]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/mips/sim-main.h
igen: Fix SMP simulator generator support.
[thirdparty/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35 #include "sim-basics.h"
36
37 typedef address_word sim_cia;
38
39 #if (WITH_IGEN)
40 /* Get the number of instructions. FIXME: must be a more elegant way
41 of doing this. */
42 #include "itable.h"
43 #define MAX_INSNS (nr_itable_entries)
44 #define INSN_NAME(i) itable[(i)].name
45 #endif
46
47 #include "sim-base.h"
48
49
50 /* Depreciated macros and types for manipulating 64bit values. Use
51 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
52
53 typedef signed64 word64;
54 typedef unsigned64 uword64;
55
56 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
57 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
58 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
59 #define SET64HI(t) (((uword64)(t))<<32)
60 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
61 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
62
63 /* Sign-extend the given value (e) as a value (b) bits long. We cannot
64 assume the HI32bits of the operand are zero, so we must perform a
65 mask to ensure we can use the simple subtraction to sign-extend. */
66 #define SIGNEXTEND(e,b) \
67 ((unsigned_word) \
68 (((e) & ((uword64) 1 << ((b) - 1))) \
69 ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
70 : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
71
72 /* Check if a value will fit within a halfword: */
73 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
74
75
76
77 /* Floating-point operations: */
78
79 #include "sim-fpu.h"
80
81 /* FPU registers must be one of the following types. All other values
82 are reserved (and undefined). */
83 typedef enum {
84 fmt_single = 0,
85 fmt_double = 1,
86 fmt_word = 4,
87 fmt_long = 5,
88 /* The following are well outside the normal acceptable format
89 range, and are used in the register status vector. */
90 fmt_unknown = 0x10000000,
91 fmt_uninterpreted = 0x20000000,
92 fmt_uninterpreted_32 = 0x40000000,
93 fmt_uninterpreted_64 = 0x80000000,
94 } FP_formats;
95
96 unsigned64 value_fpr PARAMS ((SIM_DESC sd, address_word cia, int fpr, FP_formats));
97 #define ValueFPR(FPR,FMT) value_fpr (sd, cia, (FPR), (FMT))
98
99 void store_fpr PARAMS ((SIM_DESC sd, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
100 #define StoreFPR(FPR,FMT,VALUE) store_fpr (sd, cia, (FPR), (FMT), (VALUE))
101
102 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
103 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
104 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
105 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
106 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
107 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
108 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
109 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
110 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
111 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
112 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
113 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
114 unsigned64 convert PARAMS ((SIM_DESC sd, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
115 #define Convert(rm,op,from,to) convert(sd,cia,rm,op,from,to)
116
117 /* Macro to update FPSR condition-code field. This is complicated by
118 the fact that there is a hole in the index range of the bits within
119 the FCSR register. Also, the number of bits visible depends on the
120 MIPS ISA version being supported. */
121
122 #define SETFCC(cc,v) {\
123 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
124 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
125 }
126 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1 : 0)
127
128 /* This should be the COC1 value at the start of the preceding
129 instruction: */
130 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
131
132 #if 1
133 #define SizeFGR() (WITH_TARGET_WORD_BITSIZE)
134 #else
135 /* They depend on the CPU being simulated */
136 #define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
137 #endif
138
139 /* Standard FCRS bits: */
140 #define IR (0) /* Inexact Result */
141 #define UF (1) /* UnderFlow */
142 #define OF (2) /* OverFlow */
143 #define DZ (3) /* Division by Zero */
144 #define IO (4) /* Invalid Operation */
145 #define UO (5) /* Unimplemented Operation */
146
147 /* Get masks for individual flags: */
148 #if 1 /* SAFE version */
149 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
150 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
