]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/d10v/interp.c
sim: run: punt!
[thirdparty/binutils-gdb.git] / sim / d10v / interp.c
1 #include "config.h"
2 #include <inttypes.h>
3 #include <signal.h>
4 #include "bfd.h"
5 #include "gdb/callback.h"
6 #include "gdb/remote-sim.h"
7
8 #include "sim-main.h"
9 #include "sim-options.h"
10
11 #include "gdb/sim-d10v.h"
12 #include "gdb/signals.h"
13
14 #ifdef HAVE_STRING_H
15 #include <string.h>
16 #else
17 #ifdef HAVE_STRINGS_H
18 #include <strings.h>
19 #endif /* HAVE_STRING_H */
20 #endif /* HAVE_STRINGS_H */
21
22 #ifdef HAVE_STDLIB_H
23 #include <stdlib.h>
24 #endif
25
26 enum _leftright { LEFT_FIRST, RIGHT_FIRST };
27
28 int d10v_debug;
29
30 /* Set this to true to get the previous segment layout. */
31
32 int old_segment_mapping;
33
34 host_callback *d10v_callback;
35 unsigned long ins_type_counters[ (int)INS_MAX ];
36
37 uint16 OP[4];
38
39 static long hash (long insn, int format);
40 static struct hash_entry *lookup_hash (uint32 ins, int size);
41 static void get_operands (struct simops *s, uint32 ins);
42 static void do_long (uint32 ins);
43 static void do_2_short (uint16 ins1, uint16 ins2, enum _leftright leftright);
44 static void do_parallel (uint16 ins1, uint16 ins2);
45 static char *add_commas (char *buf, int sizeof_buf, unsigned long value);
46 static INLINE uint8 *map_memory (unsigned phys_addr);
47
48 #define MAX_HASH 63
49 struct hash_entry
50 {
51 struct hash_entry *next;
52 uint32 opcode;
53 uint32 mask;
54 int size;
55 struct simops *ops;
56 };
57
58 struct hash_entry hash_table[MAX_HASH+1];
59
60 INLINE static long
61 hash (long insn, int format)
62 {
63 if (format & LONG_OPCODE)
64 return ((insn & 0x3F000000) >> 24);
65 else
66 return((insn & 0x7E00) >> 9);
67 }
68
69 INLINE static struct hash_entry *
70 lookup_hash (uint32 ins, int size)
71 {
72 struct hash_entry *h;
73
74 if (size)
75 h = &hash_table[(ins & 0x3F000000) >> 24];
76 else
77 h = &hash_table[(ins & 0x7E00) >> 9];
78
79 while ((ins & h->mask) != h->opcode || h->size != size)
80 {
81 if (h->next == NULL)
82 {
83 State.exception = SIGILL;
84 State.pc_changed = 1; /* Don't increment the PC. */
85 return NULL;
86 }
87 h = h->next;
88 }
89 return (h);
90 }
91
92 INLINE static void
93 get_operands (struct simops *s, uint32 ins)
94 {
95 int i, shift, bits, flags;
96 uint32 mask;
97 for (i=0; i < s->numops; i++)
98 {
99 shift = s->operands[3*i];
100 bits = s->operands[3*i+1];
101 flags = s->operands[3*i+2];
102 mask = 0x7FFFFFFF >> (31 - bits);
103 OP[i] = (ins >> shift) & mask;
104 }
105 /* FIXME: for tracing, update values that need to be updated each
106 instruction decode cycle */
107 State.trace.psw = PSW;
108 }
109
110 static void
111 do_long (uint32 ins)
112 {
113 struct hash_entry *h;
114 #ifdef DEBUG
115 if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
116 (*d10v_callback->printf_filtered) (d10v_callback, "do_long 0x%x\n", ins);
117 #endif
118 h = lookup_hash (ins, 1);
119 if (h == NULL)
120 return;
121 get_operands (h->ops, ins);
122 State.ins_type = INS_LONG;
123 ins_type_counters[ (int)State.ins_type ]++;
124 (h->ops->func)();
125 }
126
127 static void
128 do_2_short (uint16 ins1, uint16 ins2, enum _leftright leftright)
129 {
130 struct hash_entry *h;
131 enum _ins_type first, second;
132
133 #ifdef DEBUG
134 if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
135 (*d10v_callback->printf_filtered) (d10v_callback, "do_2_short 0x%x (%s) -> 0x%x\n",
136 ins1, (leftright) ? "left" : "right", ins2);
137 #endif
138
139 if (leftright == LEFT_FIRST)
140 {
141 first = INS_LEFT;
142 second = INS_RIGHT;
143 ins_type_counters[ (int)INS_LEFTRIGHT ]++;
144 }
145 else
146 {
147 first = INS_RIGHT;
148 second = INS_LEFT;
149 ins_type_counters[ (int)INS_RIGHTLEFT ]++;
150 }
151
152 /* Issue the first instruction */
153 h = lookup_hash (ins1, 0);
154 if (h == NULL)
155 return;
156 get_operands (h->ops, ins1);
157 State.ins_type = first;
158 ins_type_counters[ (int)State.ins_type ]++;
159 (h->ops->func)();
160
161 /* Issue the second instruction (if the PC hasn't changed) */
162 if (!State.pc_changed && !State.exception)
163 {
164 /* finish any existing instructions */
165 SLOT_FLUSH ();
166 h = lookup_hash (ins2, 0);
167 if (h == NULL)
168 return;
169 get_operands (h->ops, ins2);
170 State.ins_type = second;
171 ins_type_counters[ (int)State.ins_type ]++;
172 ins_type_counters[ (int)INS_CYCLES ]++;
173 (h->ops->func)();
174 }
175 else if (!State.exception)
176 ins_type_counters[ (int)INS_COND_JUMP ]++;
177 }
178
179 static void
180 do_parallel (uint16 ins1, uint16 ins2)
181 {
182 struct hash_entry *h1, *h2;
183 #ifdef DEBUG
184 if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
185 (*d10v_callback->printf_filtered) (d10v_callback, "do_parallel 0x%x || 0x%x\n", ins1, ins2);
