]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/h8300/compile.c
* Makefile.in (CSEARCH): Add -I$(srcdir)/../../gdb
[thirdparty/binutils-gdb.git] / sim / h8300 / compile.c
1 /*
2 * Simulator for the Hitachi H8/300 architecture.
3 *
4 * Written by Steve Chamberlain of Cygnus Support. sac@cygnus.com
5 *
6 * This file is part of H8/300 sim
7 *
8 *
9 * THIS SOFTWARE IS NOT COPYRIGHTED
10 *
11 * Cygnus offers the following for use in the public domain. Cygnus makes no
12 * warranty with regard to the software or its performance and the user
13 * accepts the software "AS IS" with all faults.
14 *
15 * CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS
16 * SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
17 * AND FITNESS FOR A PARTICULAR PURPOSE.
18 */
19
20 #include <signal.h>
21 #include "sysdep.h"
22 #include <sys/times.h>
23 #include <sys/param.h>
24 #include "remote-sim.h"
25
26 int debug;
27
28
29 #define X(op, size) op*4+size
30
31 #define SP (h8300hmode ? SL:SW)
32 #define SB 0
33 #define SW 1
34 #define SL 2
35 #define OP_REG 1
36 #define OP_DEC 2
37 #define OP_DISP 3
38 #define OP_INC 4
39 #define OP_PCREL 5
40 #define OP_MEM 6
41 #define OP_CCR 7
42 #define OP_IMM 8
43 #define OP_ABS 10
44 #define h8_opcodes ops
45 #define DEFINE_TABLE
46 #include "opcode/h8300.h"
47
48 #include "inst.h"
49
50 #define LOW_BYTE(x) ((x) & 0xff)
51 #define HIGH_BYTE(x) (((x)>>8) & 0xff)
52 #define P(X,Y) ((X<<8) | Y)
53
54 #define BUILDSR() cpu.ccr = (N << 3) | (Z << 2) | (V<<1) | C;
55
56 #define GETSR() \
57 c = (cpu.ccr >> 0) & 1;\
58 v = (cpu.ccr >> 1) & 1;\
59 nz = !((cpu.ccr >> 2) & 1);\
60 n = (cpu.ccr >> 3) & 1;
61
62 #ifdef __CHAR_IS_SIGNED__
63 #define SEXTCHAR(x) ((char)(x))
64 #endif
65
66 #ifndef SEXTCHAR
67 #define SEXTCHAR(x) ((x & 0x80) ? (x | ~0xff):x)
68 #endif
69
70 #define UEXTCHAR(x) ((x) & 0xff)
71 #define UEXTSHORT(x) ((x) & 0xffff)
72 #define SEXTSHORT(x) ((short)(x))
73
74 static cpu_state_type cpu;
75
76 int h8300hmode = 0;
77
78
79 static int
80 get_now ()
81 {
82 struct tms b;
83
84 return time(0);
85 #if 0
86 times (&b);
87 return b.tms_utime + b.tms_stime;
88 #endif
89 }
90
91 static int
92 now_persec ()
93 {
94 return 1;
95 }
96
97
98 static int
99 bitfrom (x)
100 {
101 switch (x & SIZE)
102 {
103 case L_8:
104 return SB;
105 case L_16:
106 return SW;
107 case L_32:
108 return SL;
109 case L_P:
110 return h8300hmode ? SL : SW;
111 }
112 }
113
114 static
115 unsigned int
116 lvalue (x, rn)
117 {
118 switch (x / 4)
119 {
120 case OP_DISP:
121 if (rn == 8)
122 {
123 return X(OP_IMM,SP);
124 }
125 return X(OP_REG,SP);
126
127 case OP_MEM:
128
129 return X (OP_MEM, SP);
130 default:
131 abort ();
132 }
133 }
134
135 static unsigned int
136 decode (addr, data, dst)
137 int addr;
138 unsigned char *data;
139 decoded_inst *dst;
140
141 {
142 int rs = 0;
143 int rd = 0;
144 int rdisp = 0;
145 int abs = 0;
146 int plen = 0;
147
148 struct h8_opcode *q = h8_opcodes;
149 int size = 0;
150 dst->dst.type = -1;
151 dst->src.type = -1;
152 /* Find the exact opcode/arg combo */
153 while (q->name)
154 {
155 op_type *nib;
156 unsigned int len = 0;
157
158 nib = q->data.nib;
159
160 while (1)
161 {
162 op_type looking_for = *nib;
163 int thisnib = data[len >> 1];
164
165 thisnib = (len & 1) ? (thisnib & 0xf) : ((thisnib >> 4) & 0xf);
166
167 if (looking_for < 16)
168 {
169
170 if (looking_for != thisnib)
171 goto fail;
172 }
173 else
174 {
175
176 if ((int) looking_for & (int) B31)
177 {
178 if (!(((int) thisnib & 0x8) != 0))
179 goto fail;
180 looking_for = (op_type) ((int) looking_for & ~(int)
181 B31);
182 thisnib &= 0x7;
183
184 }
185 if ((int) looking_for & (int) B30)
186 {
187 if (!(((int) thisnib & 0x8) == 0))
188 goto fail;
189 looking_for = (op_type) ((int) looking_for & ~(int) B30);
190 }
191 if (looking_for & DBIT)
192 {
193 if ((looking_for & 5) != (thisnib &5)) goto fail;
194 abs = (thisnib & 0x8) ? 2 : 1;
195 }
196 else if (looking_for & (REG | IND | INC | DEC))
197 {
198 if (looking_for & REG)
199 {
200 /*
201 * Can work out size from the
202 * register
203 */
204 size = bitfrom (looking_for);
205 }
206 if (looking_for & SRC)
207 {
208 rs = thisnib;
209 }
210 else
211 {
212 rd = thisnib;
213 }
214 }
215 else if (looking_for & L_16)
216 {
