]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/aarch64/interp.c
GDB copyright headers update after running GDB's copyright.py script.
[thirdparty/binutils-gdb.git] / sim / aarch64 / interp.c
1 /* interp.c -- AArch64 sim interface to GDB.
2
3 Copyright (C) 2015-2016 Free Software Foundation, Inc.
4
5 Contributed by Red Hat.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include <stdio.h>
24 #include <assert.h>
25 #include <signal.h>
26 #include <string.h>
27 #include <ctype.h>
28 #include <stdlib.h>
29
30 #include "ansidecl.h"
31 #include "gdb/callback.h"
32 #include "gdb/remote-sim.h"
33 #include "gdb/signals.h"
34 #include "gdb/sim-aarch64.h"
35
36 #include "sim-main.h"
37 #include "sim-options.h"
38 #include "memory.h"
39 #include "simulator.h"
40
41 #include "dis-asm.h"
42
43 static struct disassemble_info info;
44 static unsigned long symcount = 0;
45 static asymbol ** symtab = NULL;
46
47 /* FIXME: 1000 characters should be enough to hold the disassembled
48 instruction plus any comments that come after it. But maybe with
49 C++ programs this might not be enough. Not sure if it is worth
50 adding logic to dynamically grow the buffer though. */
51 static char opbuf[1000];
52
53 static int op_printf (void *, const char *, ...) ATTRIBUTE_FPTR_PRINTF_2;
54
55 static int
56 op_printf (void *stream ATTRIBUTE_UNUSED, const char *fmt, ...)
57 {
58 size_t space_remaining;
59 int ret;
60 va_list ap;
61
62 space_remaining = sizeof (opbuf) - strlen (opbuf);
63 va_start (ap, fmt);
64 /* Instead of printing to stream we store the text in opbuf.
65 This allows us to use the sim_io_eprintf routine to output
66 the text in aarch64_print_insn. */
67 ret = vsnprintf (opbuf + strlen (opbuf), space_remaining, fmt, ap);
68 va_end (ap);
69 return ret;
70 }
71
72 void
73 aarch64_print_insn (SIM_DESC sd, uint64_t addr)
74 {
75 int size;
76
77 opbuf[0] = 0;
78 size = print_insn_aarch64 (addr, & info);
79 sim_io_eprintf (sd, " %*s\n", size, opbuf);
80 }
81
82 static int
83 sim_dis_read (bfd_vma memaddr,
84 bfd_byte * ptr,
85 unsigned int length,
86 struct disassemble_info * info)
87 {
88 aarch64_get_mem_blk (info->application_data, memaddr, (char *) ptr, length);
89
90 return 0;
91 }
92
93 /* Filter out (in place) symbols that are useless for disassembly.
94 COUNT is the number of elements in SYMBOLS.
95 Return the number of useful symbols. */
96
97 static unsigned long
98 remove_useless_symbols (asymbol **symbols, unsigned long count)
99 {
100 asymbol **in_ptr = symbols;
101 asymbol **out_ptr = symbols;
102
103 while (count-- > 0)
104 {
105 asymbol *sym = *in_ptr++;
106
107 if (strstr (sym->name, "gcc2_compiled"))
108 continue;
109 if (sym->name == NULL || sym->name[0] == '\0')
110 continue;
111 if (sym->flags & (BSF_DEBUGGING))
112 continue;
113 if ( bfd_is_und_section (sym->section)
114 || bfd_is_com_section (sym->section))
115 continue;
116 if (sym->name[0] == '$')
117 continue;
118
119 *out_ptr++ = sym;
120 }
121 return out_ptr - symbols;
122 }
123
124 static signed int
125 compare_symbols (const void *ap, const void *bp)
126 {
127 const asymbol *a = * (const asymbol **) ap;
128 const asymbol *b = * (const asymbol **) bp;
129
130 if (bfd_asymbol_value (a) > bfd_asymbol_value (b))
131 return 1;
132 if (bfd_asymbol_value (a) < bfd_asymbol_value (b))
133 return -1;
134 return 0;
135 }
136
137 /* Find the name of the function at ADDR. */
138 const char *
139 aarch64_get_func (uint64_t addr)
140 {
141 int min, max;
142
143 min = -1;
144 max = symcount;
145 while (min < max - 1)
146 {
147 int sym;
148 bfd_vma sa;
149
150 sym = (min + max) / 2;
151 sa = bfd_asymbol_value (symtab[sym]);
152
153 if (sa > addr)
154 max = sym;
155 else if (sa < addr)
156 min = sym;
157 else
158 {
