]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/mips/interp.c
sim: arm/d10v/h8300/m68hc11/microblaze/mips/mn10300/moxie/sh/v850: convert to common...
[thirdparty/binutils-gdb.git] / sim / mips / interp.c
1 /*> interp.c <*/
2 /* Simulator for the MIPS architecture.
3
4 This file is part of the MIPS sim
5
6 THIS SOFTWARE IS NOT COPYRIGHTED
7
8 Cygnus offers the following for use in the public domain. Cygnus
9 makes no warranty with regard to the software or it's performance
10 and the user accepts the software "AS IS" with all faults.
11
12 CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
13 THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
14 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
15
16 NOTEs:
17
18 The IDT monitor (found on the VR4300 board), seems to lie about
19 register contents. It seems to treat the registers as sign-extended
20 32-bit values. This cause *REAL* problems when single-stepping 64-bit
21 code on the hardware.
22
23 */
24
25 #include "config.h"
26 #include "bfd.h"
27 #include "sim-main.h"
28 #include "sim-utils.h"
29 #include "sim-options.h"
30 #include "sim-assert.h"
31 #include "sim-hw.h"
32
33 #include "itable.h"
34
35
36 #include "config.h"
37
38 #include <stdio.h>
39 #include <stdarg.h>
40 #include <ansidecl.h>
41 #include <ctype.h>
42 #include <limits.h>
43 #include <math.h>
44 #ifdef HAVE_STDLIB_H
45 #include <stdlib.h>
46 #endif
47 #ifdef HAVE_STRING_H
48 #include <string.h>
49 #else
50 #ifdef HAVE_STRINGS_H
51 #include <strings.h>
52 #endif
53 #endif
54
55 #include "getopt.h"
56 #include "libiberty.h"
57 #include "bfd.h"
58 #include "gdb/callback.h" /* GDB simulator callback interface */
59 #include "gdb/remote-sim.h" /* GDB simulator interface */
60
61 char* pr_addr (SIM_ADDR addr);
62 char* pr_uword64 (uword64 addr);
63
64
65 /* Within interp.c we refer to the sim_state and sim_cpu directly. */
66 #define CPU cpu
67 #define SD sd
68
69
70 /* The following reserved instruction value is used when a simulator
71 trap is required. NOTE: Care must be taken, since this value may be
72 used in later revisions of the MIPS ISA. */
73
74 #define RSVD_INSTRUCTION (0x00000039)
75 #define RSVD_INSTRUCTION_MASK (0xFC00003F)
76
77 #define RSVD_INSTRUCTION_ARG_SHIFT 6
78 #define RSVD_INSTRUCTION_ARG_MASK 0xFFFFF
79
80
81 /* Bits in the Debug register */
82 #define Debug_DBD 0x80000000 /* Debug Branch Delay */
83 #define Debug_DM 0x40000000 /* Debug Mode */
84 #define Debug_DBp 0x00000002 /* Debug Breakpoint indicator */
85
86 /*---------------------------------------------------------------------------*/
87 /*-- GDB simulator interface ------------------------------------------------*/
88 /*---------------------------------------------------------------------------*/
89
90 static void ColdReset (SIM_DESC sd);
91
92 /*---------------------------------------------------------------------------*/
93
94
95
96 #define DELAYSLOT() {\
97 if (STATE & simDELAYSLOT)\
98 sim_io_eprintf(sd,"Delay slot already activated (branch in delay slot?)\n");\
99 STATE |= simDELAYSLOT;\
100 }
101
102 #define JALDELAYSLOT() {\
103 DELAYSLOT ();\
104 STATE |= simJALDELAYSLOT;\
105 }
106
107 #define NULLIFY() {\
108 STATE &= ~simDELAYSLOT;\
109 STATE |= simSKIPNEXT;\
110 }
111
112 #define CANCELDELAYSLOT() {\
113 DSSTATE = 0;\
114 STATE &= ~(simDELAYSLOT | simJALDELAYSLOT);\
115 }
116
117 #define INDELAYSLOT() ((STATE & simDELAYSLOT) != 0)
118 #define INJALDELAYSLOT() ((STATE & simJALDELAYSLOT) != 0)
119
120 /* Note that the monitor code essentially assumes this layout of memory.
121 If you change these, change the monitor code, too. */
122 /* FIXME Currently addresses are truncated to 32-bits, see
123 mips/sim-main.c:address_translation(). If that changes, then these
124 values will need to be extended, and tested for more carefully. */
125 #define K0BASE (0x80000000)
126 #define K0SIZE (0x20000000)
127 #define K1BASE (0xA0000000)
128 #define K1SIZE (0x20000000)
129
130 /* Simple run-time monitor support.
131
132 We emulate the monitor by placing magic reserved instructions at
133 the monitor's entry points; when we hit these instructions, instead
134 of raising an exception (as we would normally), we look at the
135 instruction and perform the appropriate monitory operation.
136
137 `*_monitor_base' are the physical addresses at which the corresponding
138 monitor vectors are located. `0' means none. By default,
139 install all three.
140 The RSVD_INSTRUCTION... macros specify the magic instructions we
141 use at the monitor entry points. */
142 static int firmware_option_p = 0;
143 static SIM_ADDR idt_monitor_base = 0xBFC00000;
144 static SIM_ADDR pmon_monitor_base = 0xBFC00500;
145 static SIM_ADDR lsipmon_monitor_base = 0xBFC00200;
146
147 static SIM_RC sim_firmware_command (SIM_DESC sd, char* arg);
148
149 #define MEM_SIZE (8 << 20) /* 8 MBytes */
150
151
152 #if WITH_TRACE_ANY_P
153 static char *tracefile = "trace.din"; /* default filename for trace log */
154 FILE *tracefh = NULL;
155 static void open_trace (SIM_DESC sd);
156 #else
157 #define open_trace(sd)
158 #endif
159
160 static const char * get_insn_name (sim_cpu *, int);
161
162 /* simulation target board. NULL=canonical */
163 static char* board = NULL;
164
165
166 static DECLARE_OPTION_HANDLER (mips_option_handler);
167
168 enum {
169 OPTION_DINERO_TRACE = OPTION_START,
170 OPTION_DINERO_FILE,
171 OPTION_FIRMWARE,
172 OPTION_INFO_MEMORY,
173 OPTION_BOARD
174 };
175
176 static int display_mem_info = 0;
177
178 static SIM_RC
179 mips_option_handler (SIM_DESC sd, sim_cpu *cpu, int opt, char *arg,
180 int is_command)
181 {
182 int cpu_nr;
183 switch (opt)
184 {
185 case OPTION_DINERO_TRACE: /* ??? */
186 #if WITH_TRACE_ANY_P
187 /* Eventually the simTRACE flag could be treated as a toggle, to
188 allow external control of the program points being traced
189 (i.e. only from main onwards, excluding the run-time setup,
190 etc.). */
191 for (cpu_nr = 0; cpu_nr < MAX_NR_PROCESSORS; cpu_nr++)
192 {
193 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
194 if (arg == NULL)
195 STATE |= simTRACE;
196 else if (strcmp (arg, "yes") == 0)
197 STATE |= simTRACE;
198 else if (strcmp (arg, "no") == 0)
199 STATE &= ~simTRACE;
200 else if (strcmp (arg, "on") == 0)
201 STATE |= simTRACE;
202 else if (strcmp (arg, "off") == 0)
203 STATE &= ~simTRACE;
204 else
205 {
206 fprintf (stderr, "Unrecognized dinero-trace option `%s'\n", arg);
207 return SIM_RC_FAIL;
208 }
209 }
210 return SIM_RC_OK;
211 #else /* !WITH_TRACE_ANY_P */
212 fprintf(stderr,"\
213 Simulator constructed without dinero tracing support (for performance).\n\
214 Re-compile simulator with \"-DWITH_TRACE_ANY_P\" to enable this option.\n");
215 return SIM_RC_FAIL;
216 #endif /* !WITH_TRACE_ANY_P */
217
218 case OPTION_DINERO_FILE:
219 #if WITH_TRACE_ANY_P
220 if (optarg != NULL) {
221 char *tmp;
222 tmp = (char *)malloc(strlen(optarg) + 1);
223 if (tmp == NULL)
224 {
225 sim_io_printf(sd,"Failed to allocate buffer for tracefile name \"%s\"\n",optarg);
226 return SIM_RC_FAIL;
227 }
228 else {
229 strcpy(tmp,optarg);
230 tracefile = tmp;
231 sim_io_printf(sd,"Placing trace information into file \"%s\"\n",tracefile);
232 }
233 }
234 #endif /* WITH_TRACE_ANY_P */
235 return SIM_RC_OK;
236
237 case OPTION_FIRMWARE:
238 return sim_firmware_command (sd, arg);
239
240 case OPTION_BOARD:
241 {
242 if (arg)
243 {
244 board = zalloc(strlen(arg) + 1);
245 strcpy(board, arg);
246 }
247 return SIM_RC_OK;
248 }
249
250 case OPTION_INFO_MEMORY:
251 display_mem_info = 1;
252 break;
253 }
254
255 return SIM_RC_OK;
256 }
257
258
259 static const OPTION mips_options[] =
260 {
261 { {"dinero-trace", optional_argument, NULL, OPTION_DINERO_TRACE},
262 '\0', "on|off", "Enable dinero tracing",
263 mips_option_handler },
264 { {"dinero-file", required_argument, NULL, OPTION_DINERO_FILE},
265 '\0', "FILE", "Write dinero trace to FILE",
266 mips_option_handler },
267 { {"firmware", required_argument, NULL, OPTION_FIRMWARE},
268 '\0', "[idt|pmon|lsipmon|none][@ADDRESS]", "Emulate ROM monitor",
269 mips_option_handler },
270 { {"board", required_argument, NULL, OPTION_BOARD},
271 '\0', "none" /* rely on compile-time string concatenation for other options */
272
273 #define BOARD_JMR3904 "jmr3904"
274 "|" BOARD_JMR3904
275 #define BOARD_JMR3904_PAL "jmr3904pal"
276 "|" BOARD_JMR3904_PAL
277 #define BOARD_JMR3904_DEBUG "jmr3904debug"
278 "|" BOARD_JMR3904_DEBUG
279 #define BOARD_BSP "bsp"
280 "|" BOARD_BSP
281
282 , "Customize simulation for a particular board.", mips_option_handler },
283
284 /* These next two options have the same names as ones found in the
285 memory_options[] array in common/sim-memopt.c. This is because
286 the intention is to provide an alternative handler for those two
287 options. We need an alternative handler because the memory
288 regions are not set up until after the command line arguments
289 have been parsed, and so we cannot display the memory info whilst
290 processing the command line. There is a hack in sim_open to
291 remove these handlers when we want the real --memory-info option
292 to work. */
293 { { "info-memory", no_argument, NULL, OPTION_INFO_MEMORY },
294 '\0', NULL, "List configured memory regions", mips_option_handler },
295 { { "memory-info", no_argument, NULL, OPTION_INFO_MEMORY },
296 '\0', NULL, NULL, mips_option_handler },
297
298 { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
299 };
300
301
302 int interrupt_pending;
303
304 void
305 interrupt_event (SIM_DESC sd, void *data)
306 {
307 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
308 address_word cia = CPU_PC_GET (cpu);
309 if (SR & status_IE)
310 {
311 interrupt_pending = 0;
312 SignalExceptionInterrupt (1); /* interrupt "1" */
313 }
314 else if (!interrupt_pending)
315 sim_events_schedule (sd, 1, interrupt_event, data);
316 }
317
318
319 /*---------------------------------------------------------------------------*/
320 /*-- Device registration hook -----------------------------------------------*/
321 /*---------------------------------------------------------------------------*/
322 static void device_init(SIM_DESC sd) {
323 #ifdef DEVICE_INIT
324 extern void register_devices(SIM_DESC);
325 register_devices(sd);
326 #endif
327 }
328
329 /*---------------------------------------------------------------------------*/
330 /*-- GDB simulator interface ------------------------------------------------*/
331 /*---------------------------------------------------------------------------*/
332
333 static sim_cia
334 mips_pc_get (sim_cpu *cpu)
335 {
336 return PC;
337 }
338
339 static void
340 mips_pc_set (sim_cpu *cpu, sim_cia pc)
341 {
342 PC = pc;
343 }
344
345 static int mips_reg_fetch (SIM_CPU *, int, unsigned char *, int);
346 static int mips_reg_store (SIM_CPU *, int, unsigned char *, int);
347
348 SIM_DESC
349 sim_open (SIM_OPEN_KIND kind, host_callback *cb, struct bfd *abfd, char **argv)
350 {
351 int i;
352 SIM_DESC sd = sim_state_alloc (kind, cb);
353 sim_cpu *cpu;
354
355 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
356
357 /* The cpu data is kept in a separately allocated chunk of memory. */
358 if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
359 return 0;
360
361 cpu = STATE_CPU (sd, 0); /* FIXME */
362
363 /* FIXME: watchpoints code shouldn't need this */
364 STATE_WATCHPOINTS (sd)->pc = &(PC);
365 STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
366 STATE_WATCHPOINTS (sd)->interrupt_handler = interrupt_event;
367
368 /* Initialize the mechanism for doing insn profiling. */
369 CPU_INSN_NAME (cpu) = get_insn_name;
370 CPU_MAX_INSNS (cpu) = nr_itable_entries;
371
372 STATE = 0;
373
374 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
375 return 0;
376 sim_add_option_table (sd, NULL, mips_options);
377
378
379 /* getopt will print the error message so we just have to exit if this fails.