186 #endif
187 ins_type_counters[ (int)INS_PARALLEL ]++;
188 h1 = lookup_hash (ins1, 0);
189 if (h1 == NULL)
190 return;
191 h2 = lookup_hash (ins2, 0);
192 if (h2 == NULL)
193 return;
194
195 if (h1->ops->exec_type == PARONLY)
196 {
197 get_operands (h1->ops, ins1);
198 State.ins_type = INS_LEFT_COND_TEST;
199 ins_type_counters[ (int)State.ins_type ]++;
200 (h1->ops->func)();
201 if (State.exe)
202 {
203 ins_type_counters[ (int)INS_COND_TRUE ]++;
204 get_operands (h2->ops, ins2);
205 State.ins_type = INS_RIGHT_COND_EXE;
206 ins_type_counters[ (int)State.ins_type ]++;
207 (h2->ops->func)();
208 }
209 else
210 ins_type_counters[ (int)INS_COND_FALSE ]++;
211 }
212 else if (h2->ops->exec_type == PARONLY)
213 {
214 get_operands (h2->ops, ins2);
215 State.ins_type = INS_RIGHT_COND_TEST;
216 ins_type_counters[ (int)State.ins_type ]++;
217 (h2->ops->func)();
218 if (State.exe)
219 {
220 ins_type_counters[ (int)INS_COND_TRUE ]++;
221 get_operands (h1->ops, ins1);
222 State.ins_type = INS_LEFT_COND_EXE;
223 ins_type_counters[ (int)State.ins_type ]++;
224 (h1->ops->func)();
225 }
226 else
227 ins_type_counters[ (int)INS_COND_FALSE ]++;
228 }
229 else
230 {
231 get_operands (h1->ops, ins1);
232 State.ins_type = INS_LEFT_PARALLEL;
233 ins_type_counters[ (int)State.ins_type ]++;
234 (h1->ops->func)();
235 if (!State.exception)
236 {
237 get_operands (h2->ops, ins2);
238 State.ins_type = INS_RIGHT_PARALLEL;
239 ins_type_counters[ (int)State.ins_type ]++;
240 (h2->ops->func)();
241 }
242 }
243 }
244
245 static char *
246 add_commas (char *buf, int sizeof_buf, unsigned long value)
247 {
248 int comma = 3;
249 char *endbuf = buf + sizeof_buf - 1;
250
251 *--endbuf = '\0';
252 do {
253 if (comma-- == 0)
254 {
255 *--endbuf = ',';
256 comma = 2;
257 }
258
259 *--endbuf = (value % 10) + '0';
260 } while ((value /= 10) != 0);
261
262 return endbuf;
263 }
264
265 void
266 sim_size (int power)
267 {
268 int i;
269 for (i = 0; i < IMEM_SEGMENTS; i++)
270 {
271 if (State.mem.insn[i])
272 free (State.mem.insn[i]);
273 }
274 for (i = 0; i < DMEM_SEGMENTS; i++)
275 {
276 if (State.mem.data[i])
277 free (State.mem.data[i]);
278 }
279 for (i = 0; i < UMEM_SEGMENTS; i++)
280 {
281 if (State.mem.unif[i])
282 free (State.mem.unif[i]);
283 }
284 /* Always allocate dmem segment 0. This contains the IMAP and DMAP
285 registers. */
286 State.mem.data[0] = calloc (1, SEGMENT_SIZE);
287 }
288
289 /* For tracing - leave info on last access around. */
290 static char *last_segname = "invalid";
291 static char *last_from = "invalid";
292 static char *last_to = "invalid";
293
294 enum
295 {
296 IMAP0_OFFSET = 0xff00,
297 DMAP0_OFFSET = 0xff08,
298 DMAP2_SHADDOW = 0xff04,
299 DMAP2_OFFSET = 0xff0c
300 };
301
302 static void
303 set_dmap_register (int reg_nr, unsigned long value)
304 {
305 uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA
306 + DMAP0_OFFSET + 2 * reg_nr);
307 WRITE_16 (raw, value);
308 #ifdef DEBUG
309 if ((d10v_debug & DEBUG_MEMORY))
310 {
311 (*d10v_callback->printf_filtered)
312 (d10v_callback, "mem: dmap%d=0x%04lx\n", reg_nr, value);
313 }
314 #endif
315 }
316
317 static unsigned long
318 dmap_register (void *regcache, int reg_nr)
319 {
320 uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA
321 + DMAP0_OFFSET + 2 * reg_nr);
322 return READ_16 (raw);
323 }
324
325 static void
326 set_imap_register (int reg_nr, unsigned long value)
327 {
328 uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA
329 + IMAP0_OFFSET + 2 * reg_nr);
330 WRITE_16 (raw, value);
331 #ifdef DEBUG
332 if ((d10v_debug & DEBUG_MEMORY))
333 {
334 (*d10v_callback->printf_filtered)
335 (d10v_callback, "mem: imap%d=0x%04lx\n", reg_nr, value);
336 }
337 #endif
338 }
339
340 static unsigned long
341 imap_register (void *regcache, int reg_nr)
342 {
343 uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA
344 + IMAP0_OFFSET + 2 * reg_nr);
345 return READ_16 (raw);
346 }
347
348 enum
349 {
350 HELD_SPI_IDX = 0,
351 HELD_SPU_IDX = 1
352 };
353
354 static unsigned long
355 spu_register (void)
356 {
357 if (PSW_SM)
358 return GPR (SP_IDX);
359 else
360 return HELD_SP (HELD_SPU_IDX);
361 }
362
363 static unsigned long
364 spi_register (void)
365 {
366 if (!PSW_SM)
367 return GPR (SP_IDX);
368 else
369 return HELD_SP (HELD_SPI_IDX);
370 }
371
372 static void
373 set_spi_register (unsigned long value)
374 {
375 if (!PSW_SM)
376 SET_GPR (SP_IDX, value);
377 SET_HELD_SP (HELD_SPI_IDX, value);
378 }
379
380 static void
381 set_spu_register (unsigned long value)
382 {
383 if (PSW_SM)
384 SET_GPR (SP_IDX, value);
385 SET_HELD_SP (HELD_SPU_IDX, value);
386 }
387
388 /* Given a virtual address in the DMAP address space, translate it
389 into a physical address. */
390
391 unsigned long
392 sim_d10v_translate_dmap_addr (unsigned long offset,
