]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/cr16/interp.c
7f5e044eca14e64efabd792db4ee8a20e7f3ca76
[thirdparty/binutils-gdb.git] / sim / cr16 / interp.c
1 /* Simulation code for the CR16 processor.
2 Copyright (C) 2008-2015 Free Software Foundation, Inc.
3 Contributed by M Ranga Swami Reddy <MR.Swami.Reddy@nsc.com>
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include <inttypes.h>
22 #include <signal.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include "bfd.h"
26 #include "gdb/callback.h"
27 #include "gdb/remote-sim.h"
28
29 #include "sim-main.h"
30 #include "sim-options.h"
31
32 #include "gdb/sim-cr16.h"
33 #include "gdb/signals.h"
34 #include "opcode/cr16.h"
35
36 int cr16_debug;
37
38 host_callback *cr16_callback;
39
40 uint32 OP[4];
41 uint32 sign_flag;
42
43 static struct hash_entry *lookup_hash (SIM_DESC, SIM_CPU *, uint64 ins, int size);
44 static void get_operands (operand_desc *s, uint64 mcode, int isize, int nops);
45 static INLINE uint8 *map_memory (SIM_DESC, SIM_CPU *, unsigned phys_addr);
46
47 #define MAX_HASH 16
48
49 struct hash_entry
50 {
51 struct hash_entry *next;
52 uint32 opcode;
53 uint32 mask;
54 int format;
55 int size;
56 struct simops *ops;
57 };
58
59 struct hash_entry hash_table[MAX_HASH+1];
60
61 INLINE static long
62 hash(unsigned long long insn, int format)
63 {
64 unsigned int i = 4, tmp;
65 if (format)
66 {
67 while ((insn >> i) != 0) i +=4;
68
69 return ((insn >> (i-4)) & 0xf); /* Use last 4 bits as hask key. */
70 }
71 return ((insn & 0xF)); /* Use last 4 bits as hask key. */
72 }
73
74
75 INLINE static struct hash_entry *
76 lookup_hash (SIM_DESC sd, SIM_CPU *cpu, uint64 ins, int size)
77 {
78 uint32 mask;
79 struct hash_entry *h;
80
81 h = &hash_table[hash(ins,1)];
82
83
84 mask = (((1 << (32 - h->mask)) -1) << h->mask);
85
86 /* Adjuest mask for branch with 2 word instructions. */
87 if ((h->ops->mnimonic != NULL) &&
88 ((streq(h->ops->mnimonic,"b") && h->size == 2)))
89 mask = 0xff0f0000;
90
91
92 while ((ins & mask) != (BIN(h->opcode, h->mask)))
93 {
94 if (h->next == NULL)
95 {
96 State.exception = SIGILL;
97 State.pc_changed = 1; /* Don't increment the PC. */
98 return NULL;
99 }
100 h = h->next;
101
102 mask = (((1 << (32 - h->mask)) -1) << h->mask);
103 /* Adjuest mask for branch with 2 word instructions. */
104 if ((streq(h->ops->mnimonic,"b")) && h->size == 2)
105 mask = 0xff0f0000;
106
107 }
108 return (h);
109 }
110
111 INLINE static void
112 get_operands (operand_desc *s, uint64 ins, int isize, int nops)
113 {
114 uint32 i, opn = 0, start_bit = 0, op_type = 0;
115 int32 op_size = 0, mask = 0;
116
117 if (isize == 1) /* Trunkcate the extra 16 bits of INS. */
118 ins = ins >> 16;
119
120 for (i=0; i < 4; ++i,++opn)
121 {
122 if (s[opn].op_type == dummy) break;
123
124 op_type = s[opn].op_type;
125 start_bit = s[opn].shift;
126 op_size = cr16_optab[op_type].bit_size;
127
128 switch (op_type)
129 {
130 case imm3: case imm4: case imm5: case imm6:
131 {
132 if (isize == 1)
133 OP[i] = ((ins >> 4) & ((1 << op_size) -1));
134 else
135 OP[i] = ((ins >> (32 - start_bit)) & ((1 << op_size) -1));
136
137 if (OP[i] & ((long)1 << (op_size -1)))
138 {
139 sign_flag = 1;
140 OP[i] = ~(OP[i]) + 1;
141 }
142 OP[i] = (unsigned long int)(OP[i] & (((long)1 << op_size) -1));
143 }
144 break;
145
146 case uimm3: case uimm3_1: case uimm4_1:
147 switch (isize)
148 {
149 case 1:
150 OP[i] = ((ins >> 4) & ((1 << op_size) -1)); break;
151 case 2:
152 OP[i] = ((ins >> (32 - start_bit)) & ((1 << op_size) -1));break;
153 default: /* for case 3. */
154 OP[i] = ((ins >> (16 + start_bit)) & ((1 << op_size) -1)); break;
155 break;
156 }
157 break;
158
159 case uimm4:
160 switch (isize)
161 {
162 case 1:
163 if (start_bit == 20)
164 OP[i] = ((ins >> 4) & ((1 << op_size) -1));
165 else
166 OP[i] = (ins & ((1 << op_size) -1));
167 break;
168 case 2:
169 OP[i] = ((ins >> start_bit) & ((1 << op_size) -1));
170 break;
171 case 3:
172 OP[i] = ((ins >> (start_bit + 16)) & ((1 << op_size) -1));
173 break;
174 default:
175 OP[i] = ((ins >> start_bit) & ((1 << op_size) -1));
176 break;
