]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/mn10300/dv-mn103tim.c
2003-02-27 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / sim / mn10300 / dv-mn103tim.c
1 /* This file is part of the program GDB, the GNU debugger.
2
3 Copyright (C) 1998, 2003 Free Software Foundation, Inc.
4 Contributed by Cygnus Solutions.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 */
21
22 #include "sim-main.h"
23 #include "hw-main.h"
24 #include "sim-assert.h"
25
26 /* DEVICE
27
28
29 mn103tim - mn103002 timers (8 and 16 bit)
30
31
32 DESCRIPTION
33
34 Implements the mn103002 8 and 16 bit timers as described in the mn103002 user guide.
35
36
37 PROPERTIES
38
39 reg = <8bit-timers-addr> <8bit-timers-size> <16bit-timers-addr> <16bit-timers-size>
40
41
42 BUGS
43
44 */
45
46
47 /* The timers' register address blocks */
48
49 struct mn103tim_block {
50 unsigned_word base;
51 unsigned_word bound;
52 };
53
54 enum { TIMER8_BLOCK, TIMER16_BLOCK, NR_TIMER_BLOCKS };
55
56 enum timer_register_types {
57 FIRST_MODE_REG = 0,
58 TM0MD = FIRST_MODE_REG,
59 TM1MD,
60 TM2MD,
61 TM3MD,
62 TM4MD,
63 TM5MD,
64 TM6MD,
65 LAST_MODE_REG = TM6MD,
66 FIRST_BASE_REG,
67 TM0BR = FIRST_BASE_REG,
68 TM1BR,
69 TM2BR,
70 TM3BR,
71 TM4BR,
72 TM5BR,
73 LAST_BASE_REG = TM5BR,
74 FIRST_COUNTER,
75 TM0BC = FIRST_COUNTER,
76 TM1BC,
77 TM2BC,
78 TM3BC,
79 TM4BC,
80 TM5BC,
81 TM6BC,
82 LAST_COUNTER = TM6BC,
83 TM6MDA,
84 TM6MDB,
85 TM6CA,
86 TM6CB,
87 LAST_TIMER_REG = TM6BC,
88 };
89
90
91 /* Don't include timer 6 because it's handled specially. */
92 #define NR_8BIT_TIMERS 4
93 #define NR_16BIT_TIMERS 2
94 #define NR_REG_TIMERS 6 /* Exclude timer 6 - it's handled specially. */
95 #define NR_TIMERS 7
96
97 typedef struct _mn10300_timer_regs {
98 unsigned32 base;
99 unsigned8 mode;
100 } mn10300_timer_regs;
101
102 typedef struct _mn10300_timer {
103 unsigned32 div_ratio, start;
104 struct hw_event *event;
105 } mn10300_timer;
106
107
108 struct mn103tim {
109 struct mn103tim_block block[NR_TIMER_BLOCKS];
110 mn10300_timer_regs reg[NR_REG_TIMERS];
111 mn10300_timer timer[NR_TIMERS];
112
113 /* treat timer 6 registers specially. */
114 unsigned16 tm6md0, tm6md1, tm6bc, tm6ca, tm6cb;
115 unsigned8 tm6mda, tm6mdb; /* compare/capture mode regs for timer 6 */
116 };
117
118 /* output port ID's */
119
120 /* for mn103002 */
121 enum {
122 TIMER0_UFLOW,
123 TIMER1_UFLOW,
124 TIMER2_UFLOW,
125 TIMER3_UFLOW,
126 TIMER4_UFLOW,
127 TIMER5_UFLOW,
128 TIMER6_UFLOW,
129 TIMER6_CMPA,
130 TIMER6_CMPB,
131 };
132
133
134 static const struct hw_port_descriptor mn103tim_ports[] = {
135
136 { "timer-0-underflow", TIMER0_UFLOW, 0, output_port, },
137 { "timer-1-underflow", TIMER1_UFLOW, 0, output_port, },
138 { "timer-2-underflow", TIMER2_UFLOW, 0, output_port, },
139 { "timer-3-underflow", TIMER3_UFLOW, 0, output_port, },
140 { "timer-4-underflow", TIMER4_UFLOW, 0, output_port, },
141 { "timer-5-underflow", TIMER5_UFLOW, 0, output_port, },
142
143 { "timer-6-underflow", TIMER6_UFLOW, 0, output_port, },