380 FIXME: Hmmm... in the case of gdb we need getopt to call
381 print_filtered. */
382 if (sim_parse_args (sd, argv) != SIM_RC_OK)
383 {
384 /* Uninstall the modules to avoid memory leaks,
385 file descriptor leaks, etc. */
386 sim_module_uninstall (sd);
387 return 0;
388 }
389
390 /* handle board-specific memory maps */
391 if (board == NULL)
392 {
393 /* Allocate core managed memory */
394 sim_memopt *entry, *match = NULL;
395 address_word mem_size = 0;
396 int mapped = 0;
397
398 /* For compatibility with the old code - under this (at level one)
399 are the kernel spaces K0 & K1. Both of these map to a single
400 smaller sub region */
401 sim_do_command(sd," memory region 0x7fff8000,0x8000") ; /* MTZ- 32 k stack */
402
403 /* Look for largest memory region defined on command-line at
404 phys address 0. */
405 for (entry = STATE_MEMOPT (sd); entry != NULL; entry = entry->next)
406 {
407 /* If we find an entry at address 0, then we will end up
408 allocating a new buffer in the "memory alias" command
409 below. The region at address 0 will be deleted. */
410 address_word size = (entry->modulo != 0
411 ? entry->modulo : entry->nr_bytes);
412 if (entry->addr == 0
413 && (!match || entry->level < match->level))
414 match = entry;
415 else if (entry->addr == K0BASE || entry->addr == K1BASE)
416 mapped = 1;
417 else
418 {
419 sim_memopt *alias;
420 for (alias = entry->alias; alias != NULL; alias = alias->next)
421 {
422 if (alias->addr == 0
423 && (!match || entry->level < match->level))
424 match = entry;
425 else if (alias->addr == K0BASE || alias->addr == K1BASE)
426 mapped = 1;
427 }
428 }
429 }
430
431 if (!mapped)
432 {
433 if (match)
434 {
435 /* Get existing memory region size. */
436 mem_size = (match->modulo != 0
437 ? match->modulo : match->nr_bytes);
438 /* Delete old region. */
439 sim_do_commandf (sd, "memory delete %d:0x%lx@%d",
440 match->space, match->addr, match->level);
441 }
442 else if (mem_size == 0)
443 mem_size = MEM_SIZE;
444 /* Limit to KSEG1 size (512MB) */
445 if (mem_size > K1SIZE)
446 mem_size = K1SIZE;
447 /* memory alias K1BASE@1,K1SIZE%MEMSIZE,K0BASE */
448 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx%%0x%lx,0x%0x",
449 K1BASE, K1SIZE, (long)mem_size, K0BASE);
450 }
451
452 device_init(sd);
453 }
454 else if (board != NULL
455 && (strcmp(board, BOARD_BSP) == 0))
456 {
457 int i;
458
459 STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
460
461 /* ROM: 0x9FC0_0000 - 0x9FFF_FFFF and 0xBFC0_0000 - 0xBFFF_FFFF */
462 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
463 0x9FC00000,
464 4 * 1024 * 1024, /* 4 MB */
465 0xBFC00000);
466
467 /* SRAM: 0x8000_0000 - 0x803F_FFFF and 0xA000_0000 - 0xA03F_FFFF */
468 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
469 0x80000000,
470 4 * 1024 * 1024, /* 4 MB */
471 0xA0000000);
472
473 /* DRAM: 0x8800_0000 - 0x89FF_FFFF and 0xA800_0000 - 0xA9FF_FFFF */
474 for (i=0; i<8; i++) /* 32 MB total */
475 {
476 unsigned size = 4 * 1024 * 1024; /* 4 MB */
477 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
478 0x88000000 + (i * size),
479 size,
480 0xA8000000 + (i * size));
481 }
482 }
483 #if (WITH_HW)
484 else if (board != NULL
485 && (strcmp(board, BOARD_JMR3904) == 0 ||
486 strcmp(board, BOARD_JMR3904_PAL) == 0 ||
487 strcmp(board, BOARD_JMR3904_DEBUG) == 0))
488 {
489 /* match VIRTUAL memory layout of JMR-TX3904 board */
490 int i;
491
492 /* --- disable monitor unless forced on by user --- */
493
494 if (! firmware_option_p)
495 {
496 idt_monitor_base = 0;
497 pmon_monitor_base = 0;
498 lsipmon_monitor_base = 0;
499 }
500
501 /* --- environment --- */
502
503 STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
504
505 /* --- memory --- */
506
507 /* ROM: 0x9FC0_0000 - 0x9FFF_FFFF and 0xBFC0_0000 - 0xBFFF_FFFF */
508 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
509 0x9FC00000,
510 4 * 1024 * 1024, /* 4 MB */
511 0xBFC00000);
512
513 /* SRAM: 0x8000_0000 - 0x803F_FFFF and 0xA000_0000 - 0xA03F_FFFF */
514 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
515 0x80000000,
516 4 * 1024 * 1024, /* 4 MB */
517 0xA0000000);
518
519 /* DRAM: 0x8800_0000 - 0x89FF_FFFF and 0xA800_0000 - 0xA9FF_FFFF */
520 for (i=0; i<8; i++) /* 32 MB total */
521 {
522 unsigned size = 4 * 1024 * 1024; /* 4 MB */
523 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx,0x%0x",
524 0x88000000 + (i * size),
525 size,
526 0xA8000000 + (i * size));
527 }
528
529 /* Dummy memory regions for unsimulated devices - sorted by address */
530
531 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB1000000, 0x400); /* ISA I/O */
532 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB2100000, 0x004); /* ISA ctl */
533 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB2500000, 0x004); /* LED/switch */
534 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB2700000, 0x004); /* RTC */
535 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xB3C00000, 0x004); /* RTC */
536 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFF8000, 0x900); /* DRAMC */
537 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFF9000, 0x200); /* EBIF */
538 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFFE000, 0x01c); /* EBIF */
539 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx", 0xFFFFF500, 0x300); /* PIO */
540
541
542 /* --- simulated devices --- */
543 sim_hw_parse (sd, "/tx3904irc@0xffffc000/reg 0xffffc000 0x20");
544 sim_hw_parse (sd, "/tx3904cpu");
545 sim_hw_parse (sd, "/tx3904tmr@0xfffff000/reg 0xfffff000 0x100");
546 sim_hw_parse (sd, "/tx3904tmr@0xfffff100/reg 0xfffff100 0x100");
547 sim_hw_parse (sd, "/tx3904tmr@0xfffff200/reg 0xfffff200 0x100");
548 sim_hw_parse (sd, "/tx3904sio@0xfffff300/reg 0xfffff300 0x100");
549 {
550 /* FIXME: poking at dv-sockser internals, use tcp backend if
551 --sockser_addr option was given.*/
552 extern char* sockser_addr;
553 if(sockser_addr == NULL)
554 sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend stdio");
555 else
556 sim_hw_parse (sd, "/tx3904sio@0xfffff300/backend tcp");
557 }
558 sim_hw_parse (sd, "/tx3904sio@0xfffff400/reg 0xfffff400 0x100");
559 sim_hw_parse (sd, "/tx3904sio@0xfffff400/backend stdio");
560
561 /* -- device connections --- */
562 sim_hw_parse (sd, "/tx3904irc > ip level /tx3904cpu");
563 sim_hw_parse (sd, "/tx3904tmr@0xfffff000 > int tmr0 /tx3904irc");
564 sim_hw_parse (sd, "/tx3904tmr@0xfffff100 > int tmr1 /tx3904irc");
565 sim_hw_parse (sd, "/tx3904tmr@0xfffff200 > int tmr2 /tx3904irc");
566 sim_hw_parse (sd, "/tx3904sio@0xfffff300 > int sio0 /tx3904irc");
567 sim_hw_parse (sd, "/tx3904sio@0xfffff400 > int sio1 /tx3904irc");
568
569 /* add PAL timer & I/O module */
570 if(! strcmp(board, BOARD_JMR3904_PAL))
571 {
572 /* the device */
573 sim_hw_parse (sd, "/pal@0xffff0000");
574 sim_hw_parse (sd, "/pal@0xffff0000/reg 0xffff0000 64");
