]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/v850/sim-main.h
sim: unify sim-cpu usage
[thirdparty/binutils-gdb.git] / sim / v850 / sim-main.h
1 #ifndef SIM_MAIN_H
2 #define SIM_MAIN_H
3
4 /* General config options */
5
6 #define WITH_CORE
7 #define WITH_MODULO_MEMORY 1
8 #define WITH_WATCHPOINTS 1
9
10
11 /* The v850 has 32bit words, numbered 31 (MSB) to 0 (LSB) */
12
13 #define WITH_TARGET_WORD_MSB 31
14
15 #include "config.h"
16 #include "sim-basics.h"
17 #include "sim-signal.h"
18 #include "sim-fpu.h"
19
20 typedef address_word sim_cia;
21
22 typedef struct _sim_cpu SIM_CPU;
23
24 #include "sim-base.h"
25
26 #include "simops.h"
27 #include "bfd.h"
28
29
30 typedef signed8 int8;
31 typedef unsigned8 uint8;
32 typedef signed16 int16;
33 typedef unsigned16 uint16;
34 typedef signed32 int32;
35 typedef unsigned32 uint32;
36 typedef unsigned32 reg_t;
37 typedef unsigned64 reg64_t;
38
39
40 /* The current state of the processor; registers, memory, etc. */
41
42 typedef struct _v850_regs {
43 reg_t regs[32]; /* general-purpose registers */
44 reg_t sregs[32]; /* system registers, including psw */
45 reg_t pc;
46 int dummy_mem; /* where invalid accesses go */
47 reg_t mpu0_sregs[28]; /* mpu0 system registers */
48 reg_t mpu1_sregs[28]; /* mpu1 system registers */
49 reg_t fpu_sregs[28]; /* fpu system registers */
50 reg_t selID_sregs[7][32]; /* system registers, selID 1 thru selID 7 */
51 reg64_t vregs[32]; /* vector registers. */
52 } v850_regs;
53
54 struct _sim_cpu
55 {
56 /* ... simulator specific members ... */
57 v850_regs reg;
58 reg_t psw_mask; /* only allow non-reserved bits to be set */
59 sim_event *pending_nmi;
60 /* ... base type ... */
61 sim_cpu_base base;
62 };
63
64 #define CIA_GET(CPU) ((CPU)->reg.pc + 0)
65 #define CIA_SET(CPU,VAL) ((CPU)->reg.pc = (VAL))
66
67 struct sim_state {
68 sim_cpu *cpu[MAX_NR_PROCESSORS];
69 #if 0
70 SIM_ADDR rom_size;
71 SIM_ADDR low_end;
72 SIM_ADDR high_start;
73 SIM_ADDR high_base;
74 void *mem;
75 #endif
76 sim_state_base base;
77 };
78
79 /* For compatibility, until all functions converted to passing
80 SIM_DESC as an argument */
81 extern SIM_DESC simulator;
82
83
84 #define V850_ROM_SIZE 0x8000
85 #define V850_LOW_END 0x200000
86 #define V850_HIGH_START 0xffe000
87
88
89 /* Because we are still using the old semantic table, provide compat
90 macro's that store the instruction where the old simops expects
91 it. */
92
93 extern uint32 OP[4];
94 #if 0
95 OP[0] = inst & 0x1f; /* RRRRR -> reg1 */
96 OP[1] = (inst >> 11) & 0x1f; /* rrrrr -> reg2 */
97 OP[2] = (inst >> 16) & 0xffff; /* wwwww -> reg3 OR imm16 */
98 OP[3] = inst;
99 #endif
100
101 #define SAVE_1 \
102 PC = cia; \
103 OP[0] = instruction_0 & 0x1f; \
104 OP[1] = (instruction_0 >> 11) & 0x1f; \
105 OP[2] = 0; \
106 OP[3] = instruction_0
107
108 #define COMPAT_1(CALL) \
109 SAVE_1; \
110 PC += (CALL); \
111 nia = PC
112
113 #define SAVE_2 \
114 PC = cia; \
115 OP[0] = instruction_0 & 0x1f; \
