]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/mips/sim-main.h
Implement 32 bit MIPS16 instructions listed in m16.igen.
[thirdparty/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35 #include "sim-basics.h"
36
37 typedef address_word sim_cia;
38
39 #if (WITH_IGEN)
40 /* Get the number of instructions. FIXME: must be a more elegant way
41 of doing this. */
42 #include "itable.h"
43 #define MAX_INSNS (nr_itable_entries)
44 #define INSN_NAME(i) itable[(i)].name
45 #endif
46
47 #include "sim-base.h"
48
49
50 /* Depreciated macros and types for manipulating 64bit values. Use
51 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
52
53 typedef signed64 word64;
54 typedef unsigned64 uword64;
55
56 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
57 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
58 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
59 #define SET64HI(t) (((uword64)(t))<<32)
60 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
61 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
62
63 /* Sign-extend the given value (e) as a value (b) bits long. We cannot
64 assume the HI32bits of the operand are zero, so we must perform a
65 mask to ensure we can use the simple subtraction to sign-extend. */
66 #define SIGNEXTEND(e,b) \
67 ((unsigned_word) \
68 (((e) & ((uword64) 1 << ((b) - 1))) \
69 ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
70 : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
71
72 /* Check if a value will fit within a halfword: */
73 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
74
75
76
77 /* Floating-point operations: */
78
79 #include "sim-fpu.h"
80
81 /* FPU registers must be one of the following types. All other values
82 are reserved (and undefined). */
83 typedef enum {
84 fmt_single = 0,
85 fmt_double = 1,
86 fmt_word = 4,
87 fmt_long = 5,
88 /* The following are well outside the normal acceptable format
89 range, and are used in the register status vector. */
90 fmt_unknown = 0x10000000,
91 fmt_uninterpreted = 0x20000000,
92 fmt_uninterpreted_32 = 0x40000000,
93 fmt_uninterpreted_64 = 0x80000000,
94 } FP_formats;
95
96 unsigned64 value_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats));
97 #define ValueFPR(FPR,FMT) value_fpr (SD, CPU, cia, (FPR), (FMT))
98
99 void store_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
100 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SD, CPU, cia, (FPR), (FMT), (VALUE))
101
102 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
103 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
104 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
105 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
106 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
107 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
108 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
109 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
110 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
111 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
112 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
113 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
114 unsigned64 Max PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
115 unsigned64 Min PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
116 unsigned64 convert PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
117 #define Convert(rm,op,from,to) \
118 convert (SD, CPU, cia, rm, op, from, to)
119
120 /* Macro to update FPSR condition-code field. This is complicated by
121 the fact that there is a hole in the index range of the bits within
122 the FCSR register. Also, the number of bits visible depends on the
123 MIPS ISA version being supported. */
124
125 #define SETFCC(cc,v) {\
126 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
127 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
128 }
129 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1U : 0)
130
131 /* This should be the COC1 value at the start of the preceding
132 instruction: */
133 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
134
135 #if 1
136 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
137 #else
138 /* They depend on the CPU being simulated */
139 #define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
140 #endif
141
142 /* Standard FCRS bits: */
143 #define IR (0) /* Inexact Result */
144 #define UF (1) /* UnderFlow */
145 #define OF (2) /* OverFlow */
146 #define DZ (3) /* Division by Zero */
147 #define IO (4) /* Invalid Operation */
148 #define UO (5) /* Unimplemented Operation */
149
150 /* Get masks for individual flags: */
151 #if 1 /* SAFE version */
152 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
153 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
154 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
155 #else
156 #define FP_FLAGS(b) (1 << ((b) + 2))
157 #define FP_ENABLE(b) (1 << ((b) + 7))
158 #define FP_CAUSE(b) (1 << ((b) + 12))
159 #endif
160
161 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
162
163 #define FP_MASK_RM (0x3)
164 #define FP_SH_RM (0)
165 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
166 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
167 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
168 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
169 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
170
171
172
173 /* Integer ALU operations: */
174
175 #include "sim-alu.h"
176
177 #define ALU32_END(ANS) \
178 if (ALU32_HAD_OVERFLOW) \
179 SignalExceptionIntegerOverflow (); \
180 (ANS) = ALU32_OVERFLOW_RESULT
181
182
183 #define ALU64_END(ANS) \
184 if (ALU64_HAD_OVERFLOW) \
185 SignalExceptionIntegerOverflow (); \
186 (ANS) = ALU64_OVERFLOW_RESULT;
187
188
189 /* start-sanitize-r5900 */
190
191 /* Figure 10-5 FPU Control/Status Register.
