]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/aarch64/interp.c
Update copyright year range in header of all files managed by GDB
[thirdparty/binutils-gdb.git] / sim / aarch64 / interp.c
1 /* interp.c -- AArch64 sim interface to GDB.
2
3 Copyright (C) 2015-2024 Free Software Foundation, Inc.
4
5 Contributed by Red Hat.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This must come before any other includes. */
23 #include "defs.h"
24
25 #include <stdio.h>
26 #include <assert.h>
27 #include <signal.h>
28 #include <string.h>
29 #include <ctype.h>
30 #include <stdlib.h>
31
32 #include "ansidecl.h"
33 #include "bfd.h"
34 #include "sim/callback.h"
35 #include "sim/sim.h"
36 #include "gdb/signals.h"
37 #include "sim/sim-aarch64.h"
38
39 #include "sim-main.h"
40 #include "sim-options.h"
41 #include "memory.h"
42 #include "simulator.h"
43 #include "sim-assert.h"
44
45 #include "aarch64-sim.h"
46
47 /* Filter out (in place) symbols that are useless for disassembly.
48 COUNT is the number of elements in SYMBOLS.
49 Return the number of useful symbols. */
50
51 static long
52 remove_useless_symbols (asymbol **symbols, long count)
53 {
54 asymbol **in_ptr = symbols;
55 asymbol **out_ptr = symbols;
56
57 while (count-- > 0)
58 {
59 asymbol *sym = *in_ptr++;
60
61 if (strstr (sym->name, "gcc2_compiled"))
62 continue;
63 if (sym->name == NULL || sym->name[0] == '\0')
64 continue;
65 if (sym->flags & (BSF_DEBUGGING))
66 continue;
67 if ( bfd_is_und_section (sym->section)
68 || bfd_is_com_section (sym->section))
69 continue;
70 if (sym->name[0] == '$')
71 continue;
72
73 *out_ptr++ = sym;
74 }
75 return out_ptr - symbols;
76 }
77
78 static signed int
79 compare_symbols (const void *ap, const void *bp)
80 {
81 const asymbol *a = * (const asymbol **) ap;
82 const asymbol *b = * (const asymbol **) bp;
83
84 if (bfd_asymbol_value (a) > bfd_asymbol_value (b))
85 return 1;
86 if (bfd_asymbol_value (a) < bfd_asymbol_value (b))
87 return -1;
88 return 0;
89 }
90
91 /* Find the name of the function at ADDR. */
92 const char *
93 aarch64_get_func (SIM_DESC sd, uint64_t addr)
94 {
95 long symcount = STATE_PROG_SYMS_COUNT (sd);
96 asymbol **symtab = STATE_PROG_SYMS (sd);
97 int min, max;
98
99 min = -1;
100 max = symcount;
101 while (min < max - 1)
102 {
103 int sym;
104 bfd_vma sa;
105
106 sym = (min + max) / 2;
107 sa = bfd_asymbol_value (symtab[sym]);
108
109 if (sa > addr)
110 max = sym;
111 else if (sa < addr)
112 min = sym;
113 else
114 {
115 min = sym;
116 break;
117 }
118 }
119
120 if (min != -1)
121 return bfd_asymbol_name (symtab [min]);
122
123 return "";
124 }
125
126 SIM_RC
127 sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
128 char * const *argv, char * const *env)
129 {
130 sim_cpu *cpu = STATE_CPU (sd, 0);
131 host_callback *cb = STATE_CALLBACK (sd);
132 bfd_vma addr = 0;
133
134 if (abfd != NULL)
135 addr = bfd_get_start_address (abfd);
136
137 aarch64_set_next_PC (cpu, addr);
138 aarch64_update_PC (cpu);
139