144 { "timer-6-compare-a", TIMER6_CMPA, 0, output_port, },
145 { "timer-6-compare-b", TIMER6_CMPB, 0, output_port, },
146
147 { NULL, },
148 };
149
150 #define bits2to5_mask 0x3c
151 #define bits0to2_mask 0x07
152 #define load_mask 0x40
153 #define count_mask 0x80
154 #define count_and_load_mask (load_mask | count_mask)
155 #define clock_mask 0x03
156 #define clk_ioclk 0x00
157 #define clk_cascaded 0x03
158
159
160 /* Finish off the partially created hw device. Attach our local
161 callbacks. Wire up our port names etc */
162
163 static hw_io_read_buffer_method mn103tim_io_read_buffer;
164 static hw_io_write_buffer_method mn103tim_io_write_buffer;
165
166 static void
167 attach_mn103tim_regs (struct hw *me,
168 struct mn103tim *timers)
169 {
170 int i;
171 if (hw_find_property (me, "reg") == NULL)
172 hw_abort (me, "Missing \"reg\" property");
173 for (i = 0; i < NR_TIMER_BLOCKS; i++)
174 {
175 unsigned_word attach_address;
176 int attach_space;
177 unsigned attach_size;
178 reg_property_spec reg;
179 if (!hw_find_reg_array_property (me, "reg", i, &reg))
180 hw_abort (me, "\"reg\" property must contain three addr/size entries");
181 hw_unit_address_to_attach_address (hw_parent (me),
182 &reg.address,
183 &attach_space,
184 &attach_address,
185 me);
186 timers->block[i].base = attach_address;
187 hw_unit_size_to_attach_size (hw_parent (me),
188 &reg.size,
189 &attach_size, me);
190 timers->block[i].bound = attach_address + (attach_size - 1);
191 hw_attach_address (hw_parent (me),
192 0,
193 attach_space, attach_address, attach_size,
194 me);
195 }
196 }
197
198 static void
199 mn103tim_finish (struct hw *me)
200 {
201 struct mn103tim *timers;
202 int i;
203
204 timers = HW_ZALLOC (me, struct mn103tim);
205 set_hw_data (me, timers);
206 set_hw_io_read_buffer (me, mn103tim_io_read_buffer);
207 set_hw_io_write_buffer (me, mn103tim_io_write_buffer);
208 set_hw_ports (me, mn103tim_ports);
209
210 /* Attach ourself to our parent bus */
211 attach_mn103tim_regs (me, timers);
212
213 /* Initialize the timers */
214 for ( i=0; i < NR_REG_TIMERS; ++i )
215 {
216 timers->reg[i].mode = 0x00;
217 timers->reg[i].base = 0;
218 }
219 for ( i=0; i < NR_TIMERS; ++i )
220 {
221 timers->timer[i].event = NULL;
222 timers->timer[i].div_ratio = 0;
223 timers->timer[i].start = 0;
224 }
225 timers->tm6md0 = 0x00;
226 timers->tm6md1 = 0x00;
227 timers->tm6bc = 0x0000;
228 timers->tm6ca = 0x0000;
229 timers->tm6cb = 0x0000;
230 timers->tm6mda = 0x00;
231 timers->tm6mdb = 0x00;
232 }
233
234
235
236 /* read and write */
237
238 static int
239 decode_addr (struct hw *me,
240 struct mn103tim *timers,
241 unsigned_word address)
242 {
243 unsigned_word offset;
244 offset = address - timers->block[0].base;
245
246 switch (offset)
247 {
248 case 0x00: return TM0MD;
249 case 0x01: return TM1MD;
250 case 0x02: return TM2MD;
251 case 0x03: return TM3MD;
252 case 0x10: return TM0BR;
253 case 0x11: return TM1BR;
254 case 0x12: return TM2BR;
255 case 0x13: return TM3BR;
