]> git.ipfire.org Git - thirdparty/mdadm.git/blob - sha1.c
mdadm: refactor ident->name handling
[thirdparty/mdadm.git] / sha1.c
1 /* sha1.c - Functions to compute SHA1 message digest of files or
2 memory blocks according to the NIST specification FIPS-180-1.
3
4 Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2008 Free Software
5 Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software Foundation,
19 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 /* Written by Scott G. Miller
22 Credits:
23 Robert Klep <robert@ilse.nl> -- Expansion function fix
24 */
25
26 //#include <config.h>
27
28 #include "sha1.h"
29
30 #include <stddef.h>
31 #include <string.h>
32
33 #if USE_UNLOCKED_IO
34 # include "unlocked-io.h"
35 #endif
36
37 #ifdef WORDS_BIGENDIAN
38 # define SWAP(n) (n)
39 #else
40 # define SWAP(n) \
41 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
42 #endif
43
44 #define BLOCKSIZE 4096
45 #if BLOCKSIZE % 64 != 0
46 # error "invalid BLOCKSIZE"
47 #endif
48
49 /* This array contains the bytes used to pad the buffer to the next
50 64-byte boundary. (RFC 1321, 3.1: Step 1) */
51 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
52
53 /* Take a pointer to a 160 bit block of data (five 32 bit ints) and
54 initialize it to the start constants of the SHA1 algorithm. This
55 must be called before using hash in the call to sha1_hash. */
56 void
57 sha1_init_ctx (struct sha1_ctx *ctx)
58 {
59 ctx->A = 0x67452301;
60 ctx->B = 0xefcdab89;
61 ctx->C = 0x98badcfe;
62 ctx->D = 0x10325476;
63 ctx->E = 0xc3d2e1f0;
64
65 ctx->total[0] = ctx->total[1] = 0;
66 ctx->buflen = 0;
67 }
68
69 /* Put result from CTX in first 20 bytes following RESBUF. The result
70 must be in little endian byte order.
71
72 IMPORTANT: On some systems it is required that RESBUF is correctly
73 aligned for a 32-bit value. */
74 void *
75 sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
76 {
77 ((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A);
78 ((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B);
79 ((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C);
80 ((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D);
81 ((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E);
82
83 return resbuf;
84 }
85
86 /* Process the remaining bytes in the internal buffer and the usual
87 prolog according to the standard and write the result to RESBUF.
88
89 IMPORTANT: On some systems it is required that RESBUF is correctly
90 aligned for a 32-bit value. */
91 void *
92 sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
93 {
94 /* Take yet unprocessed bytes into account. */
95 sha1_uint32 bytes = ctx->buflen;
96 size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
97
98 /* Now count remaining bytes. */
99 ctx->total[0] += bytes;
100 if (ctx->total[0] < bytes)
101 ++ctx->total[1];
102
103 /* Put the 64-bit file length in *bits* at the end of the buffer. */
104 ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
105 ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
106
107 memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
108
109 /* Process last bytes. */
110 sha1_process_block (ctx->buffer, size * 4, ctx);
111
112 return sha1_read_ctx (ctx, resbuf);
113 }
114
115 /* Compute SHA1 message digest for bytes read from STREAM. The
116 resulting message digest number will be written into the 16 bytes
117 beginning at RESBLOCK. */
118 int
119 sha1_stream (FILE *stream, void *resblock)
120 {
121 struct sha1_ctx ctx;
122 char buffer[BLOCKSIZE + 72];
123 size_t sum;
124
125 /* Initialize the computation context. */
126 sha1_init_ctx (&ctx);
127
128 /* Iterate over full file contents. */
129 while (1)
130 {
131 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
132 computation function processes the whole buffer so that with the
133 next round of the loop another block can be read. */
134 size_t n;
135 sum = 0;
136
137 /* Read block. Take care for partial reads. */
138 while (1)
139 {
140 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
141
142 sum += n;
143
144 if (sum == BLOCKSIZE)
145 break;
146
147 if (n == 0)
148 {
149 /* Check for the error flag IFF N == 0, so that we don't
150 exit the loop after a partial read due to e.g., EAGAIN
151 or EWOULDBLOCK. */
152 if (ferror (stream))
153 return 1;
154 goto process_partial_block;
155 }
156
157 /* We've read at least one byte, so ignore errors. But always
158 check for EOF, since feof may be true even though N > 0.