192 Note: some of these bits are different to what is found in a
193 standard MIPS manual. */
194 enum {
195 R5900_FCSR_C = BIT (23), /* OK */
196 R5900_FCSR_I = BIT (17),
197 R5900_FCSR_D = BIT (16),
198 R5900_FCSR_O = BIT (15),
199 R5900_FCSR_U = BIT (14),
200 R5900_FCSR_CAUSE = MASK (16,14),
201 R5900_FCSR_SI = BIT (6),
202 R5900_FCSR_SD = BIT (5),
203 R5900_FCSR_SO = BIT (4),
204 R5900_FCSR_SU = BIT (3),
205 };
206
207 typedef struct _sim_r5900_cpu {
208
209 /* The R5900 has 32 x 128bit general purpose registers.
210 Fortunatly, the high 64 bits are only touched by multimedia (MMI)
211 instructions. The normal mips instructions just use the lower 64
212 bits. To avoid changing the older parts of the simulator to
213 handle this weirdness, the high 64 bits of each register are kept
214 in a separate array (registers1). The high 64 bits of any
215 register are by convention refered by adding a '1' to the end of
216 the normal register's name. So LO still refers to the low 64
217 bits of the LO register, LO1 refers to the high 64 bits of that
218 same register. */
219 signed_word gpr1[32];
220 #define GPR1 ((CPU)->r5900.gpr1)
221 signed_word lo1;
222 signed_word hi1;
223 #define LO1 ((CPU)->r5900.lo1)
224 #define HI1 ((CPU)->r5900.hi1)
225
226 /* The R5900 defines a shift amount register, that controls the
227 amount of certain shift instructions */
228 unsigned_word sa; /* the shift amount register */
229 #define REGISTER_SA (124) /* GET RID IF THIS! */
230 #define SA ((CPU)->r5900.sa)
231
232 /* The R5900, in addition to the (almost) standard floating point
233 registers, defines a 32 bit accumulator. This is used in
234 multiply/accumulate style instructions */
235 fp_word acc; /* floating-point accumulator */
236 #define ACC ((CPU)->r5900.acc)
237
238 /* See comments below about needing to count cycles between updating
239 and setting HI/LO registers */
240 int hi1access;
241 int lo1access;
242 #define HI1ACCESS ((CPU)->r5900.hi1access)
243 #define LO1ACCESS ((CPU)->r5900.lo1access)
244 #if 0
245 #define CHECKHILO(s) {\
246 if ((HIACCESS != 0) || (LOACCESS != 0) || (HI1ACCESS != 0) || (LO1ACCESS != 0))\
247 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
248 }
249 #endif
250
251 } sim_r5900_cpu;
252
253 #define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word))
254 #define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2)
255 #define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4)
256 #define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
257
258 #define BYTES_IN_MIPS_REGS (sizeof(signed_word))
259 #define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2)
260 #define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4)
261 #define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
262
263 /* SUB_REG_FETCH - return as lvalue some sub-part of a "register"
264 T - type of the sub part
265 TC - # of T's in the mips part of the "register"
266 I - index (from 0) of desired sub part
267 A - low part of "register"
268 A1 - high part of register
269 */
270 #define SUB_REG_FETCH(T,TC,A,A1,I) \
271 (*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
272 + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
273 ? ((TC) - 1 - (I) % (TC)) \
274 : ((I) % (TC)) \
275 ) \
276 ) \
277 )
278
279 /*
280 GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R
281 where <type> has two letters:
282 1 is S=signed or U=unsigned
283 2 is B=byte H=halfword W=word D=doubleword
284 */
285
286 #define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I)
287 #define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
288 #define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I)
289 #define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
290
291 #define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I)
292 #define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
293 #define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I)
294 #define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
295
296 #define GPR_SB(R,I) SUB_REG_SB(&GPR[R], &GPR1[R], I)
297 #define GPR_SH(R,I) SUB_REG_SH(&GPR[R], &GPR1[R], I)
298 #define GPR_SW(R,I) SUB_REG_SW(&GPR[R], &GPR1[R], I)
299 #define GPR_SD(R,I) SUB_REG_SD(&GPR[R], &GPR1[R], I)
300
