]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/mips/sim-main.h
2002-03-05 Chris Demetriou <cgd@broadcom.com>
[thirdparty/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997, 1998 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35
36 #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
37 mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
38
39 #include "sim-basics.h"
40
41 typedef address_word sim_cia;
42
43 #include "sim-base.h"
44
45
46 /* Depreciated macros and types for manipulating 64bit values. Use
47 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
48
49 typedef signed64 word64;
50 typedef unsigned64 uword64;
51
52 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
53 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
54 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
55 #define SET64HI(t) (((uword64)(t))<<32)
56 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
57 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
58
59 /* Check if a value will fit within a halfword: */
60 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
61
62
63
64 /* Floating-point operations: */
65
66 #include "sim-fpu.h"
67
68 /* FPU registers must be one of the following types. All other values
69 are reserved (and undefined). */
70 typedef enum {
71 fmt_single = 0,
72 fmt_double = 1,
73 fmt_word = 4,
74 fmt_long = 5,
75 /* The following are well outside the normal acceptable format
76 range, and are used in the register status vector. */
77 fmt_unknown = 0x10000000,
78 fmt_uninterpreted = 0x20000000,
79 fmt_uninterpreted_32 = 0x40000000,
80 fmt_uninterpreted_64 = 0x80000000U,
81 } FP_formats;
82
83 unsigned64 value_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats));
84 #define ValueFPR(FPR,FMT) value_fpr (SD, CPU, cia, (FPR), (FMT))
85
86 void store_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
87 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SD, CPU, cia, (FPR), (FMT), (VALUE))
88
89 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
90 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
91 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
92 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
93 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
94 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
95 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
96 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
97 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
98 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
99 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
100 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
101 unsigned64 Max PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
102 unsigned64 Min PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
103 unsigned64 convert PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
104 #define Convert(rm,op,from,to) \
105 convert (SD, CPU, cia, rm, op, from, to)
106
107 /* Macro to update FPSR condition-code field. This is complicated by
108 the fact that there is a hole in the index range of the bits within
109 the FCSR register. Also, the number of bits visible depends on the
110 MIPS ISA version being supported. */
111
112 #define SETFCC(cc,v) {\
113 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
114 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
115 }
116 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1U : 0)
117
118 /* This should be the COC1 value at the start of the preceding
119 instruction: */
120 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
121
122 #ifdef TARGET_ENABLE_FR
123 /* FIXME: this should be enabled for all targets, but needs testing first. */
124 #define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
125 ? ((SR & status_FR) ? 64 : 32) \
126 : (WITH_TARGET_FLOATING_POINT_BITSIZE))
127 #else
128 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
129 #endif
130
131 /* Standard FCRS bits: */
132 #define IR (0) /* Inexact Result */
133 #define UF (1) /* UnderFlow */
134 #define OF (2) /* OverFlow */
135 #define DZ (3) /* Division by Zero */
136 #define IO (4) /* Invalid Operation */
137 #define UO (5) /* Unimplemented Operation */
138
139 /* Get masks for individual flags: */
140 #if 1 /* SAFE version */
141 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
142 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
143 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
144 #else
145 #define FP_FLAGS(b) (1 << ((b) + 2))
146 #define FP_ENABLE(b) (1 << ((b) + 7))
147 #define FP_CAUSE(b) (1 << ((b) + 12))
148 #endif
149
150 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
151
152 #define FP_MASK_RM (0x3)
153 #define FP_SH_RM (0)
154 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
155 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
156 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
157 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
158 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
159
160
161
162
163
164
165 /* HI/LO register accesses */
166
167 /* For some MIPS targets, the HI/LO registers have certain timing
168 restrictions in that, for instance, a read of a HI register must be
169 separated by at least three instructions from a preceeding read.