177 }
178 break;
179
180 case imm16: case uimm16:
181 OP[i] = ins & 0xFFFF;
182 break;
183
184 case uimm20: case imm20:
185 OP[i] = ins & (((long)1 << op_size) - 1);
186 break;
187
188 case imm32: case uimm32:
189 OP[i] = ins & 0xFFFFFFFF;
190 break;
191
192 case uimm5: break; /*NOT USED. */
193 OP[i] = ins & ((1 << op_size) - 1); break;
194
195 case disps5:
196 OP[i] = (ins >> 4) & ((1 << 4) - 1);
197 OP[i] = (OP[i] * 2) + 2;
198 if (OP[i] & ((long)1 << 5))
199 {
200 sign_flag = 1;
201 OP[i] = ~(OP[i]) + 1;
202 OP[i] = (unsigned long int)(OP[i] & 0x1F);
203 }
204 break;
205
206 case dispe9:
207 OP[i] = ((((ins >> 8) & 0xf) << 4) | (ins & 0xf));
208 OP[i] <<= 1;
209 if (OP[i] & ((long)1 << 8))
210 {
211 sign_flag = 1;
212 OP[i] = ~(OP[i]) + 1;
213 OP[i] = (unsigned long int)(OP[i] & 0xFF);
214 }
215 break;
216
217 case disps17:
218 OP[i] = (ins & 0xFFFF);
219 if (OP[i] & 1)
220 {
221 OP[i] = (OP[i] & 0xFFFE);
222 sign_flag = 1;
223 OP[i] = ~(OP[i]) + 1;
224 OP[i] = (unsigned long int)(OP[i] & 0xFFFF);
225 }
226 break;
227
228 case disps25:
229 if (isize == 2)
230 OP[i] = (ins & 0xFFFFFF);
231 else
232 OP[i] = (ins & 0xFFFF) | (((ins >> 24) & 0xf) << 16) |
233 (((ins >> 16) & 0xf) << 20);
234
235 if (OP[i] & 1)
236 {
237 OP[i] = (OP[i] & 0xFFFFFE);
238 sign_flag = 1;
239 OP[i] = ~(OP[i]) + 1;
240 OP[i] = (unsigned long int)(OP[i] & 0xFFFFFF);
241 }
242 break;
243
244 case abs20:
245 if (isize == 3)
246 OP[i] = (ins) & 0xFFFFF;
247 else
248 OP[i] = (ins >> start_bit) & 0xFFFFF;
249 break;
250 case abs24:
251 if (isize == 3)
252 OP[i] = ((ins & 0xFFFF) | (((ins >> 16) & 0xf) << 20)
253 | (((ins >> 24) & 0xf) << 16));
254 else
255 OP[i] = (ins >> 16) & 0xFFFFFF;
256 break;
257
258 case rra:
259 case rbase: break; /* NOT USED. */
260 case rbase_disps20: case rbase_dispe20:
261 case rpbase_disps20: case rpindex_disps20:
262 OP[i] = ((((ins >> 24)&0xf) << 16)|((ins) & 0xFFFF));
263 OP[++i] = (ins >> 16) & 0xF; /* get 4 bit for reg. */
264 break;
265 case rpbase_disps0:
266 OP[i] = 0; /* 4 bit disp const. */
267 OP[++i] = (ins) & 0xF; /* get 4 bit for reg. */
268 break;
269 case rpbase_dispe4:
270 OP[i] = ((ins >> 8) & 0xF) * 2; /* 4 bit disp const. */
271 OP[++i] = (ins) & 0xF; /* get 4 bit for reg. */
272 break;
273 case rpbase_disps4:
274 OP[i] = ((ins >> 8) & 0xF); /* 4 bit disp const. */
275 OP[++i] = (ins) & 0xF; /* get 4 bit for reg. */
276 break;
277 case rpbase_disps16:
278 OP[i] = (ins) & 0xFFFF;
279 OP[++i] = (ins >> 16) & 0xF; /* get 4 bit for reg. */
280 break;
281 case rpindex_disps0:
282 OP[i] = 0;
283 OP[++i] = (ins >> 4) & 0xF; /* get 4 bit for reg. */
284 OP[++i] = (ins >> 8) & 0x1; /* get 1 bit for index-reg. */
285 break;
286 case rpindex_disps14:
287 OP[i] = (ins) & 0x3FFF;
288 OP[++i] = (ins >> 14) & 0x1; /* get 1 bit for index-reg. */
289 OP[++i] = (ins >> 16) & 0xF; /* get 4 bit for reg. */
290 case rindex7_abs20:
291 case rindex8_abs20:
292 OP[i] = (ins) & 0xFFFFF;
293 OP[++i] = (ins >> 24) & 0x1; /* get 1 bit for index-reg. */
294 OP[++i] = (ins >> 20) & 0xF; /* get 4 bit for reg. */
295 break;
296 case regr: case regp: case pregr: case pregrp:
297 switch(isize)
298 {
299 case 1:
300 if (start_bit == 20) OP[i] = (ins >> 4) & 0xF;
301 else if (start_bit == 16) OP[i] = ins & 0xF;
302 break;
303 case 2: OP[i] = (ins >> start_bit) & 0xF; break;
304 case 3: OP[i] = (ins >> (start_bit + 16)) & 0xF; break;
305 }
306 break;
307 case cc:
308 {
309 if (isize == 1) OP[i] = (ins >> 4) & 0xF;
310 else if (isize == 2) OP[i] = (ins >> start_bit) & 0xF;
311 else OP[i] = (ins >> (start_bit + 16)) & 0xF;
312 break;
313 }
314 default: break;
315 }
316
317 /* For ESC on uimm4_1 operand. */
318 if (op_type == uimm4_1)
319 if (OP[i] == 9)
320 OP[i] = -1;
321
322 /* For increment by 1. */
323 if ((op_type == pregr) || (op_type == pregrp))
324 OP[i] += 1;
325 }
326 /* FIXME: for tracing, update values that need to be updated each
327 instruction decode cycle */
328 State.trace.psw = PSR;
329 }
330
331 static int
332 do_run (SIM_DESC sd, SIM_CPU *cpu, uint64 mcode)
333 {
334 host_callback *cr16_callback = STATE_CALLBACK (sd);
