]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/aarch64/interp.c
sim: overhaul alignment settings management
[thirdparty/binutils-gdb.git] / sim / aarch64 / interp.c
1 /* interp.c -- AArch64 sim interface to GDB.
2
3 Copyright (C) 2015-2021 Free Software Foundation, Inc.
4
5 Contributed by Red Hat.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This must come before any other includes. */
23 #include "defs.h"
24
25 #include <stdio.h>
26 #include <assert.h>
27 #include <signal.h>
28 #include <string.h>
29 #include <ctype.h>
30 #include <stdlib.h>
31
32 #include "ansidecl.h"
33 #include "bfd.h"
34 #include "sim/callback.h"
35 #include "sim/sim.h"
36 #include "gdb/signals.h"
37 #include "gdb/sim-aarch64.h"
38
39 #include "sim-main.h"
40 #include "sim-options.h"
41 #include "memory.h"
42 #include "simulator.h"
43 #include "sim-assert.h"
44
45 /* Filter out (in place) symbols that are useless for disassembly.
46 COUNT is the number of elements in SYMBOLS.
47 Return the number of useful symbols. */
48
49 static long
50 remove_useless_symbols (asymbol **symbols, long count)
51 {
52 asymbol **in_ptr = symbols;
53 asymbol **out_ptr = symbols;
54
55 while (count-- > 0)
56 {
57 asymbol *sym = *in_ptr++;
58
59 if (strstr (sym->name, "gcc2_compiled"))
60 continue;
61 if (sym->name == NULL || sym->name[0] == '\0')
62 continue;
63 if (sym->flags & (BSF_DEBUGGING))
64 continue;
65 if ( bfd_is_und_section (sym->section)
66 || bfd_is_com_section (sym->section))
67 continue;
68 if (sym->name[0] == '$')
69 continue;
70
71 *out_ptr++ = sym;
72 }
73 return out_ptr - symbols;
74 }
75
76 static signed int
77 compare_symbols (const void *ap, const void *bp)
78 {
79 const asymbol *a = * (const asymbol **) ap;
80 const asymbol *b = * (const asymbol **) bp;
81
82 if (bfd_asymbol_value (a) > bfd_asymbol_value (b))
83 return 1;
84 if (bfd_asymbol_value (a) < bfd_asymbol_value (b))
85 return -1;
86 return 0;
87 }
88
89 /* Find the name of the function at ADDR. */
90 const char *
91 aarch64_get_func (SIM_DESC sd, uint64_t addr)
92 {
93 long symcount = STATE_PROG_SYMS_COUNT (sd);
94 asymbol **symtab = STATE_PROG_SYMS (sd);
95 int min, max;
96
97 min = -1;
98 max = symcount;
99 while (min < max - 1)
100 {
101 int sym;
102 bfd_vma sa;
103
104 sym = (min + max) / 2;
105 sa = bfd_asymbol_value (symtab[sym]);
106
107 if (sa > addr)
108 max = sym;
109 else if (sa < addr)
110 min = sym;
111 else
112 {
113 min = sym;
114 break;
115 }
116 }
117
118 if (min != -1)
119 return bfd_asymbol_name (symtab [min]);
120
121 return "";
122 }
123
124 SIM_RC
125 sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
126 char * const *argv, char * const *env)
127 {
128 sim_cpu *cpu = STATE_CPU (sd, 0);
129 bfd_vma addr = 0;
130
131 if (abfd != NULL)
132 addr = bfd_get_start_address (abfd);
133
134 aarch64_set_next_PC (cpu, addr);
135 aarch64_update_PC (cpu);
136
137 /* Standalone mode (i.e. `run`) will take care of the argv for us in
138 sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
139 with `gdb`), we need to handle it because the user can change the
140 argv on the fly via gdb's 'run'. */
141 if (STATE_PROG_ARGV (sd) != argv)
142 {
143 freeargv (STATE_PROG_ARGV (sd));
144 STATE_PROG_ARGV (sd) = dupargv (argv);
145 }
146
147 if (trace_load_symbols (sd))
148 {
149 STATE_PROG_SYMS_COUNT (sd) =
150 remove_useless_symbols (STATE_PROG_SYMS (sd),
151 STATE_PROG_SYMS_COUNT (sd));
152 qsort (STATE_PROG_SYMS (sd), STATE_PROG_SYMS_COUNT (sd),
153 sizeof (asymbol *), compare_symbols);
154 }
155
156 aarch64_init (cpu, addr);
157
158 return SIM_RC_OK;
159 }
160
161 /* Read the LENGTH bytes at BUF as a little-endian value. */
162
163 static bfd_vma
164 get_le (unsigned char *buf, unsigned int length)
165 {
166 bfd_vma acc = 0;
167
168 while (length -- > 0)
169 acc = (acc << 8) + buf[length];
170
171 return acc;
172 }
173
174 /* Store VAL as a little-endian value in the LENGTH bytes at BUF. */
175
176 static void
177 put_le (unsigned char *buf, unsigned int length, bfd_vma val)
178 {
179 int i;
180
181 for (i = 0; i < length; i++)
182 {
183 buf[i] = val & 0xff;
184 val >>= 8;
185 }
186 }
187
188 static int
189 check_regno (int regno)
190 {
191 return 0 <= regno && regno < AARCH64_MAX_REGNO;
192 }
193
194 static size_t
195 reg_size (int regno)
196 {
197 if (regno == AARCH64_CPSR_REGNO || regno == AARCH64_FPSR_REGNO)