159 Otherwise, we could end up calling fread after EOF. */
160 if (feof (stream))
161 goto process_partial_block;
162 }
163
164 /* Process buffer with BLOCKSIZE bytes. Note that
165 BLOCKSIZE % 64 == 0
166 */
167 sha1_process_block (buffer, BLOCKSIZE, &ctx);
168 }
169
170 process_partial_block:;
171
172 /* Process any remaining bytes. */
173 if (sum > 0)
174 sha1_process_bytes (buffer, sum, &ctx);
175
176 /* Construct result in desired memory. */
177 sha1_finish_ctx (&ctx, resblock);
178 return 0;
179 }
180
181 /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
182 result is always in little endian byte order, so that a byte-wise
183 output yields to the wanted ASCII representation of the message
184 digest. */
185 void *
186 sha1_buffer (const char *buffer, size_t len, void *resblock)
187 {
188 struct sha1_ctx ctx;
189
190 /* Initialize the computation context. */
191 sha1_init_ctx (&ctx);
192
193 /* Process whole buffer but last len % 64 bytes. */
194 sha1_process_bytes (buffer, len, &ctx);
195
196 /* Put result in desired memory area. */
197 return sha1_finish_ctx (&ctx, resblock);
198 }
199
200 void
201 sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
202 {
203 /* When we already have some bits in our internal buffer concatenate
204 both inputs first. */
205 if (ctx->buflen != 0)
206 {
207 size_t left_over = ctx->buflen;
208 size_t add = 128 - left_over > len ? len : 128 - left_over;
209
210 memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
211 ctx->buflen += add;
212
213 if (ctx->buflen > 64)
214 {
215 sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
216
217 ctx->buflen &= 63;
218 /* The regions in the following copy operation cannot overlap. */
219 memcpy (ctx->buffer,
220 &((char *) ctx->buffer)[(left_over + add) & ~63],
221 ctx->buflen);
222 }
223
224 buffer = (const char *) buffer + add;
225 len -= add;
226 }
227
228 /* Process available complete blocks. */
229 if (len >= 64)
230 {
231 #if !_STRING_ARCH_unaligned
232 /* GCC releases before GCC 4.9 had a bug in _Alignof. See GCC bug 52023
233 <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=52023>.
234 clang versions < 8.0.0 have the same bug. */
235 # if (!defined __STDC_VERSION__ || __STDC_VERSION__ < 201112 \
236 || (defined __GNUC__ && __GNUC__ < 4 + (__GNUC_MINOR__ < 9) \
237 && !defined __clang__) \
238 || (defined __clang__ && __clang_major__ < 8))
239 # define alignof(type) offsetof (struct { char c; type x; }, x)
240 # else
241 # define alignof(type) _Alignof(type)
242 # endif
243 # define UNALIGNED_P(p) (((size_t) p) % alignof (sha1_uint32) != 0)
244 if (UNALIGNED_P (buffer))
245 while (len > 64)
246 {
247 sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
248 buffer = (const char *) buffer + 64;
249 len -= 64;
250 }
251 else
252 #endif
253 {
254 sha1_process_block (buffer, len & ~63, ctx);
255 buffer = (const char *) buffer + (len & ~63);
256 len &= 63;
257 }
258 }
259
260 /* Move remaining bytes in internal buffer. */
261 if (len > 0)
262 {
263 size_t left_over = ctx->buflen;
264
265 memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
266 left_over += len;
267 if (left_over >= 64)
268 {
269 sha1_process_block (ctx->buffer, 64, ctx);
270 left_over -= 64;
271 memmove (ctx->buffer, &ctx->buffer[16], left_over);
272 }
273 ctx->buflen = left_over;
274 }
275 }
276
277 /* --- Code below is the primary difference between md5.c and sha1.c --- */
278
279 /* SHA1 round constants */
280 #define K1 0x5a827999
281 #define K2 0x6ed9eba1
282 #define K3 0x8f1bbcdc
283 #define K4 0xca62c1d6
284
285 /* Round functions. Note that F2 is the same as F4. */
286 #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
287 #define F2(B,C,D) (B ^ C ^ D)
288 #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
289 #define F4(B,C,D) (B ^ C ^ D)
290
291 /* Process LEN bytes of BUFFER, accumulating context into CTX.