393 int nr_bytes,
394 unsigned long *phys,
395 void *regcache,
396 unsigned long (*dmap_register) (void *regcache,
397 int reg_nr))
398 {
399 short map;
400 int regno;
401 last_from = "logical-data";
402 if (offset >= DMAP_BLOCK_SIZE * SIM_D10V_NR_DMAP_REGS)
403 {
404 /* Logical address out side of data segments, not supported */
405 return 0;
406 }
407 regno = (offset / DMAP_BLOCK_SIZE);
408 offset = (offset % DMAP_BLOCK_SIZE);
409 if ((offset % DMAP_BLOCK_SIZE) + nr_bytes > DMAP_BLOCK_SIZE)
410 {
411 /* Don't cross a BLOCK boundary */
412 nr_bytes = DMAP_BLOCK_SIZE - (offset % DMAP_BLOCK_SIZE);
413 }
414 map = dmap_register (regcache, regno);
415 if (regno == 3)
416 {
417 /* Always maps to data memory */
418 int iospi = (offset / 0x1000) % 4;
419 int iosp = (map >> (4 * (3 - iospi))) % 0x10;
420 last_to = "io-space";
421 *phys = (SIM_D10V_MEMORY_DATA + (iosp * 0x10000) + 0xc000 + offset);
422 }
423 else
424 {
425 int sp = ((map & 0x3000) >> 12);
426 int segno = (map & 0x3ff);
427 switch (sp)
428 {
429 case 0: /* 00: Unified memory */
430 *phys = SIM_D10V_MEMORY_UNIFIED + (segno * DMAP_BLOCK_SIZE) + offset;
431 last_to = "unified";
432 break;
433 case 1: /* 01: Instruction Memory */
434 *phys = SIM_D10V_MEMORY_INSN + (segno * DMAP_BLOCK_SIZE) + offset;
435 last_to = "chip-insn";
436 break;
437 case 2: /* 10: Internal data memory */
438 *phys = SIM_D10V_MEMORY_DATA + (segno << 16) + (regno * DMAP_BLOCK_SIZE) + offset;
439 last_to = "chip-data";
440 break;
441 case 3: /* 11: Reserved */
442 return 0;
443 }
444 }
445 return nr_bytes;
446 }
447
448 /* Given a virtual address in the IMAP address space, translate it
449 into a physical address. */
450
451 unsigned long
452 sim_d10v_translate_imap_addr (unsigned long offset,
453 int nr_bytes,
454 unsigned long *phys,
455 void *regcache,
456 unsigned long (*imap_register) (void *regcache,
457 int reg_nr))
458 {
459 short map;
460 int regno;
461 int sp;
462 int segno;
463 last_from = "logical-insn";
464 if (offset >= (IMAP_BLOCK_SIZE * SIM_D10V_NR_IMAP_REGS))
465 {
466 /* Logical address outside of IMAP segments, not supported */
467 return 0;
468 }
469 regno = (offset / IMAP_BLOCK_SIZE);
470 offset = (offset % IMAP_BLOCK_SIZE);
471 if (offset + nr_bytes > IMAP_BLOCK_SIZE)
472 {
473 /* Don't cross a BLOCK boundary */
474 nr_bytes = IMAP_BLOCK_SIZE - offset;
475 }
476 map = imap_register (regcache, regno);
477 sp = (map & 0x3000) >> 12;
478 segno = (map & 0x007f);
479 switch (sp)
480 {
481 case 0: /* 00: unified memory */
482 *phys = SIM_D10V_MEMORY_UNIFIED + (segno << 17) + offset;
483 last_to = "unified";
484 break;
485 case 1: /* 01: instruction memory */
486 *phys = SIM_D10V_MEMORY_INSN + (IMAP_BLOCK_SIZE * regno) + offset;
487 last_to = "chip-insn";
488 break;
489 case 2: /*10*/
490 /* Reserved. */
491 return 0;
492 case 3: /* 11: for testing - instruction memory */
493 offset = (offset % 0x800);
494 *phys = SIM_D10V_MEMORY_INSN + offset;
495 if (offset + nr_bytes > 0x800)
496 /* don't cross VM boundary */
497 nr_bytes = 0x800 - offset;
498 last_to = "test-insn";
499 break;
500 }
501 return nr_bytes;
502 }
503
504 unsigned long
505 sim_d10v_translate_addr (unsigned long memaddr,
506 int nr_bytes,
507 unsigned long *targ_addr,
508 void *regcache,
509 unsigned long (*dmap_register) (void *regcache,
510 int reg_nr),
511 unsigned long (*imap_register) (void *regcache,
512 int reg_nr))
513 {
514 unsigned long phys;
515 unsigned long seg;
516 unsigned long off;
517
518 last_from = "unknown";
519 last_to = "unknown";
520
521 seg = (memaddr >> 24);
522 off = (memaddr & 0xffffffL);
523
524 /* However, if we've asked to use the previous generation of segment
525 mapping, rearrange the segments as follows. */
526
527 if (old_segment_mapping)
528 {
529 switch (seg)
530 {
531 case 0x00: /* DMAP translated memory */
532 seg = 0x10;
533 break;
534 case 0x01: /* IMAP translated memory */
535 seg = 0x11;
536 break;
537 case 0x10: /* On-chip data memory */
538 seg = 0x02;
539 break;
540 case 0x11: /* On-chip insn memory */
541 seg = 0x01;
542 break;
543 case 0x12: /* Unified memory */
544 seg = 0x00;
545 break;
546 }
547 }
548
549 switch (seg)
550 {
551 case 0x00: /* Physical unified memory */
552 last_from = "phys-unified";
553 last_to = "unified";
554 phys = SIM_D10V_MEMORY_UNIFIED + off;
555 if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
556 nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
557 break;
558
559 case 0x01: /* Physical instruction memory */
560 last_from = "phys-insn";
561 last_to = "chip-insn";
562 phys = SIM_D10V_MEMORY_INSN + off;
563 if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
564 nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
565 break;
566
567 case 0x02: /* Physical data memory segment */
