]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/mips/interp.c
sim-main.h: track SKY register number changes from gdb
[thirdparty/binutils-gdb.git] / sim / mips / interp.c
1 /*> interp.c <*/
2 /* Simulator for the MIPS architecture.
3
4 This file is part of the MIPS sim
5
6 THIS SOFTWARE IS NOT COPYRIGHTED
7
8 Cygnus offers the following for use in the public domain. Cygnus
9 makes no warranty with regard to the software or it's performance
10 and the user accepts the software "AS IS" with all faults.
11
12 CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
13 THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
14 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
15
16 $Revision$
17 $Author$
18 $Date$
19
20 NOTEs:
21
22 The IDT monitor (found on the VR4300 board), seems to lie about
23 register contents. It seems to treat the registers as sign-extended
24 32-bit values. This cause *REAL* problems when single-stepping 64-bit
25 code on the hardware.
26
27 */
28
29 /* The TRACE manifests enable the provision of extra features. If they
30 are not defined then a simpler (quicker) simulator is constructed
31 without the required run-time checks, etc. */
32 #if 1 /* 0 to allow user build selection, 1 to force inclusion */
33 #define TRACE (1)
34 #endif
35
36 #include "bfd.h"
37 #include "sim-main.h"
38 #include "sim-utils.h"
39 #include "sim-options.h"
40 #include "sim-assert.h"
41
42 #include "config.h"
43
44 #include <stdio.h>
45 #include <stdarg.h>
46 #include <ansidecl.h>
47 #include <ctype.h>
48 #include <limits.h>
49 #include <math.h>
50 #ifdef HAVE_STDLIB_H
51 #include <stdlib.h>
52 #endif
53 #ifdef HAVE_STRING_H
54 #include <string.h>
55 #else
56 #ifdef HAVE_STRINGS_H
57 #include <strings.h>
58 #endif
59 #endif
60
61 #include "getopt.h"
62 #include "libiberty.h"
63 #include "bfd.h"
64 #include "callback.h" /* GDB simulator callback interface */
65 #include "remote-sim.h" /* GDB simulator interface */
66
67 #include "sysdep.h"
68
69 #ifndef PARAMS
70 #define PARAMS(x)
71 #endif
72
73 char* pr_addr PARAMS ((SIM_ADDR addr));
74 char* pr_uword64 PARAMS ((uword64 addr));
75
76
77 /* Get the simulator engine description, without including the code: */
78 #if (WITH_IGEN)
79 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3)
80 #else
81 #define SIM_MANIFESTS
82 #include "oengine.c"
83 #undef SIM_MANIFESTS
84 #endif
85
86 /* Within interp.c we refer to the sim_state and sim_cpu directly. */
87 #define SD sd
88 #define CPU cpu
89
90
91 /* The following reserved instruction value is used when a simulator
92 trap is required. NOTE: Care must be taken, since this value may be
93 used in later revisions of the MIPS ISA. */
94 #define RSVD_INSTRUCTION (0x00000005)
95 #define RSVD_INSTRUCTION_MASK (0xFC00003F)
96
97 #define RSVD_INSTRUCTION_ARG_SHIFT 6
98 #define RSVD_INSTRUCTION_ARG_MASK 0xFFFFF
99
100
101 /* Bits in the Debug register */
102 #define Debug_DBD 0x80000000 /* Debug Branch Delay */
103 #define Debug_DM 0x40000000 /* Debug Mode */
104 #define Debug_DBp 0x00000002 /* Debug Breakpoint indicator */
105
106
107
108
109
110 /*---------------------------------------------------------------------------*/
111 /*-- GDB simulator interface ------------------------------------------------*/
112 /*---------------------------------------------------------------------------*/
113
114 static void ColdReset PARAMS((SIM_DESC sd));
115
116 /*---------------------------------------------------------------------------*/
117
118
119
120 #define DELAYSLOT() {\
121 if (STATE & simDELAYSLOT)\
122 sim_io_eprintf(sd,"Delay slot already activated (branch in delay slot?)\n");\
123 STATE |= simDELAYSLOT;\
124 }
125
126 #define JALDELAYSLOT() {\
127 DELAYSLOT ();\
128 STATE |= simJALDELAYSLOT;\
129 }
130
131 #define NULLIFY() {\
132 STATE &= ~simDELAYSLOT;\
133 STATE |= simSKIPNEXT;\
134 }
135
136 #define CANCELDELAYSLOT() {\
137 DSSTATE = 0;\
138 STATE &= ~(simDELAYSLOT | simJALDELAYSLOT);\
139 }
140
141 #define INDELAYSLOT() ((STATE & simDELAYSLOT) != 0)
142 #define INJALDELAYSLOT() ((STATE & simJALDELAYSLOT) != 0)
143
144 #define K0BASE (0x80000000)
145 #define K0SIZE (0x20000000)
146 #define K1BASE (0xA0000000)
147 #define K1SIZE (0x20000000)
148 #define MONITOR_BASE (0xBFC00000)
149 #define MONITOR_SIZE (1 << 11)
150 #define MEM_SIZE (2 << 20)
151
152 #if defined(TRACE)
153 static char *tracefile = "trace.din"; /* default filename for trace log */
154 FILE *tracefh = NULL;
155 static void open_trace PARAMS((SIM_DESC sd));
156 #endif /* TRACE */
157
158 static DECLARE_OPTION_HANDLER (mips_option_handler);
159
160 #define OPTION_DINERO_TRACE 200
161 #define OPTION_DINERO_FILE 201
162
163 static SIM_RC
164 mips_option_handler (sd, cpu, opt, arg, is_command)
165 SIM_DESC sd;
166 sim_cpu *cpu;
167 int opt;
168 char *arg;
169 int is_command;
170 {
171 int cpu_nr;
172 switch (opt)
173 {
174 case OPTION_DINERO_TRACE: /* ??? */
175 #if defined(TRACE)
176 /* Eventually the simTRACE flag could be treated as a toggle, to
177 allow external control of the program points being traced
178 (i.e. only from main onwards, excluding the run-time setup,
179 etc.). */
180 for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
181 {
182 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
183 if (arg == NULL)
184 STATE |= simTRACE;
185 else if (strcmp (arg, "yes") == 0)
186 STATE |= simTRACE;
187 else if (strcmp (arg, "no") == 0)
188 STATE &= ~simTRACE;
189 else if (strcmp (arg, "on") == 0)
190 STATE |= simTRACE;
191 else if (strcmp (arg, "off") == 0)
192 STATE &= ~simTRACE;
193 else
194 {
195 fprintf (stderr, "Unreconized dinero-trace option `%s'\n", arg);
196 return SIM_RC_FAIL;
197 }
198 }
199 return SIM_RC_OK;
200 #else /* !TRACE */
201 fprintf(stderr,"\
202 Simulator constructed without dinero tracing support (for performance).\n\
203 Re-compile simulator with \"-DTRACE\" to enable this option.\n");
204 return SIM_RC_FAIL;
205 #endif /* !TRACE */
206
207 case OPTION_DINERO_FILE:
208 #if defined(TRACE)
209 if (optarg != NULL) {
210 char *tmp;
211 tmp = (char *)malloc(strlen(optarg) + 1);
212 if (tmp == NULL)
213 {
214 sim_io_printf(sd,"Failed to allocate buffer for tracefile name \"%s\"\n",optarg);
215 return SIM_RC_FAIL;
216 }
217 else {
218 strcpy(tmp,optarg);
219 tracefile = tmp;
220 sim_io_printf(sd,"Placing trace information into file \"%s\"\n",tracefile);
221 }
222 }
223 #endif /* TRACE */
224 return SIM_RC_OK;
225
226 }
227
228 return SIM_RC_OK;
229 }
230
231 static const OPTION mips_options[] =
232 {
233 { {"dinero-trace", optional_argument, NULL, OPTION_DINERO_TRACE},
234 '\0', "on|off", "Enable dinero tracing",
235 mips_option_handler },
236 { {"dinero-file", required_argument, NULL, OPTION_DINERO_FILE},
237 '\0', "FILE", "Write dinero trace to FILE",
238 mips_option_handler },
239 { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
240 };
241
242
243 int interrupt_pending;
244
245 static void
246 interrupt_event (SIM_DESC sd, void *data)
247 {
248 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
249 if (SR & status_IE)
250 {
251 interrupt_pending = 0;
252 SignalExceptionInterrupt ();
253 }
254 else if (!interrupt_pending)
255 sim_events_schedule (sd, 1, interrupt_event, data);
256 }
257
258
259 /*---------------------------------------------------------------------------*/
260 /*-- Device registration hook -----------------------------------------------*/
261 /*---------------------------------------------------------------------------*/
262 static void device_init(SIM_DESC sd) {
263 #ifdef DEVICE_INIT
264 extern void register_devices(SIM_DESC);
265 register_devices(sd);
266 #endif
267 }
268
269 /* start-sanitize-sky */
270 #ifdef TARGET_SKY
271 static struct {
272 short i[NUM_VU_INTEGER_REGS];
273 int f[NUM_VU_REGS - NUM_VU_INTEGER_REGS];
274 } vu_regs[2];
275 #endif
276 /* end-sanitize-sky */
277
278 /*---------------------------------------------------------------------------*/
279 /*-- GDB simulator interface ------------------------------------------------*/
280 /*---------------------------------------------------------------------------*/
281
282 SIM_DESC
283 sim_open (kind, cb, abfd, argv)
284 SIM_OPEN_KIND kind;
285 host_callback *cb;
286 struct _bfd *abfd;
287 char **argv;
288 {
289 SIM_DESC sd = sim_state_alloc (kind, cb);
290 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
291
292 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
293
294 /* FIXME: watchpoints code shouldn't need this */
295 STATE_WATCHPOINTS (sd)->pc = &(PC);
296 STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
297 STATE_WATCHPOINTS (sd)->interrupt_handler = interrupt_event;
298
299 STATE = 0;
300
301 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
302 return 0;
303 sim_add_option_table (sd, NULL, mips_options);
304
305 /* Allocate core managed memory */
306
307 /* the monitor */
308 sim_do_commandf (sd, "memory region 0x%lx,0x%lx", MONITOR_BASE, MONITOR_SIZE);
309 /* For compatibility with the old code - under this (at level one)
310 are the kernel spaces K0 & K1. Both of these map to a single
311 smaller sub region */
312 sim_do_command(sd," memory region 0x7fff8000,0x8000") ; /* MTZ- 32 k stack */
313 sim_do_commandf (sd, "memory alias 0x%lx@1,0x%lx%%0x%lx,0x%0x",
314 K1BASE, K0SIZE,
315 MEM_SIZE, /* actual size */
316 K0BASE);
317
318 device_init(sd);
319
320 /* getopt will print the error message so we just have to exit if this fails.
321 FIXME: Hmmm... in the case of gdb we need getopt to call
322 print_filtered. */
323 if (sim_parse_args (sd, argv) != SIM_RC_OK)
324 {
325 /* Uninstall the modules to avoid memory leaks,
326 file descriptor leaks, etc. */
327 sim_module_uninstall (sd);
328 return 0;
329 }
330
331 /* check for/establish the a reference program image */
332 if (sim_analyze_program (sd,
333 (STATE_PROG_ARGV (sd) != NULL
334 ? *STATE_PROG_ARGV (sd)
335 : NULL),
336 abfd) != SIM_RC_OK)
337 {
338 sim_module_uninstall (sd);
339 return 0;
340 }
341
342 /* Configure/verify the target byte order and other runtime
343 configuration options */
344 if (sim_config (sd) != SIM_RC_OK)
345 {
346 sim_module_uninstall (sd);
347 return 0;
348 }
349
350 if (sim_post_argv_init (sd) != SIM_RC_OK)
351 {
352 /* Uninstall the modules to avoid memory leaks,
353 file descriptor leaks, etc. */
354 sim_module_uninstall (sd);
355 return 0;
356 }
357
358 /* verify assumptions the simulator made about the host type system.