292 It is assumed that LEN % 64 == 0.
293 Most of this code comes from GnuPG's cipher/sha1.c. */
294
295 void
296 sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
297 {
298 const sha1_uint32 *words = (const sha1_uint32*) buffer;
299 size_t nwords = len / sizeof (sha1_uint32);
300 const sha1_uint32 *endp = words + nwords;
301 sha1_uint32 x[16];
302 sha1_uint32 a = ctx->A;
303 sha1_uint32 b = ctx->B;
304 sha1_uint32 c = ctx->C;
305 sha1_uint32 d = ctx->D;
306 sha1_uint32 e = ctx->E;
307
308 /* First increment the byte count. RFC 1321 specifies the possible
309 length of the file up to 2^64 bits. Here we only compute the
310 number of bytes. Do a double word increment. */
311 ctx->total[0] += len;
312 if (ctx->total[0] < len)
313 ++ctx->total[1];
314
315 #define rol(x, n) (((x) << (n)) | ((sha1_uint32) (x) >> (32 - (n))))
316
317 #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
318 ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
319 , (x[I&0x0f] = rol(tm, 1)) )
320
321 #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
322 + F( B, C, D ) \
323 + K \
324 + M; \
325 B = rol( B, 30 ); \
326 } while(0)
327
328 while (words < endp)
329 {
330 sha1_uint32 tm;
331 int t;
332 for (t = 0; t < 16; t++)
333 {
334 x[t] = SWAP (*words);
335 words++;
336 }
337
338 R( a, b, c, d, e, F1, K1, x[ 0] );
339 R( e, a, b, c, d, F1, K1, x[ 1] );
340 R( d, e, a, b, c, F1, K1, x[ 2] );
341 R( c, d, e, a, b, F1, K1, x[ 3] );
342 R( b, c, d, e, a, F1, K1, x[ 4] );
343 R( a, b, c, d, e, F1, K1, x[ 5] );
344 R( e, a, b, c, d, F1, K1, x[ 6] );
345 R( d, e, a, b, c, F1, K1, x[ 7] );
346 R( c, d, e, a, b, F1, K1, x[ 8] );
347 R( b, c, d, e, a, F1, K1, x[ 9] );
348 R( a, b, c, d, e, F1, K1, x[10] );
349 R( e, a, b, c, d, F1, K1, x[11] );
350 R( d, e, a, b, c, F1, K1, x[12] );
351 R( c, d, e, a, b, F1, K1, x[13] );
352 R( b, c, d, e, a, F1, K1, x[14] );
353 R( a, b, c, d, e, F1, K1, x[15] );
354 R( e, a, b, c, d, F1, K1, M(16) );
355 R( d, e, a, b, c, F1, K1, M(17) );
356 R( c, d, e, a, b, F1, K1, M(18) );
357 R( b, c, d, e, a, F1, K1, M(19) );
358 R( a, b, c, d, e, F2, K2, M(20) );
359 R( e, a, b, c, d, F2, K2, M(21) );
360 R( d, e, a, b, c, F2, K2, M(22) );
361 R( c, d, e, a, b, F2, K2, M(23) );
362 R( b, c, d, e, a, F2, K2, M(24) );