301 #define GPR_UB(R,I) SUB_REG_UB(&GPR[R], &GPR1[R], I)
302 #define GPR_UH(R,I) SUB_REG_UH(&GPR[R], &GPR1[R], I)
303 #define GPR_UW(R,I) SUB_REG_UW(&GPR[R], &GPR1[R], I)
304 #define GPR_UD(R,I) SUB_REG_UD(&GPR[R], &GPR1[R], I)
305
306
307 #define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
308 #define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
309 #define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
310 #define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
311
312 #define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
313 #define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
314 #define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
315 #define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
316
317 #define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
318 #define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
319 #define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
320 #define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
321
322 #define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
323 #define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
324 #define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
325 #define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
326
327
328
329 #define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
330 #define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
331 #define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
332 #define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
333
334 #define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
335 #define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
336 #define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
337 #define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
338
339 #define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
340 #define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
341 #define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
342 #define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
343
344 #define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
345 #define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
346 #define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
347 #define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
348
349 /* end-sanitize-r5900 */
350
351
352
353 /* The following is probably not used for MIPS IV onwards: */
354 /* Slots for delayed register updates. For the moment we just have a
355 fixed number of slots (rather than a more generic, dynamic
356 system). This keeps the simulator fast. However, we only allow
357 for the register update to be delayed for a single instruction
358 cycle. */
359 #define PSLOTS (8) /* Maximum number of instruction cycles */
360
361 typedef struct _pending_write_queue {
362 int in;
363 int out;
364 int total;
365 int slot_delay[PSLOTS];
366 int slot_size[PSLOTS];
367 int slot_bit[PSLOTS];
368 void *slot_dest[PSLOTS];
369 unsigned64 slot_value[PSLOTS];
370 } pending_write_queue;
371
372 #ifndef PENDING_TRACE
373 #define PENDING_TRACE 0
374 #endif
375 #define PENDING_IN ((CPU)->pending.in)
376 #define PENDING_OUT ((CPU)->pending.out)
377 #define PENDING_TOTAL ((CPU)->pending.total)
378 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
379 #define PENDING_SLOT_BIT ((CPU)->pending.slot_size)
380 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
381 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
382 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
383
384 /* Invalidate the pending write queue, all pending writes are
385 discarded. */
386
387 #define PENDING_INVALIDATE() \
388 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
389
390 /* Schedule a write to DEST for N cycles time. For 64 bit
391 destinations, schedule two writes. For floating point registers,
392 the caller should schedule a write to both the dest register and
393 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
394 is updated. */
395
396 #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
397 do { \
398 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
399 sim_engine_abort (SD, CPU, cia, \
400 "PENDING_SCHED - buffer overflow\n"); \
401 if (PENDING_TRACE) \