170
171 The struct below is used to record the last access by each of A MT,
172 MF or other OP instruction to a HI/LO register. See mips.igen for
173 more details. */
174
175 typedef struct _hilo_access {
176 signed64 timestamp;
177 address_word cia;
178 } hilo_access;
179
180 typedef struct _hilo_history {
181 hilo_access mt;
182 hilo_access mf;
183 hilo_access op;
184 } hilo_history;
185
186
187
188
189 /* Integer ALU operations: */
190
191 #include "sim-alu.h"
192
193 #define ALU32_END(ANS) \
194 if (ALU32_HAD_OVERFLOW) \
195 SignalExceptionIntegerOverflow (); \
196 (ANS) = (signed32) ALU32_OVERFLOW_RESULT
197
198
199 #define ALU64_END(ANS) \
200 if (ALU64_HAD_OVERFLOW) \
201 SignalExceptionIntegerOverflow (); \
202 (ANS) = ALU64_OVERFLOW_RESULT;
203
204
205
206
207
208 /* The following is probably not used for MIPS IV onwards: */
209 /* Slots for delayed register updates. For the moment we just have a
210 fixed number of slots (rather than a more generic, dynamic
211 system). This keeps the simulator fast. However, we only allow
212 for the register update to be delayed for a single instruction
213 cycle. */
214 #define PSLOTS (8) /* Maximum number of instruction cycles */
215
216 typedef struct _pending_write_queue {
217 int in;
218 int out;
219 int total;
220 int slot_delay[PSLOTS];
221 int slot_size[PSLOTS];
222 int slot_bit[PSLOTS];
223 void *slot_dest[PSLOTS];
224 unsigned64 slot_value[PSLOTS];
225 } pending_write_queue;
226
227 #ifndef PENDING_TRACE
228 #define PENDING_TRACE 0
229 #endif
230 #define PENDING_IN ((CPU)->pending.in)
231 #define PENDING_OUT ((CPU)->pending.out)
232 #define PENDING_TOTAL ((CPU)->pending.total)
233 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
234 #define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
235 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
236 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
237 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
238
239 /* Invalidate the pending write queue, all pending writes are
240 discarded. */
241
242 #define PENDING_INVALIDATE() \
243 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
244
245 /* Schedule a write to DEST for N cycles time. For 64 bit
246 destinations, schedule two writes. For floating point registers,
247 the caller should schedule a write to both the dest register and
248 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
249 is updated. */
250
251 #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
252 do { \
253 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
254 sim_engine_abort (SD, CPU, cia, \
255 "PENDING_SCHED - buffer overflow\n"); \
256 if (PENDING_TRACE) \
257 sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \
258 (unsigned long) cia, (unsigned long) &(DEST), \
259 (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
260 PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
261 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
262 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
263 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
264 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
265 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
266 PENDING_IN = (PENDING_IN + 1) % PSLOTS; \
267 PENDING_TOTAL += 1; \
268 } while (0)
269
270 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
271 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
272
273 #define PENDING_TICK() pending_tick (SD, CPU, cia)
274
275 #define PENDING_FLUSH() abort () /* think about this one */
276 #define PENDING_FP() abort () /* think about this one */
277
278 /* For backward compatibility */
279 #define PENDING_FILL(R,VAL) \
280 do { \
281 if ((R) >= FGRIDX && (R) < FGRIDX + NR_FGR) \
282 { \
283 PENDING_SCHED(FGR[(R) - FGRIDX], VAL, 1, -1); \
284 PENDING_SCHED(FPR_STATE[(R) - FGRIDX], fmt_uninterpreted, 1, -1); \
285 } \
286 else \
287 PENDING_SCHED(GPR[(R)], VAL, 1, -1); \
288 } while (0)
289
290
291 enum float_operation
292 {
293 FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD,
294 FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS,
295 FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
296 };
297
298
299 struct _sim_cpu {
300
301
302 /* The following are internal simulator state variables: */
303 #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
304 #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
305 address_word dspc; /* delay-slot PC */
306 #define DSPC ((CPU)->dspc)
307
308 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