568 last_from = "phys-data";
569 last_to = "chip-data";
570 phys = SIM_D10V_MEMORY_DATA + off;
571 if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
572 nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
573 break;
574
575 case 0x10: /* in logical data address segment */
576 nr_bytes = sim_d10v_translate_dmap_addr (off, nr_bytes, &phys, regcache,
577 dmap_register);
578 break;
579
580 case 0x11: /* in logical instruction address segment */
581 nr_bytes = sim_d10v_translate_imap_addr (off, nr_bytes, &phys, regcache,
582 imap_register);
583 break;
584
585 default:
586 return 0;
587 }
588
589 *targ_addr = phys;
590 return nr_bytes;
591 }
592
593 /* Return a pointer into the raw buffer designated by phys_addr. It
594 is assumed that the client has already ensured that the access
595 isn't going to cross a segment boundary. */
596
597 uint8 *
598 map_memory (unsigned phys_addr)
599 {
600 uint8 **memory;
601 uint8 *raw;
602 unsigned offset;
603 int segment = ((phys_addr >> 24) & 0xff);
604
605 switch (segment)
606 {
607
608 case 0x00: /* Unified memory */
609 {
610 memory = &State.mem.unif[(phys_addr / SEGMENT_SIZE) % UMEM_SEGMENTS];
611 last_segname = "umem";
612 break;
613 }
614
615 case 0x01: /* On-chip insn memory */
616 {
617 memory = &State.mem.insn[(phys_addr / SEGMENT_SIZE) % IMEM_SEGMENTS];
618 last_segname = "imem";
619 break;
620 }
621
622 case 0x02: /* On-chip data memory */
623 {
624 if ((phys_addr & 0xff00) == 0xff00)
625 {
626 phys_addr = (phys_addr & 0xffff);
627 if (phys_addr == DMAP2_SHADDOW)
628 {
629 phys_addr = DMAP2_OFFSET;
630 last_segname = "dmap";
631 }
632 else
633 last_segname = "reg";
634 }
635 else
636 last_segname = "dmem";
637 memory = &State.mem.data[(phys_addr / SEGMENT_SIZE) % DMEM_SEGMENTS];
638 break;
639 }
640
641 default:
642 /* OOPS! */
643 last_segname = "scrap";
644 return State.mem.fault;
645 }
646
647 if (*memory == NULL)
648 {
649 *memory = calloc (1, SEGMENT_SIZE);
650 if (*memory == NULL)
651 {
652 (*d10v_callback->printf_filtered) (d10v_callback, "Malloc failed.\n");
653 return State.mem.fault;
654 }
655 }
656
657 offset = (phys_addr % SEGMENT_SIZE);
658 raw = *memory + offset;
659 return raw;
660 }
661
662 /* Transfer data to/from simulated memory. Since a bug in either the
663 simulated program or in gdb or the simulator itself may cause a
664 bogus address to be passed in, we need to do some sanity checking
665 on addresses to make sure they are within bounds. When an address
666 fails the bounds check, treat it as a zero length read/write rather
667 than aborting the entire run. */
668
669 static int
670 xfer_mem (SIM_ADDR virt,
671 unsigned char *buffer,
672 int size,
673 int write_p)
674 {
675 uint8 *memory;
676 unsigned long phys;
677 int phys_size;
678 phys_size = sim_d10v_translate_addr (virt, size, &phys, NULL,
679 dmap_register, imap_register);
680 if (phys_size == 0)
681 return 0;
682
683 memory = map_memory (phys);
684
685 #ifdef DEBUG
686 if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
687 {
688 (*d10v_callback->printf_filtered)
689 (d10v_callback,
690 "sim_%s %d bytes: 0x%08lx (%s) -> 0x%08lx (%s) -> 0x%08lx (%s)\n",
691 (write_p ? "write" : "read"),
692 phys_size, virt, last_from,
693 phys, last_to,
694 (long) memory, last_segname);
695 }
696 #endif
697
698 if (write_p)
699 {
700 memcpy (memory, buffer, phys_size);
701 }
702 else
703 {
704 memcpy (buffer, memory, phys_size);
705 }
706
707 return phys_size;
708 }
709
710
711 int
712 sim_write (SIM_DESC sd, SIM_ADDR addr, const unsigned char *buffer, int size)
713 {
714 /* FIXME: this should be performing a virtual transfer */
715 return xfer_mem( addr, buffer, size, 1);
716 }
717
718 int
719 sim_read (SIM_DESC sd, SIM_ADDR addr, unsigned char *buffer, int size)
720 {
721 /* FIXME: this should be performing a virtual transfer */
722 return xfer_mem( addr, buffer, size, 0);
723 }
724
725 static void
726 free_state (SIM_DESC sd)
727 {
728 if (STATE_MODULES (sd) != NULL)
729 sim_module_uninstall (sd);
730 sim_cpu_free_all (sd);
731 sim_state_free (sd);
732 }
733
734 SIM_DESC trace_sd = NULL;
735
736 SIM_DESC
737 sim_open (SIM_OPEN_KIND kind, host_callback *cb, struct bfd *abfd, char **argv)
738 {
739 struct simops *s;
740 struct hash_entry *h;
741 static int init_p = 0;
742 char **p;
743 SIM_DESC sd = sim_state_alloc (kind, cb);
744 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
745
746 /* The cpu data is kept in a separately allocated chunk of memory. */
747 if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
748 {
749 free_state (sd);
750 return 0;
751 }
752
753 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
754 {
755 free_state (sd);
756 return 0;
757 }
758
759 /* getopt will print the error message so we just have to exit if this fails.