402 sim_io_printf (SD, "PENDING_SCHED - dest 0x%lx, val 0x%lx, pending_in %d, pending_out %d, pending_total %d\n", (unsigned long) (DEST), (unsigned long) (VAL), PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
403 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
404 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
405 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
406 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
407 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
408 } while (0)
409
410 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
411 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
412
413 #define PENDING_TICK() pending_tick (SD, CPU, cia)
414
415 #define PENDING_FLUSH() abort () /* think about this one */
416 #define PENDING_FP() abort () /* think about this one */
417
418 /* For backward compatibility */
419 #define PENDING_FILL(R,VAL) \
420 { \
421 if ((R) >= FGRIDX && (R) < FGRIDX + NR_FGR) \
422 PENDING_SCHED(FGR[(R) - FGRIDX], VAL, 2, -1); \
423 else \
424 PENDING_SCHED(GPR[(R)], VAL, 2, -1); \
425 }
426
427
428
429 struct _sim_cpu {
430
431
432 /* The following are internal simulator state variables: */
433 #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
434 #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
435 address_word dspc; /* delay-slot PC */
436 #define DSPC ((CPU)->dspc)
437
438 /* Issue a delay slot instruction immediatly by re-calling
439 idecode_issue */
440 #define DELAY_SLOT(TARGET) \
441 do { \
442 address_word target = (TARGET); \
443 instruction_word delay_insn; \
444 sim_events_slip (SD, 1); \
445 CIA = CIA + 4; /* NOTE not mips16 */ \
446 STATE |= simDELAYSLOT; \
447 delay_insn = IMEM32 (CIA); /* NOTE not mips16 */ \
448 idecode_issue (CPU_, delay_insn, (CIA)); \
449 STATE &= ~simDELAYSLOT; \
450 NIA = target; \
451 } while (0)
452 #define NULLIFY_NEXT_INSTRUCTION() \
453 do { \
454 sim_events_slip (SD, 1); \
455 dotrace (SD, CPU, tracefh, 2, NIA, 4, "load instruction"); \
456 NIA = CIA + 8; \
457 } while (0)
458
459 /* State of the simulator */
460 unsigned int state;
461 unsigned int dsstate;
462 #define STATE ((CPU)->state)
463 #define DSSTATE ((CPU)->dsstate)
464
465 /* Flags in the "state" variable: */
466 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
467 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
468 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
469 #define simPCOC0 (1 << 17) /* COC[1] from current */
470 #define simPCOC1 (1 << 18) /* COC[1] from previous */
471 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
472 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
473 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
474 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
475
476 #define ENGINE_ISSUE_PREFIX_HOOK() \
477 { \
478 /* Perform any pending writes */ \
479 PENDING_TICK(); \
480 /* Set previous flag, depending on current: */ \
481 if (STATE & simPCOC0) \
482 STATE |= simPCOC1; \
483 else \
484 STATE &= ~simPCOC1; \
485 /* and update the current value: */ \
486 if (GETFCC(0)) \
487 STATE |= simPCOC0; \
488 else \
489 STATE &= ~simPCOC0; \
490 }
491
492
493 /* This is nasty, since we have to rely on matching the register
494 numbers used by GDB. Unfortunately, depending on the MIPS target
495 GDB uses different register numbers. We cannot just include the
496 relevant "gdb/tm.h" link, since GDB may not be configured before
497 the sim world, and also the GDB header file requires too much other
498 state. */
499
500 #ifndef TM_MIPS_H
501 #define LAST_EMBED_REGNUM (89)
502 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
503 /* start-sanitize-r5900 */
504 #undef NUM_REGS
505 #define NUM_REGS (128)
506 /* end-sanitize-r5900 */
507 #endif
508
509 /* start-sanitize-sky */
510 #ifdef TARGET_SKY
511 #ifndef TM_TXVU_H
512
513 /* Number of machine registers */
514 #define NUM_VU_REGS 153
515 #define NUM_VU_INTEGER_REGS 16
516
517 #define NUM_VIF_REGS 25
518
519 #define FIRST_VEC_REG 25
520 #define NUM_R5900_REGS 128
521
522 #undef NUM_REGS
523 #define NUM_REGS (NUM_R5900_REGS + 2*(NUM_VU_REGS) + 2*(NUM_VIF_REGS))
524 #endif /* no tm-txvu.h */
525 #endif
526 /* end-sanitize-sky */
527
528 /* To keep this default simulator simple, and fast, we use a direct