309 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
310
311
312 /* State of the simulator */
313 unsigned int state;
314 unsigned int dsstate;
315 #define STATE ((CPU)->state)
316 #define DSSTATE ((CPU)->dsstate)
317
318 /* Flags in the "state" variable: */
319 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
320 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
321 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
322 #define simPCOC0 (1 << 17) /* COC[1] from current */
323 #define simPCOC1 (1 << 18) /* COC[1] from previous */
324 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
325 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
326 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
327 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
328
329 #ifndef ENGINE_ISSUE_PREFIX_HOOK
330 #define ENGINE_ISSUE_PREFIX_HOOK() \
331 { \
332 /* Perform any pending writes */ \
333 PENDING_TICK(); \
334 /* Set previous flag, depending on current: */ \
335 if (STATE & simPCOC0) \
336 STATE |= simPCOC1; \
337 else \
338 STATE &= ~simPCOC1; \
339 /* and update the current value: */ \
340 if (GETFCC(0)) \
341 STATE |= simPCOC0; \
342 else \
343 STATE &= ~simPCOC0; \
344 }
345 #endif /* ENGINE_ISSUE_PREFIX_HOOK */
346
347
348 /* This is nasty, since we have to rely on matching the register
349 numbers used by GDB. Unfortunately, depending on the MIPS target
350 GDB uses different register numbers. We cannot just include the
351 relevant "gdb/tm.h" link, since GDB may not be configured before
352 the sim world, and also the GDB header file requires too much other
353 state. */
354
355 #ifndef TM_MIPS_H
356 #define LAST_EMBED_REGNUM (89)
357 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
358
359
360 #endif
361
362
363 /* To keep this default simulator simple, and fast, we use a direct
364 vector of registers. The internal simulator engine then uses
365 manifests to access the correct slot. */
366
367 unsigned_word registers[LAST_EMBED_REGNUM + 1];
368
369 int register_widths[NUM_REGS];
370 #define REGISTERS ((CPU)->registers)
371
372 #define GPR (&REGISTERS[0])
373 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
374
375 /* While space is allocated for the floating point registers in the
376 main registers array, they are stored separatly. This is because
377 their size may not necessarily match the size of either the
378 general-purpose or system specific registers */
379 #define NR_FGR (32)
380 #define FGRIDX (38)
381 fp_word fgr[NR_FGR];
382 #define FGR ((CPU)->fgr)
383
384 #define LO (REGISTERS[33])
385 #define HI (REGISTERS[34])
386 #define PCIDX 37
387 #define PC (REGISTERS[PCIDX])
388 #define CAUSE (REGISTERS[36])
389 #define SRIDX (32)
390 #define SR (REGISTERS[SRIDX]) /* CPU status register */
391 #define FCR0IDX (71)
392 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
393 #define FCR31IDX (70)
394 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
395 #define FCSR (FCR31)
396 #define Debug (REGISTERS[86])
397 #define DEPC (REGISTERS[87])
398 #define EPC (REGISTERS[88])
399
400 /* All internal state modified by signal_exception() that may need to be
401 rolled back for passing moment-of-exception image back to gdb. */
402 unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
403 unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
404 int exc_suspended;
405
406 #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
407 #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
408 #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
409
410 unsigned_word c0_config_reg;
411 #define C0_CONFIG ((CPU)->c0_config_reg)
412
413 /* The following are pseudonyms for standard registers */
414 #define ZERO (REGISTERS[0])
415 #define V0 (REGISTERS[2])
416 #define A0 (REGISTERS[4])
417 #define A1 (REGISTERS[5])
418 #define A2 (REGISTERS[6])
419 #define A3 (REGISTERS[7])
420 #define T8IDX 24
421 #define T8 (REGISTERS[T8IDX])
422 #define SPIDX 29
423 #define SP (REGISTERS[SPIDX])
424 #define RAIDX 31
425 #define RA (REGISTERS[RAIDX])
426
427 /* While space is allocated in the main registers arrray for some of
428 the COP0 registers, that space isn't sufficient. Unknown COP0
429 registers overflow into the array below */
430
431 #define NR_COP0_GPR 32
432 unsigned_word cop0_gpr[NR_COP0_GPR];
433 #define COP0_GPR ((CPU)->cop0_gpr)
434 #define COP0_BADVADDR ((unsigned32)(COP0_GPR[8]))
435
436 /* Keep the current format state for each register: */
437 FP_formats fpr_state[32];
438 #define FPR_STATE ((CPU)->fpr_state)
439