760 FIXME: Hmmm... in the case of gdb we need getopt to call
761 print_filtered. */
762 if (sim_parse_args (sd, argv) != SIM_RC_OK)
763 {
764 free_state (sd);
765 return 0;
766 }
767
768 /* Check for/establish the a reference program image. */
769 if (sim_analyze_program (sd,
770 (STATE_PROG_ARGV (sd) != NULL
771 ? *STATE_PROG_ARGV (sd)
772 : NULL), abfd) != SIM_RC_OK)
773 {
774 free_state (sd);
775 return 0;
776 }
777
778 /* Configure/verify the target byte order and other runtime
779 configuration options. */
780 if (sim_config (sd) != SIM_RC_OK)
781 {
782 sim_module_uninstall (sd);
783 return 0;
784 }
785
786 if (sim_post_argv_init (sd) != SIM_RC_OK)
787 {
788 /* Uninstall the modules to avoid memory leaks,
789 file descriptor leaks, etc. */
790 sim_module_uninstall (sd);
791 return 0;
792 }
793
794 trace_sd = sd;
795 d10v_callback = cb;
796 old_segment_mapping = 0;
797
798 /* NOTE: This argument parsing is only effective when this function
799 is called by GDB. Standalone argument parsing is handled by
800 sim/common/run.c. */
801 for (p = argv + 1; *p; ++p)
802 {
803 if (strcmp (*p, "-oldseg") == 0)
804 old_segment_mapping = 1;
805 #ifdef DEBUG
806 else if (strcmp (*p, "-t") == 0)
807 d10v_debug = DEBUG;
808 else if (strncmp (*p, "-t", 2) == 0)
809 d10v_debug = atoi (*p + 2);
810 #endif
811 }
812
813 /* put all the opcodes in the hash table */
814 if (!init_p++)
815 {
816 for (s = Simops; s->func; s++)
817 {
818 h = &hash_table[hash(s->opcode,s->format)];
819
820 /* go to the last entry in the chain */
821 while (h->next)
822 h = h->next;
823
824 if (h->ops)
825 {
826 h->next = (struct hash_entry *) calloc(1,sizeof(struct hash_entry));
827 if (!h->next)
828 perror ("malloc failure");
829
830 h = h->next;
831 }
832 h->ops = s;
833 h->mask = s->mask;
834 h->opcode = s->opcode;
835 h->size = s->is_long;
836 }
837 }
838
839 /* reset the processor state */
840 if (!State.mem.data[0])
841 sim_size (1);
842 sim_create_inferior ((SIM_DESC) 1, NULL, NULL, NULL);
843
844 return sd;
845 }
846
847
848 void
849 sim_close (SIM_DESC sd, int quitting)
850 {
851 /* Nothing to do. */
852 }
853
854 uint8 *
855 dmem_addr (uint16 offset)
856 {
857 unsigned long phys;
858 uint8 *mem;
859 int phys_size;
860
861 /* Note: DMEM address range is 0..0x10000. Calling code can compute
862 things like ``0xfffe + 0x0e60 == 0x10e5d''. Since offset's type
863 is uint16 this is modulo'ed onto 0x0e5d. */
864
865 phys_size = sim_d10v_translate_dmap_addr (offset, 1, &phys, NULL,
866 dmap_register);
867 if (phys_size == 0)
868 {
869 mem = State.mem.fault;
870 }
871 else
872 mem = map_memory (phys);
873 #ifdef DEBUG
874 if ((d10v_debug & DEBUG_MEMORY))
875 {
876 (*d10v_callback->printf_filtered)
877 (d10v_callback,
878 "mem: 0x%08x (%s) -> 0x%08lx %d (%s) -> 0x%08lx (%s)\n",
879 offset, last_from,
880 phys, phys_size, last_to,
881 (long) mem, last_segname);
882 }
883 #endif
884 return mem;
885 }
886
887 uint8 *
888 imem_addr (uint32 offset)
889 {
890 unsigned long phys;
891 uint8 *mem;
892 int phys_size = sim_d10v_translate_imap_addr (offset, 1, &phys, NULL,
893 imap_register);
894 if (phys_size == 0)
895 {
896 return State.mem.fault;
897 }
898 mem = map_memory (phys);
899 #ifdef DEBUG
900 if ((d10v_debug & DEBUG_MEMORY))
901 {
902 (*d10v_callback->printf_filtered)
903 (d10v_callback,
904 "mem: 0x%08x (%s) -> 0x%08lx %d (%s) -> 0x%08lx (%s)\n",
905 offset, last_from,
906 phys, phys_size, last_to,
907 (long) mem, last_segname);
908 }
909 #endif
910 return mem;
911 }
912
913 static int stop_simulator = 0;
914
915 int
916 sim_stop (SIM_DESC sd)
917 {
918 stop_simulator = 1;
919 return 1;
920 }
921
922
923 /* Run (or resume) the program. */
924 void
925 sim_resume (SIM_DESC sd, int step, int siggnal)
926 {
927 uint32 inst;
928 uint8 *iaddr;
929
930 /* (*d10v_callback->printf_filtered) (d10v_callback, "sim_resume (%d,%d) PC=0x%x\n",step,siggnal,PC); */
931 State.exception = 0;
932 if (step)
933 sim_stop (sd);
934
935 switch (siggnal)
936 {
937 case 0:
938 break;
939 #ifdef SIGBUS
940 case SIGBUS:
941 #endif
942 case SIGSEGV:
943 SET_BPC (PC);
944 SET_BPSW (PSW);
945 SET_HW_PSW ((PSW & (PSW_F0_BIT | PSW_F1_BIT | PSW_C_BIT)));
946 JMP (AE_VECTOR_START);
947 SLOT_FLUSH ();
948 break;
949 case SIGILL:
950 SET_BPC (PC);
951 SET_BPSW (PSW);
952 SET_HW_PSW ((PSW & (PSW_F0_BIT | PSW_F1_BIT | PSW_C_BIT)));
953 JMP (RIE_VECTOR_START);
954 SLOT_FLUSH ();
955 break;
956 default:
957 /* just ignore it */
958 break;
959 }
960
961 do
962 {
963 iaddr = imem_addr ((uint32)PC << 2);
964 if (iaddr == State.mem.fault)
965 {
966 State.exception = SIGBUS;
967 break;
968 }
969
970 inst = get_longword( iaddr );
971
972 State.pc_changed = 0;
973 ins_type_counters[ (int)INS_CYCLES ]++;