256 case 0x20: return TM0BC;
257 case 0x21: return TM1BC;
258 case 0x22: return TM2BC;
259 case 0x23: return TM3BC;
260 case 0x80: return TM4MD;
261 case 0x82: return TM5MD;
262 case 0x84: /* fall through */
263 case 0x85: return TM6MD;
264 case 0x90: return TM4BR;
265 case 0x92: return TM5BR;
266 case 0xa0: return TM4BC;
267 case 0xa2: return TM5BC;
268 case 0xa4: return TM6BC;
269 case 0xb4: return TM6MDA;
270 case 0xb5: return TM6MDB;
271 case 0xc4: return TM6CA;
272 case 0xd4: return TM6CB;
273 default:
274 {
275 hw_abort (me, "bad address");
276 return -1;
277 }
278 }
279 }
280
281 static void
282 read_mode_reg (struct hw *me,
283 struct mn103tim *timers,
284 int timer_nr,
285 void *dest,
286 unsigned nr_bytes)
287 {
288 unsigned16 val16;
289 unsigned32 val32;
290
291 switch ( nr_bytes )
292 {
293 case 1:
294 /* Accessing 1 byte is ok for all mode registers. */
295 if ( timer_nr == 6 )
296 {
297 *(unsigned8*)dest = timers->tm6md0;
298 }
299 else
300 {
301 *(unsigned8*)dest = timers->reg[timer_nr].mode;
302 }
303 break;
304
305 case 2:
306 if ( timer_nr == 6 )
307 {
308 *(unsigned16 *)dest = (timers->tm6md0 << 8) | timers->tm6md1;
309 }
310 else if ( timer_nr == 0 || timer_nr == 2 )
311 {
312 val16 = (timers->reg[timer_nr].mode << 8)
313 | timers->reg[timer_nr+1].mode;
314 *(unsigned16*)dest = val16;
315 }
316 else
317 {
318 hw_abort (me, "bad read size of 2 bytes to TM%dMD.", timer_nr);
319 }
320 break;
321
322 case 4:
323 if ( timer_nr == 0 )
324 {
325 val32 = (timers->reg[0].mode << 24 )
326 | (timers->reg[1].mode << 16)
327 | (timers->reg[2].mode << 8)
328 | timers->reg[3].mode;
329 *(unsigned32*)dest = val32;
330 }
331 else
332 {
333 hw_abort (me, "bad read size of 4 bytes to TM%dMD.", timer_nr);
334 }
335 break;
336
337 default:
338 hw_abort (me, "bad read size of %d bytes to TM%dMD.",
339 nr_bytes, timer_nr);
340 }
341 }
342
343
344 static void
345 read_base_reg (struct hw *me,
346 struct mn103tim *timers,
347 int timer_nr,
348 void *dest,
349 unsigned nr_bytes)
350 {
351 unsigned16 val16;
352 unsigned32 val32;
353
354 /* Check nr_bytes: accesses of 1, 2 and 4 bytes allowed depending on timer. */
355 switch ( nr_bytes )
356 {
357 case 1:
358 /* Reading 1 byte is ok for all registers. */
359 if ( timer_nr < NR_8BIT_TIMERS )
360 {
361 *(unsigned8*)dest = timers->reg[timer_nr].base;
362 }
363 break;
364
365 case 2:
366 if ( timer_nr == 1 || timer_nr == 3 )
367 {
368 hw_abort (me, "bad read size of 2 bytes to TM%dBR.", timer_nr);
369 }
370 else
371 {
372 if ( timer_nr < NR_8BIT_TIMERS )
373 {
374 val16 = (timers->reg[timer_nr].base<<8)
375 | timers->reg[timer_nr+1].base;
376 }
377 else
378 {
379 val16 = timers->reg[timer_nr].base;
380 }
381 *(unsigned16*)dest = val16;
382 }
383 break;
384
385 case 4:
386 if ( timer_nr == 0 )
387 {
388 val32 = (timers->reg[0].base << 24) | (timers->reg[1].base << 16)
389 | (timers->reg[2].base << 8) | timers->reg[3].base;
390 *(unsigned32*)dest = val32;
391 }
392 else if ( timer_nr == 4 )
393 {