440 pending_write_queue pending;
441
442 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
443 read-write instructions. It is set when a linked load occurs. It
444 is tested and cleared by the conditional store. It is cleared
445 (during other CPU operations) when a store to the location would
446 no longer be atomic. In particular, it is cleared by exception
447 return instructions. */
448 int llbit;
449 #define LLBIT ((CPU)->llbit)
450
451
452 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
453 corruptions caused by using the HI or LO register too close to a
454 following operation is spotted. See mips.igen for more details. */
455
456 hilo_history hi_history;
457 #define HIHISTORY (&(CPU)->hi_history)
458 hilo_history lo_history;
459 #define LOHISTORY (&(CPU)->lo_history)
460
461 #define check_branch_bug()
462 #define mark_branch_bug(TARGET)
463
464
465
466 sim_cpu_base base;
467 };
468
469
470 /* MIPS specific simulator watch config */
471
472 void watch_options_install PARAMS ((SIM_DESC sd));
473
474 struct swatch {
475 sim_event *pc;
476 sim_event *clock;
477 sim_event *cycles;
478 };
479
480
481 /* FIXME: At present much of the simulator is still static */
482 struct sim_state {
483
484 struct swatch watch;
485
486 sim_cpu cpu[MAX_NR_PROCESSORS];
487 #if (WITH_SMP)
488 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
489 #else
490 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
491 #endif
492
493
494 sim_state_base base;
495 };
496
497
498
499 /* Status information: */
500
501 /* TODO : these should be the bitmasks for these bits within the
502 status register. At the moment the following are VR4300
503 bit-positions: */
504 #define status_KSU_mask (0x18) /* mask for KSU bits */
505 #define status_KSU_shift (3) /* shift for field */
506 #define ksu_kernel (0x0)
507 #define ksu_supervisor (0x1)
508 #define ksu_user (0x2)
509 #define ksu_unknown (0x3)
510
511 #define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift)
512
513 #define status_IE (1 << 0) /* Interrupt enable */
514 #define status_EIE (1 << 16) /* Enable Interrupt Enable */
515 #define status_EXL (1 << 1) /* Exception level */
516 #define status_RE (1 << 25) /* Reverse Endian in user mode */
517 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
518 #define status_SR (1 << 20) /* soft reset or NMI */
519 #define status_BEV (1 << 22) /* Location of general exception vectors */
520 #define status_TS (1 << 21) /* TLB shutdown has occurred */
521 #define status_ERL (1 << 2) /* Error level */
522 #define status_IM7 (1 << 15) /* Timer Interrupt Mask */
523 #define status_RP (1 << 27) /* Reduced Power mode */
524
525 /* Specializations for TX39 family */
526 #define status_IEc (1 << 0) /* Interrupt enable (current) */
527 #define status_KUc (1 << 1) /* Kernel/User mode */
528 #define status_IEp (1 << 2) /* Interrupt enable (previous) */
529 #define status_KUp (1 << 3) /* Kernel/User mode */
530 #define status_IEo (1 << 4) /* Interrupt enable (old) */
531 #define status_KUo (1 << 5) /* Kernel/User mode */
532 #define status_IM_mask (0xff) /* Interrupt mask */
533 #define status_IM_shift (8)
534 #define status_NMI (1 << 20) /* NMI */
535 #define status_NMI (1 << 20) /* NMI */
536
537 /* Status bits used by MIPS32/MIPS64. */
538 #define status_UX (1 << 5) /* 64-bit user addrs */
539 #define status_SX (1 << 6) /* 64-bit supervisor addrs */
540 #define status_KX (1 << 7) /* 64-bit kernel addrs */
541 #define status_TS (1 << 21) /* TLB shutdown has occurred */
542 #define status_PX (1 << 23) /* Enable 64 bit operations */
543 #define status_MX (1 << 24) /* Enable MDMX resources */
544 #define status_CU0 (1 << 28) /* Coprocessor 0 usable */
545 #define status_CU1 (1 << 29) /* Coprocessor 1 usable */
546 #define status_CU2 (1 << 30) /* Coprocessor 2 usable */
547 #define status_CU3 (1 << 31) /* Coprocessor 3 usable */
548
549 #define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */
550 #define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */
551 #define cause_CE_mask 0x30000000 /* Coprocessor exception */
552 #define cause_CE_shift 28
553 #define cause_EXC2_mask 0x00070000
554 #define cause_EXC2_shift 16
555 #define cause_IP7 (1 << 15) /* Interrupt pending */
556 #define cause_SIOP (1 << 12) /* SIO pending */
557 #define cause_IP3 (1 << 11) /* Int 0 pending */
558 #define cause_IP2 (1 << 10) /* Int 1 pending */
559
560 #define cause_EXC_mask (0x1c) /* Exception code */
561 #define cause_EXC_shift (2)
562
563 #define cause_SW0 (1 << 8) /* Software interrupt 0 */