159 min = sym;
160 break;
161 }
162 }
163
164 if (min != -1)
165 return bfd_asymbol_name (symtab [min]);
166
167 return "";
168 }
169
170 uint64_t
171 aarch64_get_sym_value (const char *name)
172 {
173 unsigned long i;
174
175 for (i = 0; i < symcount; i++)
176 if (strcmp (bfd_asymbol_name (symtab[i]), name) == 0)
177 return bfd_asymbol_value (symtab[i]);
178
179 return 0;
180 }
181
182 SIM_RC
183 sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char **argv, char **env)
184 {
185 sim_cpu *cpu = STATE_CPU (sd, 0);
186 long storage;
187 bfd_vma addr = 0;
188
189 if (abfd != NULL)
190 addr = bfd_get_start_address (abfd);
191
192 aarch64_set_next_PC (cpu, addr);
193 aarch64_update_PC (cpu);
194
195 /* Standalone mode (i.e. `run`) will take care of the argv for us in
196 sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
197 with `gdb`), we need to handle it because the user can change the
198 argv on the fly via gdb's 'run'. */
199 if (STATE_PROG_ARGV (sd) != argv)
200 {
201 freeargv (STATE_PROG_ARGV (sd));
202 STATE_PROG_ARGV (sd) = dupargv (argv);
203 }
204
205 memset (& info, 0, sizeof (info));
206 init_disassemble_info (& info, NULL, op_printf);
207 info.read_memory_func = sim_dis_read;
208 info.arch = bfd_get_arch (abfd);
209 info.mach = bfd_get_mach (abfd);
210 info.application_data = cpu;
211 if (info.mach == 0)
212 info.arch = bfd_arch_aarch64;
213 disassemble_init_for_target (& info);
214
215 storage = bfd_get_symtab_upper_bound (abfd);
216 if (storage > 0)
217 {
218 symtab = (asymbol **) xmalloc (storage);
219 symcount = bfd_canonicalize_symtab (abfd, symtab);
220 symcount = remove_useless_symbols (symtab, symcount);
221 qsort (symtab, symcount, sizeof (asymbol *), compare_symbols);
222 }
223
224 aarch64_init (cpu, bfd_get_start_address (abfd));
225
226 return SIM_RC_OK;
227 }
228
229 /* Read the LENGTH bytes at BUF as a little-endian value. */
230
231 static bfd_vma
232 get_le (unsigned char *buf, unsigned int length)
233 {
234 bfd_vma acc = 0;
235
236 while (length -- > 0)
237 acc = (acc << 8) + buf[length];
238
239 return acc;
240 }
241
242 /* Store VAL as a little-endian value in the LENGTH bytes at BUF. */
243
244 static void
245 put_le (unsigned char *buf, unsigned int length, bfd_vma val)
246 {
247 int i;
248
249 for (i = 0; i < length; i++)
250 {
251 buf[i] = val & 0xff;
252 val >>= 8;
253 }
254 }
255
256 static int
257 check_regno (int regno)
258 {
259 return 0 <= regno && regno < AARCH64_MAX_REGNO;
260 }
261
262 static size_t
263 reg_size (int regno)
264 {
265 if (regno == AARCH64_CPSR_REGNO || regno == AARCH64_FPSR_REGNO)
266 return 32;
267 return 64;
268 }
269
270 static int
271 aarch64_reg_get (SIM_CPU *cpu, int regno, unsigned char *buf, int length)
272 {
273 size_t size;
274 bfd_vma val;
275
276 if (!check_regno (regno))
277 return 0;
278
279 size = reg_size (regno);
280
281 if (length != size)
282 return 0;
283
284 switch (regno)
285 {
286 case AARCH64_MIN_GR ... AARCH64_MAX_GR:
287 val = aarch64_get_reg_u64 (cpu, regno, 0);
288 break;
289
290 case AARCH64_MIN_FR ... AARCH64_MAX_FR:
291 val = aarch64_get_FP_double (cpu, regno - 32);
292 break;
293
294 case AARCH64_PC_REGNO:
295 val = aarch64_get_PC (cpu);
296 break;
297
298 case AARCH64_CPSR_REGNO:
299 val = aarch64_get_CPSR (cpu);
300 break;
301
302 case AARCH64_FPSR_REGNO:
303 val = aarch64_get_FPSR (cpu);
304 break;
305
306 default:
307 sim_io_eprintf (CPU_STATE (cpu),
308 "sim: unrecognized register number: %d\n", regno);
309 return -1;
310 }
311
312 put_le (buf, length, val);
313
314 return size;
315 }
316
317 static int
318 aarch64_reg_set (SIM_CPU *cpu, int regno, unsigned char *buf, int length)
319 {
320 size_t size;
321 bfd_vma val;
322
323 if (!check_regno (regno))
324 return -1;
325