116 OP[1] = (instruction_0 >> 11) & 0x1f; \
117 OP[2] = instruction_1; \
118 OP[3] = (instruction_1 << 16) | instruction_0
119
120 #define COMPAT_2(CALL) \
121 SAVE_2; \
122 PC += (CALL); \
123 nia = PC
124
125
126 /* new */
127 #define GR ((CPU)->reg.regs)
128 #define SR ((CPU)->reg.sregs)
129 #define VR ((CPU)->reg.vregs)
130 #define MPU0_SR ((STATE_CPU (sd, 0))->reg.mpu0_sregs)
131 #define MPU1_SR ((STATE_CPU (sd, 0))->reg.mpu1_sregs)
132 #define FPU_SR ((STATE_CPU (sd, 0))->reg.fpu_sregs)
133
134 /* old */
135 #define State (STATE_CPU (simulator, 0)->reg)
136 #define PC (State.pc)
137 #define SP_REGNO 3
138 #define SP (State.regs[SP_REGNO])
139 #define EP (State.regs[30])
140
141 #define EIPC (State.sregs[0])
142 #define EIPSW (State.sregs[1])
143 #define FEPC (State.sregs[2])
144 #define FEPSW (State.sregs[3])
145 #define ECR (State.sregs[4])
146 #define PSW (State.sregs[5])
147 #define PSW_REGNO 5
148 #define EIIC (State.sregs[13])
149 #define FEIC (State.sregs[14])
150 #define DBIC (SR[15])
151 #define CTPC (SR[16])
152 #define CTPSW (SR[17])
153 #define DBPC (State.sregs[18])
154 #define DBPSW (State.sregs[19])
155 #define CTBP (State.sregs[20])
156 #define DIR (SR[21])
157 #define EIWR (SR[28])
158 #define FEWR (SR[29])
159 #define DBWR (SR[30])
160 #define BSEL (SR[31])
161
162 #define PSW_US BIT32 (8)
163 #define PSW_NP 0x80
164 #define PSW_EP 0x40
165 #define PSW_ID 0x20
166 #define PSW_SAT 0x10
167 #define PSW_CY 0x8
168 #define PSW_OV 0x4
169 #define PSW_S 0x2
170 #define PSW_Z 0x1
171
172 #define PSW_NPV (1<<18)
173 #define PSW_DMP (1<<17)
174 #define PSW_IMP (1<<16)
175
176 #define ECR_EICC 0x0000ffff
177 #define ECR_FECC 0xffff0000
178
179 /* FPU */
180
181 #define FPSR (FPU_SR[6])
182 #define FPSR_REGNO 6
183 #define FPEPC (FPU_SR[7])
184 #define FPST (FPU_SR[8])
185 #define FPST_REGNO 8
186 #define FPCC (FPU_SR[9])
187 #define FPCFG (FPU_SR[10])
188 #define FPCFG_REGNO 10
189
190 #define FPSR_DEM 0x00200000
191 #define FPSR_SEM 0x00100000
192 #define FPSR_RM 0x000c0000
193 #define FPSR_RN 0x00000000
194 #define FPSR_FS 0x00020000
195 #define FPSR_PR 0x00010000
196
197 #define FPSR_XC 0x0000fc00
198 #define FPSR_XCE 0x00008000
199 #define FPSR_XCV 0x00004000
200 #define FPSR_XCZ 0x00002000
201 #define FPSR_XCO 0x00001000
202 #define FPSR_XCU 0x00000800
203 #define FPSR_XCI 0x00000400
204
205 #define FPSR_XE 0x000003e0
206 #define FPSR_XEV 0x00000200
207 #define FPSR_XEZ 0x00000100
208 #define FPSR_XEO 0x00000080
209 #define FPSR_XEU 0x00000040
210 #define FPSR_XEI 0x00000020
211
212 #define FPSR_XP 0x0000001f
213 #define FPSR_XPV 0x00000010
214 #define FPSR_XPZ 0x00000008
215 #define FPSR_XPO 0x00000004
216 #define FPSR_XPU 0x00000002
217 #define FPSR_XPI 0x00000001
218
219 #define FPST_PR 0x00008000
220 #define FPST_XCE 0x00002000
221 #define FPST_XCV 0x00001000
222 #define FPST_XCZ 0x00000800
223 #define FPST_XCO 0x00000400
224 #define FPST_XCU 0x00000200
225 #define FPST_XCI 0x00000100