140 /* Standalone mode (i.e. `run`) will take care of the argv for us in
141 sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
142 with `gdb`), we need to handle it because the user can change the
143 argv on the fly via gdb's 'run'. */
144 if (STATE_PROG_ARGV (sd) != argv)
145 {
146 freeargv (STATE_PROG_ARGV (sd));
147 STATE_PROG_ARGV (sd) = dupargv (argv);
148 }
149
150 if (STATE_PROG_ENVP (sd) != env)
151 {
152 freeargv (STATE_PROG_ENVP (sd));
153 STATE_PROG_ENVP (sd) = dupargv (env);
154 }
155
156 cb->argv = STATE_PROG_ARGV (sd);
157 cb->envp = STATE_PROG_ENVP (sd);
158
159 if (trace_load_symbols (sd))
160 {
161 STATE_PROG_SYMS_COUNT (sd) =
162 remove_useless_symbols (STATE_PROG_SYMS (sd),
163 STATE_PROG_SYMS_COUNT (sd));
164 qsort (STATE_PROG_SYMS (sd), STATE_PROG_SYMS_COUNT (sd),
165 sizeof (asymbol *), compare_symbols);
166 }
167
168 aarch64_init (cpu, addr);
169
170 return SIM_RC_OK;
171 }
172
173 /* Read the LENGTH bytes at BUF as a little-endian value. */
174
175 static bfd_vma
176 get_le (const unsigned char *buf, unsigned int length)
177 {
178 bfd_vma acc = 0;
179
180 while (length -- > 0)
181 acc = (acc << 8) + buf[length];
182
183 return acc;
184 }
185
186 /* Store VAL as a little-endian value in the LENGTH bytes at BUF. */
187
188 static void
189 put_le (unsigned char *buf, unsigned int length, bfd_vma val)
190 {
191 int i;
192
193 for (i = 0; i < length; i++)
194 {
195 buf[i] = val & 0xff;
196 val >>= 8;
197 }
198 }
199
200 static int
201 check_regno (int regno)
202 {
203 return 0 <= regno && regno < AARCH64_MAX_REGNO;
204 }
205
206 static size_t
207 reg_size (int regno)
208 {
209 if (regno == AARCH64_CPSR_REGNO || regno == AARCH64_FPSR_REGNO)
210 return 32;
211 return 64;
212 }
213
214 static int
215 aarch64_reg_get (SIM_CPU *cpu, int regno, void *buf, int length)
216 {
217 size_t size;
218 bfd_vma val;
219
220 if (!check_regno (regno))
221 return 0;
222
223 size = reg_size (regno);
224
225 if (length != size)
226 return 0;
227
228 switch (regno)
229 {
230 case AARCH64_MIN_GR ... AARCH64_MAX_GR:
231 val = aarch64_get_reg_u64 (cpu, regno, 0);
232 break;
233
234 case AARCH64_MIN_FR ... AARCH64_MAX_FR:
235 val = aarch64_get_FP_double (cpu, regno - 32);
236 break;
237
238 case AARCH64_PC_REGNO:
239 val = aarch64_get_PC (cpu);
240 break;
241
242 case AARCH64_CPSR_REGNO:
243 val = aarch64_get_CPSR (cpu);
244 break;
245
246 case AARCH64_FPSR_REGNO:
247 val = aarch64_get_FPSR (cpu);
248 break;
249
250 default:
251 sim_io_eprintf (CPU_STATE (cpu),
252 "sim: unrecognized register number: %d\n", regno);
253 return -1;
254 }
255
256 put_le (buf, length, val);
257
258 return size;
259 }
260
261 static int
262 aarch64_reg_set (SIM_CPU *cpu, int regno, const void *buf, int length)
263 {
264 size_t size;
265 bfd_vma val;
266
267 if (!check_regno (regno))
268 return -1;
269
270 size = reg_size (regno);
271
272 if (length != size)
273 return -1;
274
275 val = get_le (buf, length);
276
277 switch (regno)
278 {