575
576 /* wire up interrupt ports to irc */
577 sim_hw_parse (sd, "/pal@0x31000000 > countdown tmr0 /tx3904irc");
578 sim_hw_parse (sd, "/pal@0x31000000 > timer tmr1 /tx3904irc");
579 sim_hw_parse (sd, "/pal@0x31000000 > int int0 /tx3904irc");
580 }
581
582 if(! strcmp(board, BOARD_JMR3904_DEBUG))
583 {
584 /* -- DEBUG: glue interrupt generators --- */
585 sim_hw_parse (sd, "/glue@0xffff0000/reg 0xffff0000 0x50");
586 sim_hw_parse (sd, "/glue@0xffff0000 > int0 int0 /tx3904irc");
587 sim_hw_parse (sd, "/glue@0xffff0000 > int1 int1 /tx3904irc");
588 sim_hw_parse (sd, "/glue@0xffff0000 > int2 int2 /tx3904irc");
589 sim_hw_parse (sd, "/glue@0xffff0000 > int3 int3 /tx3904irc");
590 sim_hw_parse (sd, "/glue@0xffff0000 > int4 int4 /tx3904irc");
591 sim_hw_parse (sd, "/glue@0xffff0000 > int5 int5 /tx3904irc");
592 sim_hw_parse (sd, "/glue@0xffff0000 > int6 int6 /tx3904irc");
593 sim_hw_parse (sd, "/glue@0xffff0000 > int7 int7 /tx3904irc");
594 sim_hw_parse (sd, "/glue@0xffff0000 > int8 dmac0 /tx3904irc");
595 sim_hw_parse (sd, "/glue@0xffff0000 > int9 dmac1 /tx3904irc");
596 sim_hw_parse (sd, "/glue@0xffff0000 > int10 dmac2 /tx3904irc");
597 sim_hw_parse (sd, "/glue@0xffff0000 > int11 dmac3 /tx3904irc");
598 sim_hw_parse (sd, "/glue@0xffff0000 > int12 sio0 /tx3904irc");
599 sim_hw_parse (sd, "/glue@0xffff0000 > int13 sio1 /tx3904irc");
600 sim_hw_parse (sd, "/glue@0xffff0000 > int14 tmr0 /tx3904irc");
601 sim_hw_parse (sd, "/glue@0xffff0000 > int15 tmr1 /tx3904irc");
602 sim_hw_parse (sd, "/glue@0xffff0000 > int16 tmr2 /tx3904irc");
603 sim_hw_parse (sd, "/glue@0xffff0000 > int17 nmi /tx3904cpu");
604 }
605
606 device_init(sd);
607 }
608 #endif
609
610 if (display_mem_info)
611 {
612 struct option_list * ol;
613 struct option_list * prev;
614
615 /* This is a hack. We want to execute the real --memory-info command
616 line switch which is handled in common/sim-memopts.c, not the
617 override we have defined in this file. So we remove the
618 mips_options array from the state options list. This is safe
619 because we have now processed all of the command line. */
620 for (ol = STATE_OPTIONS (sd), prev = NULL;
621 ol != NULL;
622 prev = ol, ol = ol->next)
623 if (ol->options == mips_options)
624 break;
625
626 SIM_ASSERT (ol != NULL);
627
628 if (prev == NULL)
629 STATE_OPTIONS (sd) = ol->next;
630 else
631 prev->next = ol->next;
632
633 sim_do_commandf (sd, "memory-info");
634 }
635
636 /* check for/establish the a reference program image */
637 if (sim_analyze_program (sd,
638 (STATE_PROG_ARGV (sd) != NULL
639 ? *STATE_PROG_ARGV (sd)
640 : NULL),
641 abfd) != SIM_RC_OK)
642 {
643 sim_module_uninstall (sd);
644 return 0;
645 }
646
647 /* Configure/verify the target byte order and other runtime
648 configuration options */
649 if (sim_config (sd) != SIM_RC_OK)
650 {
651 sim_module_uninstall (sd);
652 return 0;
653 }
654
655 if (sim_post_argv_init (sd) != SIM_RC_OK)
656 {
657 /* Uninstall the modules to avoid memory leaks,
658 file descriptor leaks, etc. */
659 sim_module_uninstall (sd);
660 return 0;
661 }
662
663 /* verify assumptions the simulator made about the host type system.
664 This macro does not return if there is a problem */
665 SIM_ASSERT (sizeof(int) == (4 * sizeof(char)));
666 SIM_ASSERT (sizeof(word64) == (8 * sizeof(char)));
667
668 /* This is NASTY, in that we are assuming the size of specific
669 registers: */
670 {
671 int rn;
672 for (rn = 0; (rn < (LAST_EMBED_REGNUM + 1)); rn++)
673 {
674 if (rn < 32)
675 cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
676 else if ((rn >= FGR_BASE) && (rn < (FGR_BASE + NR_FGR)))
677 cpu->register_widths[rn] = WITH_TARGET_FLOATING_POINT_BITSIZE;
678 else if ((rn >= 33) && (rn <= 37))
679 cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
680 else if ((rn == SRIDX)
681 || (rn == FCR0IDX)
682 || (rn == FCR31IDX)
683 || ((rn >= 72) && (rn <= 89)))
684 cpu->register_widths[rn] = 32;
685 else
686 cpu->register_widths[rn] = 0;
687 }
688
689
690 }
691
692 if (STATE & simTRACE)
693 open_trace(sd);
694
695 /*
696 sim_io_eprintf (sd, "idt@%x pmon@%x lsipmon@%x\n",
697 idt_monitor_base,
698 pmon_monitor_base,
699 lsipmon_monitor_base);
700 */
701
702 /* Write the monitor trap address handlers into the monitor (eeprom)
703 address space. This can only be done once the target endianness
704 has been determined. */
705 if (idt_monitor_base != 0)
706 {
707 unsigned loop;
708 unsigned idt_monitor_size = 1 << 11;
709
710 /* the default monitor region */
711 sim_do_commandf (sd, "memory region 0x%x,0x%x",
712 idt_monitor_base, idt_monitor_size);
713
714 /* Entry into the IDT monitor is via fixed address vectors, and
715 not using machine instructions. To avoid clashing with use of
716 the MIPS TRAP system, we place our own (simulator specific)
717 "undefined" instructions into the relevant vector slots. */
718 for (loop = 0; (loop < idt_monitor_size); loop += 4)
719 {
720 address_word vaddr = (idt_monitor_base + loop);
721 unsigned32 insn = (RSVD_INSTRUCTION |
722 (((loop >> 2) & RSVD_INSTRUCTION_ARG_MASK)
723 << RSVD_INSTRUCTION_ARG_SHIFT));
724 H2T (insn);
725 sim_write (sd, vaddr, (unsigned char *)&insn, sizeof (insn));
726 }
727 }
728
729 if ((pmon_monitor_base != 0) || (lsipmon_monitor_base != 0))
730 {
731 /* The PMON monitor uses the same address space, but rather than
732 branching into it the address of a routine is loaded. We can
733 cheat for the moment, and direct the PMON routine to IDT style
734 instructions within the monitor space. This relies on the IDT
735 monitor not using the locations from 0xBFC00500 onwards as its
736 entry points.*/
737 unsigned loop;
738 for (loop = 0; (loop < 24); loop++)
739 {
740 unsigned32 value = ((0x500 - 8) / 8); /* default UNDEFINED reason code */
741 switch (loop)
742 {
743 case 0: /* read */
744 value = 7;
745 break;
746 case 1: /* write */
747 value = 8;
748 break;
749 case 2: /* open */
750 value = 6;
751 break;
752 case 3: /* close */
753 value = 10;
754 break;
755 case 5: /* printf */
756 value = ((0x500 - 16) / 8); /* not an IDT reason code */
757 break;
758 case 8: /* cliexit */
759 value = 17;
760 break;
761 case 11: /* flush_cache */
762 value = 28;
763 break;
764 }
765
766 SIM_ASSERT (idt_monitor_base != 0);
767 value = ((unsigned int) idt_monitor_base + (value * 8));
768 H2T (value);
769
770 if (pmon_monitor_base != 0)
771 {
772 address_word vaddr = (pmon_monitor_base + (loop * 4));
773 sim_write (sd, vaddr, (unsigned char *)&value, sizeof (value));
774 }
775
776 if (lsipmon_monitor_base != 0)
777 {
778 address_word vaddr = (lsipmon_monitor_base + (loop * 4));
779 sim_write (sd, vaddr, (unsigned char *)&value, sizeof (value));
780 }
781 }
782
783 /* Write an abort sequence into the TRAP (common) exception vector
784 addresses. This is to catch code executing a TRAP (et.al.)
