]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/d10v/d10v_sim.h
sim: unify -Werror build settings
[thirdparty/binutils-gdb.git] / sim / d10v / d10v_sim.h
1 #include <stdio.h>
2 #include <ctype.h>
3 #include <limits.h>
4 #include "ansidecl.h"
5 #include "sim/callback.h"
6 #include "opcode/d10v.h"
7 #include "bfd.h"
8
9 #define DEBUG_TRACE 0x00000001
10 #define DEBUG_VALUES 0x00000002
11 #define DEBUG_LINE_NUMBER 0x00000004
12 #define DEBUG_MEMSIZE 0x00000008
13 #define DEBUG_INSTRUCTION 0x00000010
14 #define DEBUG_TRAP 0x00000020
15 #define DEBUG_MEMORY 0x00000040
16
17 #ifndef DEBUG
18 #define DEBUG (DEBUG_TRACE | DEBUG_VALUES | DEBUG_LINE_NUMBER)
19 #endif
20
21 extern int d10v_debug;
22
23 #include "sim/sim.h"
24 #include "sim-config.h"
25 #include "sim-types.h"
26
27 typedef unsigned8 uint8;
28 typedef unsigned16 uint16;
29 typedef signed16 int16;
30 typedef unsigned32 uint32;
31 typedef signed32 int32;
32 typedef unsigned64 uint64;
33 typedef signed64 int64;
34
35 /* FIXME: D10V defines */
36 typedef uint16 reg_t;
37
38 struct simops
39 {
40 long opcode;
41 int is_long;
42 long mask;
43 int format;
44 int cycles;
45 int unit;
46 int exec_type;
47 void (*func)(SIM_DESC, SIM_CPU *);
48 int numops;
49 int operands[9];
50 };
51
52 enum _ins_type
53 {
54 INS_UNKNOWN, /* unknown instruction */
55 INS_COND_TRUE, /* # times EXExxx executed other instruction */
56 INS_COND_FALSE, /* # times EXExxx did not execute other instruction */
57 INS_COND_JUMP, /* # times JUMP skipped other instruction */
58 INS_CYCLES, /* # cycles */
59 INS_LONG, /* long instruction (both containers, ie FM == 11) */
60 INS_LEFTRIGHT, /* # times instruction encoded as L -> R (ie, FM == 01) */
61 INS_RIGHTLEFT, /* # times instruction encoded as L <- R (ie, FM == 10) */
62 INS_PARALLEL, /* # times instruction encoded as L || R (ie, RM == 00) */
63
64 INS_LEFT, /* normal left instructions */
65 INS_LEFT_PARALLEL, /* left side of || */
66 INS_LEFT_COND_TEST, /* EXExx test on left side */
67 INS_LEFT_COND_EXE, /* execution after EXExxx test on right side succeeded */
68 INS_LEFT_NOPS, /* NOP on left side */
69
70 INS_RIGHT, /* normal right instructions */
71 INS_RIGHT_PARALLEL, /* right side of || */
72 INS_RIGHT_COND_TEST, /* EXExx test on right side */
73 INS_RIGHT_COND_EXE, /* execution after EXExxx test on left side succeeded */
74 INS_RIGHT_NOPS, /* NOP on right side */
75
76 INS_MAX
77 };
78
79 extern unsigned long ins_type_counters[ (int)INS_MAX ];
80
81 enum {
82 SP_IDX = 15,
83 };
84
85 /* Write-back slots */
86 union slot_data {
87 unsigned_1 _1;
88 unsigned_2 _2;
89 unsigned_4 _4;
90 unsigned_8 _8;
91 };
92 struct slot {
93 void *dest;
94 int size;
95 union slot_data data;
96 union slot_data mask;
97 };
98 enum {
99 NR_SLOTS = 16,
100 };
101 #define SLOT (State.slot)
102 #define SLOT_NR (State.slot_nr)
103 #define SLOT_PEND_MASK(DEST, MSK, VAL) \
104 do \