529 vector of registers. The internal simulator engine then uses
530 manifests to access the correct slot. */
531
532 unsigned_word registers[LAST_EMBED_REGNUM + 1];
533 int register_widths[NUM_REGS];
534 #define REGISTERS ((CPU)->registers)
535
536 #define GPR (&REGISTERS[0])
537 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
538
539 /* While space is allocated for the floating point registers in the
540 main registers array, they are stored separatly. This is because
541 their size may not necessarily match the size of either the
542 general-purpose or system specific registers */
543 #define NR_FGR (32)
544 #define FGRIDX (38)
545 fp_word fgr[NR_FGR];
546 #define FGR ((CPU)->fgr)
547
548 #define LO (REGISTERS[33])
549 #define HI (REGISTERS[34])
550 #define PCIDX 37
551 #define PC (REGISTERS[PCIDX])
552 #define CAUSE (REGISTERS[36])
553 #define SRIDX (32)
554 #define SR (REGISTERS[SRIDX]) /* CPU status register */
555 #define FCR0IDX (71)
556 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
557 #define FCR31IDX (70)
558 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
559 #define FCSR (FCR31)
560 #define Debug (REGISTERS[86])
561 #define DEPC (REGISTERS[87])
562 #define EPC (REGISTERS[88])
563 #define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */
564
565 unsigned_word c0_config_reg;
566 #define C0_CONFIG ((CPU)->c0_config_reg)
567
568 /* The following are pseudonyms for standard registers */
569 #define ZERO (REGISTERS[0])
570 #define V0 (REGISTERS[2])
571 #define A0 (REGISTERS[4])
572 #define A1 (REGISTERS[5])
573 #define A2 (REGISTERS[6])
574 #define A3 (REGISTERS[7])
575 #define T8IDX 24
576 #define T8 (REGISTERS[T8IDX])
577 #define SPIDX 29
578 #define SP (REGISTERS[SPIDX])
579 #define RAIDX 31
580 #define RA (REGISTERS[RAIDX])
581
582 /* Keep the current format state for each register: */
583 FP_formats fpr_state[32];
584 #define FPR_STATE ((CPU)->fpr_state)
585
586 pending_write_queue pending;
587
588 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
589 read-write instructions. It is set when a linked load occurs. It
590 is tested and cleared by the conditional store. It is cleared
591 (during other CPU operations) when a store to the location would
592 no longer be atomic. In particular, it is cleared by exception
593 return instructions. */
594 int llbit;
595 #define LLBIT ((CPU)->llbit)
596
597
598 /* The HIACCESS and LOACCESS counts are used to ensure that
599 corruptions caused by using the HI or LO register to close to a
600 following operation are spotted. */
601
602 int hiaccess;
603 int loaccess;
604 #define HIACCESS ((CPU)->hiaccess)
605 #define LOACCESS ((CPU)->loaccess)
606
607 #if 0
608 unsigned_word HLPC;
609 /* If either of the preceding two instructions have accessed the HI
610 or LO registers, then the values they see should be
611 undefined. However, to keep the simulator world simple, we just
612 let them use the value read and raise a warning to notify the
613 user: */
614 #define CHECKHILO(s) {\
615 if ((HIACCESS != 0) || (LOACCESS != 0)) \
616 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
617 }
618 #endif
619
620 #if !defined CHECKHILO
621 /* The 4300 and a few other processors have interlocks on hi/lo
622 register reads, and hence do not have this problem. To avoid
623 spurious warnings, we just disable this always. */
624 #define CHECKHILO(s)
625 #endif
626
627 /* start-sanitize-r5900 */
628 sim_r5900_cpu r5900;
629
630 /* end-sanitize-r5900 */
631 /* start-sanitize-vr5400 */
632
633 /* The MDMX ISA has a very very large accumulator */
634 unsigned8 acc[3 * 8];
635 /* end-sanitize-vr5400 */
636
637 sim_cpu_base base;
638 };
639
640
641 /* MIPS specific simulator watch config */
642
643 void watch_options_install PARAMS ((SIM_DESC sd));
644
645 struct swatch {
646 sim_event *pc;
647 sim_event *clock;
648 sim_event *cycles;
649 };
650
651
652 /* FIXME: At present much of the simulator is still static */
653 struct sim_state {
654
655 struct swatch watch;
656
657 sim_cpu cpu[MAX_NR_PROCESSORS];
658 #if (WITH_SMP)
659 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
660 #else
661 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
662 #endif
663
664 sim_state_base base;
665 };
666
667
668
