENVIRONMENT))
1830 strvec_push(env, *var);
1831 }
1832 strvec_pushf(env, "%s=%s", GIT_DIR_ENVIRONMENT, new_git_dir);
1833 }
1834
1835 enum start_bg_result start_bg_command(struct child_process *cmd,
1836 start_bg_wait_cb *wait_cb,
1837 void *cb_data,
1838 unsigned int timeout_sec)
1839 {
1840 enum start_bg_result sbgr = SBGR_ERROR;
1841 int ret;
1842 int wait_status;
1843 pid_t pid_seen;
1844 time_t time_limit;
1845
1846 /*
1847 * We do not allow clean-on-exit because the child process
1848 * should persist in the background and possibly/probably
1849 * after this process exits. So we don't want to kill the
1850 * child during our atexit routine.
1851 */
1852 if (cmd->clean_on_exit)
1853 BUG("start_bg_command() does not allow non-zero clean_on_exit");
1854
1855 if (!cmd->trace2_child_class)
1856 cmd->trace2_child_class = "background";
1857
1858 ret = start_command(cmd);
1859 if (ret) {
1860 /*
1861 * We assume that if `start_command()` fails, we
1862 * either get a complete `trace2_child_start() /
1863 * trace2_child_exit()` pair or it fails before the
1864 * `trace2_child_start()` is emitted, so we do not
1865 * need to worry about it here.
1866 *
1867 * We also assume that `start_command()` does not add
1868 * us to the cleanup list. And that it calls
1869 * `child_process_clear()`.
1870 */
1871 sbgr = SBGR_ERROR;
1872 goto done;
1873 }
1874
1875 time(&time_limit);
1876 time_limit += timeout_sec;
1877
1878 wait:
1879 pid_seen = waitpid(cmd->pid, &wait_status, WNOHANG);
1880
1881 if (!pid_seen) {
1882 /*
1883 * The child is currently running. Ask the callback
1884 * if the child is ready to do work or whether we
1885 * should keep waiting for it to boot up.
1886 */
1887 ret = (*wait_cb)(cmd, cb_data);
1888 if (!ret) {
1889 /*
1890 * The child is running and "ready".
1891 */
1892 trace2_child_ready(cmd, "ready");
1893 sbgr = SBGR_READY;
1894 goto done;
1895 } else if (ret > 0) {
1896 /*
1897 * The callback said to give it more time to boot up
1898 * (subject to our timeout limit).
1899 */
1900 time_t now;
1901
1902 time(&now);
1903 if (now < time_limit)
1904 goto wait;
1905
1906 /*
1907 * Our timeout has expired. We don't try to
1908 * kill the child, but rather let it continue
1909 * (hopefully) trying to startup.
1910 */
1911 trace2_child_ready(cmd, "timeout");
1912 sbgr = SBGR_TIMEOUT;
1913 goto done;
1914 } else {
1915 /*
1916 * The cb gave up on this child. It is still running,
1917 * but our cb got an error trying to probe it.
1918 */
1919 trace2_child_ready(cmd, "error");
1920 sbgr = SBGR_CB_ERROR;
1921 goto done;
1922 }
1923 }
1924
1925 else if (pid_seen == cmd->pid) {
1926 int child_code = -1;
1927
1928 /*
1929 * The child started, but exited or was terminated
1930 * before becoming "ready".
1931 *
1932 * We try to match the behavior of `wait_or_whine()`
1933 * WRT the handling of WIFSIGNALED() and WIFEXITED()
1934 * and convert the child's status to a return code for
1935 * tracing purposes and emit the `trace2_child_exit()`
1936 * event.
1937 *
1938 * We do not want the wait_or_whine() error message
1939 * because we will be called by client-side library
1940 * routines.
1941 */
1942 if (WIFEXITED(wait_status))
1943 child_code = WEXITSTATUS(wait_status);
1944 else if (WIFSIGNALED(wait_status))
1945 child_code = WTERMSIG(wait_status) + 128;
1946 trace2_child_exit(cmd, child_code);
1947
1948 sbgr = SBGR_DIED;
1949 goto done;
1950 }
1951
1952 else if (pid_seen < 0 && errno == EINTR)
1953 goto wait;
1954
1955 trace2_child_exit(cmd, -1);
1956 sbgr = SBGR_ERROR;
1957
1958 done:
1959 child_process_clear(cmd);
1960 invalidate_lstat_cache();
1961 return sbgr;
1962 }