394 val32 = (timers->reg[4].base << 16) | timers->reg[5].base;
395 *(unsigned32*)dest = val32;
396 }
397 else
398 {
399 hw_abort (me, "bad read size of 4 bytes to TM%dBR.", timer_nr);
400 }
401 break;
402
403 default:
404 hw_abort (me, "bad read size must of %d bytes to TM%dBR.",
405 nr_bytes, timer_nr);
406 }
407 }
408
409
410 static void
411 read_counter (struct hw *me,
412 struct mn103tim *timers,
413 int timer_nr,
414 void *dest,
415 unsigned nr_bytes)
416 {
417 unsigned32 val;
418
419 if ( NULL == timers->timer[timer_nr].event )
420 {
421 /* Timer is not counting, use value in base register. */
422 if ( timer_nr == 6 )
423 {
424 val = 0; /* timer 6 is an up counter */
425 }
426 else
427 {
428 val = timers->reg[timer_nr].base;
429 }
430 }
431 else
432 {
433 if ( timer_nr == 6 ) /* timer 6 is an up counter. */
434 {
435 val = hw_event_queue_time(me) - timers->timer[timer_nr].start;
436 }
437 else
438 {
439 /* ticks left = start time + div ratio - curr time */
440 /* Cannot use base register because it can be written during counting and it
441 doesn't affect counter until underflow occurs. */
442
443 val = timers->timer[timer_nr].start + timers->timer[timer_nr].div_ratio
444 - hw_event_queue_time(me);
445 }
446 }
447
448 switch (nr_bytes) {
449 case 1:
450 *(unsigned8 *)dest = val;
451 break;
452
453 case 2:
454 *(unsigned16 *)dest = val;
455 break;
456
457 case 4:
458 *(unsigned32 *)dest = val;
459 break;
460
461 default:
462 hw_abort(me, "bad read size for reading counter");
463 }
464
465 }
466
467
468 static void
469 read_special_timer6_reg (struct hw *me,
470 struct mn103tim *timers,
471 int timer_nr,
472 void *dest,
473 unsigned nr_bytes)
474 {
475 unsigned32 val;
476
477 switch (nr_bytes) {
478 case 1:
479 {
480 switch ( timer_nr ) {
481 case TM6MDA:
482 *(unsigned8 *)dest = timers->tm6mda;
483 break;
484
485 case TM6MDB:
486 *(unsigned8 *)dest = timers->tm6mdb;
487 break;
488
489 case TM6CA:
490 *(unsigned8 *)dest = timers->tm6ca;
491 break;
492
493 case TM6CB:
494 *(unsigned8 *)dest = timers->tm6cb;
495 break;
496
497 default:
498 break;
499 }
500 break;
501 }
502
503 case 2:
504 if ( timer_nr == TM6CA )
505 {
506 *(unsigned16 *)dest = timers->tm6ca;
507 }
508 else if ( timer_nr == TM6CB )
509 {
510 *(unsigned16 *)dest = timers->tm6cb;
511 }
512 else
513 {
514 hw_abort(me, "bad read size for timer 6 mode A/B register");
515 }
516 break;
517
518 default:
519 hw_abort(me, "bad read size for timer 6 register");
520 }
521
522 }
523
524
525 static unsigned
526 mn103tim_io_read_buffer (struct hw *me,
527 void *dest,
528 int space,
529 unsigned_word base,
530 unsigned nr_bytes)
531 {
532 struct mn103tim *timers = hw_data (me);
533 enum timer_register_types timer_reg;
534
535 HW_TRACE ((me, "read 0x%08lx %d", (long) base, (int) nr_bytes));
536
537 timer_reg = decode_addr (me, timers, base);
538
539 /* It can be either a mode register, a base register, a binary counter, */
540 /* or a special timer 6 register. Check in that order. */