326 size = reg_size (regno);
327
328 if (length != size)
329 return -1;
330
331 val = get_le (buf, length);
332
333 switch (regno)
334 {
335 case AARCH64_MIN_GR ... AARCH64_MAX_GR:
336 aarch64_set_reg_u64 (cpu, regno, 1, val);
337 break;
338
339 case AARCH64_MIN_FR ... AARCH64_MAX_FR:
340 aarch64_set_FP_double (cpu, regno - 32, (double) val);
341 break;
342
343 case AARCH64_PC_REGNO:
344 aarch64_set_next_PC (cpu, val);
345 aarch64_update_PC (cpu);
346 break;
347
348 case AARCH64_CPSR_REGNO:
349 aarch64_set_CPSR (cpu, val);
350 break;
351
352 case AARCH64_FPSR_REGNO:
353 aarch64_set_FPSR (cpu, val);
354 break;
355
356 default:
357 sim_io_eprintf (CPU_STATE (cpu),
358 "sim: unrecognized register number: %d\n", regno);
359 return 0;
360 }
361
362 return size;
363 }
364
365 static sim_cia
366 aarch64_pc_get (sim_cpu *cpu)
367 {
368 return aarch64_get_PC (cpu);
369 }
370
371 static void
372 aarch64_pc_set (sim_cpu *cpu, sim_cia pc)
373 {
374 aarch64_set_next_PC (cpu, pc);
375 aarch64_update_PC (cpu);
376 }
377
378 static void
379 free_state (SIM_DESC sd)
380 {
381 if (STATE_MODULES (sd) != NULL)
382 sim_module_uninstall (sd);
383 sim_cpu_free_all (sd);
384 sim_state_free (sd);
385 }
386
387 enum
388 {
389 OPTION_DISAS = OPTION_START,
390 };
391
392 static SIM_RC
393 aarch64_option_handler (SIM_DESC sd ATTRIBUTE_UNUSED,
394 sim_cpu * current_cpu ATTRIBUTE_UNUSED,
395 int opt,
396 char * arg ATTRIBUTE_UNUSED,
397 int is_command ATTRIBUTE_UNUSED)
398 {
399 switch (opt)
400 {
401 case OPTION_DISAS:
402 disas = TRUE;
403 return SIM_RC_OK;
404
405 default:
406 sim_io_eprintf (sd, "Unknown AArch64 option %d\n", opt);
407 return SIM_RC_FAIL;
408 }
409 }
410
411 static DECLARE_OPTION_HANDLER (aarch64_option_handler);
412
413 const OPTION aarch64_options[] =
414 {
415 { {"disas", no_argument, NULL, OPTION_DISAS },
416 '\0', NULL, "Enable instruction disassembly",
417 aarch64_option_handler, NULL },
418
419 { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL, NULL }
420 };
421
422 SIM_DESC
423 sim_open (SIM_OPEN_KIND kind,
424 struct host_callback_struct * callback,
425 struct bfd * abfd,
426 char ** argv)
427 {
428 int i;
429 sim_cpu *cpu;
430 SIM_DESC sd = sim_state_alloc (kind, callback);
431
432 if (sd == NULL)
433 return sd;
434
435 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
436
437 sim_add_option_table (sd, NULL, aarch64_options);
438
439 /* Perform the initialization steps one by one. */
440 if (sim_cpu_alloc_all (sd, 1, 0) != SIM_RC_OK
441 || sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK
442 || sim_parse_args (sd, argv) != SIM_RC_OK
443 || sim_analyze_program (sd,
444 (STATE_PROG_ARGV (sd) != NULL
445 ? *STATE_PROG_ARGV (sd)
446 : NULL), abfd) != SIM_RC_OK
447 || sim_config (sd) != SIM_RC_OK
448 || sim_post_argv_init (sd) != SIM_RC_OK)
449 {
450 free_state (sd);
451 return NULL;
452 }
453
454 aarch64_init_LIT_table ();
455
456 assert (MAX_NR_PROCESSORS == 1);
457 cpu = STATE_CPU (sd, 0);
458 CPU_PC_FETCH (cpu) = aarch64_pc_get;
459 CPU_PC_STORE (cpu) = aarch64_pc_set;
460 CPU_REG_FETCH (cpu) = aarch64_reg_get;
461 CPU_REG_STORE (cpu) = aarch64_reg_set;
462
463 /* Set SP, FP and PC to 0 and set LR to -1
464 so we can detect a top-level return. */
465 aarch64_set_reg_u64 (cpu, SP, 1, 0);
466 aarch64_set_reg_u64 (cpu, FP, 1, 0);
467 aarch64_set_reg_u64 (cpu, LR, 1, TOP_LEVEL_RETURN_PC);
468 aarch64_set_next_PC (cpu, 0);
469 aarch64_update_PC (cpu);
470
471 /* Default to a 128 Mbyte (== 2^27) memory space. */
472 sim_do_commandf (sd, "memory-size 0x8000000");
473
474 return sd;
475 }
476
477 void
478 sim_engine_run (SIM_DESC sd,
479 int next_cpu_nr ATTRIBUTE_UNUSED,
480 int nr_cpus ATTRIBUTE_UNUSED,
481 int siggnal ATTRIBUTE_UNUSED)
482 {
483 aarch64_run (sd);
484 }