105 { \
106 SLOT[SLOT_NR].dest = &(DEST); \
107 SLOT[SLOT_NR].size = sizeof (DEST); \
108 switch (sizeof (DEST)) \
109 { \
110 case 1: \
111 SLOT[SLOT_NR].data._1 = (unsigned_1) (VAL); \
112 SLOT[SLOT_NR].mask._1 = (unsigned_1) (MSK); \
113 break; \
114 case 2: \
115 SLOT[SLOT_NR].data._2 = (unsigned_2) (VAL); \
116 SLOT[SLOT_NR].mask._2 = (unsigned_2) (MSK); \
117 break; \
118 case 4: \
119 SLOT[SLOT_NR].data._4 = (unsigned_4) (VAL); \
120 SLOT[SLOT_NR].mask._4 = (unsigned_4) (MSK); \
121 break; \
122 case 8: \
123 SLOT[SLOT_NR].data._8 = (unsigned_8) (VAL); \
124 SLOT[SLOT_NR].mask._8 = (unsigned_8) (MSK); \
125 break; \
126 } \
127 SLOT_NR = (SLOT_NR + 1); \
128 } \
129 while (0)
130 #define SLOT_PEND(DEST, VAL) SLOT_PEND_MASK(DEST, 0, VAL)
131 #define SLOT_DISCARD() (SLOT_NR = 0)
132 #define SLOT_FLUSH() \
133 do \
134 { \
135 int i; \
136 for (i = 0; i < SLOT_NR; i++) \
137 { \
138 switch (SLOT[i].size) \
139 { \
140 case 1: \
141 *(unsigned_1*) SLOT[i].dest &= SLOT[i].mask._1; \
142 *(unsigned_1*) SLOT[i].dest |= SLOT[i].data._1; \
143 break; \
144 case 2: \
145 *(unsigned_2*) SLOT[i].dest &= SLOT[i].mask._2; \
146 *(unsigned_2*) SLOT[i].dest |= SLOT[i].data._2; \
147 break; \
148 case 4: \
149 *(unsigned_4*) SLOT[i].dest &= SLOT[i].mask._4; \
150 *(unsigned_4*) SLOT[i].dest |= SLOT[i].data._4; \
151 break; \
152 case 8: \
153 *(unsigned_8*) SLOT[i].dest &= SLOT[i].mask._8; \
154 *(unsigned_8*) SLOT[i].dest |= SLOT[i].data._8; \
155 break; \
156 } \
157 } \
158 SLOT_NR = 0; \
159 } \
160 while (0)
161 #define SLOT_DUMP() \
162 do \
163 { \
164 int i; \
165 for (i = 0; i < SLOT_NR; i++) \
166 { \
167 switch (SLOT[i].size) \
168 { \
169 case 1: \
170 printf ("SLOT %d *0x%08lx & 0x%02x | 0x%02x\n", i, \
171 (long) SLOT[i].dest, \
172 (unsigned) SLOT[i].mask._1, \
173 (unsigned) SLOT[i].data._1); \
174 break; \
175 case 2: \
176 printf ("SLOT %d *0x%08lx & 0x%04x | 0x%04x\n", i, \
177 (long) SLOT[i].dest, \
178 (unsigned) SLOT[i].mask._2, \
179 (unsigned) SLOT[i].data._2); \
180 break; \
181 case 4: \
182 printf ("SLOT %d *0x%08lx & 0x%08x | 0x%08x\n", i, \
183 (long) SLOT[i].dest, \
184 (unsigned) SLOT[i].mask._4, \
185 (unsigned) SLOT[i].data._4); \
186 break; \
187 case 8: \
188 printf ("SLOT %d *0x%08lx & 0x%08x%08x | 0x%08x%08x\n", i, \
189 (long) SLOT[i].dest, \
190 (unsigned) (SLOT[i].mask._8 >> 32), \
191 (unsigned) SLOT[i].mask._8, \
192 (unsigned) (SLOT[i].data._8 >> 32), \
193 (unsigned) SLOT[i].data._8); \
194 break; \
195 } \
196 } \
197 } \
198 while (0)
199
200 /* d10v memory: There are three separate d10v memory regions IMEM,
201 UMEM and DMEM. The IMEM and DMEM are further broken down into
202 blocks (very like VM pages). */
203
204 enum
205 {
206 IMAP_BLOCK_SIZE = 0x20000,
207 DMAP_BLOCK_SIZE = 0x4000,
208 };
209
210 /* Implement the three memory regions using sparse arrays. Allocate
211 memory using ``segments''. A segment must be at least as large as