335 struct simops *s= Simops;
336 struct hash_entry *h;
337 char func[12]="\0";
338 uint8 *iaddr;
339 #ifdef DEBUG
340 if ((cr16_debug & DEBUG_INSTRUCTION) != 0)
341 (*cr16_callback->printf_filtered) (cr16_callback, "do_long 0x%x\n", mcode);
342 #endif
343
344 h = lookup_hash (sd, cpu, mcode, 1);
345
346 if ((h == NULL) || (h->opcode == 0))
347 return 0;
348
349 if (h->size == 3)
350 {
351 iaddr = imem_addr (sd, cpu, (uint32)PC + 2);
352 mcode = (mcode << 16) | get_longword( iaddr );
353 }
354
355 /* Re-set OP list. */
356 OP[0] = OP[1] = OP[2] = OP[3] = sign_flag = 0;
357
358 /* for push/pop/pushrtn with RA instructions. */
359 if ((h->format & REG_LIST) && (mcode & 0x800000))
360 OP[2] = 1; /* Set 1 for RA operand. */
361
362 /* numops == 0 means, no operands. */
363 if (((h->ops) != NULL) && (((h->ops)->numops) != 0))
364 get_operands ((h->ops)->operands, mcode, h->size, (h->ops)->numops);
365
366 //State.ins_type = h->flags;
367
368 (h->ops->func) (sd, cpu);
369
370 return h->size;
371 }
372
373 static void
374 sim_size (int power)
375 {
376 int i;
377 for (i = 0; i < IMEM_SEGMENTS; i++)
378 {
379 if (State.mem.insn[i])
380 free (State.mem.insn[i]);
381 }
382 for (i = 0; i < DMEM_SEGMENTS; i++)
383 {
384 if (State.mem.data[i])
385 free (State.mem.data[i]);
386 }
387 for (i = 0; i < UMEM_SEGMENTS; i++)
388 {
389 if (State.mem.unif[i])
390 free (State.mem.unif[i]);
391 }
392 /* Always allocate dmem segment 0. This contains the IMAP and DMAP
393 registers. */
394 State.mem.data[0] = calloc (1, SEGMENT_SIZE);
395 }
396
397 /* For tracing - leave info on last access around. */
398 static char *last_segname = "invalid";
399 static char *last_from = "invalid";
400 static char *last_to = "invalid";
401
402 enum
403 {
404 IMAP0_OFFSET = 0xff00,
405 DMAP0_OFFSET = 0xff08,
406 DMAP2_SHADDOW = 0xff04,
407 DMAP2_OFFSET = 0xff0c
408 };
409
410 static unsigned long
411 dmap_register (SIM_DESC sd, SIM_CPU *cpu, void *regcache, int reg_nr)
412 {
413 uint8 *raw = map_memory (sd, cpu, SIM_CR16_MEMORY_DATA
414 + DMAP0_OFFSET + 2 * reg_nr);
415 return READ_16 (raw);
416 }
417
418 static unsigned long
419 imap_register (SIM_DESC sd, SIM_CPU *cpu, void *regcache, int reg_nr)
420 {
421 uint8 *raw = map_memory (sd, cpu, SIM_CR16_MEMORY_DATA
422 + IMAP0_OFFSET + 2 * reg_nr);
423 return READ_16 (raw);
424 }
425
426 /* Given a virtual address in the DMAP address space, translate it
427 into a physical address. */
428
429 static unsigned long
430 sim_cr16_translate_dmap_addr (SIM_DESC sd,
431 SIM_CPU *cpu,
432 unsigned long offset,
433 int nr_bytes,
434 unsigned long *phys,
435 void *regcache,
436 unsigned long (*dmap_register) (SIM_DESC,
437 SIM_CPU *,
438 void *regcache,
439 int reg_nr))
440 {
441 short map;
442 int regno;
443 last_from = "logical-data";
444 if (offset >= DMAP_BLOCK_SIZE * SIM_CR16_NR_DMAP_REGS)
445 {
446 /* Logical address out side of data segments, not supported */
447 return 0;
448 }
449 regno = (offset / DMAP_BLOCK_SIZE);
450 offset = (offset % DMAP_BLOCK_SIZE);
451
452 #if 1
453 if ((offset % DMAP_BLOCK_SIZE) + nr_bytes > DMAP_BLOCK_SIZE)
454 {
455 /* Don't cross a BLOCK boundary */
456 nr_bytes = DMAP_BLOCK_SIZE - (offset % DMAP_BLOCK_SIZE);
457 }
458 map = dmap_register (sd, cpu, regcache, regno);
459 if (regno == 3)
460 {
461 /* Always maps to data memory */
462 int iospi = (offset / 0x1000) % 4;
463 int iosp = (map >> (4 * (3 - iospi))) % 0x10;
464 last_to = "io-space";
465 *phys = (SIM_CR16_MEMORY_DATA + (iosp * 0x10000) + 0xc000 + offset);
466 }
467 else
468 {
469 int sp = ((map & 0x3000) >> 12);
470 int segno = (map & 0x3ff);
471 switch (sp)
472 {
473 case 0: /* 00: Unified memory */
474 *phys = SIM_CR16_MEMORY_UNIFIED + (segno * DMAP_BLOCK_SIZE) + offset;
475 last_to = "unified";
476 break;
477 case 1: /* 01: Instruction Memory */
478 *phys = SIM_CR16_MEMORY_INSN + (segno * DMAP_BLOCK_SIZE) + offset;
479 last_to = "chip-insn";
480 break;
481 case 2: /* 10: Internal data memory */
482 *phys = SIM_CR16_MEMORY_DATA + (segno << 16) + (regno * DMAP_BLOCK_SIZE) + offset;
483 last_to = "chip-data";
