]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/testsuite/sim/bfin/conv_enc_gen.s
sim: bfin: import testsuite
[thirdparty/binutils-gdb.git] / sim / testsuite / sim / bfin / conv_enc_gen.s
1 # mach: bfin
2
3 // GENERIC CONVOLUTIONAL ENCODER
4 // This a generic rate 1/n convolutional encoder. It computes n output
5 // bits for each input bit, based on n generic polynomials.
6 // It uses the set of BXOR_CC instructions to compute bit XOR
7 // reduction from a state masked by a polynomial. For an alternate
8 // solution based on assembling several partial words, as in
9 // the BDT benchmark, see file conv_enc.c. The solution presented
10 // here is slower than conv_enc.c, but more generic.
11 //
12 // Forward Shift Register
13 // -----------------------
14 // This solution implements the XOR function by shifting the state
15 // left by one, applying a mask to the state, and reducing
16 // the result with a bit XOR reduction function.
17 // ----- XOR------------> G0
18 // | | | |
19 // +------------------------------+
20 // | b0 b1 b2 b3 b14 b15 | <- in
21 // +------------------------------+
22 // | | | | |
23 // ----- XOR------------> G1
24 // Instruction BXOR computes the bit G0 or G1 and stores it into CC
25 // and also into a destination reg half. Here, we take CC and rotate it
26 // into an output register.
27 // However, one can also store the output bit directly by storing
28 // the register half where this bit is placed. This would result
29 // in an output structure similar to the one in the original function
30 // Convolutional_Encode(), where an entire half word holds a bit.
31 // The resulting execution speed would be roughly twice as fast,
32 // since there is no need to rotate output bit via CC.
33
34 .include "testutils.inc"
35 start
36
37 loadsym P0, input;
38 loadsym P1, output;
39
40 R1 = 0; R2 = 0;R3 = 0;
41
42 R2.L = 0;
43 R2.H = 0xa01d; // polynom 0
44 R3.L = 0;
45 R3.H = 0x12f4; // polynom 1
46
47 // load and CurrentState to upper half of A0
48 A1 = A0 = 0;
49 R0 = 0x0000;
50 A0.w = R0;
51 A0 = A0 << 16;
52
53 // l-loop counter is in P4
54 P4 = 2(Z);
55 // **** START l-LOOP *****
56 l$0:
57
58 // insert 16 bits of input into lower half of A0
59 // and advance input pointer
60 R0 = W [ P0 ++ ] (Z);
61 A0.L = R0.L;
62
63 P5 = 2 (Z);
64 LSETUP ( m$0 , m$0end ) LC0 = P5; // **** BEGIN m-LOOP *****
65 m$0:
66
67 P5 = 8 (Z);
68 LSETUP ( i$1 , i$1end ) LC1 = P5; // **** BEGIN i-LOOP *****
69 i$1:
70 R4.L = CC = BXORSHIFT( A0 , R2 ); // polynom0 -> CC
71 R1 = ROT R1 BY 1; // CC -> R1
72 R4.L = CC = BXOR( A0 , R3 ); // polynom1 -> CC
73 i$1end:
74 R1 = ROT R1 BY 1; // CC -> R1
75
76 // store 16 bits of outdata RL1
77 m$0end:
78 W [ P1 ++ ] = R1;
79
80 P4 += -1;
81 CC = P4 == 0;
82 IF !CC JUMP l$0; // **** END l-LOOP *****
83
84 // Check results
85 loadsym I2, output;
86 R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x8c62 );
87 R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x262e );
88 R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x5b4d );
89 R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x834f );
90 pass
91
92 .data
93 input:
94 .dw 0x999f
95 .dw 0x1999
96
97 output:
98 .dw 0x0000
99 .dw 0x0000
100 .dw 0x0000
101 .dw 0x0000