217 abs = (data[len >> 1]) * 256 + data[(len + 2) >> 1];
218 plen = 16;
219 if (looking_for & (PCREL|DISP))
220 {
221 abs = (short) (abs);
222 }
223 }
224 else if (looking_for & ABSJMP)
225 {
226 abs =
227 (data[1] << 16)
228 | (data[2] << 8)
229 | (data[3]);
230 }
231 else if (looking_for & L_32)
232 {
233 int i = len >> 1;
234 abs = (data[i] << 24)
235 | (data[i + 1] << 16)
236 | (data[i + 2] << 8)
237 | (data[i + 3]);
238
239 plen = 32;
240
241 }
242 else if (looking_for & L_24)
243 {
244 int i = len >> 1;
245 abs = (data[i] << 16) | (data[i + 1] << 8) | (data[i +
246 2]);
247 plen = 24;
248 }
249 else if (looking_for & IGNORE)
250 {
251
252 }
253 else if (looking_for & DISPREG)
254 {
255 rdisp = thisnib & 0x7;
256 }
257 else if (looking_for & KBIT)
258 {
259 switch (thisnib)
260 {
261 case 9:
262 abs = 4;
263 break;
264 case 8:
265 abs = 2;
266 break;
267 case 0:
268 abs = 1;
269 break;
270 }
271 }
272 else if (looking_for & L_8)
273 {
274 plen = 8;
275
276 if (looking_for & PCREL)
277 {
278 abs = SEXTCHAR (data[len >> 1]);
279 }
280 else
281 {
282 abs = data[len >> 1] & 0xff;
283 }
284 }
285 else if (looking_for & L_3)
286 {
287 plen = 3;
288
289 abs = thisnib;
290 }
291 else if (looking_for == E)
292 {
293 dst->op = q;
294
295 /* Fill in the args */
296 {
297 op_type *args = q->args.nib;
298 int hadone = 0;
299
300
301 while (*args != E)
302 {
303 int x = *args;
304 int rn = (x & DST) ? rd : rs;
305 ea_type *p;
306
307 if (x & DST)
308 {
309 p = &(dst->dst);
310 }
311 else
312 {
313 p = &(dst->src);
314 }
315
316
317 if (x & (IMM | KBIT | DBIT))
318 {
319 p->type = X (OP_IMM, size);
320 p->literal = abs;
321 }
322 else if (x & REG)
323 {
324 /*
325 Reset the size, some
326 ops (like mul) have two sizes */
327
328 size = bitfrom (x);
329 p->type = X (OP_REG, size);
330 p->reg = rn;
331 }
332 else if (x & INC)
333 {
334 p->type = X (OP_INC, size);
335 p->reg = rn & 0x7;
336 }
337 else if (x & DEC)
338 {
339 p->type = X (OP_DEC, size);
340 p->reg = rn & 0x7;
341 }
342 else if (x & IND)
343 {
344 p->type = X (OP_DISP, size);
345 p->reg = rn & 0x7;
346 p->literal = 0;
347 }
348 else if (x & (ABS | ABSJMP | ABSMOV))
349 {
350 p->type = X (OP_DISP, size);
351 p->literal = abs;
352 p->reg = 8;
353 }
354 else if (x & MEMIND)
355 {
356 p->type = X (OP_MEM, size);
357 p->literal = abs;
358 }
359 else if (x & PCREL)
360 {
361 p->type = X (OP_PCREL, size);
362 p->literal = abs + addr + 2;
363 }
364 else if (x & ABSJMP)
365 {
366 p->type = X (OP_IMM, SP);
367 p->literal = abs;
368 }
369 else if (x & DISP)
370 {
371 p->type = X (OP_DISP, size);
372 p->literal = abs;
373 p->reg = rdisp & 0x7;
374 }
375 else if (x & CCR)
376 {
377 p->type = OP_CCR;
378 }
379 else
380 printf ("Hmmmm %x", x);
381
382
383 args++;
384 }
385 }
386
387 /*
388 * But a jmp or a jsr gets
389 * automagically lvalued, since we
390 * branch to their address not their
391 * contents
392 */
393 if (q->how == O (O_JSR, SB)
394 || q->how == O (O_JMP, SB))
395 {
396 dst->src.type = lvalue (dst->src.type, dst->src.reg);
397 }
398
399
400 if (dst->dst.type == -1)
401 dst->dst = dst->src;
402
403 dst->opcode = q->how;
404 dst->cycles = q->time;
405
406 /* And a jsr to 0xc4 is turned into a magic trap */
407
408 if (dst->opcode == O(O_JSR, SB))
409 {
410 if(dst->src.literal == 0xc4)
411 {
412 dst->opcode = O(O_SYSCALL,SB);
413 }
414 }
415
416 dst->next_pc = addr + len / 2;
417 return;
418 }
419 else
420 {
421 printf ("Dont understand %x \n", looking_for);
422 }
423 }
424
425 len++;
426 nib++;
427 }
428
429 fail:
430 q++;
431 }
432
433 dst->opcode = O (O_ILL, SB);
434 }
435
436
437 static void
438 compile (pc)
439 {
440 int idx;
441
442 /* find the next cache entry to use */
443
444 idx = cpu.cache_top + 1;
445 cpu.compiles++;
446 if (idx >= cpu.csize)
447 {
448 idx = 1;
449 }
450 cpu.cache_top = idx;
451
452 /* Throw away its old meaning */
453 cpu.cache_idx[cpu.cache[idx].oldpc] = 0;
454
455 /* set to new address */
456 cpu.cache[idx].oldpc = pc;
457
458 /* fill in instruction info */
459 decode (pc, cpu.memory + pc, cpu.cache + idx);
460
461 /* point to new cache entry */
462 cpu.cache_idx[pc] = idx;
463 }
464
465
466 static unsigned char *breg[18];
467 static unsigned short *wreg[18];
468 static unsigned int *lreg[18];