484 break;
485 case 3: /* 11: Reserved */
486 return 0;
487 }
488 }
489 #endif
490 return nr_bytes;
491 }
492
493 /* Given a virtual address in the IMAP address space, translate it
494 into a physical address. */
495
496 static unsigned long
497 sim_cr16_translate_imap_addr (SIM_DESC sd,
498 SIM_CPU *cpu,
499 unsigned long offset,
500 int nr_bytes,
501 unsigned long *phys,
502 void *regcache,
503 unsigned long (*imap_register) (SIM_DESC,
504 SIM_CPU *,
505 void *regcache,
506 int reg_nr))
507 {
508 short map;
509 int regno;
510 int sp;
511 int segno;
512 last_from = "logical-insn";
513 if (offset >= (IMAP_BLOCK_SIZE * SIM_CR16_NR_IMAP_REGS))
514 {
515 /* Logical address outside of IMAP segments, not supported */
516 return 0;
517 }
518 regno = (offset / IMAP_BLOCK_SIZE);
519 offset = (offset % IMAP_BLOCK_SIZE);
520 if (offset + nr_bytes > IMAP_BLOCK_SIZE)
521 {
522 /* Don't cross a BLOCK boundary */
523 nr_bytes = IMAP_BLOCK_SIZE - offset;
524 }
525 map = imap_register (sd, cpu, regcache, regno);
526 sp = (map & 0x3000) >> 12;
527 segno = (map & 0x007f);
528 switch (sp)
529 {
530 case 0: /* 00: unified memory */
531 *phys = SIM_CR16_MEMORY_UNIFIED + (segno << 17) + offset;
532 last_to = "unified";
533 break;
534 case 1: /* 01: instruction memory */
535 *phys = SIM_CR16_MEMORY_INSN + (IMAP_BLOCK_SIZE * regno) + offset;
536 last_to = "chip-insn";
537 break;
538 case 2: /*10*/
539 /* Reserved. */
540 return 0;
541 case 3: /* 11: for testing - instruction memory */
542 offset = (offset % 0x800);
543 *phys = SIM_CR16_MEMORY_INSN + offset;
544 if (offset + nr_bytes > 0x800)
545 /* don't cross VM boundary */
546 nr_bytes = 0x800 - offset;
547 last_to = "test-insn";
548 break;
549 }
550 return nr_bytes;
551 }
552
553 static unsigned long
554 sim_cr16_translate_addr (SIM_DESC sd,
555 SIM_CPU *cpu,
556 unsigned long memaddr,
557 int nr_bytes,
558 unsigned long *targ_addr,
559 void *regcache,
560 unsigned long (*dmap_register) (SIM_DESC,
561 SIM_CPU *,
562 void *regcache,
563 int reg_nr),
564 unsigned long (*imap_register) (SIM_DESC,
565 SIM_CPU *,
566 void *regcache,
567 int reg_nr))
568 {
569 unsigned long phys;
570 unsigned long seg;
571 unsigned long off;
572
573 last_from = "unknown";
574 last_to = "unknown";
575
576 seg = (memaddr >> 24);
577 off = (memaddr & 0xffffffL);
578
579 switch (seg)
580 {
581 case 0x00: /* Physical unified memory */
582 last_from = "phys-unified";
583 last_to = "unified";
584 phys = SIM_CR16_MEMORY_UNIFIED + off;
585 if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
586 nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
587 break;
588
589 case 0x01: /* Physical instruction memory */
590 last_from = "phys-insn";
591 last_to = "chip-insn";
592 phys = SIM_CR16_MEMORY_INSN + off;
593 if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
594 nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
595 break;
596
597 case 0x02: /* Physical data memory segment */
598 last_from = "phys-data";
599 last_to = "chip-data";
600 phys = SIM_CR16_MEMORY_DATA + off;
601 if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
602 nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
603 break;
604
605 case 0x10: /* in logical data address segment */
606 nr_bytes = sim_cr16_translate_dmap_addr (sd, cpu, off, nr_bytes, &phys,
607 regcache, dmap_register);
608 break;
609
610 case 0x11: /* in logical instruction address segment */
611 nr_bytes = sim_cr16_translate_imap_addr (sd, cpu, off, nr_bytes, &phys,
612 regcache, imap_register);
613 break;
614
615 default:
616 return 0;
617 }
618
619 *targ_addr = phys;
620 return nr_bytes;
621 }
622
623 /* Return a pointer into the raw buffer designated by phys_addr. It
624 is assumed that the client has already ensured that the access
625 isn't going to cross a segment boundary. */
626
627 uint8 *
628 map_memory (SIM_DESC sd, SIM_CPU *cpu, unsigned phys_addr)
629 {
630 uint8 **memory;
631 uint8 *raw;
632 unsigned offset;
633 int segment = ((phys_addr >> 24) & 0xff);
634
635 switch (segment)
636 {
637
638 case 0x00: /* Unified memory */
639 {
