]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/common/sim-fpu.h
Update copyright year range in all GDB files.
[thirdparty/binutils-gdb.git] / sim / common / sim-fpu.h
1 /* Simulator Floating-point support.
2
3 Copyright 1997-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB, the GNU debugger.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22
23
24 #ifndef SIM_FPU_H
25 #define SIM_FPU_H
26
27
28
29 /* The FPU intermediate type - this object, passed by reference,
30 should be treated as opaque.
31
32
33 Pragmatics - pass struct by ref:
34
35 The alternatives for this object/interface that were considered
36 were: a packed 64 bit value; an unpacked structure passed by value;
37 and an unpacked structure passed by reference.
38
39 The packed 64 bit value was rejected because: it limited the
40 precision of intermediate values; reasonable performance would only
41 be achieved when the sim_fpu package was in-lined allowing repeated
42 unpacking operations to be eliminated.
43
44 For unpacked structures (passed by value and reference), the code
45 quality of GCC-2.7 (on x86) for each alternative was compared.
46 Needless to say the results, while better than for a packed 64 bit
47 object, were still poor (GCC had only limited support for the
48 optimization of references to structure members). Regardless, the
49 struct-by-ref alternative achieved better results when compiled
50 with (better speed) and without (better code density) in-lining.
51 Here's looking forward to an improved GCC optimizer.
52
53
54 Pragmatics - avoid host FP hardware:
55
56 FP operations can be implemented by either: the host's floating
57 point hardware; or by emulating the FP operations using integer
58 only routines. This is direct tradeoff between speed, portability
59 and correctness.
60
61 The two principal reasons for selecting portability and correctness
62 over speed are:
63
64 1 - Correctness. The assumption that FP correctness wasn't an
65 issue for code being run on simulators was wrong. Instead of
66 running FP tolerant (?) code, simulator users instead typically run
67 very aggressive FP code sequences. The sole purpose of those
68 sequences being to test the target ISA's FP implementation.
69
70 2 - Portability. The host FP implementation is not predictable. A
71 simulator modeling aggressive FP code sequences using the hosts FPU
72 relies heavily on the correctness of the hosts FP implementation.
73 It turns out that such trust can be misplaced. The behavior of
74 host FP implementations when handling edge conditions such as SNaNs
75 and exceptions varied widely.
76
77
78 */
79
80
81 typedef enum
82 {
83 sim_fpu_class_zero,
84 sim_fpu_class_snan,
85 sim_fpu_class_qnan,
86 sim_fpu_class_number,
87 sim_fpu_class_denorm,
88 sim_fpu_class_infinity,
89 } sim_fpu_class;
90
91 typedef struct _sim_fpu {
92 sim_fpu_class class;
93 int sign;
94 unsigned64 fraction;
95 int normal_exp;
96 } sim_fpu;
97
98
99
100 /* Rounding options.
101
102 The value zero (sim_fpu_round_default) for ALU operations indicates
103 that, when possible, rounding should be avoided. */
104
105 typedef enum
106 {
107 sim_fpu_round_default = 0,
108 sim_fpu_round_near = 1,
109 sim_fpu_round_zero = 2,
110 sim_fpu_round_up = 3,
111 sim_fpu_round_down = 4,
112 } sim_fpu_round;
113
114
115 /* Options when handling denormalized numbers. */
116
117 typedef enum
118 {
119 sim_fpu_denorm_default = 0,
120 sim_fpu_denorm_underflow_inexact = 1,
121 sim_fpu_denorm_zero = 2,
122 } sim_fpu_denorm;
123
124
125
126 /* Status values returned by FPU operators.
127
128 When checking the result of an FP sequence (ex 32to, add, single,
129 to32) the caller may either: check the return value of each FP
130 operator; or form the union (OR) of the returned values and examine
131 them once at the end.
132
133 FIXME: This facility is still being developed. The choice of
134 status values returned and their exact meaning may changed in the
135 future. */
136
137 typedef enum
138 {
139 sim_fpu_status_invalid_snan = 1,
140 sim_fpu_status_invalid_qnan = 2,
141 sim_fpu_status_invalid_isi = 4, /* (inf - inf) */
142 sim_fpu_status_invalid_idi = 8, /* (inf / inf) */
143 sim_fpu_status_invalid_zdz = 16, /* (0 / 0) */
144 sim_fpu_status_invalid_imz = 32, /* (inf * 0) */
145 sim_fpu_status_invalid_cvi = 64, /* convert to integer */
146 sim_fpu_status_invalid_div0 = 128, /* (X / 0) */
147 sim_fpu_status_invalid_cmp = 256, /* compare */
148 sim_fpu_status_invalid_sqrt = 512,
149 sim_fpu_status_invalid_irx = 1024, /* (inf % X) */
150 sim_fpu_status_rounded = 2048,
151 sim_fpu_status_inexact = 4096,
152 sim_fpu_status_overflow = 8192,
153 sim_fpu_status_underflow = 16384,
154 sim_fpu_status_denorm = 32768,
155 } sim_fpu_status;
156
157
158
159
160 /* Directly map between a 32/64 bit register and the sim_fpu internal
161 type.