541 if ( timer_reg >= FIRST_MODE_REG && timer_reg <= LAST_MODE_REG )
542 {
543 read_mode_reg(me, timers, timer_reg-FIRST_MODE_REG, dest, nr_bytes);
544 }
545 else if ( timer_reg <= LAST_BASE_REG )
546 {
547 read_base_reg(me, timers, timer_reg-FIRST_BASE_REG, dest, nr_bytes);
548 }
549 else if ( timer_reg <= LAST_COUNTER )
550 {
551 read_counter(me, timers, timer_reg-FIRST_COUNTER, dest, nr_bytes);
552 }
553 else if ( timer_reg <= LAST_TIMER_REG )
554 {
555 read_special_timer6_reg(me, timers, timer_reg, dest, nr_bytes);
556 }
557 else
558 {
559 hw_abort(me, "invalid timer register address.");
560 }
561
562 return nr_bytes;
563 }
564
565
566 static void
567 do_counter_event (struct hw *me,
568 void *data)
569 {
570 struct mn103tim *timers = hw_data(me);
571 int timer_nr = (int) data;
572 int next_timer;
573
574 /* Check if counting is still enabled. */
575 if ( (timers->reg[timer_nr].mode & count_mask) != 0 )
576 {
577 /* Generate an interrupt for the timer underflow (TIMERn_UFLOW). */
578
579 /* Port event occurs on port of last cascaded timer. */
580 /* This works across timer range from 0 to NR_REG_TIMERS because */
581 /* the first 16 bit timer (timer 4) is not allowed to be set as */
582 /* a cascading timer. */
583 for ( next_timer = timer_nr+1; next_timer < NR_REG_TIMERS; ++next_timer )
584 {
585 if ( (timers->reg[next_timer].mode & clock_mask) != clk_cascaded )
586 {
587 break;
588 }
589 }
590 hw_port_event (me, next_timer-1, 1);
591
592 /* Schedule next timeout. */
593 timers->timer[timer_nr].start = hw_event_queue_time(me);
594 /* FIX: Check if div_ratio has changed and if it's now 0. */
595 timers->timer[timer_nr].event
596 = hw_event_queue_schedule (me, timers->timer[timer_nr].div_ratio,
597 do_counter_event, (void *)timer_nr);
598 }
599 else
600 {
601 timers->timer[timer_nr].event = NULL;
602 }
603
604 }
605
606
607 static void
608 do_counter6_event (struct hw *me,
609 void *data)
610 {
611 struct mn103tim *timers = hw_data(me);
612 int timer_nr = (int) data;
613 int next_timer;
614
615 /* Check if counting is still enabled. */
616 if ( (timers->reg[timer_nr].mode & count_mask) != 0 )
617 {
618 /* Generate an interrupt for the timer underflow (TIMERn_UFLOW). */
619 hw_port_event (me, timer_nr, 1);
620
621 /* Schedule next timeout. */
622 timers->timer[timer_nr].start = hw_event_queue_time(me);
623 /* FIX: Check if div_ratio has changed and if it's now 0. */
624 timers->timer[timer_nr].event
625 = hw_event_queue_schedule (me, timers->timer[timer_nr].div_ratio,
626 do_counter6_event, (void *)timer_nr);
627 }
628 else
629 {
630 timers->timer[timer_nr].event = NULL;
631 }
632
633 }
634
635 static void
636 write_base_reg (struct hw *me,
637 struct mn103tim *timers,
638 int timer_nr,
639 const void *source,
640 unsigned nr_bytes)
641 {
642 unsigned i;
643 const unsigned8 *buf8 = source;
644 const unsigned16 *buf16 = source;
645
646 /* If TMnCNE == 0 (counting is off), writing to the base register
647 (TMnBR) causes a simultaneous write to the counter reg (TMnBC).