564 #define cause_SW1 (1 << 9) /* Software interrupt 1 */
565 #define cause_IP_mask (0x3f) /* Interrupt pending field */
566 #define cause_IP_shift (10)
567
568 #define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask)
569 #define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
570
571
572 /* NOTE: We keep the following status flags as bit values (1 for true,
573 0 for false). This allows them to be used in binary boolean
574 operations without worrying about what exactly the non-zero true
575 value is. */
576
577 /* UserMode */
578 #ifdef SUBTARGET_R3900
579 #define UserMode ((SR & status_KUc) ? 1 : 0)
580 #else
581 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
582 #endif /* SUBTARGET_R3900 */
583
584 /* BigEndianMem */
585 /* Hardware configuration. Affects endianness of LoadMemory and
586 StoreMemory and the endianness of Kernel and Supervisor mode
587 execution. The value is 0 for little-endian; 1 for big-endian. */
588 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
589 /*(state & simBE) ? 1 : 0)*/
590
591 /* ReverseEndian */
592 /* This mode is selected if in User mode with the RE bit being set in
593 SR (Status Register). It reverses the endianness of load and store
594 instructions. */
595 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
596
597 /* BigEndianCPU */
598 /* The endianness for load and store instructions (0=little;1=big). In
599 User mode this endianness may be switched by setting the state_RE
600 bit in the SR register. Thus, BigEndianCPU may be computed as
601 (BigEndianMem EOR ReverseEndian). */
602 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
603
604
605
606 /* Exceptions: */
607
608 /* NOTE: These numbers depend on the processor architecture being
609 simulated: */
610 enum ExceptionCause {
611 Interrupt = 0,
612 TLBModification = 1,
613 TLBLoad = 2,
614 TLBStore = 3,
615 AddressLoad = 4,
616 AddressStore = 5,
617 InstructionFetch = 6,
618 DataReference = 7,
619 SystemCall = 8,
620 BreakPoint = 9,
621 ReservedInstruction = 10,
622 CoProcessorUnusable = 11,
623 IntegerOverflow = 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */
624 Trap = 13,
625 FPE = 15,
626 DebugBreakPoint = 16, /* Impl. dep. in MIPS32/MIPS64. */
627 MDMX = 22,
628 Watch = 23,
629 MCheck = 24,
630 CacheErr = 30,
631 NMIReset = 31, /* Reserved in MIPS32/MIPS64. */
632
633
634 /* The following exception code is actually private to the simulator
635 world. It is *NOT* a processor feature, and is used to signal
636 run-time errors in the simulator. */
637 SimulatorFault = 0xFFFFFFFF
638 };
639
640 #define TLB_REFILL (0)
641 #define TLB_INVALID (1)
642
643
644 /* The following break instructions are reserved for use by the
645 simulator. The first is used to halt the simulation. The second
646 is used by gdb for break-points. NOTE: Care must be taken, since
647 this value may be used in later revisions of the MIPS ISA. */
648 #define HALT_INSTRUCTION_MASK (0x03FFFFC0)
649
650 #define HALT_INSTRUCTION (0x03ff000d)
651 #define HALT_INSTRUCTION2 (0x0000ffcd)
652
653
654 #define BREAKPOINT_INSTRUCTION (0x0005000d)
655 #define BREAKPOINT_INSTRUCTION2 (0x0000014d)
656
657
658
659 void interrupt_event (SIM_DESC sd, void *data);
660
661 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
662 #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
663 #define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level)
664 #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
665 #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
666 #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
667 #define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference)
668 #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
669 #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
670 #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
671 #define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
672 #define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset)
673 #define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
674 #define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
675 #define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
676 #define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
677 #define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification)
678 #define SignalExceptionMDMX() signal_exception (SD, CPU, cia, MDMX)
679 #define SignalExceptionWatch() signal_exception (SD, CPU, cia, Watch)
680 #define SignalExceptionMCheck() signal_exception (SD, CPU, cia, MCheck)