669 /* Status information: */
670
671 /* TODO : these should be the bitmasks for these bits within the
672 status register. At the moment the following are VR4300
673 bit-positions: */
674 #define status_KSU_mask (0x3) /* mask for KSU bits */
675 #define status_KSU_shift (3) /* shift for field */
676 #define ksu_kernel (0x0)
677 #define ksu_supervisor (0x1)
678 #define ksu_user (0x2)
679 #define ksu_unknown (0x3)
680
681 #define status_IE (1 << 0) /* Interrupt enable */
682 #define status_EXL (1 << 1) /* Exception level */
683 #define status_RE (1 << 25) /* Reverse Endian in user mode */
684 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
685 #define status_SR (1 << 20) /* soft reset or NMI */
686 #define status_BEV (1 << 22) /* Location of general exception vectors */
687 #define status_TS (1 << 21) /* TLB shutdown has occurred */
688 #define status_ERL (1 << 2) /* Error level */
689 #define status_RP (1 << 27) /* Reduced Power mode */
690 /* begin-sanitize-r5900 */
691 #define status_CU0 (1 << 28) /* COP0 usable */
692 #define status_CU1 (1 << 29) /* COP1 usable */
693 #define status_CU2 (1 << 30) /* COP2 usable */
694 /* begin-sanitize-r5900 */
695
696 #define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
697
698 /* NOTE: We keep the following status flags as bit values (1 for true,
699 0 for false). This allows them to be used in binary boolean
700 operations without worrying about what exactly the non-zero true
701 value is. */
702
703 /* UserMode */
704 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
705
706 /* BigEndianMem */
707 /* Hardware configuration. Affects endianness of LoadMemory and
708 StoreMemory and the endianness of Kernel and Supervisor mode
709 execution. The value is 0 for little-endian; 1 for big-endian. */
710 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
711 /*(state & simBE) ? 1 : 0)*/
712
713 /* ReverseEndian */
714 /* This mode is selected if in User mode with the RE bit being set in
715 SR (Status Register). It reverses the endianness of load and store
716 instructions. */
717 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
718
719 /* BigEndianCPU */
720 /* The endianness for load and store instructions (0=little;1=big). In
721 User mode this endianness may be switched by setting the state_RE
722 bit in the SR register. Thus, BigEndianCPU may be computed as
723 (BigEndianMem EOR ReverseEndian). */
724 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
725
726
727
728 /* Exceptions: */
729
730 /* NOTE: These numbers depend on the processor architecture being
731 simulated: */
732 #define Interrupt (0)
733 #define TLBModification (1)
734 #define TLBLoad (2)
735 #define TLBStore (3)
736 #define AddressLoad (4)
737 #define AddressStore (5)
738 #define InstructionFetch (6)
739 #define DataReference (7)
740 #define SystemCall (8)
741 #define BreakPoint (9)
742 #define ReservedInstruction (10)
743 #define CoProcessorUnusable (11)
744 #define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */
745 #define Trap (13)
746 #define FPE (15)
747 #define DebugBreakPoint (16)
748 #define Watch (23)
749
750 /* The following exception code is actually private to the simulator
751 world. It is *NOT* a processor feature, and is used to signal
752 run-time errors in the simulator. */
753 #define SimulatorFault (0xFFFFFFFF)
754
755 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
756 #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
757 #define SignalExceptionInterrupt() signal_exception (SD, CPU, NULL_CIA, Interrupt)
758 #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
759 #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
760 #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
761 #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
762 #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
763 #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
764 #define SignalExceptionCoProcessorUnusable() signal_exception (SD, CPU, cia, CoProcessorUnusable)
765
766
767 /* Co-processor accesses */
768
769 void cop_lw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
770 void cop_ld PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
771 unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