363 R( a, b, c, d, e, F2, K2, M(25) );
364 R( e, a, b, c, d, F2, K2, M(26) );
365 R( d, e, a, b, c, F2, K2, M(27) );
366 R( c, d, e, a, b, F2, K2, M(28) );
367 R( b, c, d, e, a, F2, K2, M(29) );
368 R( a, b, c, d, e, F2, K2, M(30) );
369 R( e, a, b, c, d, F2, K2, M(31) );
370 R( d, e, a, b, c, F2, K2, M(32) );
371 R( c, d, e, a, b, F2, K2, M(33) );
372 R( b, c, d, e, a, F2, K2, M(34) );
373 R( a, b, c, d, e, F2, K2, M(35) );
374 R( e, a, b, c, d, F2, K2, M(36) );
375 R( d, e, a, b, c, F2, K2, M(37) );
376 R( c, d, e, a, b, F2, K2, M(38) );
377 R( b, c, d, e, a, F2, K2, M(39) );
378 R( a, b, c, d, e, F3, K3, M(40) );
379 R( e, a, b, c, d, F3, K3, M(41) );
380 R( d, e, a, b, c, F3, K3, M(42) );
381 R( c, d, e, a, b, F3, K3, M(43) );
382 R( b, c, d, e, a, F3, K3, M(44) );
383 R( a, b, c, d, e, F3, K3, M(45) );
384 R( e, a, b, c, d, F3, K3, M(46) );
385 R( d, e, a, b, c, F3, K3, M(47) );
386 R( c, d, e, a, b, F3, K3, M(48) );
387 R( b, c, d, e, a, F3, K3, M(49) );
388 R( a, b, c, d, e, F3, K3, M(50) );
389 R( e, a, b, c, d, F3, K3, M(51) );
390 R( d, e, a, b, c, F3, K3, M(52) );
391 R( c, d, e, a, b, F3, K3, M(53) );
392 R( b, c, d, e, a, F3, K3, M(54) );
393 R( a, b, c, d, e, F3, K3, M(55) );
394 R( e, a, b, c, d, F3, K3, M(56) );
395 R( d, e, a, b, c, F3, K3, M(57) );
396 R( c, d, e, a, b, F3, K3, M(58) );
397 R( b, c, d, e, a, F3, K3, M(59) );
398 R( a, b, c, d, e, F4, K4, M(60) );
399 R( e, a, b, c, d, F4, K4, M(61) );
400 R( d, e, a, b, c, F4, K4, M(62) );
401 R( c, d, e, a, b, F4, K4, M(63) );
402 R( b, c, d, e, a, F4, K4, M(64) );
403 R( a, b, c, d, e, F4, K4, M(65) );
404 R( e, a, b, c, d, F4, K4, M(66) );
405 R( d, e, a, b, c, F4, K4, M(67) );
406 R( c, d, e, a, b, F4, K4, M(68) );
407 R( b, c, d, e, a, F4, K4, M(69) );
408 R( a, b, c, d, e, F4, K4, M(70) );
409 R( e, a, b, c, d, F4, K4, M(71) );
410 R( d, e, a, b, c, F4, K4, M(72) );
411 R( c, d, e, a, b, F4, K4, M(73) );
412 R( b, c, d, e, a, F4, K4, M(74) );
413 R( a, b, c, d, e, F4, K4, M(75) );
414 R( e, a, b, c, d, F4, K4, M(76) );
415 R( d, e, a, b, c, F4, K4, M(77) );
416 R( c, d, e, a, b, F4, K4, M(78) );
417 R( b, c, d, e, a, F4, K4, M(79) );
418
419 a = ctx->A += a;
420 b = ctx->B += b;
421 c = ctx->C += c;
422 d = ctx->D += d;
423 e = ctx->E += e;
424 }
425 }