151 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
152 #else
153 #define FP_FLAGS(b) (1 << ((b) + 2))
154 #define FP_ENABLE(b) (1 << ((b) + 7))
155 #define FP_CAUSE(b) (1 << ((b) + 12))
156 #endif
157
158 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
159
160 #define FP_MASK_RM (0x3)
161 #define FP_SH_RM (0)
162 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
163 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
164 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
165 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
166 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
167
168
169
170 /* Integer ALU operations: */
171
172 #include "sim-alu.h"
173
174 #define ALU32_END(ANS) \
175 if (ALU32_HAD_OVERFLOW) \
176 SignalExceptionIntegerOverflow (); \
177 (ANS) = ALU32_OVERFLOW_RESULT
178
179
180 #define ALU64_END(ANS) \
181 if (ALU64_HAD_OVERFLOW) \
182 SignalExceptionIntegerOverflow (); \
183 (ANS) = ALU64_OVERFLOW_RESULT;
184
185 /* start-sanitize-r5900 */
186
187 #define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word))
188 #define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2)
189 #define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4)
190 #define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
191
192 #define BYTES_IN_MIPS_REGS (sizeof(signed_word))
193 #define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2)
194 #define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4)
195 #define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
196
197 /* SUB_REG_FETCH - return as lvalue some sub-part of a "register"
198 T - type of the sub part
199 TC - # of T's in the mips part of the "register"
200 I - index (from 0) of desired sub part
201 A - low part of "register"
202 A1 - high part of register
203 */
204 #define SUB_REG_FETCH(T,TC,A,A1,I) \
205 (*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
206 + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
207 ? ((TC) - 1 - (I) % (TC)) \
208 : ((I) % (TC)) \
209 ) \
210 ) \
211 )
212
213 /*
214 GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R
215 where <type> has two letters:
216 1 is S=signed or U=unsigned
217 2 is B=byte H=halfword W=word D=doubleword
218 */
219
220 #define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I)
221 #define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
222 #define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I)
223 #define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
224
225 #define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I)
226 #define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
227 #define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I)
228 #define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
229
230 #define GPR_SB(R,I) SUB_REG_SB(&REGISTERS[R], &REGISTERS1[R], I)
231 #define GPR_SH(R,I) SUB_REG_SH(&REGISTERS[R], &REGISTERS1[R], I)
232 #define GPR_SW(R,I) SUB_REG_SW(&REGISTERS[R], &REGISTERS1[R], I)
233 #define GPR_SD(R,I) SUB_REG_SD(&REGISTERS[R], &REGISTERS1[R], I)
234
235 #define GPR_UB(R,I) SUB_REG_UB(&REGISTERS[R], &REGISTERS1[R], I)
236 #define GPR_UH(R,I) SUB_REG_UH(&REGISTERS[R], &REGISTERS1[R], I)
237 #define GPR_UW(R,I) SUB_REG_UW(&REGISTERS[R], &REGISTERS1[R], I)
238 #define GPR_UD(R,I) SUB_REG_UD(&REGISTERS[R], &REGISTERS1[R], I)
239
240
241 #define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
242 #define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
243 #define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
244 #define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
245
246 #define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
247 #define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
248 #define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
249 #define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
250
251 #define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
252 #define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
253 #define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
254 #define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
255
256 #define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
257 #define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
258 #define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
259 #define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
260
261
262
263 #define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
264 #define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
265 #define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