648 Else, the TMnBC is reloaded with the value from TMnBR when
649 underflow occurs. Since the counter register is not explicitly
650 maintained, this functionality is handled in read_counter. */
651
652 /* Check nr_bytes: write of 1, 2 or 4 bytes allowed depending on timer. */
653 switch ( nr_bytes )
654 {
655 case 1:
656 /* Storing 1 byte is ok for all registers. */
657 timers->reg[timer_nr].base = buf8[0];
658 break;
659
660 case 2:
661 if ( timer_nr == 1 || timer_nr == 3 )
662 {
663 hw_abort (me, "bad write size of 2 bytes to TM%dBR.", timer_nr);
664 }
665 else
666 {
667 if ( timer_nr < NR_8BIT_TIMERS )
668 {
669 timers->reg[timer_nr].base = buf8[0];
670 timers->reg[timer_nr+1].base = buf8[1];
671 }
672 else
673 {
674 timers->reg[timer_nr].base = buf16[0];
675 }
676 }
677 break;
678
679 case 4:
680 if ( timer_nr == 0 )
681 {
682 timers->reg[0].base = buf8[0];
683 timers->reg[1].base = buf8[1];
684 timers->reg[2].base = buf8[2];
685 timers->reg[3].base = buf8[3];
686 }
687 else if ( timer_nr == 4 )
688 {
689 timers->reg[4].base = buf16[0];
690 timers->reg[5].base = buf16[1];
691 }
692 else
693 {
694 hw_abort (me, "bad write size of 4 bytes to TM%dBR.", timer_nr);
695 }
696 break;
697
698 default:
699 hw_abort (me, "bad write size must of %d bytes to TM%dBR.",
700 nr_bytes, timer_nr);
701 }
702
703 }
704
705 static void
706 write_mode_reg (struct hw *me,
707 struct mn103tim *timers,
708 int timer_nr,
709 const void *source,
710 unsigned nr_bytes)
711 /* for timers 0 to 5 */
712 {
713 unsigned i;
714 unsigned8 mode_val, next_mode_val;
715 unsigned32 div_ratio;
716
717 if ( nr_bytes != 1 )
718 {
719 hw_abort (me, "bad write size of %d bytes to TM%dMD.", nr_bytes, timer_nr);
720 }
721
722 mode_val = *(unsigned8 *)source;
723 timers->reg[timer_nr].mode = mode_val;
724
725 if ( ( mode_val & count_and_load_mask ) == count_and_load_mask )
726 {
727 hw_abort(me, "Cannot load base reg and start counting simultaneously.");
728 }
729 if ( ( mode_val & bits2to5_mask ) != 0 )
730 {
731 hw_abort(me, "Cannot write to bits 2 to 5 of mode register");
732 }
733
734 if ( mode_val & count_mask )
735 {
736 /* - de-schedule any previous event. */
737 /* - add new event to queue to start counting. */
738 /* - assert that counter == base reg? */
739
740 /* For cascaded timers, */
741 if ( (mode_val & clock_mask) == clk_cascaded )
742 {
743 if ( timer_nr == 0 || timer_nr == 4 )
744 {
745 hw_abort(me, "Timer %d cannot be cascaded.", timer_nr);
746 }
747 }
748 else
749 {
750 div_ratio = timers->reg[timer_nr].base;
751
752 /* Check for cascading. */
753 if ( timer_nr < NR_8BIT_TIMERS )
754 {
755 for ( i = timer_nr + 1; i <= 3; ++i )
756 {
757 next_mode_val = timers->reg[i].mode;
758 if ( ( next_mode_val & clock_mask ) == clk_cascaded )
759 {
760 /* Check that CNE is on. */
761 if ( ( next_mode_val & count_mask ) == 0 )
762 {
763 hw_abort (me, "cascaded timer not ready for counting");
764 }
765 ASSERT(timers->timer[i].event == NULL);
766 ASSERT(timers->timer[i].div_ratio == 0);
767 div_ratio = div_ratio
768 | (timers->reg[i].base << (8*(i-timer_nr)));
769 }