785 instruction without installing a trap handler. */
786 if ((idt_monitor_base != 0) ||
787 (pmon_monitor_base != 0) ||
788 (lsipmon_monitor_base != 0))
789 {
790 unsigned32 halt[2] = { 0x2404002f /* addiu r4, r0, 47 */,
791 HALT_INSTRUCTION /* BREAK */ };
792 H2T (halt[0]);
793 H2T (halt[1]);
794 sim_write (sd, 0x80000000, (unsigned char *) halt, sizeof (halt));
795 sim_write (sd, 0x80000180, (unsigned char *) halt, sizeof (halt));
796 sim_write (sd, 0x80000200, (unsigned char *) halt, sizeof (halt));
797 /* XXX: Write here unconditionally? */
798 sim_write (sd, 0xBFC00200, (unsigned char *) halt, sizeof (halt));
799 sim_write (sd, 0xBFC00380, (unsigned char *) halt, sizeof (halt));
800 sim_write (sd, 0xBFC00400, (unsigned char *) halt, sizeof (halt));
801 }
802 }
803
804 /* CPU specific initialization. */
805 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
806 {
807 SIM_CPU *cpu = STATE_CPU (sd, i);
808
809 CPU_REG_FETCH (cpu) = mips_reg_fetch;
810 CPU_REG_STORE (cpu) = mips_reg_store;
811 CPU_PC_FETCH (cpu) = mips_pc_get;
812 CPU_PC_STORE (cpu) = mips_pc_set;
813 }
814
815 return sd;
816 }
817
818 #if WITH_TRACE_ANY_P
819 static void
820 open_trace (SIM_DESC sd)
821 {
822 tracefh = fopen(tracefile,"wb+");
823 if (tracefh == NULL)
824 {
825 sim_io_eprintf(sd,"Failed to create file \"%s\", writing trace information to stderr.\n",tracefile);
826 tracefh = stderr;
827 }
828 }
829 #endif
830
831 /* Return name of an insn, used by insn profiling. */
832 static const char *
833 get_insn_name (sim_cpu *cpu, int i)
834 {
835 return itable[i].name;
836 }
837
838 void
839 mips_sim_close (SIM_DESC sd, int quitting)
840 {
841 #if WITH_TRACE_ANY_P
842 if (tracefh != NULL && tracefh != stderr)
843 fclose(tracefh);
844 tracefh = NULL;
845 #endif
846 }
847
848 static int
849 mips_reg_store (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
850 {
851 /* NOTE: gdb (the client) stores registers in target byte order
852 while the simulator uses host byte order */
853
854 /* Unfortunately this suffers from the same problem as the register
855 numbering one. We need to know what the width of each logical
856 register number is for the architecture being simulated. */
857
858 if (cpu->register_widths[rn] == 0)
859 {
860 sim_io_eprintf (CPU_STATE (cpu), "Invalid register width for %d (register store ignored)\n", rn);
861 return 0;
862 }
863
864 if (rn >= FGR_BASE && rn < FGR_BASE + NR_FGR)
865 {
866 cpu->fpr_state[rn - FGR_BASE] = fmt_uninterpreted;
867 if (cpu->register_widths[rn] == 32)
868 {
869 if (length == 8)
870 {
871 cpu->fgr[rn - FGR_BASE] =
872 (unsigned32) T2H_8 (*(unsigned64*)memory);
873 return 8;
874 }
875 else
876 {
877 cpu->fgr[rn - FGR_BASE] = T2H_4 (*(unsigned32*)memory);
878 return 4;
879 }
880 }
881 else
882 {
883 if (length == 8)
884 {
885 cpu->fgr[rn - FGR_BASE] = T2H_8 (*(unsigned64*)memory);
886 return 8;
887 }
888 else
889 {
890 cpu->fgr[rn - FGR_BASE] = T2H_4 (*(unsigned32*)memory);
891 return 4;
892 }
893 }
894 }
895
896 if (cpu->register_widths[rn] == 32)
897 {
898 if (length == 8)
899 {
900 cpu->registers[rn] =
901 (unsigned32) T2H_8 (*(unsigned64*)memory);
902 return 8;
903 }
904 else
905 {
906 cpu->registers[rn] = T2H_4 (*(unsigned32*)memory);
907 return 4;
908 }
909 }
910 else
911 {
912 if (length == 8)
913 {
914 cpu->registers[rn] = T2H_8 (*(unsigned64*)memory);
915 return 8;
916 }
917 else
918 {
919 cpu->registers[rn] = (signed32) T2H_4(*(unsigned32*)memory);
920 return 4;
921 }
922 }
923
924 return 0;
925 }
926
927 static int
928 mips_reg_fetch (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
929 {
930 /* NOTE: gdb (the client) stores registers in target byte order
931 while the simulator uses host byte order */
932
933 if (cpu->register_widths[rn] == 0)
934 {
935 sim_io_eprintf (CPU_STATE (cpu), "Invalid register width for %d (register fetch ignored)\n", rn);
936 return 0;
937 }
938
939 /* Any floating point register */
940 if (rn >= FGR_BASE && rn < FGR_BASE + NR_FGR)
941 {
942 if (cpu->register_widths[rn] == 32)
943 {
944 if (length == 8)
945 {
946 *(unsigned64*)memory =
947 H2T_8 ((unsigned32) (cpu->fgr[rn - FGR_BASE]));
948 return 8;
949 }
950 else
951 {
952 *(unsigned32*)memory = H2T_4 (cpu->fgr[rn - FGR_BASE]);
953 return 4;
954 }
955 }
956 else
957 {
958 if (length == 8)
959 {
960 *(unsigned64*)memory = H2T_8 (cpu->fgr[rn - FGR_BASE]);
961 return 8;
962 }
963 else
964 {
965 *(unsigned32*)memory = H2T_4 ((unsigned32)(cpu->fgr[rn - FGR_BASE]));
966 return 4;
967 }
968 }
969 }
970
971 if (cpu->register_widths[rn] == 32)
972 {
973 if (length == 8)
974 {
975 *(unsigned64*)memory =
976 H2T_8 ((unsigned32) (cpu->registers[rn]));
977 return 8;
978 }
979 else
980 {
981 *(unsigned32*)memory = H2T_4 ((unsigned32)(cpu->registers[rn]));
982 return 4;
983 }
984 }
985 else
986 {
987 if (length == 8)
988 {
989 *(unsigned64*)memory =
990 H2T_8 ((unsigned64) (cpu->registers[rn]));
991 return 8;
992 }
993 else
994 {
995 *(unsigned32*)memory = H2T_4 ((unsigned32)(cpu->registers[rn]));
996 return 4;
997 }
998 }
999
1000 return 0;
1001 }
1002
1003 SIM_RC
1004 sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char **argv, char **env)
1005 {
1006
1007 #ifdef DEBUG
1008 #if 0 /* FIXME: doesn't compile */
1009 printf("DBG: sim_create_inferior entered: start_address = 0x%s\n",
1010 pr_addr(PC));
1011 #endif
1012 #endif /* DEBUG */
1013
1014 ColdReset(sd);
1015
1016 if (abfd != NULL)
1017 {
1018 /* override PC value set by ColdReset () */
1019 int cpu_nr;
1020 for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
1021 {
1022 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
1023 CPU_PC_SET (cpu, (unsigned64) bfd_get_start_address (abfd));
1024 }
1025 }
1026
1027 #if 0 /* def DEBUG */
1028 if (argv || env)
1029 {
1030 /* We should really place the argv slot values into the argument
1031 registers, and onto the stack as required. However, this
1032 assumes that we have a stack defined, which is not
1033 necessarily true at the moment. */
1034 char **cptr;
1035 sim_io_printf(sd,"sim_create_inferior() : passed arguments ignored\n");
1036 for (cptr = argv; (cptr && *cptr); cptr++)
1037 printf("DBG: arg \"%s\"\n",*cptr);
1038 }
1039 #endif /* DEBUG */
1040
1041 return SIM_RC_OK;
1042 }
1043
1044 /*---------------------------------------------------------------------------*/
1045 /*-- Private simulator support interface ------------------------------------*/
1046 /*---------------------------------------------------------------------------*/
1047
1048 /* Read a null terminated string from memory, return in a buffer */
1049 static char *
1050 fetch_str (SIM_DESC sd,
1051 address_word addr)
1052 {
1053 char *buf;
1054 int nr = 0;
1055 unsigned char null;
1056 while (sim_read (sd, addr + nr, &null, 1) == 1 && null != 0)
1057 nr++;
1058 buf = NZALLOC (char, nr + 1);
1059 sim_read (sd, addr, (unsigned char *)buf, nr);
1060 return buf;
1061 }
1062
1063
1064 /* Implements the "sim firmware" command:
1065 sim firmware NAME[@ADDRESS] --- emulate ROM monitor named NAME.
1066 NAME can be idt, pmon, or lsipmon. If omitted, ADDRESS
1067 defaults to the normal address for that monitor.
1068 sim firmware none --- don't emulate any ROM monitor. Useful
1069 if you need a clean address space. */
1070 static SIM_RC
1071 sim_firmware_command (SIM_DESC sd, char *arg)
1072 {
1073 int address_present = 0;
1074 SIM_ADDR address;
1075
1076 /* Signal occurrence of this option. */
1077 firmware_option_p = 1;
1078
1079 /* Parse out the address, if present. */
1080 {
1081 char *p = strchr (arg, '@');
1082 if (p)
1083 {
1084 char *q;
1085 address_present = 1;
1086 p ++; /* skip over @ */
1087
1088 address = strtoul (p, &q, 0);
1089 if (*q != '\0')
1090 {
1091 sim_io_printf (sd, "Invalid address given to the"
1092 "`sim firmware NAME@ADDRESS' command: %s\n",
1093 p);
1094 return SIM_RC_FAIL;
1095 }
1096 }
1097 else
1098 {
1099 address_present = 0;
1100 address = -1; /* Dummy value. */
1101 }
1102 }
1103
1104 if (! strncmp (arg, "idt", 3))
1105 {
1106 idt_monitor_base = address_present ? address : 0xBFC00000;
1107 pmon_monitor_base = 0;
1108 lsipmon_monitor_base = 0;
1109 }
1110 else if (! strncmp (arg, "pmon", 4))
1111 {
1112 /* pmon uses indirect calls. Hook into implied idt. */
1113 pmon_monitor_base = address_present ? address : 0xBFC00500;
1114 idt_monitor_base = pmon_monitor_base - 0x500;
1115 lsipmon_monitor_base = 0;
1116 }
1117 else if (! strncmp (arg, "lsipmon", 7))
1118 {
1119 /* lsipmon uses indirect calls. Hook into implied idt. */
1120 pmon_monitor_base = 0;
1121 lsipmon_monitor_base = address_present ? address : 0xBFC00200;
1122 idt_monitor_base = lsipmon_monitor_base - 0x200;
1123 }
1124 else if (! strncmp (arg, "none", 4))
1125 {
1126 if (address_present)
1127 {
1128 sim_io_printf (sd,
1129 "The `sim firmware none' command does "
1130 "not take an `ADDRESS' argument.\n");
1131 return SIM_RC_FAIL;
1132 }
1133 idt_monitor_base = 0;
1134 pmon_monitor_base = 0;
1135 lsipmon_monitor_base = 0;
1136 }
1137 else
1138 {
1139 sim_io_printf (sd, "\
1140 Unrecognized name given to the `sim firmware NAME' command: %s\n\
1141 Recognized firmware names are: `idt', `pmon', `lsipmon', and `none'.\n",
1142 arg);
1143 return SIM_RC_FAIL;
1144 }
1145
1146 return SIM_RC_OK;
1147 }
1148
1149
1150
1151 /* Simple monitor interface (currently setup for the IDT and PMON monitors) */
1152 int
1153 sim_monitor (SIM_DESC sd,
1154 sim_cpu *cpu,
1155 address_word cia,
1156 unsigned int reason)
1157 {
1158 #ifdef DEBUG
1159 printf("DBG: sim_monitor: entered (reason = %d)\n",reason);
1160 #endif /* DEBUG */
1161
1162 /* The IDT monitor actually allows two instructions per vector
1163 slot. However, the simulator currently causes a trap on each
1164 individual instruction. We cheat, and lose the bottom bit. */
1165 reason >>= 1;
1166
1167 /* The following callback functions are available, however the
1168 monitor we are simulating does not make use of them: get_errno,
1169 isatty, lseek, rename, system, time and unlink */
1170 switch (reason)
1171 {
1172
1173 case 6: /* int open(char *path,int flags) */
1174 {
1175 char *path = fetch_str (sd, A0);
1176 V0 = sim_io_open (sd, path, (int)A1);
1177 free (path);
1178 break;
1179 }
1180
1181 case 7: /* int read(int file,char *ptr,int len) */
1182 {
1183 int fd = A0;
1184 int nr = A2;
1185 char *buf = zalloc (nr);
1186 V0 = sim_io_read (sd, fd, buf, nr);
1187 sim_write (sd, A1, (unsigned char *)buf, nr);
1188 free (buf);
1189 }
1190 break;
1191
1192 case 8: /* int write(int file,char *ptr,int len) */