266 #define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
267
268 #define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
269 #define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
270 #define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
271 #define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
272
273 #define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
274 #define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
275 #define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
276 #define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
277
278 #define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
279 #define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
280 #define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
281 #define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
282
283 /* end-sanitize-r5900 */
284
285
286
287
288 struct _sim_cpu {
289
290
291 /* The following are internal simulator state variables: */
292 #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
293 #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
294 address_word dspc; /* delay-slot PC */
295 #define DSPC ((STATE_CPU (sd,0))->dspc)
296
297 /* Issue a delay slot instruction immediatly by re-calling
298 idecode_issue */
299 #define DELAY_SLOT(TARGET) \
300 do { \
301 address_word target = (TARGET); \
302 instruction_word delay_insn; \
303 sim_events_slip (sd, 1); \
304 CIA = CIA + 4; \
305 STATE |= simDELAYSLOT; \
306 delay_insn = IMEM (CIA); \
307 idecode_issue (sd, delay_insn, (CIA)); \
308 STATE &= ~simDELAYSLOT; \
309 NIA = target; \
310 } while (0)
311 #define NULLIFY_NEXT_INSTRUCTION() \
312 do { \
313 sim_events_slip (sd, 1); \
314 dotrace (sd, tracefh, 2, NIA, 4, "load instruction"); \
315 NIA = CIA + 8; \
316 } while (0)
317
318
319
320 /* State of the simulator */
321 unsigned int state;
322 unsigned int dsstate;
323 #define STATE ((STATE_CPU (sd,0))->state)
324 #define DSSTATE ((STATE_CPU (sd,0))->dsstate)
325
326 /* Flags in the "state" variable: */
327 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
328 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
329 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
330 #define simPCOC0 (1 << 17) /* COC[1] from current */
331 #define simPCOC1 (1 << 18) /* COC[1] from previous */
332 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
333 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
334 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
335 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
336
337 #define ENGINE_ISSUE_PREFIX_HOOK() \
338 { \
339 /* Set previous flag, depending on current: */ \
340 if (STATE & simPCOC0) \
341 STATE |= simPCOC1; \
342 else \
343 STATE &= ~simPCOC1; \
344 /* and update the current value: */ \
345 if (GETFCC(0)) \
346 STATE |= simPCOC0; \
347 else \
348 STATE &= ~simPCOC0; \
349 }
350
351
352 /* This is nasty, since we have to rely on matching the register
353 numbers used by GDB. Unfortunately, depending on the MIPS target
354 GDB uses different register numbers. We cannot just include the
355 relevant "gdb/tm.h" link, since GDB may not be configured before
356 the sim world, and also the GDB header file requires too much other
357 state. */
358
359 #ifndef TM_MIPS_H
360 #define LAST_EMBED_REGNUM (89)
361 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
362 /* start-sanitize-r5900 */
363 #undef NUM_REGS
364 #define NUM_REGS (128)
365 /* end-sanitize-r5900 */
366 #endif
367
368 /* To keep this default simulator simple, and fast, we use a direct
369 vector of registers. The internal simulator engine then uses
370 manifests to access the correct slot. */
371
372 unsigned_word registers[LAST_EMBED_REGNUM + 1];
373 int register_widths[NUM_REGS];
374 #define REGISTERS ((STATE_CPU (sd,0))->registers)
375
376 #define GPR (&REGISTERS[0])
377 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
378 #define FGRIDX (38)
379 #define FGR (&REGISTERS[FGRIDX])
380 #define LO (REGISTERS[33])
381 #define HI (REGISTERS[34])
382 #define PCIDX 37
383 #define PC (REGISTERS[PCIDX])
384 #define CAUSE (REGISTERS[36])
385 #define SRIDX (32)
386 #define SR (REGISTERS[SRIDX]) /* CPU status register */
387 #define FCR0IDX (71)
388 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
389 #define FCR31IDX (70)
390 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
391 #define FCSR (FCR31)
392 #define Debug (REGISTERS[86])
393 #define DEPC (REGISTERS[87])
394 #define EPC (REGISTERS[88])
395 #define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */
396