770 else
771 {
772 break;
773 }
774 }
775 }
776 else
777 {
778 /* Mode register for a 16 bit timer */
779 next_mode_val = timers->reg[timer_nr+1].mode;
780 if ( ( next_mode_val & clock_mask ) == clk_cascaded )
781 {
782 /* Check that CNE is on. */
783 if ( ( next_mode_val & count_mask ) == 0 )
784 {
785 hw_abort (me, "cascaded timer not ready for counting");
786 }
787 ASSERT(timers->timer[timer_nr+1].event == NULL);
788 ASSERT(timers->timer[timer_nr+1].div_ratio == 0);
789 div_ratio = div_ratio | (timers->reg[timer_nr+1].base << 16);
790 }
791 }
792
793 timers->timer[timer_nr].div_ratio = div_ratio;
794
795 if ( NULL != timers->timer[timer_nr].event )
796 {
797 hw_event_queue_deschedule (me, timers->timer[timer_nr].event);
798 timers->timer[timer_nr].event = NULL;
799 }
800
801 if ( div_ratio > 0 )
802 {
803 /* Set start time. */
804 timers->timer[timer_nr].start = hw_event_queue_time(me);
805 timers->timer[timer_nr].event
806 = hw_event_queue_schedule(me, div_ratio,
807 do_counter_event,
808 (void *)(timer_nr));
809 }
810 }
811 }
812 else
813 {
814 /* Turn off counting */
815 if ( NULL != timers->timer[timer_nr].event )
816 {
817 ASSERT((timers->reg[timer_nr].mode & clock_mask) != clk_cascaded);
818 hw_event_queue_deschedule (me, timers->timer[timer_nr].event);
819 timers->timer[timer_nr].event = NULL;
820 }
821 else
822 {
823 if ( (timers->reg[timer_nr].mode & clock_mask) == clk_cascaded )
824 {
825 ASSERT(timers->timer[timer_nr].event == NULL);
826 }
827 }
828
829 }
830
831 }
832
833 static void
834 write_tm6md (struct hw *me,
835 struct mn103tim *timers,
836 unsigned_word address,
837 const void *source,
838 unsigned nr_bytes)
839 {
840 unsigned8 mode_val0 = 0x00, mode_val1 = 0x00;
841 unsigned32 div_ratio;
842 int timer_nr = 6;
843
844 unsigned_word offset = address - timers->block[0].base;
845
846 if ((offset != 0x84 && nr_bytes > 1) || nr_bytes > 2 )
847 {
848 hw_abort (me, "Bad write size of %d bytes to TM6MD", nr_bytes);
849 }
850
851 if ( offset == 0x84 ) /* address of TM6MD */
852 {
853 /* Fill in first byte of mode */
854 mode_val0 = *(unsigned8 *)source;
855 timers->tm6md0 = mode_val0;
856
857 if ( ( mode_val0 & 0x26 ) != 0 )
858 {
859 hw_abort(me, "Cannot write to bits 5, 3, and 2 of TM6MD");
860 }
861 }
862
863 if ( offset == 0x85 || nr_bytes == 2 )
864 {
865 /* Fill in second byte of mode */
866 if ( nr_bytes == 2 )
867 {
868 mode_val1 = *(unsigned8 *)source+1;
869 }
870 else
871 {
872 mode_val1 = *(unsigned8 *)source;
873 }
874
875 timers->tm6md1 = mode_val1;
876
877 if ( ( mode_val1 & count_and_load_mask ) == count_and_load_mask )
878 {
879 hw_abort(me, "Cannot load base reg and start counting simultaneously.");
880 }
881 if ( ( mode_val1 & bits0to2_mask ) != 0 )
882 {
883 hw_abort(me, "Cannot write to bits 8 to 10 of TM6MD");
884 }
885 }
886
887 if ( mode_val1 & count_mask )
888 {
889 /* - de-schedule any previous event. */
890 /* - add new event to queue to start counting. */
891 /* - assert that counter == base reg? */
892
893 div_ratio = timers->tm6ca; /* binary counter for timer 6 */