640 memory = &State.mem.unif[(phys_addr / SEGMENT_SIZE) % UMEM_SEGMENTS];
641 last_segname = "umem";
642 break;
643 }
644
645 case 0x01: /* On-chip insn memory */
646 {
647 memory = &State.mem.insn[(phys_addr / SEGMENT_SIZE) % IMEM_SEGMENTS];
648 last_segname = "imem";
649 break;
650 }
651
652 case 0x02: /* On-chip data memory */
653 {
654 if ((phys_addr & 0xff00) == 0xff00)
655 {
656 phys_addr = (phys_addr & 0xffff);
657 if (phys_addr == DMAP2_SHADDOW)
658 {
659 phys_addr = DMAP2_OFFSET;
660 last_segname = "dmap";
661 }
662 else
663 last_segname = "reg";
664 }
665 else
666 last_segname = "dmem";
667 memory = &State.mem.data[(phys_addr / SEGMENT_SIZE) % DMEM_SEGMENTS];
668 break;
669 }
670
671 default:
672 /* OOPS! */
673 last_segname = "scrap";
674 return State.mem.fault;
675 }
676
677 if (*memory == NULL)
678 {
679 *memory = calloc (1, SEGMENT_SIZE);
680 if (*memory == NULL)
681 {
682 (*cr16_callback->printf_filtered) (cr16_callback, "Malloc failed.\n");
683 return State.mem.fault;
684 }
685 }
686
687 offset = (phys_addr % SEGMENT_SIZE);
688 raw = *memory + offset;
689 return raw;
690 }
691
692 /* Transfer data to/from simulated memory. Since a bug in either the
693 simulated program or in gdb or the simulator itself may cause a
694 bogus address to be passed in, we need to do some sanity checking
695 on addresses to make sure they are within bounds. When an address
696 fails the bounds check, treat it as a zero length read/write rather
697 than aborting the entire run. */
698
699 static int
700 xfer_mem (SIM_DESC sd, SIM_ADDR virt,
701 unsigned char *buffer,
702 int size,
703 int write_p)
704 {
705 host_callback *cr16_callback = STATE_CALLBACK (sd);
706 uint8 *memory;
707 unsigned long phys;
708 int phys_size;
709 phys_size = sim_cr16_translate_addr (sd, NULL, virt, size, &phys, NULL,
710 dmap_register, imap_register);
711 if (phys_size == 0)
712 return 0;
713
714 memory = map_memory (sd, NULL, phys);
715
716 #ifdef DEBUG
717 if ((cr16_debug & DEBUG_INSTRUCTION) != 0)
718 {
719 (*cr16_callback->printf_filtered)
720 (cr16_callback,
721 "sim_%s %d bytes: 0x%08lx (%s) -> 0x%08lx (%s) -> 0x%08lx (%s)\n",
722 (write_p ? "write" : "read"),
723 phys_size, virt, last_from,
724 phys, last_to,
725 (long) memory, last_segname);
726 }
727 #endif
728
729 if (write_p)
730 {
731 memcpy (memory, buffer, phys_size);
732 }
733 else
734 {
735 memcpy (buffer, memory, phys_size);
736 }
737
738 return phys_size;
739 }
740
741
742 int
743 sim_write (SIM_DESC sd, SIM_ADDR addr, const unsigned char *buffer, int size)
744 {
745 /* FIXME: this should be performing a virtual transfer */
746 return xfer_mem (sd, addr, buffer, size, 1);
747 }
748
749 int
750 sim_read (SIM_DESC sd, SIM_ADDR addr, unsigned char *buffer, int size)
751 {
752 /* FIXME: this should be performing a virtual transfer */
753 return xfer_mem (sd, addr, buffer, size, 0);
754 }
755
756 static sim_cia
757 cr16_pc_get (sim_cpu *cpu)
758 {
759 return PC;
760 }
761
762 static void
763 cr16_pc_set (sim_cpu *cpu, sim_cia pc)
764 {
765 SIM_DESC sd = CPU_STATE (cpu);
766 SET_PC (pc);
767 }
768
769 static void
770 free_state (SIM_DESC sd)
771 {
772 if (STATE_MODULES (sd) != NULL)
773 sim_module_uninstall (sd);
774 sim_cpu_free_all (sd);
775 sim_state_free (sd);
776 }
777
778 static int cr16_reg_fetch (SIM_CPU *, int, unsigned char *, int);
779 static int cr16_reg_store (SIM_CPU *, int, unsigned char *, int);
780
781 SIM_DESC
782 sim_open (SIM_OPEN_KIND kind, struct host_callback_struct *cb, struct bfd *abfd, char **argv)
783 {
784 struct simops *s;
785 struct hash_entry *h;
786 static int init_p = 0;
787 char **p;
788 int i;
789 SIM_DESC sd = sim_state_alloc (kind, cb);
790 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
791
792 /* The cpu data is kept in a separately allocated chunk of memory. */
793 if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
794 {
795 free_state (sd);
796 return 0;
797 }
798
799 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
800 {
801 free_state (sd);
802 return 0;
803 }
804
805 /* getopt will print the error message so we just have to exit if this fails.