212 a BLOCK - ensures that an access that doesn't cross a block
213 boundary can't cross a segment boundary */
214
215 enum
216 {
217 SEGMENT_SIZE = 0x20000, /* 128KB - MAX(IMAP_BLOCK_SIZE,DMAP_BLOCK_SIZE) */
218 IMEM_SEGMENTS = 8, /* 1MB */
219 DMEM_SEGMENTS = 8, /* 1MB */
220 UMEM_SEGMENTS = 128 /* 16MB */
221 };
222
223 struct d10v_memory
224 {
225 uint8 *insn[IMEM_SEGMENTS];
226 uint8 *data[DMEM_SEGMENTS];
227 uint8 *unif[UMEM_SEGMENTS];
228 };
229
230 struct _state
231 {
232 reg_t regs[16]; /* general-purpose registers */
233 #define GPR(N) (State.regs[(N)] + 0)
234 #define SET_GPR(N,VAL) SLOT_PEND (State.regs[(N)], (VAL))
235
236 #define GPR32(N) ((((uint32) State.regs[(N) + 0]) << 16) \
237 | (uint16) State.regs[(N) + 1])
238 #define SET_GPR32(N,VAL) do { SET_GPR (OP[0] + 0, (VAL) >> 16); SET_GPR (OP[0] + 1, (VAL)); } while (0)
239
240 reg_t cregs[16]; /* control registers */
241 #define CREG(N) (State.cregs[(N)] + 0)
242 #define SET_CREG(N,VAL) move_to_cr (sd, cpu, (N), 0, (VAL), 0)
243 #define SET_HW_CREG(N,VAL) move_to_cr (sd, cpu, (N), 0, (VAL), 1)
244
245 reg_t sp[2]; /* holding area for SPI(0)/SPU(1) */
246 #define HELD_SP(N) (State.sp[(N)] + 0)
247 #define SET_HELD_SP(N,VAL) SLOT_PEND (State.sp[(N)], (VAL))
248
249 int64 a[2]; /* accumulators */
250 #define ACC(N) (State.a[(N)] + 0)
251 #define SET_ACC(N,VAL) SLOT_PEND (State.a[(N)], (VAL) & MASK40)
252
253 /* writeback info */
254 struct slot slot[NR_SLOTS];
255 int slot_nr;
256
257 /* trace data */
258 struct {
259 uint16 psw;
260 } trace;
261
262 uint8 exe;
263 int pc_changed;
264
265 /* NOTE: everything below this line is not reset by
266 sim_create_inferior() */
267
268 struct d10v_memory mem;
269
270 enum _ins_type ins_type;
271
272 };
273
274 extern struct _state State;
275
276
277 extern uint16 OP[4];
278 extern struct simops Simops[];
279
280 enum
281 {
282 PSW_CR = 0,
283 BPSW_CR = 1,
284 PC_CR = 2,
285 BPC_CR = 3,
286 DPSW_CR = 4,
287 DPC_CR = 5,
288 RPT_C_CR = 7,
289 RPT_S_CR = 8,
290 RPT_E_CR = 9,
291 MOD_S_CR = 10,
292 MOD_E_CR = 11,
293 IBA_CR = 14,
294 };
295
296 enum
297 {
298 PSW_SM_BIT = 0x8000,
299 PSW_EA_BIT = 0x2000,
300 PSW_DB_BIT = 0x1000,
301 PSW_DM_BIT = 0x0800,
302 PSW_IE_BIT = 0x0400,
303 PSW_RP_BIT = 0x0200,
304 PSW_MD_BIT = 0x0100,
305 PSW_FX_BIT = 0x0080,
306 PSW_ST_BIT = 0x0040,
307 PSW_F0_BIT = 0x0008,
308 PSW_F1_BIT = 0x0004,
309 PSW_C_BIT = 0x0001,
310 };
311
312 #define PSW CREG (PSW_CR)
313 #define SET_PSW(VAL) SET_CREG (PSW_CR, (VAL))
314 #define SET_HW_PSW(VAL) SET_HW_CREG (PSW_CR, (VAL))
315 #define SET_PSW_BIT(MASK,VAL) move_to_cr (sd, cpu, PSW_CR, ~((reg_t) MASK), (VAL) ? (MASK) : 0, 1)
316
317 #define PSW_SM ((PSW & PSW_SM_BIT) != 0)
318 #define SET_PSW_SM(VAL) SET_PSW_BIT (PSW_SM_BIT, (VAL))
319
320 #define PSW_EA ((PSW & PSW_EA_BIT) != 0)
321 #define SET_PSW_EA(VAL) SET_PSW_BIT (PSW_EA_BIT, (VAL))