974
975 switch (inst & 0xC0000000)
976 {
977 case 0xC0000000:
978 /* long instruction */
979 do_long (inst & 0x3FFFFFFF);
980 break;
981 case 0x80000000:
982 /* R -> L */
983 do_2_short ( inst & 0x7FFF, (inst & 0x3FFF8000) >> 15, RIGHT_FIRST);
984 break;
985 case 0x40000000:
986 /* L -> R */
987 do_2_short ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF, LEFT_FIRST);
988 break;
989 case 0:
990 do_parallel ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF);
991 break;
992 }
993
994 /* If the PC of the current instruction matches RPT_E then
995 schedule a branch to the loop start. If one of those
996 instructions happens to be a branch, than that instruction
997 will be ignored */
998 if (!State.pc_changed)
999 {
1000 if (PSW_RP && PC == RPT_E)
1001 {
1002 /* Note: The behavour of a branch instruction at RPT_E
1003 is implementation dependant, this simulator takes the
1004 branch. Branching to RPT_E is valid, the instruction
1005 must be executed before the loop is taken. */
1006 if (RPT_C == 1)
1007 {
1008 SET_PSW_RP (0);
1009 SET_RPT_C (0);
1010 SET_PC (PC + 1);
1011 }
1012 else
1013 {
1014 SET_RPT_C (RPT_C - 1);
1015 SET_PC (RPT_S);
1016 }
1017 }
1018 else
1019 SET_PC (PC + 1);
1020 }
1021
1022 /* Check for a breakpoint trap on this instruction. This
1023 overrides any pending branches or loops */
1024 if (PSW_DB && PC == IBA)
1025 {
1026 SET_BPC (PC);
1027 SET_BPSW (PSW);
1028 SET_PSW (PSW & PSW_SM_BIT);
1029 SET_PC (SDBT_VECTOR_START);
1030 }
1031
1032 /* Writeback all the DATA / PC changes */
1033 SLOT_FLUSH ();
1034 }
1035 while ( !State.exception && !stop_simulator);
1036
1037 if (step && !State.exception)
1038 State.exception = SIGTRAP;
1039 }
1040
1041 void
1042 sim_info (SIM_DESC sd, int verbose)
1043 {
1044 char buf1[40];
1045 char buf2[40];
1046 char buf3[40];
1047 char buf4[40];
1048 char buf5[40];
1049 unsigned long left = ins_type_counters[ (int)INS_LEFT ] + ins_type_counters[ (int)INS_LEFT_COND_EXE ];
1050 unsigned long left_nops = ins_type_counters[ (int)INS_LEFT_NOPS ];
1051 unsigned long left_parallel = ins_type_counters[ (int)INS_LEFT_PARALLEL ];
1052 unsigned long left_cond = ins_type_counters[ (int)INS_LEFT_COND_TEST ];
1053 unsigned long left_total = left + left_parallel + left_cond + left_nops;
1054
1055 unsigned long right = ins_type_counters[ (int)INS_RIGHT ] + ins_type_counters[ (int)INS_RIGHT_COND_EXE ];
1056 unsigned long right_nops = ins_type_counters[ (int)INS_RIGHT_NOPS ];
1057 unsigned long right_parallel = ins_type_counters[ (int)INS_RIGHT_PARALLEL ];
1058 unsigned long right_cond = ins_type_counters[ (int)INS_RIGHT_COND_TEST ];
1059 unsigned long right_total = right + right_parallel + right_cond + right_nops;
1060
1061 unsigned long unknown = ins_type_counters[ (int)INS_UNKNOWN ];
1062 unsigned long ins_long = ins_type_counters[ (int)INS_LONG ];
1063 unsigned long parallel = ins_type_counters[ (int)INS_PARALLEL ];
1064 unsigned long leftright = ins_type_counters[ (int)INS_LEFTRIGHT ];
1065 unsigned long rightleft = ins_type_counters[ (int)INS_RIGHTLEFT ];
1066 unsigned long cond_true = ins_type_counters[ (int)INS_COND_TRUE ];
1067 unsigned long cond_false = ins_type_counters[ (int)INS_COND_FALSE ];
1068 unsigned long cond_jump = ins_type_counters[ (int)INS_COND_JUMP ];
1069 unsigned long cycles = ins_type_counters[ (int)INS_CYCLES ];
1070 unsigned long total = (unknown + left_total + right_total + ins_long);
1071
1072 int size = strlen (add_commas (buf1, sizeof (buf1), total));
1073 int parallel_size = strlen (add_commas (buf1, sizeof (buf1),
1074 (left_parallel > right_parallel) ? left_parallel : right_parallel));
1075 int cond_size = strlen (add_commas (buf1, sizeof (buf1), (left_cond > right_cond) ? left_cond : right_cond));
1076 int nop_size = strlen (add_commas (buf1, sizeof (buf1), (left_nops > right_nops) ? left_nops : right_nops));
1077 int normal_size = strlen (add_commas (buf1, sizeof (buf1), (left > right) ? left : right));
1078
1079 (*d10v_callback->printf_filtered) (d10v_callback,
1080 "executed %*s left instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n",
1081 size, add_commas (buf1, sizeof (buf1), left_total),
1082 normal_size, add_commas (buf2, sizeof (buf2), left),
1083 parallel_size, add_commas (buf3, sizeof (buf3), left_parallel),
1084 cond_size, add_commas (buf4, sizeof (buf4), left_cond),
1085 nop_size, add_commas (buf5, sizeof (buf5), left_nops));
1086
1087 (*d10v_callback->printf_filtered) (d10v_callback,
1088 "executed %*s right instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n",
1089 size, add_commas (buf1, sizeof (buf1), right_total),
1090 normal_size, add_commas (buf2, sizeof (buf2), right),
1091 parallel_size, add_commas (buf3, sizeof (buf3), right_parallel),