469
470 #define GET_B_REG(x) *(breg[x])
471 #define SET_B_REG(x,y) (*(breg[x])) = (y)
472 #define GET_W_REG(x) *(wreg[x])
473 #define SET_W_REG(x,y) (*(wreg[x])) = (y)
474
475 #define GET_L_REG(x) *(lreg[x])
476 #define SET_L_REG(x,y) (*(lreg[x])) = (y)
477
478 #define GET_MEMORY_L(x) \
479 ((cpu.memory[x+0] << 24) | (cpu.memory[x+1] << 16) | (cpu.memory[x+2] << 8) | cpu.memory[x+3])
480
481 #define GET_MEMORY_W(x) \
482 ((cpu.memory[x+0] << 8) | (cpu.memory[x+1] << 0))
483
484
485 #define SET_MEMORY_B(x,y) \
486 (cpu.memory[(x)] = y)
487
488 #define SET_MEMORY_W(x,y) \
489 {register unsigned char *_p = cpu.memory+x;\
490 register int __y = y;\
491 _p[0] = (__y)>>8;\
492 _p[1] =(__y); }
493
494 #define SET_MEMORY_L(x,y) \
495 {register unsigned char *_p = cpu.memory+x;register int __y = y;\
496 _p[0] = (__y)>>24; _p[1] = (__y)>>16; _p[2] = (__y)>>8; _p[3] = (__y)>>0;}
497
498 #define GET_MEMORY_B(x) (cpu.memory[x])
499
500 int
501 fetch (arg, n)
502 ea_type *arg;
503 {
504 int rn = arg->reg;
505 int abs = arg->literal;
506 int r;
507 int t;
508
509 switch (arg->type)
510 {
511 case X (OP_REG, SB):
512 return GET_B_REG (rn);
513 case X (OP_REG, SW):
514 return GET_W_REG (rn);
515 case X (OP_REG, SL):
516 return GET_L_REG (rn);
517 case X (OP_IMM, SB):
518 case X (OP_IMM, SW):
519 case X (OP_IMM, SL):
520 return abs;
521 case X (OP_DEC, SB):
522 abort();
523
524 case X(OP_INC,SB):
525 t = GET_L_REG(rn);
526 t &= cpu.mask;
527 r = GET_MEMORY_B(t);
528 t ++;
529 t = t & cpu.mask;
530 SET_L_REG(rn,t);
531 return r;
532 break;
533 case X(OP_INC,SW):
534 t = GET_L_REG(rn);
535 t &= cpu.mask;
536 r = GET_MEMORY_W(t);
537 t +=2;
538 t = t & cpu.mask;
539 SET_L_REG(rn,t);
540 return r;
541 case X(OP_INC,SL):
542 t = GET_L_REG(rn);
543 t &= cpu.mask;
544 r = GET_MEMORY_L(t);
545
546 t +=4;
547 t = t & cpu.mask;
548 SET_L_REG(rn,t);
549 return r;
550
551 case X (OP_DISP, SB):
552 t = GET_L_REG (rn) + abs;
553 t &= cpu.mask;
554 return GET_MEMORY_B (t);
555
556 case X (OP_DISP, SW):
557 t = GET_L_REG (rn) + abs;
558 t &= cpu.mask;
559 return GET_MEMORY_W (t);
560
561 case X (OP_DISP, SL):
562 t = GET_L_REG (rn) + abs;
563 t &= cpu.mask;
564 return GET_MEMORY_L (t);
565
566 default:
567 abort ();
568
569 }
570 }
571
572
573
574
575
576 static
577 void store (arg, n)
578 ea_type *arg;
579 int n;
580 {
581 int rn = arg->reg;
582 int abs = arg->literal;
583 int t;
584
585 switch (arg->type)
586 {
587 case X (OP_REG, SB):
588 SET_B_REG (rn, n);
589 break;
590 case X (OP_REG, SW):
591 SET_W_REG (rn, n);
592 break;
593 case X (OP_REG, SL):
594 SET_L_REG (rn, n);
595 break;
596
597 case X (OP_DEC, SB):
598 t = GET_L_REG (rn) - 1;
599 t &= cpu.mask;
600 SET_L_REG (rn,t);
601 SET_MEMORY_B (t, n);
602
603 break;
604 case X (OP_DEC, SW):
605 t= (GET_L_REG (rn) - 2 ) & cpu.mask;
606 SET_L_REG (rn, t);
607 SET_MEMORY_W (t, n);
608 break;
609
610 case X (OP_DEC, SL):
611 t = (GET_L_REG(rn) -4 ) & cpu.mask;
612 SET_L_REG (rn, t);
613 SET_MEMORY_L (t,n);
614 break;
615
616
617 case X (OP_DISP, SB):
618 t = GET_L_REG (rn) + abs;
619 t &= cpu.mask;
620 SET_MEMORY_B (t, n);
621 break;
622
623 case X (OP_DISP, SW):
624 t = GET_L_REG (rn) + abs;
625 t &= cpu.mask;
626 SET_MEMORY_W (t, n);
627 break;
628
629 case X (OP_DISP, SL):
630 t = GET_L_REG (rn) + abs;
631 t &= cpu.mask;
632 SET_MEMORY_L (t, n);
633 break;
634 default:
635 abort ();
636 }
637 }
638
639
640 static union
641 {
642 short int i;
643 struct
644 {
645 char low;
646 char high;
647 }
648 u;
649 }
650
651 littleendian;
652
653 static
654 void
655 init_pointers ()
656 {
657 static int init;
658
659 if (!init)
660 {
661 int i;
662
663 init = 1;
664 littleendian.i = 1;
665
666 cpu.memory = (unsigned char *) calloc (sizeof (char), MSIZE);
667 cpu.cache_idx = (unsigned short *) calloc (sizeof (short), MSIZE);
668 cpu.mask = (1<<MPOWER)-1;
669
670 for (i = 0; i < 9; i++)
671 {
672 cpu.regs[i] = 0;
673 }
674
675 for (i = 0; i < 8; i++)
676 {
677 unsigned char *p = (unsigned char *) (cpu.regs + i);
678 unsigned char *e = (unsigned char *) (cpu.regs + i + 1);
679 unsigned short *q = (unsigned short *) (cpu.regs + i);
680 unsigned short *u = (unsigned short *) (cpu.regs + i + 1);
681 cpu.regs[i] = 0x00112233;
682 while (p < e)
683 {