359 This macro does not return if there is a problem */
360 SIM_ASSERT (sizeof(int) == (4 * sizeof(char)));
361 SIM_ASSERT (sizeof(word64) == (8 * sizeof(char)));
362
363 /* This is NASTY, in that we are assuming the size of specific
364 registers: */
365 {
366 int rn;
367 for (rn = 0; (rn < (LAST_EMBED_REGNUM + 1)); rn++)
368 {
369 if (rn < 32)
370 cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
371 else if ((rn >= FGRIDX) && (rn < (FGRIDX + NR_FGR)))
372 cpu->register_widths[rn] = WITH_TARGET_FLOATING_POINT_BITSIZE;
373 else if ((rn >= 33) && (rn <= 37))
374 cpu->register_widths[rn] = WITH_TARGET_WORD_BITSIZE;
375 else if ((rn == SRIDX)
376 || (rn == FCR0IDX)
377 || (rn == FCR31IDX)
378 || ((rn >= 72) && (rn <= 89)))
379 cpu->register_widths[rn] = 32;
380 else
381 cpu->register_widths[rn] = 0;
382 }
383 /* start-sanitize-r5900 */
384
385 /* set the 5900 "upper" registers to 64 bits */
386 for( rn = LAST_EMBED_REGNUM+1; rn < NUM_REGS; rn++)
387 cpu->register_widths[rn] = 64;
388 /* end-sanitize-r5900 */
389
390 /* start-sanitize-sky */
391 #ifdef TARGET_SKY
392 /* Now the VU registers */
393 for( rn = 0; rn < NUM_VU_INTEGER_REGS; rn++ ) {
394 cpu->register_widths[rn + NUM_R5900_REGS] = 16;
395 cpu->register_widths[rn + NUM_R5900_REGS + NUM_VU_REGS] = 16;
396
397 /* Hack for now - to test gdb interface */
398 vu_regs[0].i[rn] = rn + 0x100;
399 vu_regs[1].i[rn] = rn + 0x200;
400 }
401
402 for( rn = NUM_VU_INTEGER_REGS; rn < NUM_VU_REGS; rn++ ) {
403 float f;
404 int first_vec_reg = NUM_VU_INTEGER_REGS + 8;
405
406 cpu->register_widths[rn + NUM_R5900_REGS] = 32;
407 cpu->register_widths[rn + NUM_R5900_REGS + NUM_VU_REGS] = 32;
408
409 /* Hack for now - to test gdb interface */
410 if( rn < first_vec_reg ) {
411 f = rn - NUM_VU_INTEGER_REGS + 100.0;
412 vu_regs[0].f[rn-NUM_VU_INTEGER_REGS] = *((unsigned *) &f);
413 f = rn - NUM_VU_INTEGER_REGS + 200.0;
414 vu_regs[1].f[rn-NUM_VU_INTEGER_REGS] = *((unsigned *) &f);
415 }
416 else {
417 f = (rn - first_vec_reg)/4 + (rn - first_vec_reg)%4 + 1000.0;
418 vu_regs[0].f[rn-NUM_VU_INTEGER_REGS] = *((unsigned *) &f);
419 f = (rn - first_vec_reg)/4 + (rn - first_vec_reg)%4 + 2000.0;
420 vu_regs[1].f[rn-NUM_VU_INTEGER_REGS] = *((unsigned *) &f);
421 }
422 }
423 #endif
424 /* end-sanitize-sky */
425 }
426
427 #if defined(TRACE)
428 if (STATE & simTRACE)
429 open_trace(sd);
430 #endif /* TRACE */
431
432 /* Write the monitor trap address handlers into the monitor (eeprom)
433 address space. This can only be done once the target endianness
434 has been determined. */
435 {
436 unsigned loop;
437 /* Entry into the IDT monitor is via fixed address vectors, and
438 not using machine instructions. To avoid clashing with use of
439 the MIPS TRAP system, we place our own (simulator specific)
440 "undefined" instructions into the relevant vector slots. */
441 for (loop = 0; (loop < MONITOR_SIZE); loop += 4)
442 {
443 address_word vaddr = (MONITOR_BASE + loop);
444 unsigned32 insn = (RSVD_INSTRUCTION | (((loop >> 2) & RSVD_INSTRUCTION_ARG_MASK) << RSVD_INSTRUCTION_ARG_SHIFT));
445 H2T (insn);
446 sim_write (sd, vaddr, (char *)&insn, sizeof (insn));
447 }
448 /* The PMON monitor uses the same address space, but rather than
449 branching into it the address of a routine is loaded. We can
450 cheat for the moment, and direct the PMON routine to IDT style
451 instructions within the monitor space. This relies on the IDT
452 monitor not using the locations from 0xBFC00500 onwards as its
453 entry points.*/
454 for (loop = 0; (loop < 24); loop++)
455 {
456 address_word vaddr = (MONITOR_BASE + 0x500 + (loop * 4));
457 unsigned32 value = ((0x500 - 8) / 8); /* default UNDEFINED reason code */
458 switch (loop)
459 {
460 case 0: /* read */
461 value = 7;
462 break;
463 case 1: /* write */
464 value = 8;
465 break;
466 case 2: /* open */
467 value = 6;
468 break;
469 case 3: /* close */
470 value = 10;
471 break;
472 case 5: /* printf */
473 value = ((0x500 - 16) / 8); /* not an IDT reason code */
474 break;
475 case 8: /* cliexit */
476 value = 17;
477 break;
478 case 11: /* flush_cache */
479 value = 28;
480 break;
481 }
482 /* FIXME - should monitor_base be SIM_ADDR?? */
483 value = ((unsigned int)MONITOR_BASE + (value * 8));
484 H2T (value);
485 sim_write (sd, vaddr, (char *)&value, sizeof (value));
486
487 /* The LSI MiniRISC PMON has its vectors at 0x200, not 0x500. */
488 vaddr -= 0x300;
489 sim_write (sd, vaddr, (char *)&value, sizeof (value));
490 }
491 }
492
493 return sd;
494 }
495
496 #if defined(TRACE)
497 static void
498 open_trace(sd)
499 SIM_DESC sd;
500 {
501 tracefh = fopen(tracefile,"wb+");
502 if (tracefh == NULL)
503 {
504 sim_io_eprintf(sd,"Failed to create file \"%s\", writing trace information to stderr.\n",tracefile);
505 tracefh = stderr;
506 }
507 }
508 #endif /* TRACE */
509
510 void
511 sim_close (sd, quitting)
512 SIM_DESC sd;
513 int quitting;
514 {
515 #ifdef DEBUG
516 printf("DBG: sim_close: entered (quitting = %d)\n",quitting);
517 #endif
518
519 /* "quitting" is non-zero if we cannot hang on errors */
520
521 /* Ensure that any resources allocated through the callback
522 mechanism are released: */
523 sim_io_shutdown (sd);
524
525 #if defined(TRACE)
526 if (tracefh != NULL && tracefh != stderr)
527 fclose(tracefh);
528 tracefh = NULL;
529 #endif /* TRACE */
530
531 /* FIXME - free SD */
532
533 return;
534 }
535
536
537 int
538 sim_write (sd,addr,buffer,size)
539 SIM_DESC sd;
540 SIM_ADDR addr;
541 unsigned char *buffer;
542 int size;
543 {
544 int index;
545 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
546
547 /* Return the number of bytes written, or zero if error. */
548 #ifdef DEBUG
549 sim_io_printf(sd,"sim_write(0x%s,buffer,%d);\n",pr_addr(addr),size);
550 #endif
551
552 /* We use raw read and write routines, since we do not want to count
553 the GDB memory accesses in our statistics gathering. */
554
555 for (index = 0; index < size; index++)
556 {
557 address_word vaddr = (address_word)addr + index;
558 address_word paddr;
559 int cca;
560 if (!address_translation (SD, CPU, NULL_CIA, vaddr, isDATA, isSTORE, &paddr, &cca, isRAW))
561 break;
562 if (sim_core_write_buffer (SD, CPU, sim_core_read_map, buffer + index, paddr, 1) != 1)
563 break;
564 }
565
566 return(index);
567 }
568
569 int
570 sim_read (sd,addr,buffer,size)
571 SIM_DESC sd;
572 SIM_ADDR addr;
573 unsigned char *buffer;
574 int size;
575 {
576 int index;
577 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
578
579 /* Return the number of bytes read, or zero if error. */
580 #ifdef DEBUG
581 sim_io_printf(sd,"sim_read(0x%s,buffer,%d);\n",pr_addr(addr),size);
582 #endif /* DEBUG */
583
584 for (index = 0; (index < size); index++)
585 {
586 address_word vaddr = (address_word)addr + index;
587 address_word paddr;
588 int cca;
589 if (!address_translation (SD, CPU, NULL_CIA, vaddr, isDATA, isLOAD, &paddr, &cca, isRAW))
590 break;
591 if (sim_core_read_buffer (SD, CPU, sim_core_read_map, buffer + index, paddr, 1) != 1)
592 break;
593 }
594
595 return(index);
596 }
597
598 int
599 sim_store_register (sd,rn,memory,length)
600 SIM_DESC sd;
601 int rn;
602 unsigned char *memory;
603 int length;
604 {
605 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
606 /* NOTE: gdb (the client) stores registers in target byte order
607 while the simulator uses host byte order */
608 #ifdef DEBUG
609 sim_io_printf(sd,"sim_store_register(%d,*memory=0x%s);\n",rn,pr_addr(*((SIM_ADDR *)memory)));
610 #endif /* DEBUG */
611
612 /* Unfortunately this suffers from the same problem as the register
613 numbering one. We need to know what the width of each logical
614 register number is for the architecture being simulated. */
615
616 if (cpu->register_widths[rn] == 0)
617 {
618 sim_io_eprintf(sd,"Invalid register width for %d (register store ignored)\n",rn);
619 return 0;
620 }
621
622 /* start-sanitize-r5900 */
623 if (rn >= 90 && rn < 90 + 32)
624 {
625 GPR1[rn - 90] = T2H_8 (*(unsigned64*)memory);
626 return 8;
627 }
628 switch (rn)
629 {
630 case REGISTER_SA:
631 SA = T2H_8(*(unsigned64*)memory);
632 return 8;
633 case 122: /* FIXME */
634 LO1 = T2H_8(*(unsigned64*)memory);
635 return 8;
636 case 123: /* FIXME */
637 HI1 = T2H_8(*(unsigned64*)memory);
638 return 8;
639 }
640 /* end-sanitize-r5900 */
641
642 /* start-sanitize-sky */
643 #ifdef TARGET_SKY
644 if (rn >= NUM_R5900_REGS)
645 {
646 int size = 4; /* Default register size */
647
648 rn = rn - NUM_R5900_REGS;
649
650 if (rn < NUM_VU_INTEGER_REGS)
651 {
652 vu_regs[0].i[rn] = T2H_2( *(unsigned short *) memory );
653 size = 2;
654 }
655 else if( rn < NUM_VU_REGS )
656 vu_regs[0].f[rn - NUM_VU_INTEGER_REGS]
657 = T2H_4( *(unsigned int *) memory );
658 else {
659 rn = rn - NUM_VU_REGS;
660
661 if( rn < NUM_VU_INTEGER_REGS )
662 {
663 vu_regs[1].i[rn] = T2H_2( *(unsigned short *) memory );
664 size = 2;
665 }
666 else if( rn < NUM_VU_REGS )
667 vu_regs[1].f[rn - NUM_VU_INTEGER_REGS]
668 = T2H_4( *(unsigned int *) memory );
669 else
670 sim_io_eprintf( sd, "Invalid VU register (register store ignored)\n" );
671 }
672
673 return size;
674 }
675 #endif
676 /* end-sanitize-sky */
677
678 if (rn >= FGRIDX && rn < FGRIDX + NR_FGR)
679 {
680 if (cpu->register_widths[rn] == 32)
681 {
682 cpu->fgr[rn - FGRIDX] = T2H_4 (*(unsigned32*)memory);
683 return 4;
684 }
685 else
686 {
687 cpu->fgr[rn - FGRIDX] = T2H_8 (*(unsigned64*)memory);
688 return 8;
689 }
690 }
691
692 if (cpu->register_widths[rn] == 32)
693 {
694 cpu->registers[rn] = T2H_4 (*(unsigned32*)memory);
695 return 4;
696 }
697 else
698 {
699 cpu->registers[rn] = T2H_8 (*(unsigned64*)memory);
700 return 8;
701 }
702 }
703
704 int
705 sim_fetch_register (sd,rn,memory,length)
706 SIM_DESC sd;
707 int rn;
708 unsigned char *memory;
709 int length;
710 {
711 sim_cpu *cpu = STATE_CPU (sd, 0); /* FIXME */
712 /* NOTE: gdb (the client) stores registers in target byte order
713 while the simulator uses host byte order */
714 #ifdef DEBUG
715 sim_io_printf(sd,"sim_fetch_register(%d=0x%s,mem) : place simulator registers into memory\n",rn,pr_addr(registers[rn]));
716 #endif /* DEBUG */
717
718 if (cpu->register_widths[rn] == 0)
719 {
720 sim_io_eprintf (sd, "Invalid register width for %d (register fetch ignored)\n",rn);
721 return 0;
722 }
723
724 /* start-sanitize-r5900 */
725 if (rn >= 90 && rn < 90 + 32)
726 {
727 *(unsigned64*)memory = GPR1[rn - 90];
728 return 8;
729 }
730 switch (rn)
731 {
732 case REGISTER_SA:
733 *((unsigned64*)memory) = H2T_8(SA);
734 return 8;
735 case 122: /* FIXME */
736 *((unsigned64*)memory) = H2T_8(LO1);
737 return 8;
738 case 123: /* FIXME */
739 *((unsigned64*)memory) = H2T_8(HI1);
740 return 8;
741 }
742 /* end-sanitize-r5900 */
743
744 /* start-sanitize-sky */
745 #ifdef TARGET_SKY
746 if (rn >= NUM_R5900_REGS)
747 {
748 int size = 4; /* default register width */
749
750 rn = rn - NUM_R5900_REGS;
751
752 if (rn < NUM_VU_INTEGER_REGS)
753 {
754 *((unsigned short *) memory) = H2T_2( vu_regs[0].i[rn] );
755 size = 2;
756 }
757 else if (rn < NUM_VU_REGS)
758 *((unsigned int *) memory)
759 = H2T_4( vu_regs[0].f[rn - NUM_VU_INTEGER_REGS] );
760 else
761 {
762 rn = rn - NUM_VU_REGS;
763
764 if (rn < NUM_VU_INTEGER_REGS)
765 {
766 (*(unsigned short *) memory) = H2T_2( vu_regs[1].i[rn] );
767 size = 2;
768 }
769 else if (rn < NUM_VU_REGS)
770 (*(unsigned int *) memory)
771 = H2T_4( vu_regs[1].f[rn - NUM_VU_INTEGER_REGS] );
772 else
773 sim_io_eprintf( sd, "Invalid VU register (register fetch ignored)\n" );
774 }
775
776 return size;
777 }
778 #endif
779 /* end-sanitize-sky */
780
781 /* Any floating point register */
782 if (rn >= FGRIDX && rn < FGRIDX + NR_FGR)
783 {
784 if (cpu->register_widths[rn] == 32)
785 {
786 *(unsigned32*)memory = H2T_4 (cpu->fgr[rn - FGRIDX]);
787 return 4;
788 }
789 else
790 {
791 *(unsigned64*)memory = H2T_8 (cpu->fgr[rn - FGRIDX]);
792 return 8;
793 }
794 }
795
796 if (cpu->register_widths[rn] == 32)
797 {
798 *(unsigned32*)memory = H2T_4 ((unsigned32)(cpu->registers[rn]));
799 return 4;
800 }
801 else
802 {
803 *(unsigned64*)memory = H2T_8 ((unsigned64)(cpu->registers[rn]));
804 return 8;
805 }
806 }
807
808
809 SIM_RC
810 sim_create_inferior (sd, abfd, argv,env)
811 SIM_DESC sd;
812 struct _bfd *abfd;
813 char **argv;
814 char **env;
815 {
816
817 #ifdef DEBUG
818 printf("DBG: sim_create_inferior entered: start_address = 0x%s\n",
819 pr_addr(PC));
820 #endif /* DEBUG */
821
822 ColdReset(sd);
823
824 if (abfd != NULL)
825 {
826 /* override PC value set by ColdReset () */
827 int cpu_nr;
828 for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
829 {
830 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
831 CIA_SET (cpu, (unsigned64) bfd_get_start_address (abfd));
832 }
833 }
834
835 #if 0 /* def DEBUG */
836 if (argv || env)
837 {
838 /* We should really place the argv slot values into the argument
839 registers, and onto the stack as required. However, this
840 assumes that we have a stack defined, which is not
841 necessarily true at the moment. */
842 char **cptr;
843 sim_io_printf(sd,"sim_create_inferior() : passed arguments ignored\n");
844 for (cptr = argv; (cptr && *cptr); cptr++)
845 printf("DBG: arg \"%s\"\n",*cptr);
846 }
847 #endif /* DEBUG */
848
849 return SIM_RC_OK;
850 }
851
852 void
853 sim_do_command (sd,cmd)
854 SIM_DESC sd;
855 char *cmd;
856 {
857 if (sim_args_command (sd, cmd) != SIM_RC_OK)
858 sim_io_printf (sd, "Error: \"%s\" is not a valid MIPS simulator command.\n",
859 cmd);
860 }
861
862 /*---------------------------------------------------------------------------*/
863 /*-- Private simulator support interface ------------------------------------*/
864 /*---------------------------------------------------------------------------*/
865
866 /* Read a null terminated string from memory, return in a buffer */
867 static char *
868 fetch_str (sd, addr)
869 SIM_DESC sd;
870 address_word addr;
871 {
872 char *buf;
873 int nr = 0;
874 char null;
875 while (sim_read (sd, addr + nr, &null, 1) == 1 && null != 0)
876 nr++;
877 buf = NZALLOC (char, nr + 1);
878 sim_read (sd, addr, buf, nr);
879 return buf;
880 }
881
882 /* Simple monitor interface (currently setup for the IDT and PMON monitors) */
883 static void
884 sim_monitor (SIM_DESC sd,
885 sim_cpu *cpu,
886 address_word cia,
887 unsigned int reason)
888 {
889 #ifdef DEBUG
890 printf("DBG: sim_monitor: entered (reason = %d)\n",reason);
891 #endif /* DEBUG */
892
893 /* The IDT monitor actually allows two instructions per vector
894 slot. However, the simulator currently causes a trap on each
895 individual instruction. We cheat, and lose the bottom bit. */
896 reason >>= 1;
897
898 /* The following callback functions are available, however the
899 monitor we are simulating does not make use of them: get_errno,
900 isatty, lseek, rename, system, time and unlink */
901 switch (reason)
902 {
903
904 case 6: /* int open(char *path,int flags) */
905 {
906 char *path = fetch_str (sd, A0);
907 V0 = sim_io_open (sd, path, (int)A1);
908 zfree (path);
909 break;
910 }
911
912 case 7: /* int read(int file,char *ptr,int len) */
913 {
914 int fd = A0;
915 int nr = A2;
916 char *buf = zalloc (nr);
917 V0 = sim_io_read (sd, fd, buf, nr);
918 sim_write (sd, A1, buf, nr);
919 zfree (buf);
920 }
921 break;
922
923 case 8: /* int write(int file,char *ptr,int len) */
924 {
925 int fd = A0;
926 int nr = A2;
927 char *buf = zalloc (nr);
928 sim_read (sd, A1, buf, nr);
929 V0 = sim_io_write (sd, fd, buf, nr);
930 zfree (buf);
931 break;
932 }
933
934 case 10: /* int close(int file) */
935 {
936 V0 = sim_io_close (sd, (int)A0);
937 break;
938 }
939
940 case 2: /* Densan monitor: char inbyte(int waitflag) */
941 {
942 if (A0 == 0) /* waitflag == NOWAIT */
943 V0 = (unsigned_word)-1;
944 }
945 /* Drop through to case 11 */
946
947 case 11: /* char inbyte(void) */
948 {
949 char tmp;
950 if (sim_io_read_stdin (sd, &tmp, sizeof(char)) != sizeof(char))
951 {
952 sim_io_error(sd,"Invalid return from character read");
953 V0 = (unsigned_word)-1;
954 }
955 else
956 V0 = (unsigned_word)tmp;
957 break;
958 }
959
960 case 3: /* Densan monitor: void co(char chr) */
961 case 12: /* void outbyte(char chr) : write a byte to "stdout" */
962 {
963 char tmp = (char)(A0 & 0xFF);
964 sim_io_write_stdout (sd, &tmp, sizeof(char));
965 break;
966 }
967
968 case 17: /* void _exit() */
969 {
970 sim_io_eprintf (sd, "sim_monitor(17): _exit(int reason) to be coded\n");
971 sim_engine_halt (SD, CPU, NULL, NULL_CIA, sim_exited,
972 (unsigned int)(A0 & 0xFFFFFFFF));
973 break;
974 }
975
976 case 28 : /* PMON flush_cache */
977 break;
978
979 case 55: /* void get_mem_info(unsigned int *ptr) */
980 /* in: A0 = pointer to three word memory location */
981 /* out: [A0 + 0] = size */
982 /* [A0 + 4] = instruction cache size */
983 /* [A0 + 8] = data cache size */
984 {
985 address_word value = MEM_SIZE /* FIXME STATE_MEM_SIZE (sd) */;
986 H2T (value);
987 sim_write (sd, A0, (char *)&value, sizeof (value));
988 /* sim_io_eprintf (sd, "sim: get_mem_info() depreciated\n"); */
989 break;
990 }
991
992 case 158 : /* PMON printf */
993 /* in: A0 = pointer to format string */
994 /* A1 = optional argument 1 */
995 /* A2 = optional argument 2 */
996 /* A3 = optional argument 3 */
997 /* out: void */
998 /* The following is based on the PMON printf source */
999 {
1000 address_word s = A0;
1001 char c;
1002 signed_word *ap = &A1; /* 1st argument */
1003 /* This isn't the quickest way, since we call the host print
1004 routine for every character almost. But it does avoid
1005 having to allocate and manage a temporary string buffer. */
1006 /* TODO: Include check that we only use three arguments (A1,
1007 A2 and A3) */
1008 while (sim_read (sd, s++, &c, 1) && c != '\0')
1009 {
1010 if (c == '%')
1011 {
1012 char tmp[40];
1013 enum {FMT_RJUST, FMT_LJUST, FMT_RJUST0, FMT_CENTER} fmt = FMT_RJUST;
1014 int width = 0, trunc = 0, haddot = 0, longlong = 0;
1015 while (sim_read (sd, s++, &c, 1) && c != '\0')
1016 {
1017 if (strchr ("dobxXulscefg%", s))
1018 break;
1019 else if (c == '-')
1020 fmt = FMT_LJUST;
1021 else if (c == '0')
1022 fmt = FMT_RJUST0;
1023 else if (c == '~')
1024 fmt = FMT_CENTER;
1025 else if (c == '*')
1026 {
1027 if (haddot)
1028 trunc = (int)*ap++;
1029 else
1030 width = (int)*ap++;
1031 }
1032 else if (c >= '1' && c <= '9')
1033 {
1034 address_word t = s;
1035 unsigned int n;
1036 while (sim_read (sd, s++, &c, 1) == 1 && isdigit (c))
1037 tmp[s - t] = c;
1038 tmp[s - t] = '\0';
1039 n = (unsigned int)strtol(tmp,NULL,10);
1040 if (haddot)
1041 trunc = n;
1042 else
1043 width = n;
1044 s--;
1045 }
1046 else if (c == '.')