397 unsigned_word c0_config_reg;
398 #define C0_CONFIG ((STATE_CPU (sd,0))->c0_config_reg)
399
400 /* The following are pseudonyms for standard registers */
401 #define ZERO (REGISTERS[0])
402 #define V0 (REGISTERS[2])
403 #define A0 (REGISTERS[4])
404 #define A1 (REGISTERS[5])
405 #define A2 (REGISTERS[6])
406 #define A3 (REGISTERS[7])
407 #define SP (REGISTERS[29])
408 #define RA (REGISTERS[31])
409
410 /* Keep the current format state for each register: */
411 FP_formats fpr_state[32];
412 #define FPR_STATE ((STATE_CPU (sd, 0))->fpr_state)
413
414
415 /* Slots for delayed register updates. For the moment we just have a
416 fixed number of slots (rather than a more generic, dynamic
417 system). This keeps the simulator fast. However, we only allow
418 for the register update to be delayed for a single instruction
419 cycle. */
420 #define PSLOTS (5) /* Maximum number of instruction cycles */
421 int pending_in;
422 int pending_out;
423 int pending_total;
424 int pending_slot_count[PSLOTS];
425 int pending_slot_reg[PSLOTS];
426 unsigned_word pending_slot_value[PSLOTS];
427 #define PENDING_IN ((STATE_CPU (sd, 0))->pending_in)
428 #define PENDING_OUT ((STATE_CPU (sd, 0))->pending_out)
429 #define PENDING_TOTAL ((STATE_CPU (sd, 0))->pending_total)
430 #define PENDING_SLOT_COUNT ((STATE_CPU (sd, 0))->pending_slot_count)
431 #define PENDING_SLOT_REG ((STATE_CPU (sd, 0))->pending_slot_reg)
432 #define PENDING_SLOT_VALUE ((STATE_CPU (sd, 0))->pending_slot_value)
433
434 /* The following are not used for MIPS IV onwards: */
435 #define PENDING_FILL(r,v) {\
436 /* printf("DBG: FILL BEFORE pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL); */\
437 if (PENDING_SLOT_REG[PENDING_IN] != (LAST_EMBED_REGNUM + 1))\
438 sim_io_eprintf(sd,"Attempt to over-write pending value\n");\
439 PENDING_SLOT_COUNT[PENDING_IN] = 2;\
440 PENDING_SLOT_REG[PENDING_IN] = (r);\
441 PENDING_SLOT_VALUE[PENDING_IN] = (uword64)(v);\
442 /*printf("DBG: FILL reg %d value = 0x%s\n",(r),pr_addr(v));*/\
443 PENDING_TOTAL++;\
444 PENDING_IN++;\
445 if (PENDING_IN == PSLOTS)\
446 PENDING_IN = 0;\
447 /*printf("DBG: FILL AFTER pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL);*/\
448 }
449
450
451 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
452 read-write instructions. It is set when a linked load occurs. It
453 is tested and cleared by the conditional store. It is cleared
454 (during other CPU operations) when a store to the location would
455 no longer be atomic. In particular, it is cleared by exception
456 return instructions. */
457 int llbit;
458 #define LLBIT ((STATE_CPU (sd, 0))->llbit)
459
460
461 /* The HIACCESS and LOACCESS counts are used to ensure that
462 corruptions caused by using the HI or LO register to close to a
463 following operation are spotted. */
464
465 int hiaccess;
466 int loaccess;
467 #define HIACCESS ((STATE_CPU (sd, 0))->hiaccess)
468 #define LOACCESS ((STATE_CPU (sd, 0))->loaccess)
469 /* start-sanitize-r5900 */
470 int hi1access;
471 int lo1access;
472 #define HI1ACCESS ((STATE_CPU (sd, 0))->hi1access)
473 #define LO1ACCESS ((STATE_CPU (sd, 0))->lo1access)
474 /* end-sanitize-r5900 */
475 #if 1
476 /* The 4300 and a few other processors have interlocks on hi/lo
477 register reads, and hence do not have this problem. To avoid
478 spurious warnings, we just disable this always. */
479 #define CHECKHILO(s)
480 #else
481 unsigned_word HLPC;
482 /* If either of the preceding two instructions have accessed the HI
483 or LO registers, then the values they see should be
484 undefined. However, to keep the simulator world simple, we just
485 let them use the value read and raise a warning to notify the
486 user: */
487 #define CHECKHILO(s) {\
488 if ((HIACCESS != 0) || (LOACCESS != 0)) \
489 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
490 }
491 /* start-sanitize-r5900 */
492 #undef CHECKHILO
493 #define CHECKHILO(s) {\
494 if ((HIACCESS != 0) || (LOACCESS != 0) || (HI1ACCESS != 0) || (LO1ACCESS != 0))\
495 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
496 }
497 /* end-sanitize-r5900 */
498 #endif
499
500
501 /* start-sanitize-r5900 */
502 /* The R5900 has 128 bit registers, but the hi 64 bits are only
503 touched by multimedia (MMI) instructions. The normal mips
504 instructions just use the lower 64 bits. To avoid changing the
505 older parts of the simulator to handle this weirdness, the high
506 64 bits of each register are kept in a separate array
507 (registers1). The high 64 bits of any register are by convention
508 refered by adding a '1' to the end of the normal register's name.