684 if (*p == 0x22)
685 {
686 breg[i] = p;
687 }
688 if (*p == 0x33)
689 {
690 breg[i+8] = p;
691 }
692 p++;
693 }
694 while (q < u)
695 {
696 if (*q == 0x2233)
697 {
698 wreg[i] = q;
699 }
700 if (*q == 0x0011)
701 {
702 wreg[i + 8] = q;
703 }
704 q++;
705 }
706 cpu.regs[i] = 0;
707 lreg[i] = &cpu.regs[i];
708 }
709
710
711 lreg[8] = &cpu.regs[8];
712
713 /* initialize the seg registers */
714 if (!cpu.cache)
715 sim_csize (CSIZE);
716
717 }
718 }
719
720 static void
721 control_c (sig, code, scp, addr)
722 int sig;
723 int code;
724 char *scp;
725 char *addr;
726 {
727 cpu.exception = SIGINT;
728 }
729
730 #define C (c != 0)
731 #define Z (nz == 0)
732 #define V (v != 0)
733 #define N (n != 0)
734
735 static int
736 mop(code, bsize, sign)
737 decoded_inst *code;
738 int bsize;
739 int sign;
740 {
741 int multiplier;
742 int multiplicand;
743 int result;
744 int n,nz;
745 if (sign)
746 {
747 multiplicand =
748 bsize ? SEXTCHAR(GET_W_REG(code->dst.reg)):
749 SEXTSHORT(GET_W_REG(code->dst.reg));
750 multiplier =
751 bsize ? SEXTCHAR(GET_B_REG(code->src.reg)):
752 SEXTSHORT(GET_W_REG(code->src.reg));
753 }
754 else
755 {
756 multiplicand = bsize ? UEXTCHAR(GET_W_REG(code->dst.reg)):
757 UEXTSHORT(GET_W_REG(code->dst.reg));
758 multiplier =
759 bsize ? UEXTCHAR(GET_B_REG(code->src.reg)):
760 UEXTSHORT(GET_W_REG(code->src.reg));
761
762 }
763 result = multiplier * multiplicand;
764
765 if (sign)
766 {
767 n = result & (bsize ? 0x8000: 0x80000000);
768 nz = result & (bsize ? 0xffff: 0xffffffff);
769 }
770 if (bsize)
771 {
772 SET_W_REG(code->dst.reg, result);
773 }
774 else
775 {
776 SET_L_REG(code->dst.reg, result);
777 }
778 /* return ((n==1) << 1) | (nz==1);*/
779
780 }
781
782 int
783 sim_resume (step, siggnal)
784 {
785 static int init1;
786 int cycles = 0;
787 int insts = 0;
788 int tick_start = get_now ();
789 void (*prev) ();
790
791 int res;
792 int tmp;
793 int rd;
794 int ea;
795 int bit;
796 int pc;
797 int c, nz, v, n;
798
799 init_pointers ();
800
801 prev = signal (SIGINT, control_c);
802
803 if (step)
804 {
805 cpu.exception = SIGTRAP;
806 }
807 else
808 {
809 cpu.exception = 0;
810 }
811
812 pc = cpu.pc;
813
814 GETSR ();
815
816 do
817 {
818 int cidx;
819 decoded_inst *code;
820
821 top:
822 cidx = cpu.cache_idx[pc];
823 code = cpu.cache + cidx;
824
825
826 #define ALUOP(STORE, NAME, HOW) \
827 case O(NAME,SB): HOW; if(STORE)goto alu8;else goto just_flags_alu8; \
828 case O(NAME, SW): HOW; if(STORE)goto alu16;else goto just_flags_alu16; \
829 case O(NAME,SL): HOW; if(STORE)goto alu32;else goto just_flags_alu32;
830
831
832 #define LOGOP(NAME, HOW) \
833 case O(NAME,SB): HOW; goto log8;\
834 case O(NAME, SW): HOW; goto log16;\
835 case O(NAME,SL): HOW; goto log32;
836
837
838
839 #if ADEBUG
840 if (debug)
841 {
842 printf ("%x %d %s\n", pc, code->opcode,
843 code->op ? code->op->name : "**");
844 }
845 cpu.stats[code->opcode]++;
846
847 #endif
848
849 cycles += code->cycles;
850 insts++;
851 switch (code->opcode)
852 {
853 case 0:
854 /*
855 * This opcode is a fake for when we get to an
856 * instruction which hasnt been compiled
857 */
858 compile (pc);
859 goto top;
860 break;
861
862
863 case O (O_SUBX, SB):
864 rd = fetch (&code->dst);
865 ea = fetch (&code->src);
866 ea = -( ea + C);
867 res = rd + ea;
868 goto alu8;
869
870 case O (O_ADDX, SB):
871 rd = fetch (&code->dst);
872 ea = fetch (&code->src);
873 ea = C + ea;
874 res = rd + ea;
875 goto alu8;
876
877 #define EA ea = fetch(&code->src);
878 #define RD_EA ea = fetch(&code->src); rd = fetch(&code->dst);
879
880 ALUOP (1, O_SUB, RD_EA; ea = -ea ; res = rd + ea);
881 ALUOP (1, O_NEG, EA; ea = -ea ; rd = 0; res = rd + ea);
882
883 case O(O_ADD,SB):
884 rd = GET_B_REG(code->dst.reg);
885 ea = fetch(&code->src);
886 res = rd + ea;
887 goto alu8;
888 case O(O_ADD,SW):
889 rd = GET_W_REG(code->dst.reg);
890 ea = fetch(&code->src);
891 res = rd + ea;
892 goto alu16;
893 case O(O_ADD,SL):
894 rd = GET_L_REG(code->dst.reg);
895 ea = fetch(&code->src);
896 res = rd + ea;
897 goto alu32;
898
899
900 LOGOP (O_AND, RD_EA; res = rd & ea);
901
902 LOGOP (O_OR, RD_EA; res = rd | ea);
903
904 LOGOP (O_XOR, RD_EA; res = rd ^ ea);
905
906
907 case O(O_MOV_TO_MEM,SB):
908 res = GET_B_REG(code->src.reg);
909 goto log8;