322
323 #define PSW_DB ((PSW & PSW_DB_BIT) != 0)
324 #define SET_PSW_DB(VAL) SET_PSW_BIT (PSW_DB_BIT, (VAL))
325
326 #define PSW_DM ((PSW & PSW_DM_BIT) != 0)
327 #define SET_PSW_DM(VAL) SET_PSW_BIT (PSW_DM_BIT, (VAL))
328
329 #define PSW_IE ((PSW & PSW_IE_BIT) != 0)
330 #define SET_PSW_IE(VAL) SET_PSW_BIT (PSW_IE_BIT, (VAL))
331
332 #define PSW_RP ((PSW & PSW_RP_BIT) != 0)
333 #define SET_PSW_RP(VAL) SET_PSW_BIT (PSW_RP_BIT, (VAL))
334
335 #define PSW_MD ((PSW & PSW_MD_BIT) != 0)
336 #define SET_PSW_MD(VAL) SET_PSW_BIT (PSW_MD_BIT, (VAL))
337
338 #define PSW_FX ((PSW & PSW_FX_BIT) != 0)
339 #define SET_PSW_FX(VAL) SET_PSW_BIT (PSW_FX_BIT, (VAL))
340
341 #define PSW_ST ((PSW & PSW_ST_BIT) != 0)
342 #define SET_PSW_ST(VAL) SET_PSW_BIT (PSW_ST_BIT, (VAL))
343
344 #define PSW_F0 ((PSW & PSW_F0_BIT) != 0)
345 #define SET_PSW_F0(VAL) SET_PSW_BIT (PSW_F0_BIT, (VAL))
346
347 #define PSW_F1 ((PSW & PSW_F1_BIT) != 0)
348 #define SET_PSW_F1(VAL) SET_PSW_BIT (PSW_F1_BIT, (VAL))
349
350 #define PSW_C ((PSW & PSW_C_BIT) != 0)
351 #define SET_PSW_C(VAL) SET_PSW_BIT (PSW_C_BIT, (VAL))
352
353 /* See simopsc.:move_to_cr() for registers that can not be read-from
354 or assigned-to directly */
355
356 #define PC CREG (PC_CR)
357 #define SET_PC(VAL) SET_CREG (PC_CR, (VAL))
358
359 #define BPSW CREG (BPSW_CR)
360 #define SET_BPSW(VAL) SET_CREG (BPSW_CR, (VAL))
361
362 #define BPC CREG (BPC_CR)
363 #define SET_BPC(VAL) SET_CREG (BPC_CR, (VAL))
364
365 #define DPSW CREG (DPSW_CR)
366 #define SET_DPSW(VAL) SET_CREG (DPSW_CR, (VAL))
367
368 #define DPC CREG (DPC_CR)
369 #define SET_DPC(VAL) SET_CREG (DPC_CR, (VAL))
370
371 #define RPT_C CREG (RPT_C_CR)
372 #define SET_RPT_C(VAL) SET_CREG (RPT_C_CR, (VAL))
373
374 #define RPT_S CREG (RPT_S_CR)
375 #define SET_RPT_S(VAL) SET_CREG (RPT_S_CR, (VAL))
376
377 #define RPT_E CREG (RPT_E_CR)
378 #define SET_RPT_E(VAL) SET_CREG (RPT_E_CR, (VAL))
379
380 #define MOD_S CREG (MOD_S_CR)
381 #define SET_MOD_S(VAL) SET_CREG (MOD_S_CR, (VAL))
382
383 #define MOD_E CREG (MOD_E_CR)
384 #define SET_MOD_E(VAL) SET_CREG (MOD_E_CR, (VAL))
385
386 #define IBA CREG (IBA_CR)
387 #define SET_IBA(VAL) SET_CREG (IBA_CR, (VAL))
388
389
390 #define SIG_D10V_STOP -1
391 #define SIG_D10V_EXIT -2
392 #define SIG_D10V_BUS -3
393
394 /* TODO: Resolve conflicts with common headers. */
395 #undef SEXT8
396 #undef SEXT16
397 #undef SEXT32
398 #undef MASK32
399
400 #define SEXT3(x) ((((x)&0x7)^(~3))+4)
401
402 /* sign-extend a 4-bit number */
403 #define SEXT4(x) ((((x)&0xf)^(~7))+8)
404
405 /* sign-extend an 8-bit number */
406 #define SEXT8(x) ((((x)&0xff)^(~0x7f))+0x80)
407
408 /* sign-extend a 16-bit number */
409 #define SEXT16(x) ((((x)&0xffff)^(~0x7fff))+0x8000)
410
411 /* sign-extend a 32-bit number */
412 #define SEXT32(x) ((((x)&SIGNED64(0xffffffff))^(~SIGNED64(0x7fffffff)))+SIGNED64(0x80000000))
413
414 /* sign extend a 40 bit number */