1047 haddot = 1;
1048 }
1049 switch (c)
1050 {
1051 case '%':
1052 sim_io_printf (sd, "%%");
1053 break;
1054 case 's':
1055 if ((int)*ap != 0)
1056 {
1057 address_word p = *ap++;
1058 char ch;
1059 while (sim_read (sd, p++, &ch, 1) == 1 && ch != '\0')
1060 sim_io_printf(sd, "%c", ch);
1061 }
1062 else
1063 sim_io_printf(sd,"(null)");
1064 break;
1065 case 'c':
1066 sim_io_printf (sd, "%c", (int)*ap++);
1067 break;
1068 default:
1069 if (c == 'l')
1070 {
1071 sim_read (sd, s++, &c, 1);
1072 if (c == 'l')
1073 {
1074 longlong = 1;
1075 sim_read (sd, s++, &c, 1);
1076 }
1077 }
1078 if (strchr ("dobxXu", c))
1079 {
1080 word64 lv = (word64) *ap++;
1081 if (c == 'b')
1082 sim_io_printf(sd,"<binary not supported>");
1083 else
1084 {
1085 sprintf (tmp, "%%%s%c", longlong ? "ll" : "", c);
1086 if (longlong)
1087 sim_io_printf(sd, tmp, lv);
1088 else
1089 sim_io_printf(sd, tmp, (int)lv);
1090 }
1091 }
1092 else if (strchr ("eEfgG", c))
1093 {
1094 double dbl = *(double*)(ap++);
1095 sprintf (tmp, "%%%d.%d%c", width, trunc, c);
1096 sim_io_printf (sd, tmp, dbl);
1097 trunc = 0;
1098 }
1099 }
1100 }
1101 else
1102 sim_io_printf(sd, "%c", c);
1103 }
1104 break;
1105 }
1106
1107 default:
1108 sim_io_error (sd, "TODO: sim_monitor(%d) : PC = 0x%s\n",
1109 reason, pr_addr(cia));
1110 break;
1111 }
1112 return;
1113 }
1114
1115 /* Store a word into memory. */
1116
1117 static void
1118 store_word (SIM_DESC sd,
1119 sim_cpu *cpu,
1120 address_word cia,
1121 uword64 vaddr,
1122 signed_word val)
1123 {
1124 address_word paddr;
1125 int uncached;
1126
1127 if ((vaddr & 3) != 0)
1128 SignalExceptionAddressStore ();
1129 else
1130 {
1131 if (AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached,
1132 isTARGET, isREAL))
1133 {
1134 const uword64 mask = 7;
1135 uword64 memval;
1136 unsigned int byte;
1137
1138 paddr = (paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2));
1139 byte = (vaddr & mask) ^ (BigEndianCPU << 2);
1140 memval = ((uword64) val) << (8 * byte);
1141 StoreMemory (uncached, AccessLength_WORD, memval, 0, paddr, vaddr,
1142 isREAL);
1143 }
1144 }
1145 }
1146
1147 /* Load a word from memory. */
1148
1149 static signed_word
1150 load_word (SIM_DESC sd,
1151 sim_cpu *cpu,
1152 address_word cia,
1153 uword64 vaddr)
1154 {
1155 if ((vaddr & 3) != 0)
1156 SignalExceptionAddressLoad ();
1157 else
1158 {
1159 address_word paddr;
1160 int uncached;
1161
1162 if (AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached,
1163 isTARGET, isREAL))
1164 {
1165 const uword64 mask = 0x7;
1166 const unsigned int reverse = ReverseEndian ? 1 : 0;
1167 const unsigned int bigend = BigEndianCPU ? 1 : 0;
1168 uword64 memval;
1169 unsigned int byte;
1170
1171 paddr = (paddr & ~mask) | ((paddr & mask) ^ (reverse << 2));
1172 LoadMemory (&memval,NULL,uncached, AccessLength_WORD, paddr, vaddr,
1173 isDATA, isREAL);
1174 byte = (vaddr & mask) ^ (bigend << 2);
1175 return SIGNEXTEND (((memval >> (8 * byte)) & 0xffffffff), 32);
1176 }
1177 }
1178
1179 return 0;
1180 }
1181
1182 /* Simulate the mips16 entry and exit pseudo-instructions. These
1183 would normally be handled by the reserved instruction exception
1184 code, but for ease of simulation we just handle them directly. */
1185
1186 static void
1187 mips16_entry (SIM_DESC sd,
1188 sim_cpu *cpu,
1189 address_word cia,
1190 unsigned int insn)
1191 {
1192 int aregs, sregs, rreg;
1193
1194 #ifdef DEBUG
1195 printf("DBG: mips16_entry: entered (insn = 0x%08X)\n",insn);
1196 #endif /* DEBUG */
1197
1198 aregs = (insn & 0x700) >> 8;
1199 sregs = (insn & 0x0c0) >> 6;
1200 rreg = (insn & 0x020) >> 5;
1201
1202 /* This should be checked by the caller. */
1203 if (sregs == 3)
1204 abort ();
1205
1206 if (aregs < 5)
1207 {
1208 int i;
1209 signed_word tsp;
1210
1211 /* This is the entry pseudo-instruction. */
1212
1213 for (i = 0; i < aregs; i++)
1214 store_word (SD, CPU, cia, (uword64) (SP + 4 * i), GPR[i + 4]);
1215
1216 tsp = SP;
1217 SP -= 32;
1218
1219 if (rreg)
1220 {
1221 tsp -= 4;
1222 store_word (SD, CPU, cia, (uword64) tsp, RA);
1223 }
1224
1225 for (i = 0; i < sregs; i++)
1226 {
1227 tsp -= 4;
1228 store_word (SD, CPU, cia, (uword64) tsp, GPR[16 + i]);
1229 }
1230 }
1231 else
1232 {
1233 int i;
1234 signed_word tsp;
1235
1236 /* This is the exit pseudo-instruction. */
1237
1238 tsp = SP + 32;
1239
1240 if (rreg)
1241 {
1242 tsp -= 4;
1243 RA = load_word (SD, CPU, cia, (uword64) tsp);
1244 }
1245
1246 for (i = 0; i < sregs; i++)
1247 {
1248 tsp -= 4;
1249 GPR[i + 16] = load_word (SD, CPU, cia, (uword64) tsp);
1250 }
1251
1252 SP += 32;
1253
1254 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1255 {
1256 if (aregs == 5)
1257 {
1258 FGR[0] = WORD64LO (GPR[4]);
1259 FPR_STATE[0] = fmt_uninterpreted;
1260 }
1261 else if (aregs == 6)
1262 {
1263 FGR[0] = WORD64LO (GPR[5]);
1264 FGR[1] = WORD64LO (GPR[4]);
1265 FPR_STATE[0] = fmt_uninterpreted;
1266 FPR_STATE[1] = fmt_uninterpreted;
1267 }
1268 }
1269
1270 PC = RA;
1271 }
1272
1273 }
1274
1275 /*-- trace support ----------------------------------------------------------*/
1276
1277 /* The TRACE support is provided (if required) in the memory accessing
1278 routines. Since we are also providing the architecture specific
1279 features, the architecture simulation code can also deal with
1280 notifying the TRACE world of cache flushes, etc. Similarly we do
1281 not need to provide profiling support in the simulator engine,
1282 since we can sample in the instruction fetch control loop. By
1283 defining the TRACE manifest, we add tracing as a run-time
1284 option. */
1285
1286 #if defined(TRACE)
1287 /* Tracing by default produces "din" format (as required by
1288 dineroIII). Each line of such a trace file *MUST* have a din label
1289 and address field. The rest of the line is ignored, so comments can
1290 be included if desired. The first field is the label which must be
1291 one of the following values:
1292
1293 0 read data
1294 1 write data
1295 2 instruction fetch
1296 3 escape record (treated as unknown access type)
1297 4 escape record (causes cache flush)
1298
1299 The address field is a 32bit (lower-case) hexadecimal address
1300 value. The address should *NOT* be preceded by "0x".
1301
1302 The size of the memory transfer is not important when dealing with
1303 cache lines (as long as no more than a cache line can be
1304 transferred in a single operation :-), however more information
1305 could be given following the dineroIII requirement to allow more
1306 complete memory and cache simulators to provide better
1307 results. i.e. the University of Pisa has a cache simulator that can
1308 also take bus size and speed as (variable) inputs to calculate
1309 complete system performance (a much more useful ability when trying
1310 to construct an end product, rather than a processor). They
1311 currently have an ARM version of their tool called ChARM. */
1312
1313
1314 void
1315 dotrace (SIM_DESC sd,
1316 sim_cpu *cpu,
1317 FILE *tracefh,
1318 int type,
1319 SIM_ADDR address,
1320 int width,
1321 char *comment,...)
1322 {
1323 if (STATE & simTRACE) {
1324 va_list ap;
1325 fprintf(tracefh,"%d %s ; width %d ; ",
1326 type,
1327 pr_addr(address),
1328 width);
1329 va_start(ap,comment);
1330 vfprintf(tracefh,comment,ap);
1331 va_end(ap);
1332 fprintf(tracefh,"\n");
1333 }
1334 /* NOTE: Since the "din" format will only accept 32bit addresses, and
1335 we may be generating 64bit ones, we should put the hi-32bits of the
1336 address into the comment field. */
1337
1338 /* TODO: Provide a buffer for the trace lines. We can then avoid
1339 performing writes until the buffer is filled, or the file is
1340 being closed. */
1341
1342 /* NOTE: We could consider adding a comment field to the "din" file
1343 produced using type 3 markers (unknown access). This would then
1344 allow information about the program that the "din" is for, and
1345 the MIPs world that was being simulated, to be placed into the
1346 trace file. */
1347
1348 return;
1349 }
1350 #endif /* TRACE */
1351
1352 /*---------------------------------------------------------------------------*/
1353 /*-- simulator engine -------------------------------------------------------*/
1354 /*---------------------------------------------------------------------------*/
1355
1356 static void
1357 ColdReset (SIM_DESC sd)
1358 {
1359 int cpu_nr;
1360 for (cpu_nr = 0; cpu_nr < sim_engine_nr_cpus (sd); cpu_nr++)
1361 {
1362 sim_cpu *cpu = STATE_CPU (sd, cpu_nr);
1363 /* RESET: Fixed PC address: */
1364 PC = UNSIGNED64 (0xFFFFFFFFBFC00000);
1365 /* The reset vector address is in the unmapped, uncached memory space. */
1366
1367 SR &= ~(status_SR | status_TS | status_RP);
1368 SR |= (status_ERL | status_BEV);
1369
1370 /* Cheat and allow access to the complete register set immediately */
1371 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT
1372 && WITH_TARGET_WORD_BITSIZE == 64)
1373 SR |= status_FR; /* 64bit registers */
1374
1375 /* Ensure that any instructions with pending register updates are
1376 cleared: */
1377 PENDING_INVALIDATE();
1378
1379 /* Initialise the FPU registers to the unknown state */
1380 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
1381 {
1382 int rn;
1383 for (rn = 0; (rn < 32); rn++)
1384 FPR_STATE[rn] = fmt_uninterpreted;
1385 }
1386
1387 }
1388 }
1389
1390 /* Description from page A-22 of the "MIPS IV Instruction Set" manual
1391 (revision 3.1) */
1392 /* Translate a virtual address to a physical address and cache
1393 coherence algorithm describing the mechanism used to resolve the
1394 memory reference. Given the virtual address vAddr, and whether the
1395 reference is to Instructions ot Data (IorD), find the corresponding
1396 physical address (pAddr) and the cache coherence algorithm (CCA)
1397 used to resolve the reference. If the virtual address is in one of
1398 the unmapped address spaces the physical address and the CCA are
1399 determined directly by the virtual address. If the virtual address
1400 is in one of the mapped address spaces then the TLB is used to
1401 determine the physical address and access type; if the required
1402 translation is not present in the TLB or the desired access is not
1403 permitted the function fails and an exception is taken.