1193 {
1194 int fd = A0;
1195 int nr = A2;
1196 char *buf = zalloc (nr);
1197 sim_read (sd, A1, (unsigned char *)buf, nr);
1198 V0 = sim_io_write (sd, fd, buf, nr);
1199 if (fd == 1)
1200 sim_io_flush_stdout (sd);
1201 else if (fd == 2)
1202 sim_io_flush_stderr (sd);
1203 free (buf);
1204 break;
1205 }
1206
1207 case 10: /* int close(int file) */
1208 {
1209 V0 = sim_io_close (sd, (int)A0);
1210 break;
1211 }
1212
1213 case 2: /* Densan monitor: char inbyte(int waitflag) */
1214 {
1215 if (A0 == 0) /* waitflag == NOWAIT */
1216 V0 = (unsigned_word)-1;
1217 }
1218 /* Drop through to case 11 */
1219
1220 case 11: /* char inbyte(void) */
1221 {
1222 char tmp;
1223 /* ensure that all output has gone... */
1224 sim_io_flush_stdout (sd);
1225 if (sim_io_read_stdin (sd, &tmp, sizeof(char)) != sizeof(char))
1226 {
1227 sim_io_error(sd,"Invalid return from character read");
1228 V0 = (unsigned_word)-1;
1229 }
1230 else
1231 V0 = (unsigned_word)tmp;
1232 break;
1233 }
1234
1235 case 3: /* Densan monitor: void co(char chr) */
1236 case 12: /* void outbyte(char chr) : write a byte to "stdout" */
1237 {
1238 char tmp = (char)(A0 & 0xFF);
1239 sim_io_write_stdout (sd, &tmp, sizeof(char));
1240 break;
1241 }
1242
1243 case 17: /* void _exit() */
1244 {
1245 sim_io_eprintf (sd, "sim_monitor(17): _exit(int reason) to be coded\n");
1246 sim_engine_halt (SD, CPU, NULL, NULL_CIA, sim_exited,
1247 (unsigned int)(A0 & 0xFFFFFFFF));
1248 break;
1249 }
1250
1251 case 28: /* PMON flush_cache */
1252 break;
1253
1254 case 55: /* void get_mem_info(unsigned int *ptr) */
1255 /* in: A0 = pointer to three word memory location */
1256 /* out: [A0 + 0] = size */
1257 /* [A0 + 4] = instruction cache size */
1258 /* [A0 + 8] = data cache size */
1259 {
1260 unsigned_4 value;
1261 unsigned_4 zero = 0;
1262 address_word mem_size;
1263 sim_memopt *entry, *match = NULL;
1264
1265 /* Search for memory region mapped to KSEG0 or KSEG1. */
1266 for (entry = STATE_MEMOPT (sd);
1267 entry != NULL;
1268 entry = entry->next)
1269 {
1270 if ((entry->addr == K0BASE || entry->addr == K1BASE)
1271 && (!match || entry->level < match->level))
1272 match = entry;
1273 else
1274 {
1275 sim_memopt *alias;
1276 for (alias = entry->alias;
1277 alias != NULL;
1278 alias = alias->next)
1279 if ((alias->addr == K0BASE || alias->addr == K1BASE)
1280 && (!match || entry->level < match->level))
1281 match = entry;
1282 }
1283 }
1284
1285 /* Get region size, limit to KSEG1 size (512MB). */
1286 SIM_ASSERT (match != NULL);
1287 mem_size = (match->modulo != 0
1288 ? match->modulo : match->nr_bytes);
1289 if (mem_size > K1SIZE)
1290 mem_size = K1SIZE;
1291
1292 value = mem_size;
1293 H2T (value);
1294 sim_write (sd, A0 + 0, (unsigned char *)&value, 4);
1295 sim_write (sd, A0 + 4, (unsigned char *)&zero, 4);
1296 sim_write (sd, A0 + 8, (unsigned char *)&zero, 4);
1297 /* sim_io_eprintf (sd, "sim: get_mem_info() deprecated\n"); */
1298 break;
1299 }
1300
1301 case 158: /* PMON printf */
1302 /* in: A0 = pointer to format string */
1303 /* A1 = optional argument 1 */
1304 /* A2 = optional argument 2 */
1305 /* A3 = optional argument 3 */
1306 /* out: void */
1307 /* The following is based on the PMON printf source */
1308 {
1309 address_word s = A0;
1310 unsigned char c;
1311 signed_word *ap = &A1; /* 1st argument */
1312 /* This isn't the quickest way, since we call the host print
1313 routine for every character almost. But it does avoid
1314 having to allocate and manage a temporary string buffer. */
1315 /* TODO: Include check that we only use three arguments (A1,
1316 A2 and A3) */
1317 while (sim_read (sd, s++, &c, 1) && c != '\0')
1318 {
1319 if (c == '%')
1320 {
1321 char tmp[40];
1322 enum {FMT_RJUST, FMT_LJUST, FMT_RJUST0, FMT_CENTER} fmt = FMT_RJUST;
1323 int width = 0, trunc = 0, haddot = 0, longlong = 0;
1324 while (sim_read (sd, s++, &c, 1) && c != '\0')
1325 {
1326 if (strchr ("dobxXulscefg%", c))
1327 break;
1328 else if (c == '-')
1329 fmt = FMT_LJUST;
1330 else if (c == '0')
1331 fmt = FMT_RJUST0;
1332 else if (c == '~')
1333 fmt = FMT_CENTER;
1334 else if (c == '*')
1335 {
1336 if (haddot)
1337 trunc = (int)*ap++;
1338 else
1339 width = (int)*ap++;
1340 }
1341 else if (c >= '1' && c <= '9')
1342 {
1343 address_word t = s;
1344 unsigned int n;
1345 while (sim_read (sd, s++, &c, 1) == 1 && isdigit (c))
1346 tmp[s - t] = c;
1347 tmp[s - t] = '\0';
1348 n = (unsigned int)strtol(tmp,NULL,10);
1349 if (haddot)
1350 trunc = n;
1351 else
1352 width = n;
1353 s--;
1354 }
1355 else if (c == '.')
1356 haddot = 1;
1357 }
1358 switch (c)
1359 {
1360 case '%':
1361 sim_io_printf (sd, "%%");
1362 break;
1363 case 's':
1364 if ((int)*ap != 0)
1365 {
1366 address_word p = *ap++;
1367 unsigned char ch;
1368 while (sim_read (sd, p++, &ch, 1) == 1 && ch != '\0')
1369 sim_io_printf(sd, "%c", ch);
1370 }
1371 else
1372 sim_io_printf(sd,"(null)");
1373 break;
1374 case 'c':
1375 sim_io_printf (sd, "%c", (int)*ap++);
1376 break;
1377 default:
1378 if (c == 'l')
1379 {
1380 sim_read (sd, s++, &c, 1);
1381 if (c == 'l')
1382 {
1383 longlong = 1;
1384 sim_read (sd, s++, &c, 1);
1385 }
1386 }
1387 if (strchr ("dobxXu", c))
1388 {
1389 word64 lv = (word64) *ap++;
1390 if (c == 'b')
1391 sim_io_printf(sd,"<binary not supported>");
1392 else
1393 {
1394 sprintf (tmp, "%%%s%c", longlong ? "ll" : "", c);
1395 if (longlong)
1396 sim_io_printf(sd, tmp, lv);
1397 else
1398 sim_io_printf(sd, tmp, (int)lv);
1399 }
1400 }
1401 else if (strchr ("eEfgG", c))
1402 {
1403 double dbl = *(double*)(ap++);
1404 sprintf (tmp, "%%%d.%d%c", width, trunc, c);
1405 sim_io_printf (sd, tmp, dbl);
1406 trunc = 0;
1407 }
1408 }
1409 }
1410 else
1411 sim_io_printf(sd, "%c", c);
1412 }
1413 break;
1414 }
1415
1416 default:
1417 /* Unknown reason. */
1418 return 0;
1419 }
1420 return 1;
1421 }
1422
1423 /* Store a word into memory. */
1424
1425 static void
1426 store_word (SIM_DESC sd,
1427 sim_cpu *cpu,
1428 address_word cia,
1429 uword64 vaddr,
1430 signed_word val)
1431 {
1432 address_word paddr = vaddr;
1433
1434 if ((vaddr & 3) != 0)
1435 SignalExceptionAddressStore ();
1436 else
1437 {
1438 const uword64 mask = 7;
1439 uword64 memval;
1440 unsigned int byte;
1441
1442 paddr = (paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2));
1443 byte = (vaddr & mask) ^ (BigEndianCPU << 2);
1444 memval = ((uword64) val) << (8 * byte);
1445 StoreMemory (AccessLength_WORD, memval, 0, paddr, vaddr,
1446 isREAL);
1447 }
1448 }
1449
1450 /* Load a word from memory. */
1451
1452 static signed_word
1453 load_word (SIM_DESC sd,
1454 sim_cpu *cpu,
1455 address_word cia,
1456 uword64 vaddr)
1457 {
1458 if ((vaddr & 3) != 0)
1459 {
1460 SIM_CORE_SIGNAL (SD, cpu, cia, read_map, AccessLength_WORD+1, vaddr, read_transfer, sim_core_unaligned_signal);
1461 }
1462 else
1463 {
1464 address_word paddr = vaddr;
1465 const uword64 mask = 0x7;
1466 const unsigned int reverse = ReverseEndian ? 1 : 0;
1467 const unsigned int bigend = BigEndianCPU ? 1 : 0;
1468 uword64 memval;
1469 unsigned int byte;
1470
1471 paddr = (paddr & ~mask) | ((paddr & mask) ^ (reverse << 2));
1472 LoadMemory (&memval, NULL, AccessLength_WORD, paddr, vaddr, isDATA,
1473 isREAL);
1474 byte = (vaddr & mask) ^ (bigend << 2);
1475 return EXTEND32 (memval >> (8 * byte));
1476 }
1477
1478 return 0;
1479 }
1480
1481 /* Simulate the mips16 entry and exit pseudo-instructions. These
1482 would normally be handled by the reserved instruction exception
1483 code, but for ease of simulation we just handle them directly. */
1484
1485 static void
1486 mips16_entry (SIM_DESC sd,
1487 sim_cpu *cpu,
1488 address_word cia,
1489 unsigned int insn)
1490 {
1491 int aregs, sregs, rreg;
1492
1493 #ifdef DEBUG
1494 printf("DBG: mips16_entry: entered (insn = 0x%08X)\n",insn);
1495 #endif /* DEBUG */
1496
1497 aregs = (insn & 0x700) >> 8;
1498 sregs = (insn & 0x0c0) >> 6;
1499 rreg = (insn & 0x020) >> 5;
1500
1501 /* This should be checked by the caller. */
1502 if (sregs == 3)
1503 abort ();
1504
1505 if (aregs < 5)
1506 {
1507 int i;
1508 signed_word tsp;
1509
1510 /* This is the entry pseudo-instruction. */
1511
1512 for (i = 0; i < aregs; i++)
1513 store_word (SD, CPU, cia, (uword64) (SP + 4 * i), GPR[i + 4]);
1514
1515 tsp = SP;
1516 SP -= 32;
1517
1518 if (rreg)
1519 {
1520 tsp -= 4;
1521 store_word (SD, CPU, cia, (uword64) tsp, RA);
1522 }
1523
1524 for (i = 0; i < sregs; i++)
1525 {
1526 tsp -= 4;
1527 store_word (SD, CPU, cia, (uword64) tsp, GPR[16 + i]);
1528 }
1529 }
1530 else
1531 {
1532 int i;
1533 signed_word tsp;
1534
1535 /* This is the exit pseudo-instruction. */
1536
1537 tsp = SP + 32;
1538
1539 if (rreg)
1540 {
1541 tsp -= 4;
1542 RA = load_word (SD, CPU, cia, (uword64) tsp);
1543 }
1544
1545 for (i = 0; i < sregs; i++)
1546 {
1547 tsp -= 4;
1548 GPR[i + 16] = load_word (SD, CPU, cia, (uword64) tsp);
1549 }
1550
1551 SP += 32;
1552
1553 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1554 {
1555 if (aregs == 5)
1556 {
1557 FGR[0] = WORD64LO (GPR[4]);
1558 FPR_STATE[0] = fmt_uninterpreted;
1559 }
1560 else if (aregs == 6)
1561 {
1562 FGR[0] = WORD64LO (GPR[5]);
1563 FGR[1] = WORD64LO (GPR[4]);
1564 FPR_STATE[0] = fmt_uninterpreted;
1565 FPR_STATE[1] = fmt_uninterpreted;
1566 }
1567 }
1568
1569 PC = RA;
1570 }
1571
1572 }
1573
1574 /*-- trace support ----------------------------------------------------------*/
1575
1576 /* The trace support is provided (if required) in the memory accessing
1577 routines. Since we are also providing the architecture specific
1578 features, the architecture simulation code can also deal with
1579 notifying the trace world of cache flushes, etc. Similarly we do
1580 not need to provide profiling support in the simulator engine,
1581 since we can sample in the instruction fetch control loop. By
1582 defining the trace manifest, we add tracing as a run-time
1583 option. */
1584
1585 #if WITH_TRACE_ANY_P
1586 /* Tracing by default produces "din" format (as required by
1587 dineroIII). Each line of such a trace file *MUST* have a din label
1588 and address field. The rest of the line is ignored, so comments can
1589 be included if desired. The first field is the label which must be
1590 one of the following values:
1591
1592 0 read data
1593 1 write data
1594 2 instruction fetch
1595 3 escape record (treated as unknown access type)
1596 4 escape record (causes cache flush)
1597
1598 The address field is a 32bit (lower-case) hexadecimal address
1599 value. The address should *NOT* be preceded by "0x".