910 case O(O_MOV_TO_MEM,SW):
911 res = GET_W_REG(code->src.reg);
912 goto log16;
913 case O(O_MOV_TO_MEM,SL):
914 res = GET_L_REG(code->src.reg);
915 goto log32;
916
917
918 case O(O_MOV_TO_REG,SB):
919 res = fetch(&code->src);
920 SET_B_REG(code->dst.reg, res);
921 goto just_flags_log8;
922 case O(O_MOV_TO_REG,SW):
923 res = fetch(&code->src);
924 SET_W_REG(code->dst.reg, res);
925 goto just_flags_log16;
926 case O(O_MOV_TO_REG,SL):
927 res = fetch(&code->src);
928 SET_L_REG(code->dst.reg, res);
929 goto just_flags_log32;
930
931
932 case O(O_ADDS,SL):
933 SET_L_REG(code->dst.reg,
934 GET_L_REG(code->dst.reg)
935 + code->src.literal);
936
937 goto next;
938
939 case O(O_SUBS,SL):
940 SET_L_REG(code->dst.reg,
941 GET_L_REG(code->dst.reg)
942 - code->src.literal);
943 goto next;
944
945 case O (O_CMP, SB):
946 rd = fetch (&code->dst);
947 ea = fetch (&code->src);
948 ea = -ea;
949 res = rd + ea;
950 goto just_flags_alu8;
951
952 case O (O_CMP, SW):
953 rd = fetch (&code->dst);
954 ea = fetch (&code->src);
955 ea = -ea;
956 res = rd + ea;
957 goto just_flags_alu16;
958
959 case O (O_CMP, SL):
960 rd = fetch (&code->dst);
961 ea = fetch (&code->src);
962 ea = -ea;
963 res = rd + ea;
964 goto just_flags_alu32;
965
966
967 case O (O_DEC, SB):
968 rd = GET_B_REG (code->src.reg);
969 ea = -1;
970 res = rd + ea;
971 SET_B_REG (code->src.reg, res);
972 goto just_flags_inc8;
973
974 case O (O_DEC, SW):
975 rd = GET_W_REG (code->dst.reg);
976 ea = - code->src.literal;
977 res = rd + ea;
978 SET_W_REG (code->dst.reg, res);
979 goto just_flags_inc16;
980
981 case O (O_DEC, SL):
982 rd = GET_L_REG (code->dst.reg);
983 ea = -code->src.literal;
984 res = rd + ea;
985 SET_L_REG (code->dst.reg, res);
986 goto just_flags_inc32;
987
988
989 case O (O_INC, SB):
990 rd = GET_B_REG (code->src.reg);
991 ea = 1;
992 res = rd + ea;
993 SET_B_REG (code->src.reg, res);
994 goto just_flags_inc8;
995
996 case O (O_INC, SW):
997 rd = GET_W_REG (code->dst.reg);
998 ea = code->src.literal;
999 res = rd + ea;
1000 SET_W_REG (code->dst.reg, res);
1001 goto just_flags_inc16;
1002
1003 case O (O_INC, SL):
1004 rd = GET_L_REG (code->dst.reg);
1005 ea = code->src.literal;
1006 res = rd + ea;
1007 SET_L_REG (code->dst.reg, res);
1008 goto just_flags_inc32;
1009
1010
1011 #define GET_CCR(x) BUILDSR();x = cpu.ccr
1012
1013 case O (O_ANDC, SB):
1014 GET_CCR (rd);
1015 ea = code->src.literal;
1016 res = rd & ea;
1017 goto setc;
1018
1019
1020 case O (O_BRA, SB):
1021 if (1)
1022 goto condtrue;
1023 goto next;
1024
1025 case O (O_BRN, SB):
1026 if (0)
1027 goto condtrue;
1028 goto next;
1029
1030 case O (O_BHI, SB):
1031 if ((C || Z) == 0)
1032 goto condtrue;
1033 goto next;
1034
1035
1036 case O (O_BLS, SB):
1037 if ((C || Z))
1038 goto condtrue;
1039 goto next;
1040
1041 case O (O_BCS, SB):
1042 if ((C == 1))
1043 goto condtrue;
1044 goto next;
1045
1046 case O (O_BCC, SB):
1047 if ((C == 0))
1048 goto condtrue;
1049 goto next;
1050
1051 case O (O_BEQ, SB):
1052 if (Z)
1053 goto condtrue;
1054 goto next;
1055 case O (O_BGT, SB):
1056 if (((Z || (N ^ V)) == 0))
1057 goto condtrue;
1058 goto next;
1059
1060
1061 case O (O_BLE, SB):
1062 if (((Z || (N ^ V)) == 1))
1063 goto condtrue;
1064 goto next;
1065
1066 case O (O_BGE, SB):
1067 if ((N ^ V) == 0)
1068 goto condtrue;
1069 goto next;
1070 case O (O_BLT, SB):
1071 if ((N ^ V))
1072 goto condtrue;
1073 goto next;
1074 case O (O_BMI, SB):
1075 if ((N))
1076 goto condtrue;
1077 goto next;
1078 case O (O_BNE, SB):
1079 if ((Z == 0))
1080 goto condtrue;
1081 goto next;
1082
1083 case O (O_BPL, SB):
1084 if (N == 0)
1085 goto condtrue;
1086 goto next;
1087 case O (O_BVC, SB):
1088 if ((V == 0))
1089 goto condtrue;
1090 goto next;
1091 case O (O_BVS, SB):
1092 if ((V == 1))
1093 goto condtrue;
1094 goto next;
1095
1096 case O(O_SYSCALL, SB):
1097 printf("%c", cpu.regs[2]);
1098 goto next;
1099
1100
1101
1102 #define OSHIFTS(name, how) \
1103 case O(name, SB):{ int t;int hm = 0x80; rd = GET_B_REG(code->src.reg);how; goto shift8;} \
1104 case O(name, SW):{ int t;int hm = 0x8000; rd = GET_W_REG(code->src.reg); how; goto shift16;} \
1105 case O(name, SL):{ int t;int hm = 0x80000000; rd = GET_L_REG(code->src.reg);how; goto shift32;}
1106
1107
1108 OSHIFTS(O_NOT, rd = ~rd);