1404
1405 NOTE: Normally (RAW == 0), when address translation fails, this
1406 function raises an exception and does not return. */
1407
1408 int
1409 address_translation (SIM_DESC sd,
1410 sim_cpu *cpu,
1411 address_word cia,
1412 address_word vAddr,
1413 int IorD,
1414 int LorS,
1415 address_word *pAddr,
1416 int *CCA,
1417 int raw)
1418 {
1419 int res = -1; /* TRUE : Assume good return */
1420
1421 #ifdef DEBUG
1422 sim_io_printf(sd,"AddressTranslation(0x%s,%s,%s,...);\n",pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"),(LorS ? "iSTORE" : "isLOAD"));
1423 #endif
1424
1425 /* Check that the address is valid for this memory model */
1426
1427 /* For a simple (flat) memory model, we simply pass virtual
1428 addressess through (mostly) unchanged. */
1429 vAddr &= 0xFFFFFFFF;
1430
1431 *pAddr = vAddr; /* default for isTARGET */
1432 *CCA = Uncached; /* not used for isHOST */
1433
1434 return(res);
1435 }
1436
1437 /* Description from page A-23 of the "MIPS IV Instruction Set" manual
1438 (revision 3.1) */
1439 /* Prefetch data from memory. Prefetch is an advisory instruction for
1440 which an implementation specific action is taken. The action taken
1441 may increase performance, but must not change the meaning of the
1442 program, or alter architecturally-visible state. */
1443
1444 void
1445 prefetch (SIM_DESC sd,
1446 sim_cpu *cpu,
1447 address_word cia,
1448 int CCA,
1449 address_word pAddr,
1450 address_word vAddr,
1451 int DATA,
1452 int hint)
1453 {
1454 #ifdef DEBUG
1455 sim_io_printf(sd,"Prefetch(%d,0x%s,0x%s,%d,%d);\n",CCA,pr_addr(pAddr),pr_addr(vAddr),DATA,hint);
1456 #endif /* DEBUG */
1457
1458 /* For our simple memory model we do nothing */
1459 return;
1460 }
1461
1462 /* Description from page A-22 of the "MIPS IV Instruction Set" manual
1463 (revision 3.1) */
1464 /* Load a value from memory. Use the cache and main memory as
1465 specified in the Cache Coherence Algorithm (CCA) and the sort of
1466 access (IorD) to find the contents of AccessLength memory bytes
1467 starting at physical location pAddr. The data is returned in the
1468 fixed width naturally-aligned memory element (MemElem). The
1469 low-order two (or three) bits of the address and the AccessLength
1470 indicate which of the bytes within MemElem needs to be given to the
1471 processor. If the memory access type of the reference is uncached
1472 then only the referenced bytes are read from memory and valid
1473 within the memory element. If the access type is cached, and the
1474 data is not present in cache, an implementation specific size and
1475 alignment block of memory is read and loaded into the cache to
1476 satisfy a load reference. At a minimum, the block is the entire
1477 memory element. */
1478 void
1479 load_memory (SIM_DESC sd,
1480 sim_cpu *cpu,
1481 address_word cia,
1482 uword64* memvalp,
1483 uword64* memval1p,
1484 int CCA,
1485 int AccessLength,
1486 address_word pAddr,
1487 address_word vAddr,
1488 int IorD)
1489 {
1490 uword64 value = 0;
1491 uword64 value1 = 0;
1492
1493 #ifdef DEBUG
1494 sim_io_printf(sd,"DBG: LoadMemory(%p,%p,%d,%d,0x%s,0x%s,%s)\n",memvalp,memval1p,CCA,AccessLength,pr_addr(pAddr),pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"));
1495 #endif /* DEBUG */
1496
1497 #if defined(WARN_MEM)
1498 if (CCA != uncached)
1499 sim_io_eprintf(sd,"LoadMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
1500 #endif /* WARN_MEM */
1501
1502 /* If instruction fetch then we need to check that the two lo-order
1503 bits are zero, otherwise raise a InstructionFetch exception: */
1504 if ((IorD == isINSTRUCTION)
1505 && ((pAddr & 0x3) != 0)
1506 && (((pAddr & 0x1) != 0) || ((vAddr & 0x1) == 0)))
1507 SignalExceptionInstructionFetch ();
1508
1509 if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
1510 {
1511 /* In reality this should be a Bus Error */
1512 sim_io_error (sd, "AccessLength of %d would extend over %dbit aligned boundary for physical address 0x%s\n",
1513 AccessLength,
1514 (LOADDRMASK + 1) << 2,
1515 pr_addr (pAddr));
1516 }
1517
1518 #if defined(TRACE)
1519 dotrace (SD, CPU, tracefh,((IorD == isDATA) ? 0 : 2),(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"load%s",((IorD == isDATA) ? "" : " instruction"));
1520 #endif /* TRACE */
1521
1522 /* Read the specified number of bytes from memory. Adjust for
1523 host/target byte ordering/ Align the least significant byte
1524 read. */
1525
1526 switch (AccessLength)
1527 {
1528 case AccessLength_QUADWORD :
1529 {
1530 unsigned_16 val = sim_core_read_aligned_16 (cpu, NULL_CIA,
1531 sim_core_read_map, pAddr);
1532 value1 = VH8_16 (val);
1533 value = VL8_16 (val);
1534 break;
1535 }
1536 case AccessLength_DOUBLEWORD :
1537 value = sim_core_read_aligned_8 (cpu, NULL_CIA,
1538 sim_core_read_map, pAddr);
1539 break;
1540 case AccessLength_SEPTIBYTE :
1541 value = sim_core_read_misaligned_7 (cpu, NULL_CIA,
1542 sim_core_read_map, pAddr);
1543 break;
1544 case AccessLength_SEXTIBYTE :
1545 value = sim_core_read_misaligned_6 (cpu, NULL_CIA,
1546 sim_core_read_map, pAddr);
1547 break;
1548 case AccessLength_QUINTIBYTE :
1549 value = sim_core_read_misaligned_5 (cpu, NULL_CIA,
1550 sim_core_read_map, pAddr);
1551 break;
1552 case AccessLength_WORD :
1553 value = sim_core_read_aligned_4 (cpu, NULL_CIA,
1554 sim_core_read_map, pAddr);
1555 break;
1556 case AccessLength_TRIPLEBYTE :
1557 value = sim_core_read_misaligned_3 (cpu, NULL_CIA,
1558 sim_core_read_map, pAddr);
1559 break;
1560 case AccessLength_HALFWORD :
1561 value = sim_core_read_aligned_2 (cpu, NULL_CIA,
1562 sim_core_read_map, pAddr);
1563 break;
1564 case AccessLength_BYTE :
1565 value = sim_core_read_aligned_1 (cpu, NULL_CIA,
1566 sim_core_read_map, pAddr);
1567 break;
1568 default:
1569 abort ();
1570 }
1571
1572 #ifdef DEBUG
1573 printf("DBG: LoadMemory() : (offset %d) : value = 0x%s%s\n",
1574 (int)(pAddr & LOADDRMASK),pr_uword64(value1),pr_uword64(value));
1575 #endif /* DEBUG */
1576
1577 /* See also store_memory. */
1578 if (AccessLength <= AccessLength_DOUBLEWORD)
1579 {
1580 if (BigEndianMem)
1581 /* for big endian target, byte (pAddr&LOADDRMASK == 0) is
1582 shifted to the most significant byte position. */
1583 value <<= (((7 - (pAddr & LOADDRMASK)) - AccessLength) * 8);
1584 else
1585 /* For little endian target, byte (pAddr&LOADDRMASK == 0)
1586 is already in the correct postition. */
1587 value <<= ((pAddr & LOADDRMASK) * 8);
1588 }
1589
1590 #ifdef DEBUG
1591 printf("DBG: LoadMemory() : shifted value = 0x%s%s\n",
1592 pr_uword64(value1),pr_uword64(value));
1593 #endif /* DEBUG */
1594
1595 *memvalp = value;
1596 if (memval1p) *memval1p = value1;
1597 }
1598
1599
1600 /* Description from page A-23 of the "MIPS IV Instruction Set" manual
1601 (revision 3.1) */
1602 /* Store a value to memory. The specified data is stored into the
1603 physical location pAddr using the memory hierarchy (data caches and
1604 main memory) as specified by the Cache Coherence Algorithm
1605 (CCA). The MemElem contains the data for an aligned, fixed-width
1606 memory element (word for 32-bit processors, doubleword for 64-bit
1607 processors), though only the bytes that will actually be stored to
1608 memory need to be valid. The low-order two (or three) bits of pAddr
1609 and the AccessLength field indicates which of the bytes within the
1610 MemElem data should actually be stored; only these bytes in memory
1611 will be changed. */
1612
1613 void
1614 store_memory (SIM_DESC sd,
1615 sim_cpu *cpu,
1616 address_word cia,
1617 int CCA,
1618 int AccessLength,
1619 uword64 MemElem,
1620 uword64 MemElem1, /* High order 64 bits */
1621 address_word pAddr,
1622 address_word vAddr)
1623 {
1624 #ifdef DEBUG
1625 sim_io_printf(sd,"DBG: StoreMemory(%d,%d,0x%s,0x%s,0x%s,0x%s)\n",CCA,AccessLength,pr_uword64(MemElem),pr_uword64(MemElem1),pr_addr(pAddr),pr_addr(vAddr));
1626 #endif /* DEBUG */
1627
1628 #if defined(WARN_MEM)
1629 if (CCA != uncached)
1630 sim_io_eprintf(sd,"StoreMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
1631 #endif /* WARN_MEM */
1632
1633 if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
1634 sim_io_error(sd,"AccessLength of %d would extend over %dbit aligned boundary for physical address 0x%s\n",AccessLength,(LOADDRMASK + 1)<<2,pr_addr(pAddr));
1635
1636 #if defined(TRACE)
1637 dotrace (SD, CPU, tracefh,1,(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"store");
1638 #endif /* TRACE */
1639
1640 #ifdef DEBUG
1641 printf("DBG: StoreMemory: offset = %d MemElem = 0x%s%s\n",(unsigned int)(pAddr & LOADDRMASK),pr_uword64(MemElem1),pr_uword64(MemElem));
1642 #endif /* DEBUG */
1643
1644 /* See also load_memory */
1645 if (AccessLength <= AccessLength_DOUBLEWORD)
1646 {
1647 if (BigEndianMem)
1648 /* for big endian target, byte (pAddr&LOADDRMASK == 0) is
1649 shifted to the most significant byte position. */
1650 MemElem >>= (((7 - (pAddr & LOADDRMASK)) - AccessLength) * 8);
1651 else
1652 /* For little endian target, byte (pAddr&LOADDRMASK == 0)
1653 is already in the correct postition. */
1654 MemElem >>= ((pAddr & LOADDRMASK) * 8);
1655 }
1656
1657 #ifdef DEBUG
1658 printf("DBG: StoreMemory: shift = %d MemElem = 0x%s%s\n",shift,pr_uword64(MemElem1),pr_uword64(MemElem));
1659 #endif /* DEBUG */
1660
1661 switch (AccessLength)
1662 {
1663 case AccessLength_QUADWORD :
1664 {
1665 unsigned_16 val = U16_8 (MemElem1, MemElem);
1666 sim_core_write_aligned_16 (cpu, NULL_CIA,
1667 sim_core_write_map, pAddr, val);
1668 break;
1669 }
1670 case AccessLength_DOUBLEWORD :
1671 sim_core_write_aligned_8 (cpu, NULL_CIA,
1672 sim_core_write_map, pAddr, MemElem);
1673 break;
1674 case AccessLength_SEPTIBYTE :
1675 sim_core_write_misaligned_7 (cpu, NULL_CIA,
1676 sim_core_write_map, pAddr, MemElem);
1677 break;
1678 case AccessLength_SEXTIBYTE :
1679 sim_core_write_misaligned_6 (cpu, NULL_CIA,
1680 sim_core_write_map, pAddr, MemElem);
1681 break;
1682 case AccessLength_QUINTIBYTE :
1683 sim_core_write_misaligned_5 (cpu, NULL_CIA,
1684 sim_core_write_map, pAddr, MemElem);
1685 break;
1686 case AccessLength_WORD :
1687 sim_core_write_aligned_4 (cpu, NULL_CIA,
1688 sim_core_write_map, pAddr, MemElem);
1689 break;
1690 case AccessLength_TRIPLEBYTE :
1691 sim_core_write_misaligned_3 (cpu, NULL_CIA,
1692 sim_core_write_map, pAddr, MemElem);
1693 break;
1694 case AccessLength_HALFWORD :
1695 sim_core_write_aligned_2 (cpu, NULL_CIA,
1696 sim_core_write_map, pAddr, MemElem);
1697 break;
1698 case AccessLength_BYTE :
1699 sim_core_write_aligned_1 (cpu, NULL_CIA,
1700 sim_core_write_map, pAddr, MemElem);
1701 break;
1702 default:
1703 abort ();
1704 }
1705
1706 return;
1707 }
1708
1709
1710 unsigned32
1711 ifetch32 (SIM_DESC sd,
1712 sim_cpu *cpu,
1713 address_word cia,
1714 address_word vaddr)
1715 {
1716 /* Copy the action of the LW instruction */
1717 address_word reverse = (ReverseEndian ? (LOADDRMASK >> 2) : 0);
1718 address_word bigend = (BigEndianCPU ? (LOADDRMASK >> 2) : 0);
1719 unsigned64 value;
1720 address_word paddr;
1721 unsigned32 instruction;
1722 unsigned byte;
1723 int cca;
1724 AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &cca, isTARGET, isREAL);
1725 paddr = ((paddr & ~LOADDRMASK) | ((paddr & LOADDRMASK) ^ (reverse << 2)));
1726 LoadMemory (&value, NULL, cca, AccessLength_WORD, paddr, vaddr, isINSTRUCTION, isREAL);
1727 byte = ((vaddr & LOADDRMASK) ^ (bigend << 2));
1728 instruction = ((value >> (8 * byte)) & 0xFFFFFFFF);
1729 return instruction;
1730 }
1731
1732
1733 unsigned16
1734 ifetch16 (SIM_DESC sd,
1735 sim_cpu *cpu,
1736 address_word cia,
1737 address_word vaddr)
1738 {
1739 /* Copy the action of the LW instruction */
1740 address_word reverse = (ReverseEndian ? (LOADDRMASK >> 2) : 0);
1741 address_word bigend = (BigEndianCPU ? (LOADDRMASK >> 2) : 0);
1742 unsigned64 value;
1743 address_word paddr;
1744 unsigned16 instruction;
1745 unsigned byte;
1746 int cca;
1747 AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &cca, isTARGET, isREAL);
1748 paddr = ((paddr & ~LOADDRMASK) | ((paddr & LOADDRMASK) ^ (reverse << 2)));
1749 LoadMemory (&value, NULL, cca, AccessLength_WORD, paddr, vaddr, isINSTRUCTION, isREAL);
1750 byte = ((vaddr & LOADDRMASK) ^ (bigend << 2));
1751 instruction = ((value >> (8 * byte)) & 0xFFFFFFFF);
1752 return instruction;
1753 }
1754
1755
1756 /* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
1757 /* Order loads and stores to synchronise shared memory. Perform the
1758 action necessary to make the effects of groups of synchronizable
1759 loads and stores indicated by stype occur in the same order for all
1760 processors. */
1761 void
1762 sync_operation (SIM_DESC sd,
1763 sim_cpu *cpu,
1764 address_word cia,
1765 int stype)
1766 {
1767 #ifdef DEBUG
1768 sim_io_printf(sd,"SyncOperation(%d) : TODO\n",stype);
1769 #endif /* DEBUG */
1770 return;
1771 }
1772
1773 /* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
1774 /* Signal an exception condition. This will result in an exception
1775 that aborts the instruction. The instruction operation pseudocode
1776 will never see a return from this function call. */
1777
1778 void
1779 signal_exception (SIM_DESC sd,
1780 sim_cpu *cpu,
1781 address_word cia,
1782 int exception,...)
1783 {
1784 int vector;
1785
1786 #ifdef DEBUG
1787 sim_io_printf(sd,"DBG: SignalException(%d) PC = 0x%s\n",exception,pr_addr(cia));
1788 #endif /* DEBUG */
1789
1790 /* Ensure that any active atomic read/modify/write operation will fail: */
1791 LLBIT = 0;
1792
1793 switch (exception) {
1794 /* TODO: For testing purposes I have been ignoring TRAPs. In
1795 reality we should either simulate them, or allow the user to
1796 ignore them at run-time.