1600
1601 The size of the memory transfer is not important when dealing with
1602 cache lines (as long as no more than a cache line can be
1603 transferred in a single operation :-), however more information
1604 could be given following the dineroIII requirement to allow more
1605 complete memory and cache simulators to provide better
1606 results. i.e. the University of Pisa has a cache simulator that can
1607 also take bus size and speed as (variable) inputs to calculate
1608 complete system performance (a much more useful ability when trying
1609 to construct an end product, rather than a processor). They
1610 currently have an ARM version of their tool called ChARM. */
1611
1612
1613 void
1614 dotrace (SIM_DESC sd,
1615 sim_cpu *cpu,
1616 FILE *tracefh,
1617 int type,
1618 SIM_ADDR address,
1619 int width,
1620 char *comment,...)
1621 {
1622 if (STATE & simTRACE) {
1623 va_list ap;
1624 fprintf(tracefh,"%d %s ; width %d ; ",
1625 type,
1626 pr_addr(address),
1627 width);
1628 va_start(ap,comment);
1629 vfprintf(tracefh,comment,ap);
1630 va_end(ap);
1631 fprintf(tracefh,"\n");
1632 }
1633 /* NOTE: Since the "din" format will only accept 32bit addresses, and
1634 we may be generating 64bit ones, we should put the hi-32bits of the
1635 address into the comment field. */
1636
1637 /* TODO: Provide a buffer for the trace lines. We can then avoid
1638 performing writes until the buffer is filled, or the file is
1639 being closed. */
1640
1641 /* NOTE: We could consider adding a comment field to the "din" file
1642 produced using type 3 markers (unknown access). This would then
1643 allow information about the program that the "din" is for, and
1644 the MIPs world that was being simulated, to be placed into the
1645 trace file. */
1646
1647 return;
1648 }
1649 #endif /* WITH_TRACE_ANY_P */
1650
1651 /*---------------------------------------------------------------------------*/
1652 /*-- simulator engine -------------------------------------------------------*/
1653 /*---------------------------------------------------------------------------*/
1654
1655 static void
1656 ColdReset (SIM_DESC sd)
1657 {
1658 int cpu_nr;
1659 for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
1660 {
1661 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
1662 /* RESET: Fixed PC address: */
1663 PC = (unsigned_word) UNSIGNED64 (0xFFFFFFFFBFC00000);
1664 /* The reset vector address is in the unmapped, uncached memory space. */
1665
1666 SR &= ~(status_SR | status_TS | status_RP);
1667 SR |= (status_ERL | status_BEV);
1668
1669 /* Cheat and allow access to the complete register set immediately */
1670 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT
1671 && WITH_TARGET_WORD_BITSIZE == 64)
1672 SR |= status_FR; /* 64bit registers */
1673
1674 /* Ensure that any instructions with pending register updates are
1675 cleared: */
1676 PENDING_INVALIDATE();
1677
1678 /* Initialise the FPU registers to the unknown state */
1679 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1680 {
1681 int rn;
1682 for (rn = 0; (rn < 32); rn++)
1683 FPR_STATE[rn] = fmt_uninterpreted;
1684 }
1685
1686 /* Initialise the Config0 register. */
1687 C0_CONFIG = 0x80000000 /* Config1 present */
1688 | 2; /* KSEG0 uncached */
1689 if (WITH_TARGET_WORD_BITSIZE == 64)
1690 {
1691 /* FIXME Currently mips/sim-main.c:address_translation()
1692 truncates all addresses to 32-bits. */
1693 if (0 && WITH_TARGET_ADDRESS_BITSIZE == 64)
1694 C0_CONFIG |= (2 << 13); /* MIPS64, 64-bit addresses */
1695 else
1696 C0_CONFIG |= (1 << 13); /* MIPS64, 32-bit addresses */
1697 }
1698 if (BigEndianMem)
1699 C0_CONFIG |= 0x00008000; /* Big Endian */
1700 }
1701 }
1702
1703
1704
1705
1706 /* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
1707 /* Signal an exception condition. This will result in an exception
1708 that aborts the instruction. The instruction operation pseudocode
1709 will never see a return from this function call. */
1710
1711 void
1712 signal_exception (SIM_DESC sd,
1713 sim_cpu *cpu,
1714 address_word cia,
1715 int exception,...)
1716 {
1717 /* int vector; */
1718
1719 #ifdef DEBUG
1720 sim_io_printf(sd,"DBG: SignalException(%d) PC = 0x%s\n",exception,pr_addr(cia));
1721 #endif /* DEBUG */
1722
1723 /* Ensure that any active atomic read/modify/write operation will fail: */
1724 LLBIT = 0;
1725
1726 /* Save registers before interrupt dispatching */
1727 #ifdef SIM_CPU_EXCEPTION_TRIGGER
1728 SIM_CPU_EXCEPTION_TRIGGER(sd, cpu, cia);
1729 #endif
1730
1731 switch (exception) {
1732
1733 case DebugBreakPoint:
1734 if (! (Debug & Debug_DM))
1735 {
1736 if (INDELAYSLOT())
1737 {
1738 CANCELDELAYSLOT();
1739
1740 Debug |= Debug_DBD; /* signaled from within in delay slot */
1741 DEPC = cia - 4; /* reference the branch instruction */
1742 }
1743 else
1744 {
1745 Debug &= ~Debug_DBD; /* not signaled from within a delay slot */
1746 DEPC = cia;
1747 }
1748
1749 Debug |= Debug_DM; /* in debugging mode */
1750 Debug |= Debug_DBp; /* raising a DBp exception */
1751 PC = 0xBFC00200;
1752 sim_engine_restart (SD, CPU, NULL, NULL_CIA);
1753 }
1754 break;
1755
1756 case ReservedInstruction:
1757 {
1758 va_list ap;
1759 unsigned int instruction;
1760 va_start(ap,exception);
1761 instruction = va_arg(ap,unsigned int);
1762 va_end(ap);
1763 /* Provide simple monitor support using ReservedInstruction
1764 exceptions. The following code simulates the fixed vector
1765 entry points into the IDT monitor by causing a simulator
1766 trap, performing the monitor operation, and returning to
1767 the address held in the $ra register (standard PCS return
1768 address). This means we only need to pre-load the vector
1769 space with suitable instruction values. For systems were
1770 actual trap instructions are used, we would not need to
1771 perform this magic. */
1772 if ((instruction & RSVD_INSTRUCTION_MASK) == RSVD_INSTRUCTION)
1773 {
1774 int reason = (instruction >> RSVD_INSTRUCTION_ARG_SHIFT) & RSVD_INSTRUCTION_ARG_MASK;
1775 if (!sim_monitor (SD, CPU, cia, reason))
1776 sim_io_error (sd, "sim_monitor: unhandled reason = %d, pc = 0x%s\n", reason, pr_addr (cia));
1777
1778 /* NOTE: This assumes that a branch-and-link style
1779 instruction was used to enter the vector (which is the
1780 case with the current IDT monitor). */
1781 sim_engine_restart (SD, CPU, NULL, RA);
1782 }
1783 /* Look for the mips16 entry and exit instructions, and
1784 simulate a handler for them. */
1785 else if ((cia & 1) != 0
1786 && (instruction & 0xf81f) == 0xe809
1787 && (instruction & 0x0c0) != 0x0c0)
1788 {
1789 mips16_entry (SD, CPU, cia, instruction);
1790 sim_engine_restart (sd, NULL, NULL, NULL_CIA);
1791 }
1792 /* else fall through to normal exception processing */
1793 sim_io_eprintf(sd,"ReservedInstruction at PC = 0x%s\n", pr_addr (cia));
1794 }
1795
1796 default:
1797 /* Store exception code into current exception id variable (used
1798 by exit code): */
1799
1800 /* TODO: If not simulating exceptions then stop the simulator
1801 execution. At the moment we always stop the simulation. */
1802
1803 #ifdef SUBTARGET_R3900
1804 /* update interrupt-related registers */
1805
1806 /* insert exception code in bits 6:2 */
1807 CAUSE = LSMASKED32(CAUSE, 31, 7) | LSINSERTED32(exception, 6, 2);
1808 /* shift IE/KU history bits left */
1809 SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 3, 0), 5, 2);
1810
1811 if (STATE & simDELAYSLOT)
1812 {
1813 STATE &= ~simDELAYSLOT;
1814 CAUSE |= cause_BD;
1815 EPC = (cia - 4); /* reference the branch instruction */
1816 }
1817 else
1818 EPC = cia;
1819
1820 if (SR & status_BEV)
1821 PC = (signed)0xBFC00000 + 0x180;
1822 else
1823 PC = (signed)0x80000000 + 0x080;
1824 #else
1825 /* See figure 5-17 for an outline of the code below */
1826 if (! (SR & status_EXL))
1827 {
1828 CAUSE = (exception << 2);
1829 if (STATE & simDELAYSLOT)
1830 {
1831 STATE &= ~simDELAYSLOT;
1832 CAUSE |= cause_BD;
1833 EPC = (cia - 4); /* reference the branch instruction */
1834 }
1835 else
1836 EPC = cia;
1837 /* FIXME: TLB et.al. */
1838 /* vector = 0x180; */
1839 }
1840 else
1841 {
1842 CAUSE = (exception << 2);
1843 /* vector = 0x180; */
1844 }
1845 SR |= status_EXL;
1846 /* Store exception code into current exception id variable (used
1847 by exit code): */
1848
1849 if (SR & status_BEV)
1850 PC = (signed)0xBFC00200 + 0x180;
1851 else
1852 PC = (signed)0x80000000 + 0x180;
1853 #endif
1854
1855 switch ((CAUSE >> 2) & 0x1F)
1856 {
1857 case Interrupt:
1858 /* Interrupts arrive during event processing, no need to
1859 restart */
1860 return;
1861
1862 case NMIReset:
1863 /* Ditto */
1864 #ifdef SUBTARGET_3900
1865 /* Exception vector: BEV=0 BFC00000 / BEF=1 BFC00000 */
1866 PC = (signed)0xBFC00000;
1867 #endif /* SUBTARGET_3900 */
1868 return;
1869
1870 case TLBModification:
1871 case TLBLoad:
1872 case TLBStore:
1873 case AddressLoad:
1874 case AddressStore:
1875 case InstructionFetch:
1876 case DataReference:
1877 /* The following is so that the simulator will continue from the
1878 exception handler address. */
1879 sim_engine_halt (SD, CPU, NULL, PC,
1880 sim_stopped, SIM_SIGBUS);
1881
1882 case ReservedInstruction:
1883 case CoProcessorUnusable:
1884 PC = EPC;
1885 sim_engine_halt (SD, CPU, NULL, PC,
1886 sim_stopped, SIM_SIGILL);
1887
1888 case IntegerOverflow:
1889 case FPE:
1890 sim_engine_halt (SD, CPU, NULL, PC,
1891 sim_stopped, SIM_SIGFPE);
1892
1893 case BreakPoint:
1894 sim_engine_halt (SD, CPU, NULL, PC, sim_stopped, SIM_SIGTRAP);
1895 break;
1896
1897 case SystemCall:
1898 case Trap:
1899 sim_engine_restart (SD, CPU, NULL, PC);
1900 break;
1901
1902 case Watch:
1903 PC = EPC;
1904 sim_engine_halt (SD, CPU, NULL, PC,
1905 sim_stopped, SIM_SIGTRAP);
1906
1907 default: /* Unknown internal exception */
1908 PC = EPC;
1909 sim_engine_halt (SD, CPU, NULL, PC,
1910 sim_stopped, SIM_SIGABRT);
1911
1912 }
1913
1914 case SimulatorFault:
1915 {
1916 va_list ap;
1917 char *msg;
1918 va_start(ap,exception);
1919 msg = va_arg(ap,char *);
1920 va_end(ap);
1921 sim_engine_abort (SD, CPU, NULL_CIA,
1922 "FATAL: Simulator error \"%s\"\n",msg);
1923 }
1924 }
1925
1926 return;
1927 }
1928
1929
1930
1931 /* This function implements what the MIPS32 and MIPS64 ISAs define as
1932 "UNPREDICTABLE" behaviour.