1092 cond_size, add_commas (buf4, sizeof (buf4), right_cond),
1093 nop_size, add_commas (buf5, sizeof (buf5), right_nops));
1094
1095 if (ins_long)
1096 (*d10v_callback->printf_filtered) (d10v_callback,
1097 "executed %*s long instruction(s)\n",
1098 size, add_commas (buf1, sizeof (buf1), ins_long));
1099
1100 if (parallel)
1101 (*d10v_callback->printf_filtered) (d10v_callback,
1102 "executed %*s parallel instruction(s)\n",
1103 size, add_commas (buf1, sizeof (buf1), parallel));
1104
1105 if (leftright)
1106 (*d10v_callback->printf_filtered) (d10v_callback,
1107 "executed %*s instruction(s) encoded L->R\n",
1108 size, add_commas (buf1, sizeof (buf1), leftright));
1109
1110 if (rightleft)
1111 (*d10v_callback->printf_filtered) (d10v_callback,
1112 "executed %*s instruction(s) encoded R->L\n",
1113 size, add_commas (buf1, sizeof (buf1), rightleft));
1114
1115 if (unknown)
1116 (*d10v_callback->printf_filtered) (d10v_callback,
1117 "executed %*s unknown instruction(s)\n",
1118 size, add_commas (buf1, sizeof (buf1), unknown));
1119
1120 if (cond_true)
1121 (*d10v_callback->printf_filtered) (d10v_callback,
1122 "executed %*s instruction(s) due to EXExxx condition being true\n",
1123 size, add_commas (buf1, sizeof (buf1), cond_true));
1124
1125 if (cond_false)
1126 (*d10v_callback->printf_filtered) (d10v_callback,
1127 "skipped %*s instruction(s) due to EXExxx condition being false\n",
1128 size, add_commas (buf1, sizeof (buf1), cond_false));
1129
1130 if (cond_jump)
1131 (*d10v_callback->printf_filtered) (d10v_callback,
1132 "skipped %*s instruction(s) due to conditional branch succeeding\n",
1133 size, add_commas (buf1, sizeof (buf1), cond_jump));
1134
1135 (*d10v_callback->printf_filtered) (d10v_callback,
1136 "executed %*s cycle(s)\n",
1137 size, add_commas (buf1, sizeof (buf1), cycles));
1138
1139 (*d10v_callback->printf_filtered) (d10v_callback,
1140 "executed %*s total instructions\n",
1141 size, add_commas (buf1, sizeof (buf1), total));
1142 }
1143
1144 SIM_RC
1145 sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char **argv, char **env)
1146 {
1147 bfd_vma start_address;
1148
1149 /* reset all state information */
1150 memset (&State.regs, 0, (uintptr_t)&State.mem - (uintptr_t)&State.regs);
1151
1152 /* There was a hack here to copy the values of argc and argv into r0
1153 and r1. The values were also saved into some high memory that
1154 won't be overwritten by the stack (0x7C00). The reason for doing
1155 this was to allow the 'run' program to accept arguments. Without
1156 the hack, this is not possible anymore. If the simulator is run
1157 from the debugger, arguments cannot be passed in, so this makes
1158 no difference. */
1159
1160 /* set PC */
1161 if (abfd != NULL)
1162 start_address = bfd_get_start_address (abfd);
1163 else
1164 start_address = 0xffc0 << 2;
1165 #ifdef DEBUG
1166 if (d10v_debug)
1167 (*d10v_callback->printf_filtered) (d10v_callback, "sim_create_inferior: PC=0x%lx\n", (long) start_address);
1168 #endif
1169 SET_CREG (PC_CR, start_address >> 2);
1170
1171 /* cpu resets imap0 to 0 and imap1 to 0x7f, but D10V-EVA board
1172 initializes imap0 and imap1 to 0x1000 as part of its ROM
1173 initialization. */
1174 if (old_segment_mapping)
1175 {
1176 /* External memory startup. This is the HARD reset state. */
1177 set_imap_register (0, 0x0000);
1178 set_imap_register (1, 0x007f);
1179 set_dmap_register (0, 0x2000);
1180 set_dmap_register (1, 0x2000);
1181 set_dmap_register (2, 0x0000); /* Old DMAP */
1182 set_dmap_register (3, 0x0000);
1183 }
1184 else
1185 {
1186 /* Internal memory startup. This is the ROM intialized state. */
1187 set_imap_register (0, 0x1000);
1188 set_imap_register (1, 0x1000);
1189 set_dmap_register (0, 0x2000);
1190 set_dmap_register (1, 0x2000);
1191 set_dmap_register (2, 0x2000); /* DMAP2 initial internal value is
1192 0x2000 on the new board. */
1193 set_dmap_register (3, 0x0000);
1194 }
1195
1196 SLOT_FLUSH ();
1197 return SIM_RC_OK;
1198 }
1199
1200 void
1201 sim_stop_reason (SIM_DESC sd, enum sim_stop *reason, int *sigrc)
1202 {
1203 /* (*d10v_callback->printf_filtered) (d10v_callback, "sim_stop_reason: PC=0x%x\n",PC<<2); */
1204
1205 switch (State.exception)
1206 {
1207 case SIG_D10V_STOP: /* stop instruction */
1208 *reason = sim_exited;
1209 *sigrc = 0;
1210 break;
1211
1212 case SIG_D10V_EXIT: /* exit trap */
1213 *reason = sim_exited;
1214 *sigrc = GPR (0);
1215 break;
1216
1217 case SIG_D10V_BUS:
1218 *reason = sim_stopped;
1219 *sigrc = GDB_SIGNAL_BUS;
1220 break;
1221
1222 default: /* some signal */
1223 *reason = sim_stopped;
1224 if (stop_simulator && !State.exception)
1225 *sigrc = GDB_SIGNAL_INT;
1226 else