1797 Same for SYSCALL */
1798 case Trap :
1799 sim_io_eprintf(sd,"Ignoring instruction TRAP (PC 0x%s)\n",pr_addr(cia));
1800 break;
1801
1802 case SystemCall :
1803 {
1804 va_list ap;
1805 unsigned int instruction;
1806 unsigned int code;
1807
1808 va_start(ap,exception);
1809 instruction = va_arg(ap,unsigned int);
1810 va_end(ap);
1811
1812 code = (instruction >> 6) & 0xFFFFF;
1813
1814 sim_io_eprintf(sd,"Ignoring instruction `syscall %d' (PC 0x%s)\n",
1815 code, pr_addr(cia));
1816 }
1817 break;
1818
1819 case DebugBreakPoint :
1820 if (! (Debug & Debug_DM))
1821 {
1822 if (INDELAYSLOT())
1823 {
1824 CANCELDELAYSLOT();
1825
1826 Debug |= Debug_DBD; /* signaled from within in delay slot */
1827 DEPC = cia - 4; /* reference the branch instruction */
1828 }
1829 else
1830 {
1831 Debug &= ~Debug_DBD; /* not signaled from within a delay slot */
1832 DEPC = cia;
1833 }
1834
1835 Debug |= Debug_DM; /* in debugging mode */
1836 Debug |= Debug_DBp; /* raising a DBp exception */
1837 PC = 0xBFC00200;
1838 sim_engine_restart (SD, CPU, NULL, NULL_CIA);
1839 }
1840 break;
1841
1842 case ReservedInstruction :
1843 {
1844 va_list ap;
1845 unsigned int instruction;
1846 va_start(ap,exception);
1847 instruction = va_arg(ap,unsigned int);
1848 va_end(ap);
1849 /* Provide simple monitor support using ReservedInstruction
1850 exceptions. The following code simulates the fixed vector
1851 entry points into the IDT monitor by causing a simulator
1852 trap, performing the monitor operation, and returning to
1853 the address held in the $ra register (standard PCS return
1854 address). This means we only need to pre-load the vector
1855 space with suitable instruction values. For systems were
1856 actual trap instructions are used, we would not need to
1857 perform this magic. */
1858 if ((instruction & RSVD_INSTRUCTION_MASK) == RSVD_INSTRUCTION)
1859 {
1860 sim_monitor (SD, CPU, cia, ((instruction >> RSVD_INSTRUCTION_ARG_SHIFT) & RSVD_INSTRUCTION_ARG_MASK) );
1861 /* NOTE: This assumes that a branch-and-link style
1862 instruction was used to enter the vector (which is the
1863 case with the current IDT monitor). */
1864 sim_engine_restart (SD, CPU, NULL, RA);
1865 }
1866 /* Look for the mips16 entry and exit instructions, and
1867 simulate a handler for them. */
1868 else if ((cia & 1) != 0
1869 && (instruction & 0xf81f) == 0xe809
1870 && (instruction & 0x0c0) != 0x0c0)
1871 {
1872 mips16_entry (SD, CPU, cia, instruction);
1873 sim_engine_restart (sd, NULL, NULL, NULL_CIA);
1874 }
1875 /* else fall through to normal exception processing */
1876 sim_io_eprintf(sd,"ReservedInstruction 0x%08X at PC = 0x%s\n",instruction,pr_addr(cia));
1877 }
1878
1879 case BreakPoint:
1880 #ifdef DEBUG
1881 sim_io_printf(sd,"DBG: SignalException(%d) PC = 0x%s\n",exception,pr_addr(cia));
1882 #endif /* DEBUG */
1883 /* Keep a copy of the current A0 in-case this is the program exit
1884 breakpoint: */
1885 {
1886 va_list ap;
1887 unsigned int instruction;
1888 va_start(ap,exception);
1889 instruction = va_arg(ap,unsigned int);
1890 va_end(ap);
1891 /* Check for our special terminating BREAK: */
1892 if ((instruction & 0x03FFFFC0) == 0x03ff0000) {
1893 sim_engine_halt (SD, CPU, NULL, cia,
1894 sim_exited, (unsigned int)(A0 & 0xFFFFFFFF));
1895 }
1896 }
1897 if (STATE & simDELAYSLOT)
1898 PC = cia - 4; /* reference the branch instruction */
1899 else
1900 PC = cia;
1901 sim_engine_halt (SD, CPU, NULL, cia,
1902 sim_stopped, SIM_SIGTRAP);
1903
1904 default:
1905 /* Store exception code into current exception id variable (used
1906 by exit code): */
1907
1908 /* TODO: If not simulating exceptions then stop the simulator
1909 execution. At the moment we always stop the simulation. */
1910
1911 /* See figure 5-17 for an outline of the code below */
1912 if (! (SR & status_EXL))
1913 {
1914 CAUSE = (exception << 2);
1915 if (STATE & simDELAYSLOT)
1916 {
1917 STATE &= ~simDELAYSLOT;
1918 CAUSE |= cause_BD;
1919 EPC = (cia - 4); /* reference the branch instruction */
1920 }
1921 else
1922 EPC = cia;
1923 /* FIXME: TLB et.al. */
1924 vector = 0x180;
1925 }
1926 else
1927 {
1928 CAUSE = (exception << 2);
1929 vector = 0x180;
1930 }
1931 SR |= status_EXL;
1932 /* Store exception code into current exception id variable (used
1933 by exit code): */
1934 if (SR & status_BEV)
1935 PC = (signed)0xBFC00200 + 0x180;
1936 else
1937 PC = (signed)0x80000000 + 0x180;
1938
1939 switch ((CAUSE >> 2) & 0x1F)
1940 {
1941 case Interrupt:
1942 /* Interrupts arrive during event processing, no need to
1943 restart */
1944 return;
1945
1946 case TLBModification:
1947 case TLBLoad:
1948 case TLBStore:
1949 case AddressLoad:
1950 case AddressStore:
1951 case InstructionFetch:
1952 case DataReference:
1953 /* The following is so that the simulator will continue from the
1954 exception address on breakpoint operations. */
1955 PC = EPC;
1956 sim_engine_halt (SD, CPU, NULL, NULL_CIA,
1957 sim_stopped, SIM_SIGBUS);
1958
1959 case ReservedInstruction:
1960 case CoProcessorUnusable:
1961 PC = EPC;
1962 sim_engine_halt (SD, CPU, NULL, NULL_CIA,
1963 sim_stopped, SIM_SIGILL);
1964
1965 case IntegerOverflow:
1966 case FPE:
1967 sim_engine_halt (SD, CPU, NULL, NULL_CIA,
1968 sim_stopped, SIM_SIGFPE);
1969
1970 case Trap:
1971 case Watch:
1972 case SystemCall:
1973 PC = EPC;
1974 sim_engine_halt (SD, CPU, NULL, NULL_CIA,
1975 sim_stopped, SIM_SIGTRAP);
1976
1977 case BreakPoint:
1978 PC = EPC;
1979 sim_engine_abort (SD, CPU, NULL_CIA,
1980 "FATAL: Should not encounter a breakpoint\n");
1981
1982 default : /* Unknown internal exception */
1983 PC = EPC;
1984 sim_engine_halt (SD, CPU, NULL, NULL_CIA,
1985 sim_stopped, SIM_SIGABRT);
1986
1987 }
1988
1989 case SimulatorFault:
1990 {
1991 va_list ap;
1992 char *msg;
1993 va_start(ap,exception);
1994 msg = va_arg(ap,char *);
1995 va_end(ap);
1996 sim_engine_abort (SD, CPU, NULL_CIA,
1997 "FATAL: Simulator error \"%s\"\n",msg);
1998 }
1999 }
2000
2001 return;
2002 }
2003
2004 #if defined(WARN_RESULT)
2005 /* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
2006 /* This function indicates that the result of the operation is
2007 undefined. However, this should not affect the instruction
2008 stream. All that is meant to happen is that the destination
2009 register is set to an undefined result. To keep the simulator
2010 simple, we just don't bother updating the destination register, so
2011 the overall result will be undefined. If desired we can stop the
2012 simulator by raising a pseudo-exception. */
2013 #define UndefinedResult() undefined_result (sd,cia)
2014 static void
2015 undefined_result(sd,cia)
2016 SIM_DESC sd;
2017 address_word cia;
2018 {
2019 sim_io_eprintf(sd,"UndefinedResult: PC = 0x%s\n",pr_addr(cia));
2020 #if 0 /* Disabled for the moment, since it actually happens a lot at the moment. */
2021 state |= simSTOP;
2022 #endif
2023 return;
2024 }
2025 #endif /* WARN_RESULT */
2026
2027 void
2028 cache_op (SIM_DESC sd,
2029 sim_cpu *cpu,
2030 address_word cia,
2031 int op,
2032 address_word pAddr,
2033 address_word vAddr,
2034 unsigned int instruction)
2035 {
2036 #if 1 /* stop warning message being displayed (we should really just remove the code) */
2037 static int icache_warning = 1;
2038 static int dcache_warning = 1;
2039 #else
2040 static int icache_warning = 0;
2041 static int dcache_warning = 0;
2042 #endif
2043
2044 /* If CP0 is not useable (User or Supervisor mode) and the CP0
2045 enable bit in the Status Register is clear - a coprocessor
2046 unusable exception is taken. */
2047 #if 0
2048 sim_io_printf(sd,"TODO: Cache availability checking (PC = 0x%s)\n",pr_addr(cia));
2049 #endif
2050
2051 switch (op & 0x3) {
2052 case 0: /* instruction cache */
2053 switch (op >> 2) {
2054 case 0: /* Index Invalidate */
2055 case 1: /* Index Load Tag */
2056 case 2: /* Index Store Tag */
2057 case 4: /* Hit Invalidate */
2058 case 5: /* Fill */
2059 case 6: /* Hit Writeback */
2060 if (!icache_warning)
2061 {
2062 sim_io_eprintf(sd,"Instruction CACHE operation %d to be coded\n",(op >> 2));
2063 icache_warning = 1;
2064 }
2065 break;
2066
2067 default:
2068 SignalException(ReservedInstruction,instruction);
2069 break;
2070 }
2071 break;
2072
2073 case 1: /* data cache */
2074 switch (op >> 2) {
2075 case 0: /* Index Writeback Invalidate */
2076 case 1: /* Index Load Tag */
2077 case 2: /* Index Store Tag */
2078 case 3: /* Create Dirty */
2079 case 4: /* Hit Invalidate */
2080 case 5: /* Hit Writeback Invalidate */
2081 case 6: /* Hit Writeback */
2082 if (!dcache_warning)
2083 {
2084 sim_io_eprintf(sd,"Data CACHE operation %d to be coded\n",(op >> 2));
2085 dcache_warning = 1;
2086 }
2087 break;
2088
2089 default:
2090 SignalException(ReservedInstruction,instruction);
2091 break;
2092 }
2093 break;
2094
2095 default: /* unrecognised cache ID */
2096 SignalException(ReservedInstruction,instruction);
2097 break;
2098 }
2099
2100 return;
2101 }
2102
2103 /*-- FPU support routines ---------------------------------------------------*/
2104
2105 /* Numbers are held in normalized form. The SINGLE and DOUBLE binary
2106 formats conform to ANSI/IEEE Std 754-1985. */
2107 /* SINGLE precision floating:
2108 * seeeeeeeefffffffffffffffffffffff
2109 * s = 1bit = sign
2110 * e = 8bits = exponent
2111 * f = 23bits = fraction
2112 */
2113 /* SINGLE precision fixed:
2114 * siiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
2115 * s = 1bit = sign
2116 * i = 31bits = integer
2117 */
2118 /* DOUBLE precision floating:
2119 * seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff
2120 * s = 1bit = sign
2121 * e = 11bits = exponent
2122 * f = 52bits = fraction
2123 */
2124 /* DOUBLE precision fixed:
2125 * siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
2126 * s = 1bit = sign
2127 * i = 63bits = integer
2128 */
2129
2130 /* Extract sign-bit: */
2131 #define FP_S_s(v) (((v) & ((unsigned)1 << 31)) ? 1 : 0)
2132 #define FP_D_s(v) (((v) & ((uword64)1 << 63)) ? 1 : 0)
2133 /* Extract biased exponent: */
2134 #define FP_S_be(v) (((v) >> 23) & 0xFF)
2135 #define FP_D_be(v) (((v) >> 52) & 0x7FF)
2136 /* Extract unbiased Exponent: */
2137 #define FP_S_e(v) (FP_S_be(v) - 0x7F)
2138 #define FP_D_e(v) (FP_D_be(v) - 0x3FF)
2139 /* Extract complete fraction field: */
2140 #define FP_S_f(v) ((v) & ~((unsigned)0x1FF << 23))
2141 #define FP_D_f(v) ((v) & ~((uword64)0xFFF << 52))
2142 /* Extract numbered fraction bit: */
2143 #define FP_S_fb(b,v) (((v) & (1 << (23 - (b)))) ? 1 : 0)
2144 #define FP_D_fb(b,v) (((v) & (1 << (52 - (b)))) ? 1 : 0)
2145
2146 /* Explicit QNaN values used when value required: */
2147 #define FPQNaN_SINGLE (0x7FBFFFFF)
2148 #define FPQNaN_WORD (0x7FFFFFFF)
2149 #define FPQNaN_DOUBLE (((uword64)0x7FF7FFFF << 32) | 0xFFFFFFFF)
2150 #define FPQNaN_LONG (((uword64)0x7FFFFFFF << 32) | 0xFFFFFFFF)
2151
2152 /* Explicit Infinity values used when required: */
2153 #define FPINF_SINGLE (0x7F800000)
2154 #define FPINF_DOUBLE (((uword64)0x7FF00000 << 32) | 0x00000000)
2155
2156 #if 1 /* def DEBUG */
2157 #define RMMODE(v) (((v) == FP_RM_NEAREST) ? "Round" : (((v) == FP_RM_TOZERO) ? "Trunc" : (((v) == FP_RM_TOPINF) ? "Ceil" : "Floor")))
2158 #define DOFMT(v) (((v) == fmt_single) ? "single" : (((v) == fmt_double) ? "double" : (((v) == fmt_word) ? "word" : (((v) == fmt_long) ? "long" : (((v) == fmt_unknown) ? "<unknown>" : (((v) == fmt_uninterpreted) ? "<uninterpreted>" : "<format error>"))))))
2159 #endif /* DEBUG */
2160
2161 uword64
2162 value_fpr (SIM_DESC sd,
2163 sim_cpu *cpu,
2164 address_word cia,
2165 int fpr,
2166 FP_formats fmt)
2167 {
2168 uword64 value = 0;
2169 int err = 0;
2170
2171 /* Treat unused register values, as fixed-point 64bit values: */
2172 if ((fmt == fmt_uninterpreted) || (fmt == fmt_unknown))
2173 #if 1
2174 /* If request to read data as "uninterpreted", then use the current
2175 encoding: */
2176 fmt = FPR_STATE[fpr];
2177 #else
2178 fmt = fmt_long;
2179 #endif
2180
2181 /* For values not yet accessed, set to the desired format: */
2182 if (FPR_STATE[fpr] == fmt_uninterpreted) {
2183 FPR_STATE[fpr] = fmt;
2184 #ifdef DEBUG
2185 printf("DBG: Register %d was fmt_uninterpreted. Now %s\n",fpr,DOFMT(fmt));
2186 #endif /* DEBUG */
2187 }
2188 if (fmt != FPR_STATE[fpr]) {
2189 sim_io_eprintf(sd,"FPR %d (format %s) being accessed with format %s - setting to unknown (PC = 0x%s)\n",fpr,DOFMT(FPR_STATE[fpr]),DOFMT(fmt),pr_addr(cia));
2190 FPR_STATE[fpr] = fmt_unknown;
2191 }
2192
2193 if (FPR_STATE[fpr] == fmt_unknown) {
2194 /* Set QNaN value: */
2195 switch (fmt) {
2196 case fmt_single:
2197 value = FPQNaN_SINGLE;
2198 break;
2199
2200 case fmt_double:
2201 value = FPQNaN_DOUBLE;
2202 break;
2203
2204 case fmt_word:
2205 value = FPQNaN_WORD;
2206 break;
2207
2208 case fmt_long:
2209 value = FPQNaN_LONG;
2210 break;
2211
2212 default:
2213 err = -1;
2214 break;
2215 }
2216 } else if (SizeFGR() == 64) {
2217 switch (fmt) {
2218 case fmt_single:
2219 case fmt_word:
2220 value = (FGR[fpr] & 0xFFFFFFFF);
2221 break;
2222
2223 case fmt_uninterpreted:
2224 case fmt_double:
2225 case fmt_long:
2226 value = FGR[fpr];
2227 break;
2228
2229 default :
2230 err = -1;
2231 break;
2232 }
2233 } else {
2234 switch (fmt) {
2235 case fmt_single:
2236 case fmt_word:
2237 value = (FGR[fpr] & 0xFFFFFFFF);
2238 break;
2239
2240 case fmt_uninterpreted:
2241 case fmt_double:
2242 case fmt_long:
2243 if ((fpr & 1) == 0) { /* even registers only */
2244 value = ((((uword64)FGR[fpr+1]) << 32) | (FGR[fpr] & 0xFFFFFFFF));
2245 } else {
2246 SignalException(ReservedInstruction,0);
2247 }