162
163 When converting from the 32/64 bit packed format to the sim_fpu
164 internal type, the operation is exact.
165
166 When converting from the sim_fpu internal type to 32/64 bit packed
167 format, the operation may result in a loss of precision. The
168 configuration macro WITH_FPU_CONVERSION controls this. By default,
169 silent round to nearest is performed. Alternatively, round up,
170 round down and round to zero can be performed. In a simulator
171 emulating exact FPU behavior, sim_fpu_round_{32,64} should be
172 called before packing the sim_fpu value. */
173
174 INLINE_SIM_FPU (void) sim_fpu_32to (sim_fpu *f, unsigned32 s);
175 INLINE_SIM_FPU (void) sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l);
176 INLINE_SIM_FPU (void) sim_fpu_64to (sim_fpu *f, unsigned64 d);
177
178 INLINE_SIM_FPU (void) sim_fpu_to32 (unsigned32 *s, const sim_fpu *f);
179 INLINE_SIM_FPU (void) sim_fpu_to232 (unsigned32 *h, unsigned32 *l, const sim_fpu *f);
180 INLINE_SIM_FPU (void) sim_fpu_to64 (unsigned64 *d, const sim_fpu *f);
181
182
183 /* Create a sim_fpu struct using raw information. (FRACTION & LSMASK
184 (PRECISION-1, 0)) is assumed to contain the fraction part of the
185 floating-point number. The leading bit LSBIT (PRECISION) is always
186 implied. The number created can be represented by:
187
188 (SIGN ? "-" : "+") "1." FRACTION{PRECISION-1,0} X 2 ^ NORMAL_EXP>
189
190 You can not specify zero using this function. */
191
192 INLINE_SIM_FPU (void) sim_fpu_fractionto (sim_fpu *f, int sign, int normal_exp, unsigned64 fraction, int precision);
193
194 /* Reverse operation. If S is a non-zero number, discards the implied
195 leading one and returns PRECISION fraction bits. No rounding is
196 performed. */
197 INLINE_SIM_FPU (unsigned64) sim_fpu_tofraction (const sim_fpu *s, int precision);
198
199
200
201 /* Rounding operators.
202
203 Force an intermediate result to an exact 32/64 bit
204 representation. */
205
206 INLINE_SIM_FPU (int) sim_fpu_round_32 (sim_fpu *f,
207 sim_fpu_round round,
208 sim_fpu_denorm denorm);
209 INLINE_SIM_FPU (int) sim_fpu_round_64 (sim_fpu *f,
210 sim_fpu_round round,
211 sim_fpu_denorm denorm);
212
213
214
215 /* Arithmetic operators.
216
217 FIXME: In the future, additional arguments ROUNDING and BITSIZE may
218 be added. */
219
220 typedef int (sim_fpu_op1) (sim_fpu *f,
221 const sim_fpu *l);
222 typedef int (sim_fpu_op2) (sim_fpu *f,
223 const sim_fpu *l,
224 const sim_fpu *r);
225
226 INLINE_SIM_FPU (int) sim_fpu_add (sim_fpu *f,
227 const sim_fpu *l, const sim_fpu *r);
228 INLINE_SIM_FPU (int) sim_fpu_sub (sim_fpu *f,
229 const sim_fpu *l, const sim_fpu *r);
230 INLINE_SIM_FPU (int) sim_fpu_mul (sim_fpu *f,
231 const sim_fpu *l, const sim_fpu *r);
232 INLINE_SIM_FPU (int) sim_fpu_div (sim_fpu *f,
233 const sim_fpu *l, const sim_fpu *r);
234 INLINE_SIM_FPU (int) sim_fpu_rem (sim_fpu *f,
235 const sim_fpu *l, const sim_fpu *r);
236 INLINE_SIM_FPU (int) sim_fpu_max (sim_fpu *f,
237 const sim_fpu *l, const sim_fpu *r);
238 INLINE_SIM_FPU (int) sim_fpu_min (sim_fpu *f,
239 const sim_fpu *l, const sim_fpu *r);
240 INLINE_SIM_FPU (int) sim_fpu_neg (sim_fpu *f,
241 const sim_fpu *a);
242 INLINE_SIM_FPU (int) sim_fpu_abs (sim_fpu *f,
243 const sim_fpu *a);
244 INLINE_SIM_FPU (int) sim_fpu_inv (sim_fpu *f,
245 const sim_fpu *a);
246 INLINE_SIM_FPU (int) sim_fpu_sqrt (sim_fpu *f,
247 const sim_fpu *sqr);
248
249
250
251 /* Conversion of integer <-> floating point. */
252
253 INLINE_SIM_FPU (int) sim_fpu_i32to (sim_fpu *f, signed32 i,
254 sim_fpu_round round);
255 INLINE_SIM_FPU (int) sim_fpu_u32to (sim_fpu *f, unsigned32 u,
256 sim_fpu_round round);
257 INLINE_SIM_FPU (int) sim_fpu_i64to (sim_fpu *f, signed64 i,
258 sim_fpu_round round);
259 INLINE_SIM_FPU (int) sim_fpu_u64to (sim_fpu *f, unsigned64 u,