1227 *sigrc = State.exception;
1228 break;
1229 }
1230
1231 stop_simulator = 0;
1232 }
1233
1234 int
1235 sim_fetch_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
1236 {
1237 int size;
1238 switch ((enum sim_d10v_regs) rn)
1239 {
1240 case SIM_D10V_R0_REGNUM:
1241 case SIM_D10V_R1_REGNUM:
1242 case SIM_D10V_R2_REGNUM:
1243 case SIM_D10V_R3_REGNUM:
1244 case SIM_D10V_R4_REGNUM:
1245 case SIM_D10V_R5_REGNUM:
1246 case SIM_D10V_R6_REGNUM:
1247 case SIM_D10V_R7_REGNUM:
1248 case SIM_D10V_R8_REGNUM:
1249 case SIM_D10V_R9_REGNUM:
1250 case SIM_D10V_R10_REGNUM:
1251 case SIM_D10V_R11_REGNUM:
1252 case SIM_D10V_R12_REGNUM:
1253 case SIM_D10V_R13_REGNUM:
1254 case SIM_D10V_R14_REGNUM:
1255 case SIM_D10V_R15_REGNUM:
1256 WRITE_16 (memory, GPR (rn - SIM_D10V_R0_REGNUM));
1257 size = 2;
1258 break;
1259 case SIM_D10V_CR0_REGNUM:
1260 case SIM_D10V_CR1_REGNUM:
1261 case SIM_D10V_CR2_REGNUM:
1262 case SIM_D10V_CR3_REGNUM:
1263 case SIM_D10V_CR4_REGNUM:
1264 case SIM_D10V_CR5_REGNUM:
1265 case SIM_D10V_CR6_REGNUM:
1266 case SIM_D10V_CR7_REGNUM:
1267 case SIM_D10V_CR8_REGNUM:
1268 case SIM_D10V_CR9_REGNUM:
1269 case SIM_D10V_CR10_REGNUM:
1270 case SIM_D10V_CR11_REGNUM:
1271 case SIM_D10V_CR12_REGNUM:
1272 case SIM_D10V_CR13_REGNUM:
1273 case SIM_D10V_CR14_REGNUM:
1274 case SIM_D10V_CR15_REGNUM:
1275 WRITE_16 (memory, CREG (rn - SIM_D10V_CR0_REGNUM));
1276 size = 2;
1277 break;
1278 case SIM_D10V_A0_REGNUM:
1279 case SIM_D10V_A1_REGNUM:
1280 WRITE_64 (memory, ACC (rn - SIM_D10V_A0_REGNUM));
1281 size = 8;
1282 break;
1283 case SIM_D10V_SPI_REGNUM:
1284 /* PSW_SM indicates that the current SP is the USER
1285 stack-pointer. */
1286 WRITE_16 (memory, spi_register ());
1287 size = 2;
1288 break;
1289 case SIM_D10V_SPU_REGNUM:
1290 /* PSW_SM indicates that the current SP is the USER
1291 stack-pointer. */
1292 WRITE_16 (memory, spu_register ());
1293 size = 2;
1294 break;
1295 case SIM_D10V_IMAP0_REGNUM:
1296 case SIM_D10V_IMAP1_REGNUM:
1297 WRITE_16 (memory, imap_register (NULL, rn - SIM_D10V_IMAP0_REGNUM));
1298 size = 2;
1299 break;
1300 case SIM_D10V_DMAP0_REGNUM:
1301 case SIM_D10V_DMAP1_REGNUM:
1302 case SIM_D10V_DMAP2_REGNUM:
1303 case SIM_D10V_DMAP3_REGNUM:
1304 WRITE_16 (memory, dmap_register (NULL, rn - SIM_D10V_DMAP0_REGNUM));
1305 size = 2;
1306 break;
1307 case SIM_D10V_TS2_DMAP_REGNUM:
1308 size = 0;
1309 break;
1310 default:
1311 size = 0;
1312 break;
1313 }
1314 return size;
1315 }
1316
1317 int
1318 sim_store_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
1319 {
1320 int size;
1321 switch ((enum sim_d10v_regs) rn)
1322 {
1323 case SIM_D10V_R0_REGNUM:
1324 case SIM_D10V_R1_REGNUM:
1325 case SIM_D10V_R2_REGNUM:
1326 case SIM_D10V_R3_REGNUM:
1327 case SIM_D10V_R4_REGNUM:
1328 case SIM_D10V_R5_REGNUM:
1329 case SIM_D10V_R6_REGNUM:
1330 case SIM_D10V_R7_REGNUM:
1331 case SIM_D10V_R8_REGNUM:
1332 case SIM_D10V_R9_REGNUM:
1333 case SIM_D10V_R10_REGNUM:
1334 case SIM_D10V_R11_REGNUM:
1335 case SIM_D10V_R12_REGNUM:
1336 case SIM_D10V_R13_REGNUM:
1337 case SIM_D10V_R14_REGNUM:
1338 case SIM_D10V_R15_REGNUM:
1339 SET_GPR (rn - SIM_D10V_R0_REGNUM, READ_16 (memory));
1340 size = 2;
1341 break;
1342 case SIM_D10V_CR0_REGNUM:
1343 case SIM_D10V_CR1_REGNUM:
1344 case SIM_D10V_CR2_REGNUM:
1345 case SIM_D10V_CR3_REGNUM:
1346 case SIM_D10V_CR4_REGNUM:
1347 case SIM_D10V_CR5_REGNUM:
1348 case SIM_D10V_CR6_REGNUM:
1349 case SIM_D10V_CR7_REGNUM:
1350 case SIM_D10V_CR8_REGNUM:
1351 case SIM_D10V_CR9_REGNUM:
1352 case SIM_D10V_CR10_REGNUM:
1353 case SIM_D10V_CR11_REGNUM:
1354 case SIM_D10V_CR12_REGNUM:
1355 case SIM_D10V_CR13_REGNUM:
1356 case SIM_D10V_CR14_REGNUM:
1357 case SIM_D10V_CR15_REGNUM:
1358 SET_CREG (rn - SIM_D10V_CR0_REGNUM, READ_16 (memory));
1359 size = 2;
1360 break;
1361 case SIM_D10V_A0_REGNUM:
1362 case SIM_D10V_A1_REGNUM:
1363 SET_ACC (rn - SIM_D10V_A0_REGNUM, READ_64 (memory) & MASK40);
1364 size = 8;
1365 break;
1366 case SIM_D10V_SPI_REGNUM:
1367 /* PSW_SM indicates that the current SP is the USER
1368 stack-pointer. */
1369 set_spi_register (READ_16 (memory));
1370 size = 2;
1371 break;
1372 case SIM_D10V_SPU_REGNUM:
1373 set_spu_register (READ_16 (memory));
1374 size = 2;
1375 break;
1376 case SIM_D10V_IMAP0_REGNUM:
1377 case SIM_D10V_IMAP1_REGNUM:
1378 set_imap_register (rn - SIM_D10V_IMAP0_REGNUM, READ_16(memory));
1379 size = 2;
1380 break;
1381 case SIM_D10V_DMAP0_REGNUM:
1382 case SIM_D10V_DMAP1_REGNUM:
1383 case SIM_D10V_DMAP2_REGNUM:
1384 case SIM_D10V_DMAP3_REGNUM:
1385 set_dmap_register (rn - SIM_D10V_DMAP0_REGNUM, READ_16(memory));
1386 size = 2;
1387 break;
1388 case SIM_D10V_TS2_DMAP_REGNUM:
1389 size = 0;
1390 break;
1391 default:
1392 size = 0;
1393 break;
1394 }
1395 SLOT_FLUSH ();
1396 return size;
1397 }