772 uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
773
774 #define COP_LW(coproc_num,coproc_reg,memword) \
775 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
776 #define COP_LD(coproc_num,coproc_reg,memword) \
777 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
778 #define COP_SW(coproc_num,coproc_reg) \
779 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
780 #define COP_SD(coproc_num,coproc_reg) \
781 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
782
783 /* start-sanitize-sky */
784 #ifdef TARGET_SKY
785 void cop_lq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia,
786 int coproc_num, int coproc_reg, unsigned128 memword));
787 unsigned128 cop_sq PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia,
788 int coproc_num, int coproc_reg));
789 #define COP_LQ(coproc_num,coproc_reg,memword) \
790 cop_lq (SD, CPU, cia, coproc_num, coproc_reg, memword)
791 #define COP_SQ(coproc_num,coproc_reg) \
792 cop_sq (SD, CPU, cia, coproc_num, coproc_reg)
793 #endif /* TARGET_SKY */
794 /* end-sanitize-sky */
795
796 void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
797 #define DecodeCoproc(instruction) \
798 decode_coproc (SD, CPU, cia, (instruction))
799
800
801
802 /* Memory accesses */
803
804 /* The following are generic to all versions of the MIPS architecture
805 to date: */
806
807 /* Memory Access Types (for CCA): */
808 #define Uncached (0)
809 #define CachedNoncoherent (1)
810 #define CachedCoherent (2)
811 #define Cached (3)
812
813 #define isINSTRUCTION (1 == 0) /* FALSE */
814 #define isDATA (1 == 1) /* TRUE */
815 #define isLOAD (1 == 0) /* FALSE */
816 #define isSTORE (1 == 1) /* TRUE */
817 #define isREAL (1 == 0) /* FALSE */
818 #define isRAW (1 == 1) /* TRUE */
819 /* The parameter HOST (isTARGET / isHOST) is ignored */
820 #define isTARGET (1 == 0) /* FALSE */
821 /* #define isHOST (1 == 1) TRUE */
822
823 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
824 is the number of bytes minus 1. */
825 #define AccessLength_BYTE (0)
826 #define AccessLength_HALFWORD (1)
827 #define AccessLength_TRIPLEBYTE (2)
828 #define AccessLength_WORD (3)
829 #define AccessLength_QUINTIBYTE (4)
830 #define AccessLength_SEXTIBYTE (5)
831 #define AccessLength_SEPTIBYTE (6)
832 #define AccessLength_DOUBLEWORD (7)
833 #define AccessLength_QUADWORD (15)
834
835 #if (WITH_IGEN)
836 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
837 ? AccessLength_DOUBLEWORD /*7*/ \
838 : AccessLength_WORD /*3*/)
839 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
840 #endif
841
842
843 INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
844 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
845 address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
846
847 INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
848 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
849 load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
850
851 INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
852 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
853 store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
854
855 INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
856 #define CacheOp(op,pAddr,vAddr,instruction) \
857 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
858
859 INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
860 #define SyncOperation(stype) \
861 sync_operation (SD, CPU, cia, (stype))
862
863 INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
864 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
865 prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
866
867 INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
868 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
869 unsigned16 ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
870 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
871 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
872
873 void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
874 FILE *tracefh;
875
876 INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
877
878 char* pr_addr PARAMS ((SIM_ADDR addr));
879 char* pr_uword64 PARAMS ((uword64 addr));
880
881
882 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
883 #include "sim-main.c"
884 #endif
885
886 #endif