509 So LO still refers to the low 64 bits of the LO register, LO1
510 refers to the high 64 bits of that same register. */
511
512 signed_word registers1[LAST_EMBED_REGNUM + 1];
513 #define REGISTERS1 ((STATE_CPU (sd, 0))->registers1)
514 #define GPR1 (&REGISTERS1[0])
515 #define LO1 (REGISTERS1[32])
516 #define HI1 (REGISTERS1[33])
517 #define REGISTER_SA (124)
518
519 unsigned_word sa; /* the shift amount register */
520 #define SA ((STATE_CPU (sd, 0))->sa)
521
522 /* end-sanitize-r5900 */
523 /* start-sanitize-vr5400 */
524
525 /* The MDMX ISA has a very very large accumulator */
526 unsigned8 acc[3 * 8];
527 /* end-sanitize-vr5400 */
528
529 sim_cpu_base base;
530 };
531
532
533 /* MIPS specific simulator watch config */
534
535 void watch_options_install PARAMS ((SIM_DESC sd));
536
537 struct swatch {
538 sim_event *pc;
539 sim_event *clock;
540 sim_event *cycles;
541 };
542
543
544 /* FIXME: At present much of the simulator is still static */
545 struct sim_state {
546
547 struct swatch watch;
548
549 sim_cpu cpu[1];
550 #if (WITH_SMP)
551 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
552 #else
553 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
554 #endif
555
556 sim_state_base base;
557 };
558
559
560
561 /* Status information: */
562
563 /* TODO : these should be the bitmasks for these bits within the
564 status register. At the moment the following are VR4300
565 bit-positions: */
566 #define status_KSU_mask (0x3) /* mask for KSU bits */
567 #define status_KSU_shift (3) /* shift for field */
568 #define ksu_kernel (0x0)
569 #define ksu_supervisor (0x1)
570 #define ksu_user (0x2)
571 #define ksu_unknown (0x3)
572
573 #define status_IE (1 << 0) /* Interrupt enable */
574 #define status_EXL (1 << 1) /* Exception level */
575 #define status_RE (1 << 25) /* Reverse Endian in user mode */
576 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
577 #define status_SR (1 << 20) /* soft reset or NMI */
578 #define status_BEV (1 << 22) /* Location of general exception vectors */
579 #define status_TS (1 << 21) /* TLB shutdown has occurred */
580 #define status_ERL (1 << 2) /* Error level */
581 #define status_RP (1 << 27) /* Reduced Power mode */
582
583 #define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
584
585 /* NOTE: We keep the following status flags as bit values (1 for true,
586 0 for false). This allows them to be used in binary boolean
587 operations without worrying about what exactly the non-zero true
588 value is. */
589
590 /* UserMode */
591 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
592
593 /* BigEndianMem */
594 /* Hardware configuration. Affects endianness of LoadMemory and
595 StoreMemory and the endianness of Kernel and Supervisor mode
596 execution. The value is 0 for little-endian; 1 for big-endian. */
597 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
598 /*(state & simBE) ? 1 : 0)*/
599
600 /* ReverseEndian */
601 /* This mode is selected if in User mode with the RE bit being set in
602 SR (Status Register). It reverses the endianness of load and store
603 instructions. */
604 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
605
606 /* BigEndianCPU */
607 /* The endianness for load and store instructions (0=little;1=big). In
608 User mode this endianness may be switched by setting the state_RE
609 bit in the SR register. Thus, BigEndianCPU may be computed as
610 (BigEndianMem EOR ReverseEndian). */
611 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
612
613
614
615 /* Exceptions: */
616
617 /* NOTE: These numbers depend on the processor architecture being
618 simulated: */
619 #define Interrupt (0)
620 #define TLBModification (1)
621 #define TLBLoad (2)
622 #define TLBStore (3)
623 #define AddressLoad (4)
624 #define AddressStore (5)
625 #define InstructionFetch (6)
626 #define DataReference (7)
627 #define SystemCall (8)
628 #define BreakPoint (9)
629 #define ReservedInstruction (10)
630 #define CoProcessorUnusable (11)
631 #define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */
632 #define Trap (13)
633 #define FPE (15)
634 #define DebugBreakPoint (16)
635 #define Watch (23)
636
637 /* The following exception code is actually private to the simulator
638 world. It is *NOT* a processor feature, and is used to signal
639 run-time errors in the simulator. */
640 #define SimulatorFault (0xFFFFFFFF)
641
642 void signal_exception (SIM_DESC sd, address_word cia, int exception, ...);