1109 OSHIFTS(O_SHLL, c = rd & hm; rd<<=1);
1110 OSHIFTS(O_SHLR, c = rd & 1; rd = (unsigned int) rd >> 1);
1111 OSHIFTS(O_SHAL, c = rd & hm; rd<<=1);
1112 OSHIFTS(O_SHAR, t = rd & hm; c = rd&1;rd>>=1;rd|=t;);
1113 OSHIFTS(O_ROTL, c = rd & hm; rd <<=1; rd|= C);
1114 OSHIFTS(O_ROTR, c = rd & 1; rd = (unsigned int) rd >> 1; if (c) rd |= hm;);
1115 OSHIFTS(O_ROTXL,t = rd & hm; rd<<=1; rd|=C; c=t;);
1116 OSHIFTS(O_ROTXR,t = rd & 1; rd = (unsigned int) rd >> 1; if (C) rd|=hm; c=t;);
1117
1118 case O(O_JMP, SB):
1119 {
1120 pc = fetch (&code->src);
1121 goto end;
1122
1123 }
1124
1125 case O (O_JSR, SB):
1126 {
1127 int tmp;
1128 pc = fetch (&code->src);
1129 call:
1130 tmp = cpu.regs[7];
1131
1132 if (h8300hmode)
1133 {
1134 tmp -= 4;
1135 SET_MEMORY_L (tmp, code->next_pc);
1136 }
1137 else
1138 {
1139 tmp -= 2;
1140 SET_MEMORY_W (tmp, code->next_pc);
1141 }
1142 cpu.regs[7] = tmp;
1143
1144 goto end;
1145 }
1146 case O(O_BSR, SB):
1147 pc = code->src.literal;
1148 goto call;
1149
1150 case O (O_RTS, SB):
1151 {
1152 int tmp;
1153
1154
1155 tmp = cpu.regs[7];
1156
1157 if (h8300hmode)
1158 {
1159 pc = GET_MEMORY_L (tmp);
1160 tmp += 4;
1161
1162 }
1163 else
1164 {
1165 pc = GET_MEMORY_W (tmp);
1166 tmp += 2;
1167 }
1168
1169 cpu.regs[7] = tmp;
1170 goto end;
1171 }
1172
1173 case O (O_ILL, SB):
1174 cpu.exception = SIGILL;
1175 goto end;
1176
1177 case O(O_BPT,SB):
1178 cpu.exception = SIGTRAP;
1179 goto end;
1180
1181 #define OBITOP(name,f, s, op) \
1182 case O(name, SB): {int m;int b; \
1183 if (f) ea = fetch(&code->dst);\
1184 m=1<<code->src.literal;\
1185 op;\
1186 if(s) store(&code->dst,ea); goto next;\
1187 }
1188 OBITOP(O_BNOT,1,1,ea ^= m); /*FIXME: m can come from reg*/
1189 OBITOP(O_BTST,1,0,nz = ea & m); /*FIXME: m can come from reg*/
1190 OBITOP(O_BLD,1,0, c = ea & m);
1191 OBITOP(O_BILD,1,0, c = !(ea & m));
1192 OBITOP(O_BST,1,1, ea &= ~m; if (C) ea |=m);
1193 OBITOP(O_BIST,1,1, ea &= ~m; if (!C) ea |=m);
1194 OBITOP(O_BAND,1,0, c = (ea & m) && C);
1195 OBITOP(O_BIAND,1,0, c = !(ea & m) && C);
1196 OBITOP(O_BOR,1,0, c = (ea & m) || C);
1197 OBITOP(O_BIOR,1,0, c = !(ea & m) || C);
1198 OBITOP(O_BXOR,1,0, c = (ea & m) != C);
1199 OBITOP(O_BIXOR,1,0, c = !(ea & m) != C);
1200 OBITOP(O_BCLR,1,1, ea &= ~m); /*FIXME: m can come from reg*/
1201 OBITOP(O_BSET,1,1, ea |= m); /*FIXME: m can come from reg*/
1202
1203
1204 #define MOP(bsize, signed) mop(code, bsize,signed); goto next;
1205
1206 case O(O_MULS, SB): MOP(1,1);break;
1207 case O(O_MULS, SW): MOP(0,1); break;
1208 case O(O_MULU, SB): MOP(1,0);break;
1209 case O(O_MULU, SW): MOP(0,0); break;
1210
1211
1212 case O(O_DIVU,SB):
1213 {
1214
1215 rd = GET_W_REG(code->dst.reg);
1216 ea = GET_B_REG(code->src.reg);
1217 if (ea) {
1218 tmp = rd % ea;
1219 rd = rd / ea;
1220
1221 }
1222 SET_W_REG(code->dst.reg, (rd & 0xff) | (tmp << 8));
1223 n = ea & 0x80;
1224 nz = ea & 0xff;
1225
1226 goto next;
1227 }
1228 case O(O_DIVU,SW):
1229 {
1230
1231 rd = GET_L_REG(code->dst.reg);
1232 ea = GET_W_REG(code->src.reg);
1233 n = ea & 0x8000;
1234 nz = ea & 0xffff;
1235 if (ea) {
1236 tmp = rd % ea;
1237 rd = rd / ea;
1238
1239 }
1240 SET_L_REG(code->dst.reg, (rd & 0xffff) | (tmp << 16));
1241 goto next;
1242 }
1243
1244
1245
1246 case O(O_DIVS,SB):
1247 {
1248
1249 rd = SEXTSHORT(GET_W_REG(code->dst.reg));
1250 ea = SEXTCHAR(GET_B_REG(code->src.reg));
1251 if (ea) {
1252
1253 tmp = (int)rd % (int)ea;
1254 rd = (int)rd / (int)ea;
1255 n = rd & 0x8000;
1256 nz = 1;
1257
1258 }
1259 else
1260 nz = 0;
1261 SET_W_REG(code->dst.reg, (rd & 0xff) | (tmp << 8));
1262 goto next;
1263 }
1264 case O(O_DIVS,SW):
1265 {
1266
1267 rd = GET_L_REG(code->dst.reg);
1268 ea = SEXTSHORT(GET_W_REG(code->src.reg));
1269 if (ea) {
1270
1271 tmp = (int)rd % (int)ea;
1272 rd = (int)rd / (int)ea;
1273 n = rd & 0x80000000;
1274 nz = 1;
1275
1276 }
1277 else nz =0;
1278 SET_L_REG(code->dst.reg, (rd & 0xffff) | (tmp << 16));
1279 goto next;
1280 }
1281 case O (O_EXTS, SW):
1282 rd = GET_B_REG (code->src.reg + 8) & 0xff; /* Yes, src, not dst. */
1283 ea = rd & 0x80 ? -256 : 0;
1284 res = rd + ea;
1285 goto log16;
1286 case O (O_EXTS, SL):
1287 rd = GET_W_REG (code->src.reg) & 0xffff;
1288 ea = rd & 0x8000 ? -65536 : 0;
1289 res = rd + ea;
1290 goto log32;