198 return 32;
199 return 64;
200 }
201
202 static int
203 aarch64_reg_get (SIM_CPU *cpu, int regno, unsigned char *buf, int length)
204 {
205 size_t size;
206 bfd_vma val;
207
208 if (!check_regno (regno))
209 return 0;
210
211 size = reg_size (regno);
212
213 if (length != size)
214 return 0;
215
216 switch (regno)
217 {
218 case AARCH64_MIN_GR ... AARCH64_MAX_GR:
219 val = aarch64_get_reg_u64 (cpu, regno, 0);
220 break;
221
222 case AARCH64_MIN_FR ... AARCH64_MAX_FR:
223 val = aarch64_get_FP_double (cpu, regno - 32);
224 break;
225
226 case AARCH64_PC_REGNO:
227 val = aarch64_get_PC (cpu);
228 break;
229
230 case AARCH64_CPSR_REGNO:
231 val = aarch64_get_CPSR (cpu);
232 break;
233
234 case AARCH64_FPSR_REGNO:
235 val = aarch64_get_FPSR (cpu);
236 break;
237
238 default:
239 sim_io_eprintf (CPU_STATE (cpu),
240 "sim: unrecognized register number: %d\n", regno);
241 return -1;
242 }
243
244 put_le (buf, length, val);
245
246 return size;
247 }
248
249 static int
250 aarch64_reg_set (SIM_CPU *cpu, int regno, unsigned char *buf, int length)
251 {
252 size_t size;
253 bfd_vma val;
254
255 if (!check_regno (regno))
256 return -1;
257
258 size = reg_size (regno);
259
260 if (length != size)
261 return -1;
262
263 val = get_le (buf, length);
264
265 switch (regno)
266 {
267 case AARCH64_MIN_GR ... AARCH64_MAX_GR:
268 aarch64_set_reg_u64 (cpu, regno, 1, val);
269 break;
270
271 case AARCH64_MIN_FR ... AARCH64_MAX_FR:
272 aarch64_set_FP_double (cpu, regno - 32, (double) val);
273 break;
274
275 case AARCH64_PC_REGNO:
276 aarch64_set_next_PC (cpu, val);
277 aarch64_update_PC (cpu);
278 break;
279
280 case AARCH64_CPSR_REGNO:
281 aarch64_set_CPSR (cpu, val);
282 break;
283
284 case AARCH64_FPSR_REGNO:
285 aarch64_set_FPSR (cpu, val);
286 break;
287
288 default:
289 sim_io_eprintf (CPU_STATE (cpu),
290 "sim: unrecognized register number: %d\n", regno);
291 return 0;
292 }
293
294 return size;
295 }
296
297 static sim_cia
298 aarch64_pc_get (sim_cpu *cpu)
299 {
300 return aarch64_get_PC (cpu);
301 }
302
303 static void
304 aarch64_pc_set (sim_cpu *cpu, sim_cia pc)
305 {
306 aarch64_set_next_PC (cpu, pc);
307 aarch64_update_PC (cpu);
308 }
309
310 static void
311 free_state (SIM_DESC sd)
312 {
313 if (STATE_MODULES (sd) != NULL)
314 sim_module_uninstall (sd);
315 sim_cpu_free_all (sd);
316 sim_state_free (sd);
317 }
318
319 SIM_DESC
320 sim_open (SIM_OPEN_KIND kind,
321 struct host_callback_struct * callback,
322 struct bfd * abfd,
323 char * const * argv)
324 {
325 sim_cpu *cpu;
326 SIM_DESC sd = sim_state_alloc (kind, callback);
327
328 if (sd == NULL)
329 return sd;
330
331 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
332
333 /* We use NONSTRICT_ALIGNMENT as the default because AArch64 only enforces
334 4-byte alignment, even for 8-byte reads/writes. The common core does not
335 support this, so we opt for non-strict alignment instead. */
336 current_alignment = NONSTRICT_ALIGNMENT;
337
338 /* Perform the initialization steps one by one. */
339 if (sim_cpu_alloc_all (sd, 1) != SIM_RC_OK
340 || sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK
341 || sim_parse_args (sd, argv) != SIM_RC_OK
342 || sim_analyze_program (sd,
343 (STATE_PROG_ARGV (sd) != NULL
344 ? *STATE_PROG_ARGV (sd)
345 : NULL), abfd) != SIM_RC_OK
346 || sim_config (sd) != SIM_RC_OK
347 || sim_post_argv_init (sd) != SIM_RC_OK)
348 {
349 free_state (sd);
350 return NULL;
351 }
352
353 aarch64_init_LIT_table ();
354
355 assert (MAX_NR_PROCESSORS == 1);
356 cpu = STATE_CPU (sd, 0);
357 CPU_PC_FETCH (cpu) = aarch64_pc_get;
358 CPU_PC_STORE (cpu) = aarch64_pc_set;
359 CPU_REG_FETCH (cpu) = aarch64_reg_get;
360 CPU_REG_STORE (cpu) = aarch64_reg_set;
361
362 /* Set SP, FP and PC to 0 and set LR to -1
363 so we can detect a top-level return. */
364 aarch64_set_reg_u64 (cpu, SP, 1, 0);
365 aarch64_set_reg_u64 (cpu, FP, 1, 0);
366 aarch64_set_reg_u64 (cpu, LR, 1, TOP_LEVEL_RETURN_PC);
367 aarch64_set_next_PC (cpu, 0);
368 aarch64_update_PC (cpu);
369
370 /* Default to a 128 Mbyte (== 2^27) memory space. */
371 sim_do_commandf (sd, "memory-size 0x8000000");
372
373 return sd;
374 }
375
376 void
377 sim_engine_run (SIM_DESC sd,
378 int next_cpu_nr ATTRIBUTE_UNUSED,
379 int nr_cpus ATTRIBUTE_UNUSED,
380 int siggnal ATTRIBUTE_UNUSED)
381 {
382 aarch64_run (sd);
383 }