894 timers->timer[timer_nr].div_ratio = div_ratio;
895 if ( NULL != timers->timer[timer_nr].event )
896 {
897 hw_event_queue_deschedule (me, timers->timer[timer_nr].event);
898 timers->timer[timer_nr].event = NULL;
899 }
900
901 if ( div_ratio > 0 )
902 {
903 /* Set start time. */
904 timers->timer[timer_nr].start = hw_event_queue_time(me);
905 timers->timer[timer_nr].event
906 = hw_event_queue_schedule(me, div_ratio,
907 do_counter6_event,
908 (void *)(timer_nr));
909 }
910 }
911 else
912 {
913 /* Turn off counting */
914 if ( NULL != timers->timer[timer_nr].event )
915 {
916 hw_event_queue_deschedule (me, timers->timer[timer_nr].event);
917 timers->timer[timer_nr].event = NULL;
918 }
919 }
920 }
921
922
923
924 static void
925 write_special_timer6_reg (struct hw *me,
926 struct mn103tim *timers,
927 int timer_nr,
928 const void *source,
929 unsigned nr_bytes)
930 {
931 unsigned32 val;
932
933 switch (nr_bytes) {
934 case 1:
935 {
936 switch ( timer_nr ) {
937 case TM6MDA:
938 timers->tm6mda = *(unsigned8 *)source;
939 break;
940
941 case TM6MDB:
942 timers->tm6mdb = *(unsigned8 *)source;
943 break;
944
945 case TM6CA:
946 timers->tm6ca = *(unsigned8 *)source;
947 break;
948
949 case TM6CB:
950 timers->tm6cb = *(unsigned8 *)source;
951 break;
952
953 default:
954 break;
955 }
956 break;
957 }
958
959 case 2:
960 if ( timer_nr == TM6CA )
961 {
962 timers->tm6ca = *(unsigned16 *)source;
963 }
964 else if ( timer_nr == TM6CB )
965 {
966 timers->tm6cb = *(unsigned16 *)source;
967 }
968 else
969 {
970 hw_abort(me, "bad read size for timer 6 mode A/B register");
971 }
972 break;
973
974 default:
975 hw_abort(me, "bad read size for timer 6 register");
976 }
977
978 }
979
980
981 static unsigned
982 mn103tim_io_write_buffer (struct hw *me,
983 const void *source,
984 int space,
985 unsigned_word base,
986 unsigned nr_bytes)
987 {
988 struct mn103tim *timers = hw_data (me);
989 enum timer_register_types timer_reg;
990
991 HW_TRACE ((me, "write to 0x%08lx length %d with 0x%x", (long) base,
992 (int) nr_bytes, *(unsigned32 *)source));
993
994 timer_reg = decode_addr (me, timers, base);
995
996 /* It can be either a mode register, a base register, a binary counter, */
997 /* or a special timer 6 register. Check in that order. */
998 if ( timer_reg <= LAST_MODE_REG )
999 {
1000 if ( timer_reg == 6 )
1001 {
1002 write_tm6md(me, timers, base, source, nr_bytes);
1003 }
1004 else
1005 {
1006 write_mode_reg(me, timers, timer_reg-FIRST_MODE_REG,
1007 source, nr_bytes);
1008 }
1009 }
1010 else if ( timer_reg <= LAST_BASE_REG )
1011 {
1012 write_base_reg(me, timers, timer_reg-FIRST_BASE_REG, source, nr_bytes);
1013 }
1014 else if ( timer_reg <= LAST_COUNTER )
1015 {
1016 hw_abort(me, "cannot write to counter");
1017 }
1018 else if ( timer_reg <= LAST_TIMER_REG )
1019 {
1020 write_special_timer6_reg(me, timers, timer_reg, source, nr_bytes);
1021 }
1022 else
1023 {
1024 hw_abort(me, "invalid reg type");
1025 }
1026
1027 return nr_bytes;
1028 }
1029
1030
1031 const struct hw_descriptor dv_mn103tim_descriptor[] = {
1032 { "mn103tim", mn103tim_finish, },
1033 { NULL },
1034 };