2248 break;
2249
2250 default :
2251 err = -1;
2252 break;
2253 }
2254 }
2255
2256 if (err)
2257 SignalExceptionSimulatorFault ("Unrecognised FP format in ValueFPR()");
2258
2259 #ifdef DEBUG
2260 printf("DBG: ValueFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d\n",fpr,DOFMT(fmt),pr_addr(value),pr_addr(cia),SizeFGR());
2261 #endif /* DEBUG */
2262
2263 return(value);
2264 }
2265
2266 void
2267 store_fpr (SIM_DESC sd,
2268 sim_cpu *cpu,
2269 address_word cia,
2270 int fpr,
2271 FP_formats fmt,
2272 uword64 value)
2273 {
2274 int err = 0;
2275
2276 #ifdef DEBUG
2277 printf("DBG: StoreFPR: fpr = %d, fmt = %s, value = 0x%s : PC = 0x%s : SizeFGR() = %d\n",fpr,DOFMT(fmt),pr_addr(value),pr_addr(cia),SizeFGR());
2278 #endif /* DEBUG */
2279
2280 if (SizeFGR() == 64) {
2281 switch (fmt) {
2282 case fmt_uninterpreted_32:
2283 fmt = fmt_uninterpreted;
2284 case fmt_single :
2285 case fmt_word :
2286 FGR[fpr] = (((uword64)0xDEADC0DE << 32) | (value & 0xFFFFFFFF));
2287 FPR_STATE[fpr] = fmt;
2288 break;
2289
2290 case fmt_uninterpreted_64:
2291 fmt = fmt_uninterpreted;
2292 case fmt_uninterpreted:
2293 case fmt_double :
2294 case fmt_long :
2295 FGR[fpr] = value;
2296 FPR_STATE[fpr] = fmt;
2297 break;
2298
2299 default :
2300 FPR_STATE[fpr] = fmt_unknown;
2301 err = -1;
2302 break;
2303 }
2304 } else {
2305 switch (fmt) {
2306 case fmt_uninterpreted_32:
2307 fmt = fmt_uninterpreted;
2308 case fmt_single :
2309 case fmt_word :
2310 FGR[fpr] = (value & 0xFFFFFFFF);
2311 FPR_STATE[fpr] = fmt;
2312 break;
2313
2314 case fmt_uninterpreted_64:
2315 fmt = fmt_uninterpreted;
2316 case fmt_uninterpreted:
2317 case fmt_double :
2318 case fmt_long :
2319 if ((fpr & 1) == 0) { /* even register number only */
2320 FGR[fpr+1] = (value >> 32);
2321 FGR[fpr] = (value & 0xFFFFFFFF);
2322 FPR_STATE[fpr + 1] = fmt;
2323 FPR_STATE[fpr] = fmt;
2324 } else {
2325 FPR_STATE[fpr] = fmt_unknown;
2326 FPR_STATE[fpr + 1] = fmt_unknown;
2327 SignalException(ReservedInstruction,0);
2328 }
2329 break;
2330
2331 default :
2332 FPR_STATE[fpr] = fmt_unknown;
2333 err = -1;
2334 break;
2335 }
2336 }
2337 #if defined(WARN_RESULT)
2338 else
2339 UndefinedResult();
2340 #endif /* WARN_RESULT */
2341
2342 if (err)
2343 SignalExceptionSimulatorFault ("Unrecognised FP format in StoreFPR()");
2344
2345 #ifdef DEBUG
2346 printf("DBG: StoreFPR: fpr[%d] = 0x%s (format %s)\n",fpr,pr_addr(FGR[fpr]),DOFMT(fmt));
2347 #endif /* DEBUG */
2348
2349 return;
2350 }
2351
2352 int
2353 NaN(op,fmt)
2354 uword64 op;
2355 FP_formats fmt;
2356 {
2357 int boolean = 0;
2358 switch (fmt) {
2359 case fmt_single:
2360 case fmt_word:
2361 {
2362 sim_fpu wop;
2363 sim_fpu_32to (&wop, op);
2364 boolean = sim_fpu_is_nan (&wop);
2365 break;
2366 }
2367 case fmt_double:
2368 case fmt_long:
2369 {
2370 sim_fpu wop;
2371 sim_fpu_64to (&wop, op);
2372 boolean = sim_fpu_is_nan (&wop);
2373 break;
2374 }
2375 default:
2376 fprintf (stderr, "Bad switch\n");
2377 abort ();
2378 }
2379
2380 #ifdef DEBUG
2381 printf("DBG: NaN: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt));
2382 #endif /* DEBUG */
2383
2384 return(boolean);
2385 }
2386
2387 int
2388 Infinity(op,fmt)
2389 uword64 op;
2390 FP_formats fmt;
2391 {
2392 int boolean = 0;
2393
2394 #ifdef DEBUG
2395 printf("DBG: Infinity: format %s 0x%s\n",DOFMT(fmt),pr_addr(op));
2396 #endif /* DEBUG */
2397
2398 switch (fmt) {
2399 case fmt_single:
2400 {
2401 sim_fpu wop;
2402 sim_fpu_32to (&wop, op);
2403 boolean = sim_fpu_is_infinity (&wop);
2404 break;
2405 }
2406 case fmt_double:
2407 {
2408 sim_fpu wop;
2409 sim_fpu_64to (&wop, op);
2410 boolean = sim_fpu_is_infinity (&wop);
2411 break;
2412 }
2413 default:
2414 printf("DBG: TODO: unrecognised format (%s) for Infinity check\n",DOFMT(fmt));
2415 break;
2416 }
2417
2418 #ifdef DEBUG
2419 printf("DBG: Infinity: returning %d for 0x%s (format = %s)\n",boolean,pr_addr(op),DOFMT(fmt));
2420 #endif /* DEBUG */
2421
2422 return(boolean);
2423 }
2424
2425 int
2426 Less(op1,op2,fmt)
2427 uword64 op1;
2428 uword64 op2;
2429 FP_formats fmt;
2430 {
2431 int boolean = 0;
2432
2433 /* Argument checking already performed by the FPCOMPARE code */
2434
2435 #ifdef DEBUG
2436 printf("DBG: Less: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2437 #endif /* DEBUG */
2438
2439 /* The format type should already have been checked: */
2440 switch (fmt) {
2441 case fmt_single:
2442 {
2443 sim_fpu wop1;
2444 sim_fpu wop2;
2445 sim_fpu_32to (&wop1, op1);
2446 sim_fpu_32to (&wop2, op2);
2447 boolean = sim_fpu_is_lt (&wop1, &wop2);
2448 break;
2449 }
2450 case fmt_double:
2451 {
2452 sim_fpu wop1;
2453 sim_fpu wop2;
2454 sim_fpu_64to (&wop1, op1);
2455 sim_fpu_64to (&wop2, op2);
2456 boolean = sim_fpu_is_lt (&wop1, &wop2);
2457 break;
2458 }
2459 default:
2460 fprintf (stderr, "Bad switch\n");
2461 abort ();
2462 }
2463
2464 #ifdef DEBUG
2465 printf("DBG: Less: returning %d (format = %s)\n",boolean,DOFMT(fmt));
2466 #endif /* DEBUG */
2467
2468 return(boolean);
2469 }
2470
2471 int
2472 Equal(op1,op2,fmt)
2473 uword64 op1;
2474 uword64 op2;
2475 FP_formats fmt;
2476 {
2477 int boolean = 0;
2478
2479 /* Argument checking already performed by the FPCOMPARE code */
2480
2481 #ifdef DEBUG
2482 printf("DBG: Equal: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2483 #endif /* DEBUG */
2484
2485 /* The format type should already have been checked: */
2486 switch (fmt) {
2487 case fmt_single:
2488 {
2489 sim_fpu wop1;
2490 sim_fpu wop2;
2491 sim_fpu_32to (&wop1, op1);
2492 sim_fpu_32to (&wop2, op2);
2493 boolean = sim_fpu_is_eq (&wop1, &wop2);
2494 break;
2495 }
2496 case fmt_double:
2497 {
2498 sim_fpu wop1;
2499 sim_fpu wop2;
2500 sim_fpu_64to (&wop1, op1);
2501 sim_fpu_64to (&wop2, op2);
2502 boolean = sim_fpu_is_eq (&wop1, &wop2);
2503 break;
2504 }
2505 default:
2506 fprintf (stderr, "Bad switch\n");
2507 abort ();
2508 }
2509
2510 #ifdef DEBUG
2511 printf("DBG: Equal: returning %d (format = %s)\n",boolean,DOFMT(fmt));
2512 #endif /* DEBUG */
2513
2514 return(boolean);
2515 }
2516
2517 uword64
2518 AbsoluteValue(op,fmt)
2519 uword64 op;
2520 FP_formats fmt;
2521 {
2522 uword64 result = 0;
2523
2524 #ifdef DEBUG
2525 printf("DBG: AbsoluteValue: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
2526 #endif /* DEBUG */
2527
2528 /* The format type should already have been checked: */
2529 switch (fmt) {
2530 case fmt_single:
2531 {
2532 sim_fpu wop;
2533 unsigned32 ans;
2534 sim_fpu_32to (&wop, op);
2535 sim_fpu_abs (&wop, &wop);
2536 sim_fpu_to32 (&ans, &wop);
2537 result = ans;
2538 break;
2539 }
2540 case fmt_double:
2541 {
2542 sim_fpu wop;
2543 unsigned64 ans;
2544 sim_fpu_64to (&wop, op);
2545 sim_fpu_abs (&wop, &wop);
2546 sim_fpu_to64 (&ans, &wop);
2547 result = ans;
2548 break;
2549 }
2550 default:
2551 fprintf (stderr, "Bad switch\n");
2552 abort ();
2553 }
2554
2555 return(result);
2556 }
2557
2558 uword64
2559 Negate(op,fmt)
2560 uword64 op;
2561 FP_formats fmt;
2562 {
2563 uword64 result = 0;
2564
2565 #ifdef DEBUG
2566 printf("DBG: Negate: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
2567 #endif /* DEBUG */
2568
2569 /* The format type should already have been checked: */
2570 switch (fmt) {
2571 case fmt_single:
2572 {
2573 sim_fpu wop;
2574 unsigned32 ans;
2575 sim_fpu_32to (&wop, op);
2576 sim_fpu_neg (&wop, &wop);
2577 sim_fpu_to32 (&ans, &wop);
2578 result = ans;
2579 break;
2580 }
2581 case fmt_double:
2582 {
2583 sim_fpu wop;
2584 unsigned64 ans;
2585 sim_fpu_64to (&wop, op);
2586 sim_fpu_neg (&wop, &wop);
2587 sim_fpu_to64 (&ans, &wop);
2588 result = ans;
2589 break;
2590 }
2591 default:
2592 fprintf (stderr, "Bad switch\n");
2593 abort ();
2594 }
2595
2596 return(result);
2597 }
2598
2599 uword64
2600 Add(op1,op2,fmt)
2601 uword64 op1;
2602 uword64 op2;
2603 FP_formats fmt;
2604 {
2605 uword64 result = 0;
2606
2607 #ifdef DEBUG
2608 printf("DBG: Add: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2609 #endif /* DEBUG */
2610
2611 /* The registers must specify FPRs valid for operands of type
2612 "fmt". If they are not valid, the result is undefined. */
2613
2614 /* The format type should already have been checked: */
2615 switch (fmt) {
2616 case fmt_single:
2617 {
2618 sim_fpu wop1;
2619 sim_fpu wop2;
2620 sim_fpu ans;
2621 unsigned32 res;
2622 sim_fpu_32to (&wop1, op1);
2623 sim_fpu_32to (&wop2, op2);
2624 sim_fpu_add (&ans, &wop1, &wop2);
2625 sim_fpu_to32 (&res, &ans);
2626 result = res;
2627 break;
2628 }
2629 case fmt_double:
2630 {
2631 sim_fpu wop1;
2632 sim_fpu wop2;
2633 sim_fpu ans;
2634 unsigned64 res;
2635 sim_fpu_64to (&wop1, op1);
2636 sim_fpu_64to (&wop2, op2);
2637 sim_fpu_add (&ans, &wop1, &wop2);
2638 sim_fpu_to64 (&res, &ans);
2639 result = res;
2640 break;
2641 }
2642 default:
2643 fprintf (stderr, "Bad switch\n");
2644 abort ();
2645 }
2646
2647 #ifdef DEBUG
2648 printf("DBG: Add: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2649 #endif /* DEBUG */
2650
2651 return(result);
2652 }
2653
2654 uword64
2655 Sub(op1,op2,fmt)
2656 uword64 op1;
2657 uword64 op2;
2658 FP_formats fmt;
2659 {
2660 uword64 result = 0;
2661
2662 #ifdef DEBUG
2663 printf("DBG: Sub: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2664 #endif /* DEBUG */
2665
2666 /* The registers must specify FPRs valid for operands of type
2667 "fmt". If they are not valid, the result is undefined. */
2668
2669 /* The format type should already have been checked: */
2670 switch (fmt) {
2671 case fmt_single:
2672 {
2673 sim_fpu wop1;
2674 sim_fpu wop2;
2675 sim_fpu ans;
2676 unsigned32 res;
2677 sim_fpu_32to (&wop1, op1);
2678 sim_fpu_32to (&wop2, op2);
2679 sim_fpu_sub (&ans, &wop1, &wop2);
2680 sim_fpu_to32 (&res, &ans);
2681 result = res;
2682 }
2683 break;
2684 case fmt_double:
2685 {
2686 sim_fpu wop1;
2687 sim_fpu wop2;
2688 sim_fpu ans;
2689 unsigned64 res;
2690 sim_fpu_64to (&wop1, op1);
2691 sim_fpu_64to (&wop2, op2);
2692 sim_fpu_sub (&ans, &wop1, &wop2);
2693 sim_fpu_to64 (&res, &ans);
2694 result = res;
2695 }
2696 break;
2697 default:
2698 fprintf (stderr, "Bad switch\n");
2699 abort ();
2700 }
2701
2702 #ifdef DEBUG
2703 printf("DBG: Sub: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2704 #endif /* DEBUG */
2705
2706 return(result);
2707 }
2708
2709 uword64
2710 Multiply(op1,op2,fmt)
2711 uword64 op1;
2712 uword64 op2;
2713 FP_formats fmt;
2714 {
2715 uword64 result = 0;
2716
2717 #ifdef DEBUG
2718 printf("DBG: Multiply: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2719 #endif /* DEBUG */
2720
2721 /* The registers must specify FPRs valid for operands of type
2722 "fmt". If they are not valid, the result is undefined. */
2723
2724 /* The format type should already have been checked: */
2725 switch (fmt) {
2726 case fmt_single:
2727 {
2728 sim_fpu wop1;
2729 sim_fpu wop2;
2730 sim_fpu ans;
2731 unsigned32 res;
2732 sim_fpu_32to (&wop1, op1);
2733 sim_fpu_32to (&wop2, op2);
2734 sim_fpu_mul (&ans, &wop1, &wop2);
2735 sim_fpu_to32 (&res, &ans);
2736 result = res;
2737 break;
2738 }
2739 case fmt_double:
2740 {
2741 sim_fpu wop1;
2742 sim_fpu wop2;
2743 sim_fpu ans;
2744 unsigned64 res;
2745 sim_fpu_64to (&wop1, op1);
2746 sim_fpu_64to (&wop2, op2);
2747 sim_fpu_mul (&ans, &wop1, &wop2);
2748 sim_fpu_to64 (&res, &ans);
2749 result = res;
2750 break;
2751 }
2752 default:
2753 fprintf (stderr, "Bad switch\n");
2754 abort ();
2755 }
2756
2757 #ifdef DEBUG
2758 printf("DBG: Multiply: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2759 #endif /* DEBUG */
2760
2761 return(result);
2762 }
2763
2764 uword64
2765 Divide(op1,op2,fmt)
2766 uword64 op1;
2767 uword64 op2;
2768 FP_formats fmt;
2769 {
2770 uword64 result = 0;
2771
2772 #ifdef DEBUG
2773 printf("DBG: Divide: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2774 #endif /* DEBUG */
2775
2776 /* The registers must specify FPRs valid for operands of type
2777 "fmt". If they are not valid, the result is undefined. */
2778
2779 /* The format type should already have been checked: */
2780 switch (fmt) {
2781 case fmt_single:
2782 {
2783 sim_fpu wop1;
2784 sim_fpu wop2;
2785 sim_fpu ans;
2786 unsigned32 res;
2787 sim_fpu_32to (&wop1, op1);
2788 sim_fpu_32to (&wop2, op2);
2789 sim_fpu_div (&ans, &wop1, &wop2);
2790 sim_fpu_to32 (&res, &ans);
2791 result = res;
2792 break;
2793 }
2794 case fmt_double:
2795 {
2796 sim_fpu wop1;
2797 sim_fpu wop2;
2798 sim_fpu ans;
2799 unsigned64 res;
2800 sim_fpu_64to (&wop1, op1);
2801 sim_fpu_64to (&wop2, op2);
2802 sim_fpu_div (&ans, &wop1, &wop2);
2803 sim_fpu_to64 (&res, &ans);
2804 result = res;
2805 break;
2806 }
2807 default:
2808 fprintf (stderr, "Bad switch\n");
2809 abort ();
2810 }
2811
2812 #ifdef DEBUG
2813 printf("DBG: Divide: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2814 #endif /* DEBUG */
2815
2816 return(result);
2817 }
2818
2819 uword64 UNUSED
2820 Recip(op,fmt)
2821 uword64 op;
2822 FP_formats fmt;
2823 {
2824 uword64 result = 0;
2825
2826 #ifdef DEBUG
2827 printf("DBG: Recip: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
2828 #endif /* DEBUG */
2829
2830 /* The registers must specify FPRs valid for operands of type
2831 "fmt". If they are not valid, the result is undefined. */
2832
2833 /* The format type should already have been checked: */
2834 switch (fmt) {
2835 case fmt_single:
2836 {
2837 sim_fpu wop;
2838 sim_fpu ans;
2839 unsigned32 res;
2840 sim_fpu_32to (&wop, op);
2841 sim_fpu_inv (&ans, &wop);
2842 sim_fpu_to32 (&res, &ans);
2843 result = res;
2844 break;
2845 }
2846 case fmt_double:
2847 {
2848 sim_fpu wop;
2849 sim_fpu ans;
2850 unsigned64 res;