806 FIXME: Hmmm... in the case of gdb we need getopt to call
807 print_filtered. */
808 if (sim_parse_args (sd, argv) != SIM_RC_OK)
809 {
810 free_state (sd);
811 return 0;
812 }
813
814 /* Check for/establish the a reference program image. */
815 if (sim_analyze_program (sd,
816 (STATE_PROG_ARGV (sd) != NULL
817 ? *STATE_PROG_ARGV (sd)
818 : NULL), abfd) != SIM_RC_OK)
819 {
820 free_state (sd);
821 return 0;
822 }
823
824 /* Configure/verify the target byte order and other runtime
825 configuration options. */
826 if (sim_config (sd) != SIM_RC_OK)
827 {
828 sim_module_uninstall (sd);
829 return 0;
830 }
831
832 if (sim_post_argv_init (sd) != SIM_RC_OK)
833 {
834 /* Uninstall the modules to avoid memory leaks,
835 file descriptor leaks, etc. */
836 sim_module_uninstall (sd);
837 return 0;
838 }
839
840 /* CPU specific initialization. */
841 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
842 {
843 SIM_CPU *cpu = STATE_CPU (sd, i);
844
845 CPU_REG_FETCH (cpu) = cr16_reg_fetch;
846 CPU_REG_STORE (cpu) = cr16_reg_store;
847 CPU_PC_FETCH (cpu) = cr16_pc_get;
848 CPU_PC_STORE (cpu) = cr16_pc_set;
849 }
850
851 cr16_callback = cb;
852
853 /* put all the opcodes in the hash table. */
854 if (!init_p++)
855 {
856 for (s = Simops; s->func; s++)
857 {
858 switch(32 - s->mask)
859 {
860 case 0x4:
861 h = &hash_table[hash(s->opcode, 0)];
862 break;
863
864 case 0x7:
865 if (((s->opcode << 1) >> 4) != 0)
866 h = &hash_table[hash((s->opcode << 1) >> 4, 0)];
867 else
868 h = &hash_table[hash((s->opcode << 1), 0)];
869 break;
870
871 case 0x8:
872 if ((s->opcode >> 4) != 0)
873 h = &hash_table[hash(s->opcode >> 4, 0)];
874 else
875 h = &hash_table[hash(s->opcode, 0)];
876 break;
877
878 case 0x9:
879 if (((s->opcode >> 1) >> 4) != 0)
880 h = &hash_table[hash((s->opcode >>1) >> 4, 0)];
881 else
882 h = &hash_table[hash((s->opcode >> 1), 0)];
883 break;
884
885 case 0xa:
886 if ((s->opcode >> 8) != 0)
887 h = &hash_table[hash(s->opcode >> 8, 0)];
888 else if ((s->opcode >> 4) != 0)
889 h = &hash_table[hash(s->opcode >> 4, 0)];
890 else
891 h = &hash_table[hash(s->opcode, 0)];
892 break;
893
894 case 0xc:
895 if ((s->opcode >> 8) != 0)
896 h = &hash_table[hash(s->opcode >> 8, 0)];
897 else if ((s->opcode >> 4) != 0)
898 h = &hash_table[hash(s->opcode >> 4, 0)];
899 else
900 h = &hash_table[hash(s->opcode, 0)];
901 break;
902
903 case 0xd:
904 if (((s->opcode >> 1) >> 8) != 0)
905 h = &hash_table[hash((s->opcode >>1) >> 8, 0)];
906 else if (((s->opcode >> 1) >> 4) != 0)
907 h = &hash_table[hash((s->opcode >>1) >> 4, 0)];
908 else
909 h = &hash_table[hash((s->opcode >>1), 0)];
910 break;
911
912 case 0x10:
913 if ((s->opcode >> 0xc) != 0)
914 h = &hash_table[hash(s->opcode >> 12, 0)];
915 else if ((s->opcode >> 8) != 0)
916 h = &hash_table[hash(s->opcode >> 8, 0)];
917 else if ((s->opcode >> 4) != 0)
918 h = &hash_table[hash(s->opcode >> 4, 0)];
919 else
920 h = &hash_table[hash(s->opcode, 0)];
921 break;
922
923 case 0x14:
924 if ((s->opcode >> 16) != 0)
925 h = &hash_table[hash(s->opcode >> 16, 0)];
926 else if ((s->opcode >> 12) != 0)
927 h = &hash_table[hash(s->opcode >> 12, 0)];
928 else if ((s->opcode >> 8) != 0)
929 h = &hash_table[hash(s->opcode >> 8, 0)];
930 else if ((s->opcode >> 4) != 0)
931 h = &hash_table[hash(s->opcode >> 4, 0)];
932 else
933 h = &hash_table[hash(s->opcode, 0)];
934 break;
935 default:
936 break;
937 }
938
939 /* go to the last entry in the chain. */
940 while (h->next)
941 h = h->next;
942
943 if (h->ops)
944 {
945 h->next = (struct hash_entry *) calloc(1,sizeof(struct hash_entry));
946 if (!h->next)
947 perror ("malloc failure");
948
949 h = h->next;
950 }
951 h->ops = s;
952 h->mask = s->mask;
953 h->opcode = s->opcode;
954 h->format = s->format;
955 h->size = s->size;
956 }
957 }
958
959 /* reset the processor state */
960 if (!State.mem.data[0])
961 sim_size (1);
962
963 return sd;
964 }
965
966 uint8 *
967 dmem_addr (SIM_DESC sd, SIM_CPU *cpu, uint32 offset)
968 {
969 unsigned long phys;
970 uint8 *mem;
971 int phys_size;
972
973 /* Note: DMEM address range is 0..0x10000. Calling code can compute
974 things like ``0xfffe + 0x0e60 == 0x10e5d''. Since offset's type
975 is uint16 this is modulo'ed onto 0x0e5d. */
976
977 phys_size = sim_cr16_translate_dmap_addr (sd, cpu, offset, 1, &phys, NULL,
978 dmap_register);
979 if (phys_size == 0)
980 {
981 mem = State.mem.fault;
982 }
983 else