279 case AARCH64_MIN_GR ... AARCH64_MAX_GR:
280 aarch64_set_reg_u64 (cpu, regno, 1, val);
281 break;
282
283 case AARCH64_MIN_FR ... AARCH64_MAX_FR:
284 aarch64_set_FP_double (cpu, regno - 32, (double) val);
285 break;
286
287 case AARCH64_PC_REGNO:
288 aarch64_set_next_PC (cpu, val);
289 aarch64_update_PC (cpu);
290 break;
291
292 case AARCH64_CPSR_REGNO:
293 aarch64_set_CPSR (cpu, val);
294 break;
295
296 case AARCH64_FPSR_REGNO:
297 aarch64_set_FPSR (cpu, val);
298 break;
299
300 default:
301 sim_io_eprintf (CPU_STATE (cpu),
302 "sim: unrecognized register number: %d\n", regno);
303 return 0;
304 }
305
306 return size;
307 }
308
309 static sim_cia
310 aarch64_pc_get (sim_cpu *cpu)
311 {
312 return aarch64_get_PC (cpu);
313 }
314
315 static void
316 aarch64_pc_set (sim_cpu *cpu, sim_cia pc)
317 {
318 aarch64_set_next_PC (cpu, pc);
319 aarch64_update_PC (cpu);
320 }
321
322 static void
323 free_state (SIM_DESC sd)
324 {
325 if (STATE_MODULES (sd) != NULL)
326 sim_module_uninstall (sd);
327 sim_cpu_free_all (sd);
328 sim_state_free (sd);
329 }
330
331 SIM_DESC
332 sim_open (SIM_OPEN_KIND kind,
333 struct host_callback_struct * callback,
334 struct bfd * abfd,
335 char * const * argv)
336 {
337 sim_cpu *cpu;
338 SIM_DESC sd = sim_state_alloc (kind, callback);
339
340 if (sd == NULL)
341 return sd;
342
343 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
344
345 /* We use NONSTRICT_ALIGNMENT as the default because AArch64 only enforces
346 4-byte alignment, even for 8-byte reads/writes. The common core does not
347 support this, so we opt for non-strict alignment instead. */
348 current_alignment = NONSTRICT_ALIGNMENT;
349
350 /* Perform the initialization steps one by one. */
351 if (sim_cpu_alloc_all_extra (sd, 0, sizeof (struct aarch64_sim_cpu))
352 != SIM_RC_OK
353 || sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK
354 || sim_parse_args (sd, argv) != SIM_RC_OK
355 || sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK
356 || sim_config (sd) != SIM_RC_OK
357 || sim_post_argv_init (sd) != SIM_RC_OK)
358 {
359 free_state (sd);
360 return NULL;
361 }
362
363 aarch64_init_LIT_table ();
364
365 assert (MAX_NR_PROCESSORS == 1);
366 cpu = STATE_CPU (sd, 0);
367 CPU_PC_FETCH (cpu) = aarch64_pc_get;
368 CPU_PC_STORE (cpu) = aarch64_pc_set;
369 CPU_REG_FETCH (cpu) = aarch64_reg_get;
370 CPU_REG_STORE (cpu) = aarch64_reg_set;
371
372 /* Set SP, FP and PC to 0 and set LR to -1
373 so we can detect a top-level return. */
374 aarch64_set_reg_u64 (cpu, SP, 1, 0);
375 aarch64_set_reg_u64 (cpu, FP, 1, 0);
376 aarch64_set_reg_u64 (cpu, LR, 1, TOP_LEVEL_RETURN_PC);
377 aarch64_set_next_PC (cpu, 0);
378 aarch64_update_PC (cpu);
379
380 /* Default to a 128 Mbyte (== 2^27) memory space. */
381 sim_do_commandf (sd, "memory-size 0x8000000");
382
383 return sd;
384 }
385
386 void
387 sim_engine_run (SIM_DESC sd,
388 int next_cpu_nr ATTRIBUTE_UNUSED,
389 int nr_cpus ATTRIBUTE_UNUSED,
390 int siggnal ATTRIBUTE_UNUSED)
391 {
392 aarch64_run (sd);
393 }