1933
1934 About UNPREDICTABLE behaviour they say: "UNPREDICTABLE results
1935 may vary from processor implementation to processor implementation,
1936 instruction to instruction, or as a function of time on the same
1937 implementation or instruction. Software can never depend on results
1938 that are UNPREDICTABLE. ..." (MIPS64 Architecture for Programmers
1939 Volume II, The MIPS64 Instruction Set. MIPS Document MD00087 revision
1940 0.95, page 2.)
1941
1942 For UNPREDICTABLE behaviour, we print a message, if possible print
1943 the offending instructions mips.igen instruction name (provided by
1944 the caller), and stop the simulator.
1945
1946 XXX FIXME: eventually, stopping the simulator should be made conditional
1947 on a command-line option. */
1948 void
1949 unpredictable_action(sim_cpu *cpu, address_word cia)
1950 {
1951 SIM_DESC sd = CPU_STATE(cpu);
1952
1953 sim_io_eprintf(sd, "UNPREDICTABLE: PC = 0x%s\n", pr_addr (cia));
1954 sim_engine_halt (SD, CPU, NULL, cia, sim_stopped, SIM_SIGABRT);
1955 }
1956
1957
1958 /*-- co-processor support routines ------------------------------------------*/
1959
1960 static int UNUSED
1961 CoProcPresent(unsigned int coproc_number)
1962 {
1963 /* Return TRUE if simulator provides a model for the given co-processor number */
1964 return(0);
1965 }
1966
1967 void
1968 cop_lw (SIM_DESC sd,
1969 sim_cpu *cpu,
1970 address_word cia,
1971 int coproc_num,
1972 int coproc_reg,
1973 unsigned int memword)
1974 {
1975 switch (coproc_num)
1976 {
1977 case 1:
1978 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1979 {
1980 #ifdef DEBUG
1981 printf("DBG: COP_LW: memword = 0x%08X (uword64)memword = 0x%s\n",memword,pr_addr(memword));
1982 #endif
1983 StoreFPR(coproc_reg,fmt_uninterpreted_32,(uword64)memword);
1984 break;
1985 }
1986
1987 default:
1988 #if 0 /* this should be controlled by a configuration option */
1989 sim_io_printf(sd,"COP_LW(%d,%d,0x%08X) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,memword,pr_addr(cia));
1990 #endif
1991 break;
1992 }
1993
1994 return;
1995 }
1996
1997 void
1998 cop_ld (SIM_DESC sd,
1999 sim_cpu *cpu,
2000 address_word cia,
2001 int coproc_num,
2002 int coproc_reg,
2003 uword64 memword)
2004 {
2005
2006 #ifdef DEBUG
2007 printf("DBG: COP_LD: coproc_num = %d, coproc_reg = %d, value = 0x%s : PC = 0x%s\n", coproc_num, coproc_reg, pr_uword64(memword), pr_addr(cia) );
2008 #endif
2009
2010 switch (coproc_num) {
2011 case 1:
2012 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
2013 {
2014 StoreFPR(coproc_reg,fmt_uninterpreted_64,memword);
2015 break;
2016 }
2017
2018 default:
2019 #if 0 /* this message should be controlled by a configuration option */
2020 sim_io_printf(sd,"COP_LD(%d,%d,0x%s) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(memword),pr_addr(cia));
2021 #endif
2022 break;
2023 }
2024
2025 return;
2026 }
2027
2028
2029
2030
2031 unsigned int
2032 cop_sw (SIM_DESC sd,
2033 sim_cpu *cpu,
2034 address_word cia,
2035 int coproc_num,
2036 int coproc_reg)
2037 {
2038 unsigned int value = 0;
2039
2040 switch (coproc_num)
2041 {
2042 case 1:
2043 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
2044 {
2045 value = (unsigned int)ValueFPR(coproc_reg,fmt_uninterpreted_32);
2046 break;
2047 }
2048
2049 default:
2050 #if 0 /* should be controlled by configuration option */
2051 sim_io_printf(sd,"COP_SW(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
2052 #endif
2053 break;
2054 }
2055
2056 return(value);
2057 }
2058
2059 uword64
2060 cop_sd (SIM_DESC sd,
2061 sim_cpu *cpu,
2062 address_word cia,
2063 int coproc_num,
2064 int coproc_reg)
2065 {
2066 uword64 value = 0;
2067 switch (coproc_num)
2068 {
2069 case 1:
2070 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
2071 {
2072 value = ValueFPR(coproc_reg,fmt_uninterpreted_64);
2073 break;
2074 }
2075
2076 default:
2077 #if 0 /* should be controlled by configuration option */
2078 sim_io_printf(sd,"COP_SD(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
2079 #endif
2080 break;
2081 }
2082
2083 return(value);
2084 }
2085
2086
2087
2088
2089 void
2090 decode_coproc (SIM_DESC sd,
2091 sim_cpu *cpu,
2092 address_word cia,
2093 unsigned int instruction,
2094 int coprocnum,
2095 CP0_operation op,
2096 int rt,
2097 int rd,
2098 int sel)
2099 {
2100 switch (coprocnum)
2101 {
2102 case 0: /* standard CPU control and cache registers */
2103 {
2104 /* R4000 Users Manual (second edition) lists the following CP0
2105 instructions:
2106 CODE><-RT><RD-><--TAIL--->
2107 DMFC0 Doubleword Move From CP0 (VR4100 = 01000000001tttttddddd00000000000)
2108 DMTC0 Doubleword Move To CP0 (VR4100 = 01000000101tttttddddd00000000000)
2109 MFC0 word Move From CP0 (VR4100 = 01000000000tttttddddd00000000000)
2110 MTC0 word Move To CP0 (VR4100 = 01000000100tttttddddd00000000000)
2111 TLBR Read Indexed TLB Entry (VR4100 = 01000010000000000000000000000001)
2112 TLBWI Write Indexed TLB Entry (VR4100 = 01000010000000000000000000000010)
2113 TLBWR Write Random TLB Entry (VR4100 = 01000010000000000000000000000110)
2114 TLBP Probe TLB for Matching Entry (VR4100 = 01000010000000000000000000001000)
2115 CACHE Cache operation (VR4100 = 101111bbbbbpppppiiiiiiiiiiiiiiii)
2116 ERET Exception return (VR4100 = 01000010000000000000000000011000)
2117 */
2118 if (((op == cp0_mfc0) || (op == cp0_mtc0) /* MFC0 / MTC0 */
2119 || (op == cp0_dmfc0) || (op == cp0_dmtc0)) /* DMFC0 / DMTC0 */
2120 && sel == 0)
2121 {
2122 switch (rd) /* NOTEs: Standard CP0 registers */
2123 {
2124 /* 0 = Index R4000 VR4100 VR4300 */
2125 /* 1 = Random R4000 VR4100 VR4300 */
2126 /* 2 = EntryLo0 R4000 VR4100 VR4300 */
2127 /* 3 = EntryLo1 R4000 VR4100 VR4300 */
2128 /* 4 = Context R4000 VR4100 VR4300 */
2129 /* 5 = PageMask R4000 VR4100 VR4300 */
2130 /* 6 = Wired R4000 VR4100 VR4300 */
2131 /* 8 = BadVAddr R4000 VR4100 VR4300 */
2132 /* 9 = Count R4000 VR4100 VR4300 */
2133 /* 10 = EntryHi R4000 VR4100 VR4300 */
2134 /* 11 = Compare R4000 VR4100 VR4300 */
2135 /* 12 = SR R4000 VR4100 VR4300 */
2136 #ifdef SUBTARGET_R3900
2137 case 3:
2138 /* 3 = Config R3900 */
2139 case 7:
2140 /* 7 = Cache R3900 */
2141 case 15:
2142 /* 15 = PRID R3900 */
2143
2144 /* ignore */
2145 break;
2146
2147 case 8:
2148 /* 8 = BadVAddr R4000 VR4100 VR4300 */
2149 if (op == cp0_mfc0 || op == cp0_dmfc0)
2150 GPR[rt] = (signed_word) (signed_address) COP0_BADVADDR;
2151 else
2152 COP0_BADVADDR = GPR[rt];
2153 break;
2154
2155 #endif /* SUBTARGET_R3900 */
2156 case 12:
2157 if (op == cp0_mfc0 || op == cp0_dmfc0)
2158 GPR[rt] = SR;
2159 else
2160 SR = GPR[rt];
2161 break;
2162 /* 13 = Cause R4000 VR4100 VR4300 */
2163 case 13:
2164 if (op == cp0_mfc0 || op == cp0_dmfc0)
2165 GPR[rt] = CAUSE;
2166 else
2167 CAUSE = GPR[rt];
2168 break;
2169 /* 14 = EPC R4000 VR4100 VR4300 */
2170 case 14:
2171 if (op == cp0_mfc0 || op == cp0_dmfc0)
2172 GPR[rt] = (signed_word) (signed_address) EPC;
2173 else
2174 EPC = GPR[rt];
2175 break;
2176 /* 15 = PRId R4000 VR4100 VR4300 */
2177 #ifdef SUBTARGET_R3900
2178 /* 16 = Debug */
2179 case 16:
2180 if (op == cp0_mfc0 || op == cp0_dmfc0)
2181 GPR[rt] = Debug;
2182 else
2183 Debug = GPR[rt];
2184 break;
2185 #else
2186 /* 16 = Config R4000 VR4100 VR4300 */
2187 case 16:
2188 if (op == cp0_mfc0 || op == cp0_dmfc0)
2189 GPR[rt] = C0_CONFIG;
2190 else
2191 /* only bottom three bits are writable */
2192 C0_CONFIG = (C0_CONFIG & ~0x7) | (GPR[rt] & 0x7);
2193 break;
2194 #endif
2195 #ifdef SUBTARGET_R3900
2196 /* 17 = Debug */
2197 case 17:
2198 if (op == cp0_mfc0 || op == cp0_dmfc0)
2199 GPR[rt] = DEPC;
2200 else
2201 DEPC = GPR[rt];
2202 break;
2203 #else
2204 /* 17 = LLAddr R4000 VR4100 VR4300 */