2851 sim_fpu_64to (&wop, op);
2852 sim_fpu_inv (&ans, &wop);
2853 sim_fpu_to64 (&res, &ans);
2854 result = res;
2855 break;
2856 }
2857 default:
2858 fprintf (stderr, "Bad switch\n");
2859 abort ();
2860 }
2861
2862 #ifdef DEBUG
2863 printf("DBG: Recip: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2864 #endif /* DEBUG */
2865
2866 return(result);
2867 }
2868
2869 uword64
2870 SquareRoot(op,fmt)
2871 uword64 op;
2872 FP_formats fmt;
2873 {
2874 uword64 result = 0;
2875
2876 #ifdef DEBUG
2877 printf("DBG: SquareRoot: %s: op = 0x%s\n",DOFMT(fmt),pr_addr(op));
2878 #endif /* DEBUG */
2879
2880 /* The registers must specify FPRs valid for operands of type
2881 "fmt". If they are not valid, the result is undefined. */
2882
2883 /* The format type should already have been checked: */
2884 switch (fmt) {
2885 case fmt_single:
2886 {
2887 sim_fpu wop;
2888 sim_fpu ans;
2889 unsigned32 res;
2890 sim_fpu_32to (&wop, op);
2891 sim_fpu_sqrt (&ans, &wop);
2892 sim_fpu_to32 (&res, &ans);
2893 result = res;
2894 break;
2895 }
2896 case fmt_double:
2897 {
2898 sim_fpu wop;
2899 sim_fpu ans;
2900 unsigned64 res;
2901 sim_fpu_64to (&wop, op);
2902 sim_fpu_sqrt (&ans, &wop);
2903 sim_fpu_to64 (&res, &ans);
2904 result = res;
2905 break;
2906 }
2907 default:
2908 fprintf (stderr, "Bad switch\n");
2909 abort ();
2910 }
2911
2912 #ifdef DEBUG
2913 printf("DBG: SquareRoot: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2914 #endif /* DEBUG */
2915
2916 return(result);
2917 }
2918
2919 uword64
2920 Max (uword64 op1,
2921 uword64 op2,
2922 FP_formats fmt)
2923 {
2924 int cmp;
2925 unsigned64 result;
2926
2927 #ifdef DEBUG
2928 printf("DBG: Max: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2929 #endif /* DEBUG */
2930
2931 /* The registers must specify FPRs valid for operands of type
2932 "fmt". If they are not valid, the result is undefined. */
2933
2934 /* The format type should already have been checked: */
2935 switch (fmt)
2936 {
2937 case fmt_single:
2938 {
2939 sim_fpu wop1;
2940 sim_fpu wop2;
2941 sim_fpu_32to (&wop1, op1);
2942 sim_fpu_32to (&wop2, op2);
2943 cmp = sim_fpu_cmp (&wop1, &wop2);
2944 break;
2945 }
2946 case fmt_double:
2947 {
2948 sim_fpu wop1;
2949 sim_fpu wop2;
2950 sim_fpu_64to (&wop1, op1);
2951 sim_fpu_64to (&wop2, op2);
2952 cmp = sim_fpu_cmp (&wop1, &wop2);
2953 break;
2954 }
2955 default:
2956 fprintf (stderr, "Bad switch\n");
2957 abort ();
2958 }
2959
2960 switch (cmp)
2961 {
2962 case SIM_FPU_IS_SNAN:
2963 case SIM_FPU_IS_QNAN:
2964 result = op1;
2965 case SIM_FPU_IS_NINF:
2966 case SIM_FPU_IS_NNUMBER:
2967 case SIM_FPU_IS_NDENORM:
2968 case SIM_FPU_IS_NZERO:
2969 result = op2; /* op1 - op2 < 0 */
2970 case SIM_FPU_IS_PINF:
2971 case SIM_FPU_IS_PNUMBER:
2972 case SIM_FPU_IS_PDENORM:
2973 case SIM_FPU_IS_PZERO:
2974 result = op1; /* op1 - op2 > 0 */
2975 default:
2976 fprintf (stderr, "Bad switch\n");
2977 abort ();
2978 }
2979
2980 #ifdef DEBUG
2981 printf("DBG: Max: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
2982 #endif /* DEBUG */
2983
2984 return(result);
2985 }
2986
2987 uword64
2988 Min (uword64 op1,
2989 uword64 op2,
2990 FP_formats fmt)
2991 {
2992 int cmp;
2993 unsigned64 result;
2994
2995 #ifdef DEBUG
2996 printf("DBG: Min: %s: op1 = 0x%s : op2 = 0x%s\n",DOFMT(fmt),pr_addr(op1),pr_addr(op2));
2997 #endif /* DEBUG */
2998
2999 /* The registers must specify FPRs valid for operands of type
3000 "fmt". If they are not valid, the result is undefined. */
3001
3002 /* The format type should already have been checked: */
3003 switch (fmt)
3004 {
3005 case fmt_single:
3006 {
3007 sim_fpu wop1;
3008 sim_fpu wop2;
3009 sim_fpu_32to (&wop1, op1);
3010 sim_fpu_32to (&wop2, op2);
3011 cmp = sim_fpu_cmp (&wop1, &wop2);
3012 break;
3013 }
3014 case fmt_double:
3015 {
3016 sim_fpu wop1;
3017 sim_fpu wop2;
3018 sim_fpu_64to (&wop1, op1);
3019 sim_fpu_64to (&wop2, op2);
3020 cmp = sim_fpu_cmp (&wop1, &wop2);
3021 break;
3022 }
3023 default:
3024 fprintf (stderr, "Bad switch\n");
3025 abort ();
3026 }
3027
3028 switch (cmp)
3029 {
3030 case SIM_FPU_IS_SNAN:
3031 case SIM_FPU_IS_QNAN:
3032 result = op1;
3033 case SIM_FPU_IS_NINF:
3034 case SIM_FPU_IS_NNUMBER:
3035 case SIM_FPU_IS_NDENORM:
3036 case SIM_FPU_IS_NZERO:
3037 result = op1; /* op1 - op2 < 0 */
3038 case SIM_FPU_IS_PINF:
3039 case SIM_FPU_IS_PNUMBER:
3040 case SIM_FPU_IS_PDENORM:
3041 case SIM_FPU_IS_PZERO:
3042 result = op2; /* op1 - op2 > 0 */
3043 default:
3044 fprintf (stderr, "Bad switch\n");
3045 abort ();
3046 }
3047
3048 #ifdef DEBUG
3049 printf("DBG: Min: returning 0x%s (format = %s)\n",pr_addr(result),DOFMT(fmt));
3050 #endif /* DEBUG */
3051
3052 return(result);
3053 }
3054
3055 uword64
3056 convert (SIM_DESC sd,
3057 sim_cpu *cpu,
3058 address_word cia,
3059 int rm,
3060 uword64 op,
3061 FP_formats from,
3062 FP_formats to)
3063 {
3064 sim_fpu wop;
3065 sim_fpu_round round;
3066 unsigned32 result32;
3067 unsigned64 result64;
3068
3069 #ifdef DEBUG
3070 printf("DBG: Convert: mode %s : op 0x%s : from %s : to %s : (PC = 0x%s)\n",RMMODE(rm),pr_addr(op),DOFMT(from),DOFMT(to),pr_addr(IPC));
3071 #endif /* DEBUG */
3072
3073 switch (rm)
3074 {
3075 case FP_RM_NEAREST:
3076 /* Round result to nearest representable value. When two
3077 representable values are equally near, round to the value
3078 that has a least significant bit of zero (i.e. is even). */
3079 round = sim_fpu_round_near;
3080 break;
3081 case FP_RM_TOZERO:
3082 /* Round result to the value closest to, and not greater in
3083 magnitude than, the result. */
3084 round = sim_fpu_round_zero;
3085 break;
3086 case FP_RM_TOPINF:
3087 /* Round result to the value closest to, and not less than,
3088 the result. */
3089 round = sim_fpu_round_up;
3090 break;
3091
3092 case FP_RM_TOMINF:
3093 /* Round result to the value closest to, and not greater than,
3094 the result. */
3095 round = sim_fpu_round_down;
3096 break;
3097 default:
3098 round = 0;
3099 fprintf (stderr, "Bad switch\n");
3100 abort ();
3101 }
3102
3103 /* Convert the input to sim_fpu internal format */
3104 switch (from)
3105 {
3106 case fmt_double:
3107 sim_fpu_64to (&wop, op);
3108 break;
3109 case fmt_single:
3110 sim_fpu_32to (&wop, op);
3111 break;
3112 case fmt_word:
3113 sim_fpu_i32to (&wop, op, round);
3114 break;
3115 case fmt_long:
3116 sim_fpu_i64to (&wop, op, round);
3117 break;
3118 default:
3119 fprintf (stderr, "Bad switch\n");
3120 abort ();
3121 }
3122
3123 /* Convert sim_fpu format into the output */
3124 /* The value WOP is converted to the destination format, rounding
3125 using mode RM. When the destination is a fixed-point format, then
3126 a source value of Infinity, NaN or one which would round to an
3127 integer outside the fixed point range then an IEEE Invalid
3128 Operation condition is raised. */
3129 switch (to)
3130 {
3131 case fmt_single:
3132 sim_fpu_round_32 (&wop, round, 0);
3133 sim_fpu_to32 (&result32, &wop);
3134 result64 = result32;
3135 break;
3136 case fmt_double:
3137 sim_fpu_round_64 (&wop, round, 0);
3138 sim_fpu_to64 (&result64, &wop);
3139 break;
3140 case fmt_word:
3141 sim_fpu_to32i (&result32, &wop, round);
3142 result64 = result32;
3143 break;
3144 case fmt_long:
3145 sim_fpu_to64i (&result64, &wop, round);
3146 break;
3147 default:
3148 result64 = 0;
3149 fprintf (stderr, "Bad switch\n");
3150 abort ();
3151 }
3152
3153 #ifdef DEBUG
3154 printf("DBG: Convert: returning 0x%s (to format = %s)\n",pr_addr(result64),DOFMT(to));
3155 #endif /* DEBUG */
3156
3157 return(result64);
3158 }
3159
3160
3161 /*-- co-processor support routines ------------------------------------------*/
3162
3163 static int UNUSED
3164 CoProcPresent(coproc_number)
3165 unsigned int coproc_number;
3166 {
3167 /* Return TRUE if simulator provides a model for the given co-processor number */
3168 return(0);
3169 }
3170
3171 void
3172 cop_lw (SIM_DESC sd,
3173 sim_cpu *cpu,
3174 address_word cia,
3175 int coproc_num,
3176 int coproc_reg,
3177 unsigned int memword)
3178 {
3179 switch (coproc_num)
3180 {
3181 case 1:
3182 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
3183 {
3184 #ifdef DEBUG
3185 printf("DBG: COP_LW: memword = 0x%08X (uword64)memword = 0x%s\n",memword,pr_addr(memword));
3186 #endif
3187 StoreFPR(coproc_reg,fmt_word,(uword64)memword);
3188 FPR_STATE[coproc_reg] = fmt_uninterpreted;
3189 break;
3190 }
3191
3192 default:
3193 #if 0 /* this should be controlled by a configuration option */
3194 sim_io_printf(sd,"COP_LW(%d,%d,0x%08X) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,memword,pr_addr(cia));
3195 #endif
3196 break;
3197 }
3198
3199 return;
3200 }
3201
3202 void
3203 cop_ld (SIM_DESC sd,
3204 sim_cpu *cpu,
3205 address_word cia,
3206 int coproc_num,
3207 int coproc_reg,
3208 uword64 memword)
3209 {
3210 switch (coproc_num) {
3211 case 1:
3212 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
3213 {
3214 StoreFPR(coproc_reg,fmt_uninterpreted,memword);
3215 break;
3216 }
3217
3218 default:
3219 #if 0 /* this message should be controlled by a configuration option */
3220 sim_io_printf(sd,"COP_LD(%d,%d,0x%s) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(memword),pr_addr(cia));
3221 #endif
3222 break;
3223 }
3224
3225 return;
3226 }
3227
3228 unsigned int
3229 cop_sw (SIM_DESC sd,
3230 sim_cpu *cpu,
3231 address_word cia,
3232 int coproc_num,
3233 int coproc_reg)
3234 {
3235 unsigned int value = 0;
3236
3237 switch (coproc_num)
3238 {
3239 case 1:
3240 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
3241 {
3242 FP_formats hold;
3243 hold = FPR_STATE[coproc_reg];
3244 FPR_STATE[coproc_reg] = fmt_word;
3245 value = (unsigned int)ValueFPR(coproc_reg,fmt_uninterpreted);
3246 FPR_STATE[coproc_reg] = hold;
3247 break;
3248 }
3249
3250 default:
3251 #if 0 /* should be controlled by configuration option */
3252 sim_io_printf(sd,"COP_SW(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
3253 #endif
3254 break;
3255 }
3256
3257 return(value);
3258 }
3259
3260 uword64
3261 cop_sd (SIM_DESC sd,
3262 sim_cpu *cpu,
3263 address_word cia,
3264 int coproc_num,
3265 int coproc_reg)
3266 {
3267 uword64 value = 0;
3268 switch (coproc_num)
3269 {
3270 case 1:
3271 if (CURRENT_FLOATING_POINT == HARD_FLOATING_POINT)
3272 {
3273 value = ValueFPR(coproc_reg,fmt_uninterpreted);
3274 break;
3275 }
3276
3277 default:
3278 #if 0 /* should be controlled by configuration option */
3279 sim_io_printf(sd,"COP_SD(%d,%d) at PC = 0x%s : TODO (architecture specific)\n",coproc_num,coproc_reg,pr_addr(cia));
3280 #endif
3281 break;
3282 }
3283
3284 return(value);
3285 }
3286
3287 void
3288 decode_coproc (SIM_DESC sd,
3289 sim_cpu *cpu,
3290 address_word cia,
3291 unsigned int instruction)
3292 {
3293 int coprocnum = ((instruction >> 26) & 3);
3294
3295 switch (coprocnum)
3296 {
3297 case 0: /* standard CPU control and cache registers */
3298 {
3299 int code = ((instruction >> 21) & 0x1F);
3300 /* R4000 Users Manual (second edition) lists the following CP0
3301 instructions:
3302 DMFC0 Doubleword Move From CP0 (VR4100 = 01000000001tttttddddd00000000000)
3303 DMTC0 Doubleword Move To CP0 (VR4100 = 01000000101tttttddddd00000000000)
3304 MFC0 word Move From CP0 (VR4100 = 01000000000tttttddddd00000000000)
3305 MTC0 word Move To CP0 (VR4100 = 01000000100tttttddddd00000000000)
3306 TLBR Read Indexed TLB Entry (VR4100 = 01000010000000000000000000000001)
3307 TLBWI Write Indexed TLB Entry (VR4100 = 01000010000000000000000000000010)
3308 TLBWR Write Random TLB Entry (VR4100 = 01000010000000000000000000000110)
3309 TLBP Probe TLB for Matching Entry (VR4100 = 01000010000000000000000000001000)
3310 CACHE Cache operation (VR4100 = 101111bbbbbpppppiiiiiiiiiiiiiiii)
3311 ERET Exception return (VR4100 = 01000010000000000000000000011000)
3312 */
3313 if (((code == 0x00) || (code == 0x04)) && ((instruction & 0x7FF) == 0))
3314 {
3315 int rt = ((instruction >> 16) & 0x1F);
3316 int rd = ((instruction >> 11) & 0x1F);
3317
3318 switch (rd) /* NOTEs: Standard CP0 registers */
3319 {
3320 /* 0 = Index R4000 VR4100 VR4300 */
3321 /* 1 = Random R4000 VR4100 VR4300 */
3322 /* 2 = EntryLo0 R4000 VR4100 VR4300 */
3323 /* 3 = EntryLo1 R4000 VR4100 VR4300 */
3324 /* 4 = Context R4000 VR4100 VR4300 */
3325 /* 5 = PageMask R4000 VR4100 VR4300 */
3326 /* 6 = Wired R4000 VR4100 VR4300 */
3327 /* 8 = BadVAddr R4000 VR4100 VR4300 */
3328 /* 9 = Count R4000 VR4100 VR4300 */
3329 /* 10 = EntryHi R4000 VR4100 VR4300 */
3330 /* 11 = Compare R4000 VR4100 VR4300 */
3331 /* 12 = SR R4000 VR4100 VR4300 */
3332 case 12:
3333 if (code == 0x00)
3334 GPR[rt] = SR;
3335 else
3336 SR = GPR[rt];
3337 break;
3338 /* 13 = Cause R4000 VR4100 VR4300 */
3339 case 13:
3340 if (code == 0x00)
3341 GPR[rt] = CAUSE;
3342 else
3343 CAUSE = GPR[rt];
3344 break;
3345 /* 14 = EPC R4000 VR4100 VR4300 */
3346 /* 15 = PRId R4000 VR4100 VR4300 */
3347 #ifdef SUBTARGET_R3900
3348 /* 16 = Debug */
3349 case 16:
3350 if (code == 0x00)
3351 GPR[rt] = Debug;
3352 else
3353 Debug = GPR[rt];
3354 break;
3355 #else
3356 /* 16 = Config R4000 VR4100 VR4300 */
3357 case 16:
3358 if (code == 0x00)
3359 GPR[rt] = C0_CONFIG;
3360 else
3361 C0_CONFIG = GPR[rt];
3362 break;
3363 #endif
3364 #ifdef SUBTARGET_R3900
3365 /* 17 = Debug */
3366 case 17:
3367 if (code == 0x00)
3368 GPR[rt] = DEPC;
3369 else
3370 DEPC = GPR[rt];
3371 break;
3372 #else
3373 /* 17 = LLAddr R4000 VR4100 VR4300 */
3374 #endif
3375 /* 18 = WatchLo R4000 VR4100 VR4300 */
3376 /* 19 = WatchHi R4000 VR4100 VR4300 */
3377 /* 20 = XContext R4000 VR4100 VR4300 */
3378 /* 26 = PErr or ECC R4000 VR4100 VR4300 */
3379 /* 27 = CacheErr R4000 VR4100 */