643 #define SignalException(exc,instruction) signal_exception (sd, cia, (exc), (instruction))
644 #define SignalExceptionInterrupt() signal_exception (sd, NULL_CIA, Interrupt)
645 #define SignalExceptionInstructionFetch() signal_exception (sd, cia, InstructionFetch)
646 #define SignalExceptionAddressStore() signal_exception (sd, cia, AddressStore)
647 #define SignalExceptionAddressLoad() signal_exception (sd, cia, AddressLoad)
648 #define SignalExceptionSimulatorFault(buf) signal_exception (sd, cia, SimulatorFault, buf)
649 #define SignalExceptionFPE() signal_exception (sd, cia, FPE)
650 #define SignalExceptionIntegerOverflow() signal_exception (sd, cia, IntegerOverflow)
651 #define SignalExceptionCoProcessorUnusable() signal_exception (sd, cia, CoProcessorUnusable)
652
653
654 /* Co-processor accesses */
655
656 void cop_lw PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
657 void cop_ld PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
658 unsigned int cop_sw PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg));
659 uword64 cop_sd PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg));
660
661 #define COP_LW(coproc_num,coproc_reg,memword) cop_lw(sd,cia,coproc_num,coproc_reg,memword)
662 #define COP_LD(coproc_num,coproc_reg,memword) cop_ld(sd,cia,coproc_num,coproc_reg,memword)
663 #define COP_SW(coproc_num,coproc_reg) cop_sw(sd,cia,coproc_num,coproc_reg)
664 #define COP_SD(coproc_num,coproc_reg) cop_sd(sd,cia,coproc_num,coproc_reg)
665
666 void decode_coproc PARAMS ((SIM_DESC sd, address_word cia, unsigned int instruction));
667 #define DecodeCoproc(instruction) decode_coproc(sd, cia, (instruction))
668
669
670
671 /* Memory accesses */
672
673 /* The following are generic to all versions of the MIPS architecture
674 to date: */
675
676 /* Memory Access Types (for CCA): */
677 #define Uncached (0)
678 #define CachedNoncoherent (1)
679 #define CachedCoherent (2)
680 #define Cached (3)
681
682 #define isINSTRUCTION (1 == 0) /* FALSE */
683 #define isDATA (1 == 1) /* TRUE */
684 #define isLOAD (1 == 0) /* FALSE */
685 #define isSTORE (1 == 1) /* TRUE */
686 #define isREAL (1 == 0) /* FALSE */
687 #define isRAW (1 == 1) /* TRUE */
688 /* The parameter HOST (isTARGET / isHOST) is ignored */
689 #define isTARGET (1 == 0) /* FALSE */
690 /* #define isHOST (1 == 1) TRUE */
691
692 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
693 is the number of bytes minus 1. */
694 #define AccessLength_BYTE (0)
695 #define AccessLength_HALFWORD (1)
696 #define AccessLength_TRIPLEBYTE (2)
697 #define AccessLength_WORD (3)
698 #define AccessLength_QUINTIBYTE (4)
699 #define AccessLength_SEXTIBYTE (5)
700 #define AccessLength_SEPTIBYTE (6)
701 #define AccessLength_DOUBLEWORD (7)
702 #define AccessLength_QUADWORD (15)
703
704 int address_translation PARAMS ((SIM_DESC sd, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
705 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
706 address_translation(sd,cia,vAddr,IorD,LorS,pAddr,CCA,raw)
707
708 void load_memory PARAMS ((SIM_DESC sd, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, int AccessLength, address_word pAddr, address_word vAddr, int IorD));
709 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
710 load_memory(sd,cia,memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD)
711
712 void store_memory PARAMS ((SIM_DESC sd, address_word cia, int CCA, int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
713 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
714 store_memory(sd,cia,CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr)
715
716 void cache_op PARAMS ((SIM_DESC sd, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
717 #define CacheOp(op,pAddr,vAddr,instruction) cache_op(sd,cia,op,pAddr,vAddr,instruction)
718
719 void sync_operation PARAMS ((SIM_DESC sd, address_word cia, int stype));
720 #define SyncOperation(stype) sync_operation (sd, cia, (stype))
721
722 void prefetch PARAMS ((SIM_DESC sd, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
723 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) prefetch(sd,cia,CCA,pAddr,vAddr,DATA,hint)
724
725 unsigned32 ifetch32 PARAMS ((SIM_DESC sd, address_word cia, address_word vaddr));
726 #define IMEM(CIA) ifetch32 (SD, (CIA), (CIA))
727
728 void dotrace PARAMS ((SIM_DESC sd, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
729 FILE *tracefh;
730
731 #endif