2205 #endif
2206 /* 18 = WatchLo R4000 VR4100 VR4300 */
2207 /* 19 = WatchHi R4000 VR4100 VR4300 */
2208 /* 20 = XContext R4000 VR4100 VR4300 */
2209 /* 26 = PErr or ECC R4000 VR4100 VR4300 */
2210 /* 27 = CacheErr R4000 VR4100 */
2211 /* 28 = TagLo R4000 VR4100 VR4300 */
2212 /* 29 = TagHi R4000 VR4100 VR4300 */
2213 /* 30 = ErrorEPC R4000 VR4100 VR4300 */
2214 if (STATE_VERBOSE_P(SD))
2215 sim_io_eprintf (SD,
2216 "Warning: PC 0x%lx:interp.c decode_coproc DEADC0DE\n",
2217 (unsigned long)cia);
2218 GPR[rt] = 0xDEADC0DE; /* CPR[0,rd] */
2219 /* CPR[0,rd] = GPR[rt]; */
2220 default:
2221 if (op == cp0_mfc0 || op == cp0_dmfc0)
2222 GPR[rt] = (signed_word) (signed32) COP0_GPR[rd];
2223 else
2224 COP0_GPR[rd] = GPR[rt];
2225 #if 0
2226 if (code == 0x00)
2227 sim_io_printf(sd,"Warning: MFC0 %d,%d ignored, PC=%08x (architecture specific)\n",rt,rd, (unsigned)cia);
2228 else
2229 sim_io_printf(sd,"Warning: MTC0 %d,%d ignored, PC=%08x (architecture specific)\n",rt,rd, (unsigned)cia);
2230 #endif
2231 }
2232 }
2233 else if ((op == cp0_mfc0 || op == cp0_dmfc0)
2234 && rd == 16)
2235 {
2236 /* [D]MFC0 RT,C0_CONFIG,SEL */
2237 signed32 cfg = 0;
2238 switch (sel)
2239 {
2240 case 0:
2241 cfg = C0_CONFIG;
2242 break;
2243 case 1:
2244 /* MIPS32 r/o Config1:
2245 Config2 present */
2246 cfg = 0x80000000;
2247 /* MIPS16 implemented.
2248 XXX How to check configuration? */
2249 cfg |= 0x0000004;
2250 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
2251 /* MDMX & FPU implemented */
2252 cfg |= 0x00000021;
2253 break;
2254 case 2:
2255 /* MIPS32 r/o Config2:
2256 Config3 present. */
2257 cfg = 0x80000000;
2258 break;
2259 case 3:
2260 /* MIPS32 r/o Config3:
2261 SmartMIPS implemented. */
2262 cfg = 0x00000002;
2263 break;
2264 }
2265 GPR[rt] = cfg;
2266 }
2267 else if (op == cp0_eret && sel == 0x18)
2268 {
2269 /* ERET */
2270 if (SR & status_ERL)
2271 {
2272 /* Oops, not yet available */
2273 sim_io_printf(sd,"Warning: ERET when SR[ERL] set not handled yet");
2274 PC = EPC;
2275 SR &= ~status_ERL;
2276 }
2277 else
2278 {
2279 PC = EPC;
2280 SR &= ~status_EXL;
2281 }
2282 }
2283 else if (op == cp0_rfe && sel == 0x10)
2284 {
2285 /* RFE */
2286 #ifdef SUBTARGET_R3900
2287 /* TX39: Copy IEp/KUp -> IEc/KUc, and IEo/KUo -> IEp/KUp */
2288
2289 /* shift IE/KU history bits right */
2290 SR = LSMASKED32(SR, 31, 4) | LSINSERTED32(LSEXTRACTED32(SR, 5, 2), 3, 0);
2291
2292 /* TODO: CACHE register */
2293 #endif /* SUBTARGET_R3900 */
2294 }
2295 else if (op == cp0_deret && sel == 0x1F)
2296 {
2297 /* DERET */
2298 Debug &= ~Debug_DM;
2299 DELAYSLOT();
2300 DSPC = DEPC;
2301 }
2302 else
2303 sim_io_eprintf(sd,"Unrecognised COP0 instruction 0x%08X at PC = 0x%s : No handler present\n",instruction,pr_addr(cia));
2304 /* TODO: When executing an ERET or RFE instruction we should
2305 clear LLBIT, to ensure that any out-standing atomic
2306 read/modify/write sequence fails. */
2307 }
2308 break;
2309
2310 case 2: /* co-processor 2 */
2311 {
2312 int handle = 0;
2313
2314
2315 if(! handle)
2316 {
2317 sim_io_eprintf(sd, "COP2 instruction 0x%08X at PC = 0x%s : No handler present\n",
2318 instruction,pr_addr(cia));
2319 }
2320 }
2321 break;
2322
2323 case 1: /* should not occur (FPU co-processor) */
2324 case 3: /* should not occur (FPU co-processor) */
2325 SignalException(ReservedInstruction,instruction);
2326 break;
2327 }
2328
2329 return;
2330 }
2331
2332
2333 /* This code copied from gdb's utils.c. Would like to share this code,
2334 but don't know of a common place where both could get to it. */
2335
2336 /* Temporary storage using circular buffer */
2337 #define NUMCELLS 16
2338 #define CELLSIZE 32
2339 static char*
2340 get_cell (void)
2341 {
2342 static char buf[NUMCELLS][CELLSIZE];
2343 static int cell=0;
2344 if (++cell>=NUMCELLS) cell=0;
2345 return buf[cell];
2346 }
2347
2348 /* Print routines to handle variable size regs, etc */
2349
2350 /* Eliminate warning from compiler on 32-bit systems */
2351 static int thirty_two = 32;
2352
2353 char*
2354 pr_addr (SIM_ADDR addr)
2355 {
2356 char *paddr_str=get_cell();
2357 switch (sizeof(addr))
2358 {
2359 case 8:
2360 sprintf(paddr_str,"%08lx%08lx",
2361 (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
2362 break;
2363 case 4:
2364 sprintf(paddr_str,"%08lx",(unsigned long)addr);
2365 break;
2366 case 2:
2367 sprintf(paddr_str,"%04x",(unsigned short)(addr&0xffff));
2368 break;
2369 default:
2370 sprintf(paddr_str,"%x",addr);
2371 }
2372 return paddr_str;
2373 }
2374
2375 char*
2376 pr_uword64 (uword64 addr)
2377 {
2378 char *paddr_str=get_cell();
2379 sprintf(paddr_str,"%08lx%08lx",
2380 (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
2381 return paddr_str;
2382 }
2383
2384
2385 void
2386 mips_core_signal (SIM_DESC sd,
2387 sim_cpu *cpu,
2388 sim_cia cia,
2389 unsigned map,
2390 int nr_bytes,
2391 address_word addr,
2392 transfer_type transfer,
2393 sim_core_signals sig)
2394 {
2395 const char *copy = (transfer == read_transfer ? "read" : "write");
2396 address_word ip = CIA_ADDR (cia);
2397
2398 switch (sig)
2399 {
2400 case sim_core_unmapped_signal:
2401 sim_io_eprintf (sd, "mips-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n",
2402 nr_bytes, copy,
2403 (unsigned long) addr, (unsigned long) ip);
2404 COP0_BADVADDR = addr;
2405 SignalExceptionDataReference();
2406 break;
2407
2408 case sim_core_unaligned_signal:
2409 sim_io_eprintf (sd, "mips-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n",
2410 nr_bytes, copy,
2411 (unsigned long) addr, (unsigned long) ip);
2412 COP0_BADVADDR = addr;
2413 if(transfer == read_transfer)
2414 SignalExceptionAddressLoad();
2415 else
2416 SignalExceptionAddressStore();
2417 break;
2418
2419 default:
2420 sim_engine_abort (sd, cpu, cia,
2421 "mips_core_signal - internal error - bad switch");
2422 }
2423 }
2424
2425
2426 void
2427 mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia)
2428 {
2429 ASSERT(cpu != NULL);
2430
2431 if(cpu->exc_suspended > 0)
2432 sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", cpu->exc_suspended);
2433
2434 PC = cia;
2435 memcpy(cpu->exc_trigger_registers, cpu->registers, sizeof(cpu->exc_trigger_registers));
2436 cpu->exc_suspended = 0;
2437 }
2438
2439 void
2440 mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception)
2441 {
2442 ASSERT(cpu != NULL);
2443
2444 if(cpu->exc_suspended > 0)
2445 sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n",
2446 cpu->exc_suspended, exception);
2447
2448 memcpy(cpu->exc_suspend_registers, cpu->registers, sizeof(cpu->exc_suspend_registers));
2449 memcpy(cpu->registers, cpu->exc_trigger_registers, sizeof(cpu->registers));
2450 cpu->exc_suspended = exception;
2451 }
2452
2453 void
2454 mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception)
2455 {
2456 ASSERT(cpu != NULL);
2457
2458 if(exception == 0 && cpu->exc_suspended > 0)
2459 {
2460 /* warn not for breakpoints */
2461 if(cpu->exc_suspended != sim_signal_to_host(sd, SIM_SIGTRAP))
2462 sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n",
2463 cpu->exc_suspended);
2464 }
2465 else if(exception != 0 && cpu->exc_suspended > 0)
2466 {
2467 if(exception != cpu->exc_suspended)
2468 sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n",
2469 cpu->exc_suspended, exception);
2470
2471 memcpy(cpu->registers, cpu->exc_suspend_registers, sizeof(cpu->registers));
2472 }
2473 else if(exception != 0 && cpu->exc_suspended == 0)
2474 {
2475 sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception);
2476 }
2477 cpu->exc_suspended = 0;
2478 }
2479
2480
2481 /*---------------------------------------------------------------------------*/
2482 /*> EOF interp.c <*/