984 mem = map_memory (sd, cpu, phys);
985 #ifdef DEBUG
986 if ((cr16_debug & DEBUG_MEMORY))
987 {
988 (*cr16_callback->printf_filtered)
989 (cr16_callback,
990 "mem: 0x%08x (%s) -> 0x%08lx %d (%s) -> 0x%08lx (%s)\n",
991 offset, last_from,
992 phys, phys_size, last_to,
993 (long) mem, last_segname);
994 }
995 #endif
996 return mem;
997 }
998
999 uint8 *
1000 imem_addr (SIM_DESC sd, SIM_CPU *cpu, uint32 offset)
1001 {
1002 unsigned long phys;
1003 uint8 *mem;
1004 int phys_size = sim_cr16_translate_imap_addr (sd, cpu, offset, 1, &phys, NULL,
1005 imap_register);
1006 if (phys_size == 0)
1007 {
1008 return State.mem.fault;
1009 }
1010 mem = map_memory (sd, cpu, phys);
1011 #ifdef DEBUG
1012 if ((cr16_debug & DEBUG_MEMORY))
1013 {
1014 (*cr16_callback->printf_filtered)
1015 (cr16_callback,
1016 "mem: 0x%08x (%s) -> 0x%08lx %d (%s) -> 0x%08lx (%s)\n",
1017 offset, last_from,
1018 phys, phys_size, last_to,
1019 (long) mem, last_segname);
1020 }
1021 #endif
1022 return mem;
1023 }
1024
1025 static int stop_simulator = 0;
1026
1027 int
1028 sim_stop (SIM_DESC sd)
1029 {
1030 stop_simulator = 1;
1031 return 1;
1032 }
1033
1034
1035 /* Run (or resume) the program. */
1036 void
1037 sim_resume (SIM_DESC sd, int step, int siggnal)
1038 {
1039 SIM_CPU *cpu = STATE_CPU (sd, 0);
1040 uint32 curr_ins_size = 0;
1041 uint64 mcode = 0;
1042 uint8 *iaddr;
1043
1044 #ifdef DEBUG
1045 // (*cr16_callback->printf_filtered) (cr16_callback, "sim_resume (%d,%d) PC=0x%x\n",step,siggnal,PC);
1046 #endif
1047
1048 State.exception = 0;
1049 if (step)
1050 sim_stop (sd);
1051
1052 switch (siggnal)
1053 {
1054 case 0:
1055 break;
1056 #ifdef SIGBUS
1057 case SIGBUS:
1058 #endif
1059 case SIGSEGV:
1060 SET_PC (PC);
1061 SET_PSR (PSR);
1062 JMP (AE_VECTOR_START);
1063 SLOT_FLUSH ();
1064 break;
1065 case SIGILL:
1066 SET_PC (PC);
1067 SET_PSR (PSR);
1068 SET_HW_PSR ((PSR & (PSR_C_BIT)));
1069 JMP (RIE_VECTOR_START);
1070 SLOT_FLUSH ();
1071 break;
1072 default:
1073 /* just ignore it */
1074 break;
1075 }
1076
1077 do
1078 {
1079 iaddr = imem_addr (sd, cpu, (uint32)PC);
1080 if (iaddr == State.mem.fault)
1081 {
1082 #ifdef SIGBUS
1083 State.exception = SIGBUS;
1084 #else
1085 State.exception = SIGSEGV;
1086 #endif
1087 break;
1088 }
1089
1090 mcode = get_longword( iaddr );
1091
1092 State.pc_changed = 0;
1093
1094 curr_ins_size = do_run (sd, cpu, mcode);
1095
1096 #if CR16_DEBUG
1097 (*cr16_callback->printf_filtered) (cr16_callback, "INS: PC=0x%X, mcode=0x%X\n",PC,mcode);
1098 #endif
1099
1100 if (!State.pc_changed)
1101 {
1102 if (curr_ins_size == 0)
1103 {
1104 State.exception = SIG_CR16_EXIT; /* exit trap */
1105 break;
1106 }
1107 else
1108 SET_PC (PC + (curr_ins_size * 2)); /* For word instructions. */
1109 }
1110
1111 #if 0
1112 /* Check for a breakpoint trap on this instruction. This
1113 overrides any pending branches or loops */
1114 if (PSR_DB && PC == DBS)
1115 {
1116 SET_BPC (PC);
1117 SET_BPSR (PSR);
1118 SET_PC (SDBT_VECTOR_START);
1119 }
1120 #endif
1121
1122 /* Writeback all the DATA / PC changes */
1123 SLOT_FLUSH ();
1124 }
1125 while ( !State.exception && !stop_simulator);
1126
1127 if (step && !State.exception)
1128 State.exception = SIGTRAP;
1129 }
1130
1131 SIM_RC
1132 sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char **argv, char **env)
1133 {
1134 bfd_vma start_address;
1135
1136 /* reset all state information */
1137 memset (&State.regs, 0, (uintptr_t)&State.mem - (uintptr_t)&State.regs);
1138
1139 /* There was a hack here to copy the values of argc and argv into r0
1140 and r1. The values were also saved into some high memory that
1141 won't be overwritten by the stack (0x7C00). The reason for doing
1142 this was to allow the 'run' program to accept arguments. Without
1143 the hack, this is not possible anymore. If the simulator is run
1144 from the debugger, arguments cannot be passed in, so this makes
1145 no difference. */
1146
1147 /* set PC */
1148 if (abfd != NULL)
1149 start_address = bfd_get_start_address (abfd);
1150 else
1151 start_address = 0x0;
1152 #ifdef DEBUG
1153 if (cr16_debug)
1154 (*cr16_callback->printf_filtered) (cr16_callback, "sim_create_inferior: PC=0x%lx\n", (long) start_address);
1155 #endif
1156 {
1157 SIM_CPU *cpu = STATE_CPU (sd, 0);
1158 SET_CREG (PC_CR, start_address);
1159 }
1160
1161 SLOT_FLUSH ();
1162 return SIM_RC_OK;
1163 }
1164
1165 void