260 sim_fpu_round round);
261 #if 0
262 INLINE_SIM_FPU (int) sim_fpu_i232to (sim_fpu *f, signed32 h, signed32 l,
263 sim_fpu_round round);
264 #endif
265 #if 0
266 INLINE_SIM_FPU (int) sim_fpu_u232to (sim_fpu *f, unsigned32 h, unsigned32 l,
267 sim_fpu_round round);
268 #endif
269
270 INLINE_SIM_FPU (int) sim_fpu_to32i (signed32 *i, const sim_fpu *f,
271 sim_fpu_round round);
272 INLINE_SIM_FPU (int) sim_fpu_to32u (unsigned32 *u, const sim_fpu *f,
273 sim_fpu_round round);
274 INLINE_SIM_FPU (int) sim_fpu_to64i (signed64 *i, const sim_fpu *f,
275 sim_fpu_round round);
276 INLINE_SIM_FPU (int) sim_fpu_to64u (unsigned64 *u, const sim_fpu *f,
277 sim_fpu_round round);
278 #if 0
279 INLINE_SIM_FPU (int) sim_fpu_to232i (signed64 *h, signed64 *l, const sim_fpu *f,
280 sim_fpu_round round);
281 #endif
282 #if 0
283 INLINE_SIM_FPU (int) sim_fpu_to232u (unsigned64 *h, unsigned64 *l, const sim_fpu *f,
284 sim_fpu_round round);
285 #endif
286
287
288 /* Conversion of internal sim_fpu type to host double format.
289
290 For debugging/tracing only. A SNaN is never returned. */
291
292 /* INLINE_SIM_FPU (float) sim_fpu_2f (const sim_fpu *f); */
293 INLINE_SIM_FPU (double) sim_fpu_2d (const sim_fpu *d);
294
295 /* INLINE_SIM_FPU (void) sim_fpu_f2 (sim_fpu *f, float s); */
296 INLINE_SIM_FPU (void) sim_fpu_d2 (sim_fpu *f, double d);
297
298
299
300 /* Specific number classes.
301
302 NB: When either, a 32/64 bit floating points is converted to
303 internal format, or an internal format number is rounded to 32/64
304 bit precision, a special marker is retained that indicates that the
305 value was normalized. For such numbers both is_number and
306 is_denorm return true. */
307
308 INLINE_SIM_FPU (int) sim_fpu_is_nan (const sim_fpu *s); /* 1 => SNaN or QNaN */
309 INLINE_SIM_FPU (int) sim_fpu_is_snan (const sim_fpu *s); /* 1 => SNaN */
310 INLINE_SIM_FPU (int) sim_fpu_is_qnan (const sim_fpu *s); /* 1 => QNaN */
311
312 INLINE_SIM_FPU (int) sim_fpu_is_zero (const sim_fpu *s);
313 INLINE_SIM_FPU (int) sim_fpu_is_infinity (const sim_fpu *s);
314 INLINE_SIM_FPU (int) sim_fpu_is_number (const sim_fpu *s); /* !zero */
315 INLINE_SIM_FPU (int) sim_fpu_is_denorm (const sim_fpu *s); /* !zero */
316
317
318
319 /* Floating point fields */
320
321 INLINE_SIM_FPU (int) sim_fpu_sign (const sim_fpu *s);
322 INLINE_SIM_FPU (int) sim_fpu_exp (const sim_fpu *s);
323 INLINE_SIM_FPU (unsigned64) sim_fpu_fraction (const sim_fpu *s);
324 INLINE_SIM_FPU (unsigned64) sim_fpu_guard (const sim_fpu *s, int is_double);
325
326
327
328 /* Specific comparison operators
329
330 For NaNs et al., the comparison operators will set IS to zero and
331 return a nonzero result. */
332
333 INLINE_SIM_FPU (int) sim_fpu_lt (int *is, const sim_fpu *l, const sim_fpu *r);
334 INLINE_SIM_FPU (int) sim_fpu_le (int *is, const sim_fpu *l, const sim_fpu *r);
335 INLINE_SIM_FPU (int) sim_fpu_eq (int *is, const sim_fpu *l, const sim_fpu *r);
336 INLINE_SIM_FPU (int) sim_fpu_ne (int *is, const sim_fpu *l, const sim_fpu *r);
337 INLINE_SIM_FPU (int) sim_fpu_ge (int *is, const sim_fpu *l, const sim_fpu *r);
338 INLINE_SIM_FPU (int) sim_fpu_gt (int *is, const sim_fpu *l, const sim_fpu *r);
339
340 INLINE_SIM_FPU (int) sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r);
341 INLINE_SIM_FPU (int) sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r);
342 INLINE_SIM_FPU (int) sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r);
343 INLINE_SIM_FPU (int) sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r);
344 INLINE_SIM_FPU (int) sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r);
345 INLINE_SIM_FPU (int) sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r);
346
347
348
349 /* General number class and comparison operators.