415 #define SEXT40(x) ((((x)&SIGNED64(0xffffffffff))^(~SIGNED64(0x7fffffffff)))+SIGNED64(0x8000000000))
416
417 /* sign extend a 44 bit number */
418 #define SEXT44(x) ((((x)&SIGNED64(0xfffffffffff))^(~SIGNED64(0x7ffffffffff)))+SIGNED64(0x80000000000))
419
420 /* sign extend a 56 bit number */
421 #define SEXT56(x) ((((x)&SIGNED64(0xffffffffffffff))^(~SIGNED64(0x7fffffffffffff)))+SIGNED64(0x80000000000000))
422
423 /* sign extend a 60 bit number */
424 #define SEXT60(x) ((((x)&SIGNED64(0xfffffffffffffff))^(~SIGNED64(0x7ffffffffffffff)))+SIGNED64(0x800000000000000))
425
426 #define MAX32 SIGNED64(0x7fffffff)
427 #define MIN32 SIGNED64(0xff80000000)
428 #define MASK32 SIGNED64(0xffffffff)
429 #define MASK40 SIGNED64(0xffffffffff)
430
431 /* The alignment of MOD_E in the following macro depends upon "i"
432 always being a power of 2. */
433 #define INC_ADDR(x,i) \
434 do \
435 { \
436 int test_i = i < 0 ? i : ~((i) - 1); \
437 if (PSW_MD && GPR (x) == (MOD_E & test_i)) \
438 SET_GPR (x, MOD_S & test_i); \
439 else \
440 SET_GPR (x, GPR (x) + (i)); \
441 } \
442 while (0)
443
444 extern uint8 *dmem_addr (SIM_DESC, SIM_CPU *, uint16 offset);
445 extern uint8 *imem_addr (SIM_DESC, SIM_CPU *, uint32);
446
447 #define RB(x) (*(dmem_addr (sd, cpu, x)))
448 #define SB(addr,data) ( RB(addr) = (data & 0xff))
449
450 #if defined(__GNUC__) && defined(__OPTIMIZE__) && !defined(NO_ENDIAN_INLINE)
451 #define ENDIAN_INLINE static __inline__
452 #include "endian.c"
453 #undef ENDIAN_INLINE
454
455 #else
456 extern uint32 get_longword (uint8 *);
457 extern uint16 get_word (uint8 *);
458 extern int64 get_longlong (uint8 *);
459 extern void write_word (uint8 *addr, uint16 data);
460 extern void write_longword (uint8 *addr, uint32 data);
461 extern void write_longlong (uint8 *addr, int64 data);
462 #endif
463
464 #define SW(addr,data) write_word (dmem_addr (sd, cpu, addr), data)
465 #define RW(x) get_word (dmem_addr (sd, cpu, x))
466 #define SLW(addr,data) write_longword (dmem_addr (sd, cpu, addr), data)
467 #define RLW(x) get_longword (dmem_addr (sd, cpu, x))
468 #define READ_16(x) get_word(x)
469 #define WRITE_16(addr,data) write_word(addr,data)
470 #define READ_64(x) get_longlong(x)
471 #define WRITE_64(addr,data) write_longlong(addr,data)
472
473 #define JMP(x) do { SET_PC (x); State.pc_changed = 1; } while (0)
474
475 #define RIE_VECTOR_START 0xffc2
476 #define AE_VECTOR_START 0xffc3
477 #define TRAP_VECTOR_START 0xffc4 /* vector for trap 0 */
478 #define DBT_VECTOR_START 0xffd4
479 #define SDBT_VECTOR_START 0xffd5
480
481 /* Scedule a store of VAL into cr[CR]. MASK indicates the bits in
482 cr[CR] that should not be modified (i.e. cr[CR] = (cr[CR] & MASK) |
483 (VAL & ~MASK)). In addition, unless PSW_HW_P, a VAL intended for
484 PSW is masked for zero bits. */
485
486 extern reg_t move_to_cr (SIM_DESC, SIM_CPU *, int cr, reg_t mask, reg_t val, int psw_hw_p);