1166 sim_stop_reason (SIM_DESC sd, enum sim_stop *reason, int *sigrc)
1167 {
1168 /* (*cr16_callback->printf_filtered) (cr16_callback, "sim_stop_reason: PC=0x%x\n",PC<<2); */
1169
1170 switch (State.exception)
1171 {
1172 case SIG_CR16_STOP: /* stop instruction */
1173 *reason = sim_stopped;
1174 *sigrc = 0;
1175 break;
1176
1177 case SIG_CR16_EXIT: /* exit trap */
1178 *reason = sim_exited;
1179 *sigrc = GPR (2);
1180 break;
1181
1182 case SIG_CR16_BUS:
1183 *reason = sim_stopped;
1184 *sigrc = GDB_SIGNAL_BUS;
1185 break;
1186 //
1187 // case SIG_CR16_IAD:
1188 // *reason = sim_stopped;
1189 // *sigrc = GDB_SIGNAL_IAD;
1190 // break;
1191
1192 default: /* some signal */
1193 *reason = sim_stopped;
1194 if (stop_simulator && !State.exception)
1195 *sigrc = GDB_SIGNAL_INT;
1196 else
1197 *sigrc = State.exception;
1198 break;
1199 }
1200
1201 stop_simulator = 0;
1202 }
1203
1204 static uint32
1205 cr16_extract_unsigned_integer (unsigned char *addr, int len)
1206 {
1207 uint32 retval;
1208 unsigned char * p;
1209 unsigned char * startaddr = (unsigned char *)addr;
1210 unsigned char * endaddr = startaddr + len;
1211
1212 retval = 0;
1213
1214 for (p = endaddr; p > startaddr;)
1215 retval = (retval << 8) | *--p;
1216
1217 return retval;
1218 }
1219
1220 static void
1221 cr16_store_unsigned_integer (unsigned char *addr, int len, uint32 val)
1222 {
1223 unsigned char *p;
1224 unsigned char *startaddr = addr;
1225 unsigned char *endaddr = startaddr + len;
1226
1227 for (p = startaddr; p < endaddr;)
1228 {
1229 *p++ = val & 0xff;
1230 val >>= 8;
1231 }
1232 }
1233
1234 static int
1235 cr16_reg_fetch (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
1236 {
1237 int size;
1238 switch ((enum sim_cr16_regs) rn)
1239 {
1240 case SIM_CR16_R0_REGNUM:
1241 case SIM_CR16_R1_REGNUM:
1242 case SIM_CR16_R2_REGNUM:
1243 case SIM_CR16_R3_REGNUM:
1244 case SIM_CR16_R4_REGNUM:
1245 case SIM_CR16_R5_REGNUM:
1246 case SIM_CR16_R6_REGNUM:
1247 case SIM_CR16_R7_REGNUM:
1248 case SIM_CR16_R8_REGNUM:
1249 case SIM_CR16_R9_REGNUM:
1250 case SIM_CR16_R10_REGNUM:
1251 case SIM_CR16_R11_REGNUM:
1252 cr16_store_unsigned_integer (memory, 2, GPR (rn - SIM_CR16_R0_REGNUM));
1253 size = 2;
1254 break;
1255 case SIM_CR16_R12_REGNUM:
1256 case SIM_CR16_R13_REGNUM:
1257 case SIM_CR16_R14_REGNUM:
1258 case SIM_CR16_R15_REGNUM:
1259 cr16_store_unsigned_integer (memory, 4, GPR (rn - SIM_CR16_R0_REGNUM));
1260 size = 4;
1261 break;
1262 case SIM_CR16_PC_REGNUM:
1263 case SIM_CR16_ISP_REGNUM:
1264 case SIM_CR16_USP_REGNUM:
1265 case SIM_CR16_INTBASE_REGNUM:
1266 case SIM_CR16_PSR_REGNUM:
1267 case SIM_CR16_CFG_REGNUM:
1268 case SIM_CR16_DBS_REGNUM:
1269 case SIM_CR16_DCR_REGNUM:
1270 case SIM_CR16_DSR_REGNUM:
1271 case SIM_CR16_CAR0_REGNUM:
1272 case SIM_CR16_CAR1_REGNUM:
1273 cr16_store_unsigned_integer (memory, 4, CREG (rn - SIM_CR16_PC_REGNUM));
1274 size = 4;
1275 break;
1276 default:
1277 size = 0;
1278 break;
1279 }
1280 return size;
1281 }
1282
1283 static int
1284 cr16_reg_store (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
1285 {
1286 SIM_DESC sd = CPU_STATE (cpu);
1287 int size;
1288 switch ((enum sim_cr16_regs) rn)
1289 {
1290 case SIM_CR16_R0_REGNUM:
1291 case SIM_CR16_R1_REGNUM:
1292 case SIM_CR16_R2_REGNUM:
1293 case SIM_CR16_R3_REGNUM:
1294 case SIM_CR16_R4_REGNUM:
1295 case SIM_CR16_R5_REGNUM:
1296 case SIM_CR16_R6_REGNUM:
1297 case SIM_CR16_R7_REGNUM:
1298 case SIM_CR16_R8_REGNUM:
1299 case SIM_CR16_R9_REGNUM:
1300 case SIM_CR16_R10_REGNUM:
1301 case SIM_CR16_R11_REGNUM:
1302 SET_GPR (rn - SIM_CR16_R0_REGNUM, cr16_extract_unsigned_integer (memory, 2));
1303 size = 2;
1304 break;
1305 case SIM_CR16_R12_REGNUM:
1306 case SIM_CR16_R13_REGNUM:
1307 case SIM_CR16_R14_REGNUM:
1308 case SIM_CR16_R15_REGNUM:
1309 SET_GPR32 (rn - SIM_CR16_R0_REGNUM, cr16_extract_unsigned_integer (memory, 2));
1310 size = 4;
1311 break;
1312 case SIM_CR16_PC_REGNUM:
1313 case SIM_CR16_ISP_REGNUM:
1314 case SIM_CR16_USP_REGNUM:
1315 case SIM_CR16_INTBASE_REGNUM:
1316 case SIM_CR16_PSR_REGNUM:
1317 case SIM_CR16_CFG_REGNUM:
1318 case SIM_CR16_DBS_REGNUM:
1319 case SIM_CR16_DCR_REGNUM:
1320 case SIM_CR16_DSR_REGNUM:
1321 case SIM_CR16_CAR0_REGNUM:
1322 case SIM_CR16_CAR1_REGNUM:
1323 SET_CREG (rn - SIM_CR16_PC_REGNUM, cr16_extract_unsigned_integer (memory, 4));
1324 size = 4;
1325 break;
1326 default:
1327 size = 0;
1328 break;
1329 }
1330 SLOT_FLUSH ();
1331 return size;
1332 }