3380 /* 28 = TagLo R4000 VR4100 VR4300 */
3381 /* 29 = TagHi R4000 VR4100 VR4300 */
3382 /* 30 = ErrorEPC R4000 VR4100 VR4300 */
3383 GPR[rt] = 0xDEADC0DE; /* CPR[0,rd] */
3384 /* CPR[0,rd] = GPR[rt]; */
3385 default:
3386 if (code == 0x00)
3387 sim_io_printf(sd,"Warning: MFC0 %d,%d ignored (architecture specific)\n",rt,rd);
3388 else
3389 sim_io_printf(sd,"Warning: MTC0 %d,%d ignored (architecture specific)\n",rt,rd);
3390 }
3391 }
3392 else if (code == 0x10 && (instruction & 0x3f) == 0x18)
3393 {
3394 /* ERET */
3395 if (SR & status_ERL)
3396 {
3397 /* Oops, not yet available */
3398 sim_io_printf(sd,"Warning: ERET when SR[ERL] set not handled yet");
3399 PC = EPC;
3400 SR &= ~status_ERL;
3401 }
3402 else
3403 {
3404 PC = EPC;
3405 SR &= ~status_EXL;
3406 }
3407 }
3408 else if (code == 0x10 && (instruction & 0x3f) == 0x10)
3409 {
3410 /* RFE */
3411 }
3412 else if (code == 0x10 && (instruction & 0x3f) == 0x1F)
3413 {
3414 /* DERET */
3415 Debug &= ~Debug_DM;
3416 DELAYSLOT();
3417 DSPC = DEPC;
3418 }
3419 else
3420 sim_io_eprintf(sd,"Unrecognised COP0 instruction 0x%08X at PC = 0x%s : No handler present\n",instruction,pr_addr(cia));
3421 /* TODO: When executing an ERET or RFE instruction we should
3422 clear LLBIT, to ensure that any out-standing atomic
3423 read/modify/write sequence fails. */
3424 }
3425 break;
3426
3427 case 2: /* undefined co-processor */
3428 sim_io_eprintf(sd,"COP2 instruction 0x%08X at PC = 0x%s : No handler present\n",instruction,pr_addr(cia));
3429 break;
3430
3431 case 1: /* should not occur (FPU co-processor) */
3432 case 3: /* should not occur (FPU co-processor) */
3433 SignalException(ReservedInstruction,instruction);
3434 break;
3435 }
3436
3437 return;
3438 }
3439
3440 /*-- instruction simulation -------------------------------------------------*/
3441
3442 /* When the IGEN simulator is being built, the function below is be
3443 replaced by a generated version. However, WITH_IGEN == 2 indicates
3444 that the fubction below should be compiled but under a different
3445 name (to allow backward compatibility) */
3446
3447 #if (WITH_IGEN != 1)
3448 #if (WITH_IGEN > 1)
3449 void old_engine_run PARAMS ((SIM_DESC sd, int next_cpu_nr, int siggnal));
3450 void
3451 old_engine_run (sd, next_cpu_nr, nr_cpus, siggnal)
3452 #else
3453 void
3454 sim_engine_run (sd, next_cpu_nr, nr_cpus, siggnal)
3455 #endif
3456 SIM_DESC sd;
3457 int next_cpu_nr; /* ignore */
3458 int nr_cpus; /* ignore */
3459 int siggnal; /* ignore */
3460 {
3461 sim_cpu *cpu = STATE_CPU (sd, 0); /* hardwire to cpu 0 */
3462 #if !defined(FASTSIM)
3463 unsigned int pipeline_count = 1;
3464 #endif
3465
3466 #ifdef DEBUG
3467 if (STATE_MEMORY (sd) == NULL) {
3468 printf("DBG: simulate() entered with no memory\n");
3469 exit(1);
3470 }
3471 #endif /* DEBUG */
3472
3473 #if 0 /* Disabled to check that everything works OK */
3474 /* The VR4300 seems to sign-extend the PC on its first
3475 access. However, this may just be because it is currently
3476 configured in 32bit mode. However... */
3477 PC = SIGNEXTEND(PC,32);
3478 #endif
3479
3480 /* main controlling loop */
3481 while (1) {
3482 /* vaddr is slowly being replaced with cia - current instruction
3483 address */
3484 address_word cia = (uword64)PC;
3485 address_word vaddr = cia;
3486 address_word paddr;
3487 int cca;
3488 unsigned int instruction; /* uword64? what's this used for? FIXME! */
3489
3490 #ifdef DEBUG
3491 {
3492 printf("DBG: state = 0x%08X :",state);
3493 if (state & simHALTEX) printf(" simHALTEX");
3494 if (state & simHALTIN) printf(" simHALTIN");
3495 printf("\n");
3496 }
3497 #endif /* DEBUG */
3498
3499 DSSTATE = (STATE & simDELAYSLOT);
3500 #ifdef DEBUG
3501 if (dsstate)
3502 sim_io_printf(sd,"DBG: DSPC = 0x%s\n",pr_addr(DSPC));
3503 #endif /* DEBUG */
3504
3505 /* Fetch the next instruction from the simulator memory: */
3506 if (AddressTranslation(cia,isINSTRUCTION,isLOAD,&paddr,&cca,isTARGET,isREAL)) {
3507 if ((vaddr & 1) == 0) {
3508 /* Copy the action of the LW instruction */
3509 unsigned int reverse = (ReverseEndian ? (LOADDRMASK >> 2) : 0);
3510 unsigned int bigend = (BigEndianCPU ? (LOADDRMASK >> 2) : 0);
3511 uword64 value;
3512 unsigned int byte;
3513 paddr = ((paddr & ~LOADDRMASK) | ((paddr & LOADDRMASK) ^ (reverse << 2)));
3514 LoadMemory(&value,NULL,cca,AccessLength_WORD,paddr,vaddr,isINSTRUCTION,isREAL);
3515 byte = ((vaddr & LOADDRMASK) ^ (bigend << 2));
3516 instruction = ((value >> (8 * byte)) & 0xFFFFFFFF);
3517 } else {
3518 /* Copy the action of the LH instruction */
3519 unsigned int reverse = (ReverseEndian ? (LOADDRMASK >> 1) : 0);
3520 unsigned int bigend = (BigEndianCPU ? (LOADDRMASK >> 1) : 0);
3521 uword64 value;
3522 unsigned int byte;
3523 paddr = (((paddr & ~ (uword64) 1) & ~LOADDRMASK)
3524 | (((paddr & ~ (uword64) 1) & LOADDRMASK) ^ (reverse << 1)));
3525 LoadMemory(&value,NULL,cca, AccessLength_HALFWORD,
3526 paddr & ~ (uword64) 1,
3527 vaddr, isINSTRUCTION, isREAL);
3528 byte = (((vaddr &~ (uword64) 1) & LOADDRMASK) ^ (bigend << 1));
3529 instruction = ((value >> (8 * byte)) & 0xFFFF);
3530 }
3531 } else {
3532 fprintf(stderr,"Cannot translate address for PC = 0x%s failed\n",pr_addr(PC));
3533 exit(1);
3534 }
3535
3536 #ifdef DEBUG
3537 sim_io_printf(sd,"DBG: fetched 0x%08X from PC = 0x%s\n",instruction,pr_addr(PC));
3538 #endif /* DEBUG */
3539
3540 /* This is required by exception processing, to ensure that we can
3541 cope with exceptions in the delay slots of branches that may
3542 already have changed the PC. */
3543 if ((vaddr & 1) == 0)
3544 PC += 4; /* increment ready for the next fetch */
3545 else
3546 PC += 2;
3547 /* NOTE: If we perform a delay slot change to the PC, this
3548 increment is not requuired. However, it would make the
3549 simulator more complicated to try and avoid this small hit. */
3550
3551 /* Currently this code provides a simple model. For more
3552 complicated models we could perform exception status checks at
3553 this point, and set the simSTOP state as required. This could
3554 also include processing any hardware interrupts raised by any
3555 I/O model attached to the simulator context.
3556
3557 Support for "asynchronous" I/O events within the simulated world
3558 could be providing by managing a counter, and calling a I/O
3559 specific handler when a particular threshold is reached. On most
3560 architectures a decrement and check for zero operation is
3561 usually quicker than an increment and compare. However, the
3562 process of managing a known value decrement to zero, is higher
3563 than the cost of using an explicit value UINT_MAX into the
3564 future. Which system is used will depend on how complicated the
3565 I/O model is, and how much it is likely to affect the simulator
3566 bandwidth.
3567
3568 If events need to be scheduled further in the future than
3569 UINT_MAX event ticks, then the I/O model should just provide its
3570 own counter, triggered from the event system. */
3571
3572 /* MIPS pipeline ticks. To allow for future support where the
3573 pipeline hit of individual instructions is known, this control
3574 loop manages a "pipeline_count" variable. It is initialised to
3575 1 (one), and will only be changed by the simulator engine when
3576 executing an instruction. If the engine does not have access to
3577 pipeline cycle count information then all instructions will be
3578 treated as using a single cycle. NOTE: A standard system is not
3579 provided by the default simulator because different MIPS
3580 architectures have different cycle counts for the same
3581 instructions.
3582
3583 [NOTE: pipeline_count has been replaced the event queue] */
3584
3585 /* shuffle the floating point status pipeline state */
3586 ENGINE_ISSUE_PREFIX_HOOK();
3587
3588 /* NOTE: For multi-context simulation environments the "instruction"
3589 variable should be local to this routine. */
3590
3591 /* Shorthand accesses for engine. Note: If we wanted to use global
3592 variables (and a single-threaded simulator engine), then we can
3593 create the actual variables with these names. */
3594
3595 if (!(STATE & simSKIPNEXT)) {
3596 /* Include the simulator engine */
3597 #include "oengine.c"
3598 #if ((GPRLEN == 64) && !PROCESSOR_64BIT) || ((GPRLEN == 32) && PROCESSOR_64BIT)
3599 #error "Mismatch between run-time simulator code and simulation engine"
3600 #endif
3601 #if (WITH_TARGET_WORD_BITSIZE != GPRLEN)
3602 #error "Mismatch between configure WITH_TARGET_WORD_BITSIZE and gencode GPRLEN"
3603 #endif
3604 #if ((WITH_FLOATING_POINT == HARD_FLOATING_POINT) != defined (HASFPU))
3605 #error "Mismatch between configure WITH_FLOATING_POINT and gencode HASFPU"
3606 #endif
3607
3608 #if defined(WARN_LOHI)
3609 /* Decrement the HI/LO validity ticks */
3610 if (HIACCESS > 0)
3611 HIACCESS--;
3612 if (LOACCESS > 0)
3613 LOACCESS--;
3614 /* start-sanitize-r5900 */
3615 if (HI1ACCESS > 0)
3616 HI1ACCESS--;
3617 if (LO1ACCESS > 0)
3618 LO1ACCESS--;
3619 /* end-sanitize-r5900 */
3620 #endif /* WARN_LOHI */
3621
3622 /* For certain MIPS architectures, GPR[0] is hardwired to zero. We
3623 should check for it being changed. It is better doing it here,
3624 than within the simulator, since it will help keep the simulator
3625 small. */
3626 if (ZERO != 0) {
3627 #if defined(WARN_ZERO)
3628 sim_io_eprintf(sd,"The ZERO register has been updated with 0x%s (PC = 0x%s) (reset back to zero)\n",pr_addr(ZERO),pr_addr(cia));
3629 #endif /* WARN_ZERO */
3630 ZERO = 0; /* reset back to zero before next instruction */
3631 }
3632 } else /* simSKIPNEXT check */
3633 STATE &= ~simSKIPNEXT;
3634
3635 /* If the delay slot was active before the instruction is
3636 executed, then update the PC to its new value: */
3637 if (DSSTATE) {
3638 #ifdef DEBUG
3639 printf("DBG: dsstate set before instruction execution - updating PC to 0x%s\n",pr_addr(DSPC));
3640 #endif /* DEBUG */
3641 PC = DSPC;
3642 CANCELDELAYSLOT();
3643 }
3644
3645 if (MIPSISA < 4)
3646 PENDING_TICK();
3647
3648 #if !defined(FASTSIM)
3649 if (sim_events_tickn (sd, pipeline_count))
3650 {
3651 /* cpu->cia = cia; */
3652 sim_events_process (sd);
3653 }
3654 #else
3655 if (sim_events_tick (sd))
3656 {
3657 /* cpu->cia = cia; */
3658 sim_events_process (sd);
3659 }
3660 #endif /* FASTSIM */
3661 }
3662 }
3663 #endif
3664
3665
3666 /* This code copied from gdb's utils.c. Would like to share this code,
3667 but don't know of a common place where both could get to it. */
3668
3669 /* Temporary storage using circular buffer */
3670 #define NUMCELLS 16
3671 #define CELLSIZE 32
3672 static char*
3673 get_cell()
3674 {
3675 static char buf[NUMCELLS][CELLSIZE];
3676 static int cell=0;
3677 if (++cell>=NUMCELLS) cell=0;
3678 return buf[cell];
3679 }
3680
3681 /* Print routines to handle variable size regs, etc */
3682
3683 /* Eliminate warning from compiler on 32-bit systems */
3684 static int thirty_two = 32;
3685
3686 char*
3687 pr_addr(addr)
3688 SIM_ADDR addr;
3689 {
3690 char *paddr_str=get_cell();
3691 switch (sizeof(addr))
3692 {
3693 case 8:
3694 sprintf(paddr_str,"%08lx%08lx",
3695 (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
3696 break;
3697 case 4:
3698 sprintf(paddr_str,"%08lx",(unsigned long)addr);
3699 break;
3700 case 2:
3701 sprintf(paddr_str,"%04x",(unsigned short)(addr&0xffff));
3702 break;
3703 default:
3704 sprintf(paddr_str,"%x",addr);
3705 }
3706 return paddr_str;
3707 }
3708
3709 char*
3710 pr_uword64(addr)
3711 uword64 addr;
3712 {
3713 char *paddr_str=get_cell();
3714 sprintf(paddr_str,"%08lx%08lx",
3715 (unsigned long)(addr>>thirty_two),(unsigned long)(addr&0xffffffff));
3716 return paddr_str;
3717 }
3718
3719
3720 void
3721 pending_tick (SIM_DESC sd,
3722 sim_cpu *cpu,
3723 address_word cia)
3724 {
3725 if (PENDING_TRACE)
3726 sim_io_printf (sd, "PENDING_DRAIN - pending_in = %d, pending_out = %d, pending_total = %d\n", PENDING_IN, PENDING_OUT, PENDING_TOTAL);
3727 if (PENDING_OUT != PENDING_IN)
3728 {
3729 int loop;
3730 int index = PENDING_OUT;
3731 int total = PENDING_TOTAL;
3732 if (PENDING_TOTAL == 0)
3733 sim_engine_abort (SD, CPU, cia, "PENDING_DRAIN - Mis-match on pending update pointers\n");
3734 for (loop = 0; (loop < total); loop++)
3735 {
3736 if (PENDING_SLOT_DEST[index] != NULL)
3737 {
3738 PENDING_SLOT_DELAY[index] -= 1;
3739 if (PENDING_SLOT_DELAY[index] == 0)
3740 {
3741 if (PENDING_SLOT_BIT[index] >= 0)
3742 switch (PENDING_SLOT_SIZE[index])
3743 {
3744 case 32:
3745 if (PENDING_SLOT_VALUE[index])
3746 *(unsigned32*)PENDING_SLOT_DEST[index] |=
3747 BIT32 (PENDING_SLOT_BIT[index]);
3748 else
3749 *(unsigned32*)PENDING_SLOT_DEST[index] &=
3750 BIT32 (PENDING_SLOT_BIT[index]);
3751 break;
3752 case 64:
3753 if (PENDING_SLOT_VALUE[index])
3754 *(unsigned64*)PENDING_SLOT_DEST[index] |=
3755 BIT64 (PENDING_SLOT_BIT[index]);
3756 else
3757 *(unsigned64*)PENDING_SLOT_DEST[index] &=
3758 BIT64 (PENDING_SLOT_BIT[index]);
3759 break;
3760 break;
3761 }
3762 else
3763 switch (PENDING_SLOT_SIZE[index])
3764 {
3765 case 32:
3766 *(unsigned32*)PENDING_SLOT_DEST[index] =
3767 PENDING_SLOT_VALUE[index];
3768 break;
3769 case 64:
3770 *(unsigned64*)PENDING_SLOT_DEST[index] =
3771 PENDING_SLOT_VALUE[index];
3772 break;
3773 }
3774 }
3775 if (PENDING_OUT == index)
3776 {
3777 PENDING_SLOT_DEST[index] = NULL;
3778 PENDING_OUT = (PENDING_OUT + 1) % PSLOTS;
3779 PENDING_TOTAL--;
3780 }
3781 }
3782 }
3783 index = (index + 1) % PSLOTS;
3784 }
3785 }
3786
3787 /*---------------------------------------------------------------------------*/
3788 /*> EOF interp.c <*/