681 #define SignalExceptionCacheErr() signal_exception (SD, CPU, cia, CacheErr)
682
683 /* Co-processor accesses */
684
685 /* XXX FIXME: For now, assume that FPU (cp1) is always usable. */
686 #define COP_Usable(coproc_num) (coproc_num == 1)
687
688 void cop_lw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
689 void cop_ld PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
690 unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
691 uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
692
693 #define COP_LW(coproc_num,coproc_reg,memword) \
694 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
695 #define COP_LD(coproc_num,coproc_reg,memword) \
696 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
697 #define COP_SW(coproc_num,coproc_reg) \
698 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
699 #define COP_SD(coproc_num,coproc_reg) \
700 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
701
702
703 void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
704 #define DecodeCoproc(instruction) \
705 decode_coproc (SD, CPU, cia, (instruction))
706
707 int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
708
709
710
711 /* Memory accesses */
712
713 /* The following are generic to all versions of the MIPS architecture
714 to date: */
715
716 /* Memory Access Types (for CCA): */
717 #define Uncached (0)
718 #define CachedNoncoherent (1)
719 #define CachedCoherent (2)
720 #define Cached (3)
721
722 #define isINSTRUCTION (1 == 0) /* FALSE */
723 #define isDATA (1 == 1) /* TRUE */
724 #define isLOAD (1 == 0) /* FALSE */
725 #define isSTORE (1 == 1) /* TRUE */
726 #define isREAL (1 == 0) /* FALSE */
727 #define isRAW (1 == 1) /* TRUE */
728 /* The parameter HOST (isTARGET / isHOST) is ignored */
729 #define isTARGET (1 == 0) /* FALSE */
730 /* #define isHOST (1 == 1) TRUE */
731
732 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
733 is the number of bytes minus 1. */
734 #define AccessLength_BYTE (0)
735 #define AccessLength_HALFWORD (1)
736 #define AccessLength_TRIPLEBYTE (2)
737 #define AccessLength_WORD (3)
738 #define AccessLength_QUINTIBYTE (4)
739 #define AccessLength_SEXTIBYTE (5)
740 #define AccessLength_SEPTIBYTE (6)
741 #define AccessLength_DOUBLEWORD (7)
742 #define AccessLength_QUADWORD (15)
743
744 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
745 ? AccessLength_DOUBLEWORD /*7*/ \
746 : AccessLength_WORD /*3*/)
747 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
748
749
750 INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
751 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
752 address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
753
754 INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
755 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
756 load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
757
758 INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
759 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
760 store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
761
762 INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
763 #define CacheOp(op,pAddr,vAddr,instruction) \
764 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
765
766 INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
767 #define SyncOperation(stype) \
768 sync_operation (SD, CPU, cia, (stype))
769
770 INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
771 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
772 prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
773
774 INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
775 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
776 INLINE_SIM_MAIN (unsigned16) ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
777 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
778 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
779
780 void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
781 extern FILE *tracefh;
782
783 INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
784 extern SIM_CORE_SIGNAL_FN mips_core_signal;
785
786 char* pr_addr PARAMS ((SIM_ADDR addr));
787 char* pr_uword64 PARAMS ((uword64 addr));
788
789
790 #define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
791
792 void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
793 void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
794 void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
795
796
797 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
798 #include "sim-main.c"
799 #endif
800
801 #endif