350
351 The result of the comparison is indicated by returning one of the
352 values below. Efficient emulation of a target FP compare
353 instruction can be achieved by redefining the values below to match
354 corresponding target FP status bits.
355
356 For instance. SIM_FPU_QNAN may be redefined to be the bit
357 `INVALID' while SIM_FPU_NINF might be redefined as the bits
358 `NEGATIVE | INFINITY | VALID'. */
359
360 #ifndef SIM_FPU_IS_SNAN
361 enum {
362 SIM_FPU_IS_SNAN = 1, /* Noisy not-a-number */
363 SIM_FPU_IS_QNAN = 2, /* Quiet not-a-number */
364 SIM_FPU_IS_NINF = 3, /* -infinity */
365 SIM_FPU_IS_PINF = 4, /* +infinity */
366 SIM_FPU_IS_NNUMBER = 5, /* -number - [ -MAX .. -MIN ] */
367 SIM_FPU_IS_PNUMBER = 6, /* +number - [ +MIN .. +MAX ] */
368 SIM_FPU_IS_NDENORM = 7, /* -denorm - ( MIN .. 0 ) */
369 SIM_FPU_IS_PDENORM = 8, /* +denorm - ( 0 .. MIN ) */
370 SIM_FPU_IS_NZERO = 9, /* -0 */
371 SIM_FPU_IS_PZERO = 10, /* +0 */
372 };
373 #endif
374
375 INLINE_SIM_FPU (int) sim_fpu_is (const sim_fpu *l);
376 INLINE_SIM_FPU (int) sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r);
377
378
379
380 /* A number of useful constants. */
381
382 extern const sim_fpu sim_fpu_zero;
383 extern const sim_fpu sim_fpu_one;
384 extern const sim_fpu sim_fpu_two;
385 extern const sim_fpu sim_fpu_qnan;
386 extern const sim_fpu sim_fpu_max32;
387 extern const sim_fpu sim_fpu_max64;
388
389
390 /* Select the applicable functions for the fp_word type */
391
392 #if WITH_TARGET_FLOATING_POINT_BITSIZE == 32
393 #define sim_fpu_tofp sim_fpu_to32
394 #define sim_fpu_fpto sim_fpu_32to
395 #define sim_fpu_round_fp sim_fpu_round_32
396 #define sim_fpu_maxfp sim_fpu_max32
397 #endif
398 #if WITH_TARGET_FLOATING_POINT_BITSIZE == 64
399 #define sim_fpu_tofp sim_fpu_to64
400 #define sim_fpu_fpto sim_fpu_64to
401 #define sim_fpu_round_fp sim_fpu_round_64
402 #define sim_fpu_maxfp sim_fpu_max64
403 #endif
404
405
406
407 /* For debugging */
408
409 typedef void sim_fpu_print_func (void *, const char *, ...);
410
411 /* Print a sim_fpu with full precision. */
412 INLINE_SIM_FPU (void) sim_fpu_print_fpu (const sim_fpu *f,
413 sim_fpu_print_func *print,
414 void *arg);
415
416 /* Print a sim_fpu with `n' trailing digits. */
417 INLINE_SIM_FPU (void) sim_fpu_printn_fpu (const sim_fpu *f,
418 sim_fpu_print_func *print,
419 int digits,
420 void *arg);
421
422 INLINE_SIM_FPU (void) sim_fpu_print_status (int status,
423 sim_fpu_print_func *print,
424 void *arg);
425
426 #if H_REVEALS_MODULE_P (SIM_FPU_INLINE)
427 #include "sim-fpu.c"
428 #endif
429
430 #endif