1291 case O (O_EXTU, SW):
1292 rd = GET_B_REG (code->src.reg + 8) & 0xff;
1293 ea = 0;
1294 res = rd + ea;
1295 goto log16;
1296 case O (O_EXTU, SL):
1297 rd = GET_W_REG (code->src.reg) & 0xffff;
1298 ea = 0;
1299 res = rd + ea;
1300 goto log32;
1301
1302 case O (O_NOP, SB):
1303 goto next;
1304
1305 default:
1306 cpu.exception = 123;
1307 goto end;
1308
1309 }
1310 abort ();
1311
1312 setc:
1313 GETSR();
1314 goto next;
1315
1316 condtrue:
1317 /* When a branch works */
1318 pc = code->src.literal;
1319 goto end;
1320
1321 /* Set the cond codes from res */
1322 bitop:
1323
1324 /* Set the flags after an 8 bit inc/dec operation */
1325 just_flags_inc8:
1326 n = res & 0x80;
1327 nz = res & 0xff;
1328 v = (rd & 0x7f) == 0x7f;
1329 goto next;
1330
1331
1332 /* Set the flags after an 16 bit inc/dec operation */
1333 just_flags_inc16:
1334 n = res & 0x8000;
1335 nz = res & 0xffff;
1336 v = (rd & 0x7fff) == 0x7fff;
1337 goto next;
1338
1339
1340 /* Set the flags after an 32 bit inc/dec operation */
1341 just_flags_inc32:
1342 n = res & 0x80000000;
1343 nz = res & 0xffffffff;
1344 v = (rd & 0x7fffffff) == 0x7fffffff;
1345 goto next;
1346
1347
1348 shift8:
1349 /* Set flags after an 8 bit shift op, carry set in insn */
1350 n = (rd & 0x80);
1351 v = 0;
1352 nz = rd & 0xff;
1353 SET_B_REG(code->src.reg, rd);
1354 goto next;
1355
1356
1357 shift16:
1358 /* Set flags after an 16 bit shift op, carry set in insn */
1359 n = (rd & 0x8000);
1360 v = 0;
1361 nz = rd & 0xffff;
1362
1363 SET_W_REG(code->src.reg, rd);
1364 goto next;
1365
1366 shift32:
1367 /* Set flags after an 32 bit shift op, carry set in insn */
1368 n = (rd & 0x80000000);
1369 v = 0;
1370 nz = rd & 0xffffffff;
1371 SET_L_REG(code->src.reg, rd);
1372 goto next;
1373
1374 log32:
1375 store (&code->dst, res);
1376 just_flags_log32:
1377 /* flags after a 32bit logical operation */
1378 n = res & 0x80000000;
1379 nz = res & 0xffffffff;
1380 v = 0;
1381 goto next;
1382
1383 log16:
1384 store (&code->dst, res);
1385 just_flags_log16:
1386 /* flags after a 16bit logical operation */
1387 n = res & 0x8000;
1388 nz = res & 0xffff;
1389 v = 0;
1390 goto next;
1391
1392
1393 log8:
1394 store (&code->dst, res);
1395 just_flags_log8:
1396 n = res & 0x80;
1397 nz = res & 0xff;
1398 v = 0;
1399 goto next;
1400
1401 alu8:
1402 SET_B_REG (code->dst.reg, res);
1403 just_flags_alu8:
1404 n = res & 0x80;
1405 nz = res & 0xff;
1406 v = ((ea & 0x80) == (rd & 0x80)) && ((ea & 0x80) != (res & 0x80));
1407 c = (res & 0x100);
1408 goto next;
1409
1410 alu16:
1411 SET_W_REG (code->dst.reg, res);
1412 just_flags_alu16:
1413 n = res & 0x8000;
1414 nz = res & 0xffff;
1415 v = ((ea & 0x8000) == (rd & 0x8000)) && ((ea & 0x8000) != (res & 0x8000));
1416 c = (res & 0x10000);
1417 goto next;
1418
1419 alu32:
1420 SET_L_REG (code->dst.reg, res);
1421 just_flags_alu32:
1422 n = res & 0x80000000;
1423 nz = res & 0xffffffff;
1424 v = ((ea & 0x80000000) == (rd & 0x80000000))
1425 && ((ea & 0x80000000) != (res & 0x80000000));
1426 switch (code->opcode / 4)
1427 {
1428 case O_ADD:
1429 c = ((unsigned) res < (unsigned) rd) || ((unsigned) res < (unsigned) ea);
1430 break;
1431 case O_SUB:
1432 case O_CMP:
1433 c = (unsigned) rd < (unsigned) -ea;
1434 break;
1435 case O_NEG:
1436 c = res != 0;
1437 break;
1438 }
1439 goto next;
1440
1441 next:;
1442 pc = code->next_pc;
1443
1444 end:
1445 if (cpu.regs[8] ) abort();
1446
1447 ;
1448
1449 }
1450 while (!cpu.exception);
1451 cpu.ticks += get_now () - tick_start;
1452 cpu.cycles += cycles;
1453 cpu.insts += insts;
1454 cpu.pc = pc;
1455 BUILDSR ();
1456
1457 signal (SIGINT, prev);
1458 }
1459
1460
1461
1462
1463 int
1464 sim_write (addr, buffer, size)
1465 SIM_ADDR addr;
1466 unsigned char *buffer;
1467 int size;
1468 {
1469 int i;
1470
1471 init_pointers ();
1472 if (addr < 0 || addr + size > MSIZE)
1473 return 0;
1474 for (i = 0; i < size; i++)
1475 {
1476 cpu.memory[addr + i] = buffer[i];
1477 cpu.cache_idx[addr + i] = 0;
1478 }
1479 return size;
1480 }
1481
1482 int
1483 sim_read (addr, buffer, size)
1484 SIM_ADDR addr;
1485 unsigned char *buffer;
1486 int size;
1487 {
1488 init_pointers ();
1489 if (addr < 0 || addr + size > MSIZE)
1490 return 0;
1491 memcpy (buffer, cpu.memory + addr, size);
1492 return size;
1493 }
1494
1495
1496
1497 #define R0_REGNUM 0
1498 #define R1_REGNUM 1
1499 #define R2_REGNUM 2
1500 #define R3_REGNUM 3
1501 #define R4_REGNUM 4
1502 #define R5_REGNUM 5
1503 #define R6_REGNUM 6
1504 #define R7_REGNUM 7
1505
1506 #define SP_REGNUM R7_REGNUM /* Contains address of top of stack */
1507 #define FP_REGNUM R6_REGNUM /* Contains address of executing
1508 * stack frame */
1509
1510 #define CCR_REGNUM 8 /* Contains processor status */
1511 #define PC_REGNUM 9 /* Contains program counter */
1512
1513 #define CYCLE_REGNUM 10
1514 #define INST_REGNUM 11
1515 #define TICK_REGNUM 12
1516
1517
1518 int
1519 sim_store_register (rn, value)
1520 int rn;
1521 unsigned char *value;
1522 {
1523 int longval;
1524 int shortval;
1525 int intval;
1526 longval = (value[0] << 24 ) | (value[1] << 16) | (value[2] << 8) | value[3];
1527 shortval= (value[0] << 8 ) | (value[1]);
1528 intval = h8300hmode ? longval : shortval;
1529
1530 init_pointers ();
1531 switch (rn)
1532 {
1533 case PC_REGNUM:
1534 cpu.pc = intval;
1535 break;
1536 default:
1537 abort ();
1538 case R0_REGNUM:
1539 case R1_REGNUM:
1540 case R2_REGNUM:
1541 case R3_REGNUM:
1542 case R4_REGNUM:
1543 case R5_REGNUM:
1544 case R6_REGNUM:
1545 case R7_REGNUM:
1546 cpu.regs[rn] = intval;
1547 break;
1548 case CCR_REGNUM:
1549 cpu.ccr = intval;
1550 break;
1551 case CYCLE_REGNUM:
1552 cpu.cycles = longval;
1553 break;
1554
1555 case INST_REGNUM:
1556 cpu.insts = longval;
1557 break;
1558
1559 case TICK_REGNUM:
1560 cpu.ticks = longval;
1561 break;
1562 }
1563 return 0;
1564 }
1565
1566 int
1567 sim_fetch_register (rn, buf)
1568 int rn;
1569 unsigned char *buf;
1570 {
1571 int v;
1572 int longreg = 0;
1573
1574 init_pointers ();
1575
1576 switch (rn)
1577 {
1578 default:
1579 abort ();
1580 case 8:
1581 v = cpu.ccr;
1582 break;
1583 case 9:
1584 v = cpu.pc;
1585 break;
1586 case R0_REGNUM:
1587 case R1_REGNUM:
1588 case R2_REGNUM:
1589 case R3_REGNUM:
1590 case R4_REGNUM:
1591 case R5_REGNUM:
1592 case R6_REGNUM:
1593 case R7_REGNUM:
1594 v = cpu.regs[rn];
1595 break;
1596 case 10:
1597 v = cpu.cycles;
1598 longreg = 1;
1599 break;
1600 case 11:
1601 v = cpu.ticks;
1602 longreg = 1;
1603 break;
1604 case 12:
1605 v = cpu.insts;
1606 longreg = 1;
1607 break;
1608 }
1609 if (h8300hmode || longreg)
1610 {
1611 buf[0] = v >> 24;
1612 buf[1] = v >> 16;
1613 buf[2] = v >> 8;
1614 buf[3] = v >> 0;
1615 }
1616 else
1617 {
1618 buf[0] = v >> 8;
1619 buf[1] = v;
1620 }
1621 return 0;
1622 }
1623
1624 int
1625 sim_trace ()
1626 {
1627 return 0;
1628 }
1629
1630 int
1631 sim_stop_reason (reason, sigrc)
1632 enum sim_stop *reason;
1633 int *sigrc;
1634 {
1635 *reason = sim_stopped;
1636 *sigrc = cpu.exception;
1637 return 0;
1638 }
1639
1640 int
1641 sim_set_pc (n)
1642 SIM_ADDR n;
1643 {
1644 cpu.pc = n;
1645 return 0;
1646 }
1647
1648
1649 sim_csize (n)
1650 {
1651 if (cpu.cache)
1652 free (cpu.cache);
1653 if (n < 2)
1654 n = 2;
1655 cpu.cache = (decoded_inst *) malloc (sizeof (decoded_inst) * n);
1656 memset (cpu.cache, 0, sizeof (decoded_inst) * n);
1657 cpu.csize = n;
1658 }
1659
1660
1661
1662 int
1663 sim_info (printf_fn, verbose)
1664 void (*printf_fn)();
1665 int verbose;
1666
1667 {
1668 double timetaken = (double) cpu.ticks / (double) now_persec ();
1669 double virttime = cpu.cycles / 10.0e6;
1670
1671
1672 printf ("\n\n#instructions executed %10d\n", cpu.insts);
1673 printf ("#cycles (v approximate) %10d\n", cpu.cycles);
1674 printf ("#real time taken %10.4f\n", timetaken);
1675 printf ("#virtual time taked %10.4f\n", virttime);
1676 if (timetaken != 0.0)
1677 printf ("#simulation ratio %10.4f\n", virttime / timetaken);
1678 printf ("#compiles %10d\n", cpu.compiles);
1679 printf ("#cache size %10d\n", cpu.csize);
1680
1681
1682 #ifdef ADEBUG
1683 if (verbose)
1684 {
1685 int i;
1686 for (i= 0; i < O_LAST; i++)
1687 {
1688 if (cpu.stats[i])
1689 printf("%d: %d\n", i, cpu.stats[i]);
1690 }
1691 }
1692 #endif
1693
1694 return 0;
1695 }
1696
1697 void
1698 set_h8300h ()
1699 {
1700 h8300hmode = 1;
1701 }
1702
1703 int
1704 sim_kill()
1705 {
1706 return 0;
1707 }
1708
1709 sim_open (name)
1710 char *name;
1711 {
1712 return 0;
1713 }
1714
1715 sim_set_args(argv, env)
1716 char **argv;
1717 char **env;
1718 {
1719 return 0;
1720 }