226
227 #define FPST_XPV 0x00000010
228 #define FPST_XPZ 0x00000008
229 #define FPST_XPO 0x00000004
230 #define FPST_XPU 0x00000002
231 #define FPST_XPI 0x00000001
232
233 #define FPCFG_RM 0x00000180
234 #define FPCFG_XEV 0x00000010
235 #define FPCFG_XEZ 0x00000008
236 #define FPCFG_XEO 0x00000004
237 #define FPCFG_XEU 0x00000002
238 #define FPCFG_XEI 0x00000001
239
240 #define GET_FPCC()\
241 ((FPSR >> 24) &0xf)
242
243 #define CLEAR_FPCC(bbb)\
244 (FPSR &= ~(1 << (bbb+24)))
245
246 #define SET_FPCC(bbb)\
247 (FPSR |= 1 << (bbb+24))
248
249 #define TEST_FPCC(bbb)\
250 ((FPSR & (1 << (bbb+24))) != 0)
251
252 #define FPSR_GET_ROUND() \
253 (((FPSR & FPSR_RM) == FPSR_RN) ? sim_fpu_round_near \
254 : ((FPSR & FPSR_RM) == 0x00040000) ? sim_fpu_round_up \
255 : ((FPSR & FPSR_RM) == 0x00080000) ? sim_fpu_round_down \
256 : sim_fpu_round_zero)
257
258
259 enum FPU_COMPARE {
260 FPU_CMP_F = 0,
261 FPU_CMP_UN,
262 FPU_CMP_EQ,
263 FPU_CMP_UEQ,
264 FPU_CMP_OLT,
265 FPU_CMP_ULT,
266 FPU_CMP_OLE,
267 FPU_CMP_ULE,
268 FPU_CMP_SF,
269 FPU_CMP_NGLE,
270 FPU_CMP_SEQ,
271 FPU_CMP_NGL,
272 FPU_CMP_LT,
273 FPU_CMP_NGE,
274 FPU_CMP_LE,
275 FPU_CMP_NGT
276 };
277
278
279 /* MPU */
280 #define MPM (MPU1_SR[0])
281 #define MPC (MPU1_SR[1])
282 #define MPC_REGNO 1
283 #define TID (MPU1_SR[2])
284 #define PPA (MPU1_SR[3])
285 #define PPM (MPU1_SR[4])
286 #define PPC (MPU1_SR[5])
287 #define DCC (MPU1_SR[6])
288 #define DCV0 (MPU1_SR[7])
289 #define DCV1 (MPU1_SR[8])
290 #define SPAL (MPU1_SR[10])
291 #define SPAU (MPU1_SR[11])
292 #define IPA0L (MPU1_SR[12])
293 #define IPA0U (MPU1_SR[13])
294 #define IPA1L (MPU1_SR[14])
295 #define IPA1U (MPU1_SR[15])
296 #define IPA2L (MPU1_SR[16])
297 #define IPA2U (MPU1_SR[17])
298 #define IPA3L (MPU1_SR[18])
299 #define IPA3U (MPU1_SR[19])
300 #define DPA0L (MPU1_SR[20])
301 #define DPA0U (MPU1_SR[21])
302 #define DPA1L (MPU1_SR[22])
303 #define DPA1U (MPU1_SR[23])
304 #define DPA2L (MPU1_SR[24])
305 #define DPA2U (MPU1_SR[25])
306 #define DPA3L (MPU1_SR[26])
307 #define DPA3U (MPU1_SR[27])
308
309 #define PPC_PPE 0x1
310 #define SPAL_SPE 0x1
311 #define SPAL_SPS 0x10
312
313 #define VIP (MPU0_SR[0])
314 #define VMECR (MPU0_SR[4])
315 #define VMTID (MPU0_SR[5])
316 #define VMADR (MPU0_SR[6])
317 #define VPECR (MPU0_SR[8])
318 #define VPTID (MPU0_SR[9])
319 #define VPADR (MPU0_SR[10])
320 #define VDECR (MPU0_SR[12])
321 #define VDTID (MPU0_SR[13])
322
323 #define MPM_AUE 0x2
324 #define MPM_MPE 0x1
325
326 #define VMECR_VMX 0x2
327 #define VMECR_VMR 0x4
328 #define VMECR_VMW 0x8
329 #define VMECR_VMS 0x10
330 #define VMECR_VMRMW 0x20
331 #define VMECR_VMMS 0x40
332
333 #define IPA2ADDR(IPA) ((IPA) & 0x1fffff80)
334 #define IPA_IPE 0x1
335 #define IPA_IPX 0x2
336 #define IPA_IPR 0x4
337 #define IPE0 (IPA0L & IPA_IPE)
338 #define IPE1 (IPA1L & IPA_IPE)
339 #define IPE2 (IPA2L & IPA_IPE)
340 #define IPE3 (IPA3L & IPA_IPE)
341 #define IPX0 (IPA0L & IPA_IPX)
342 #define IPX1 (IPA1L & IPA_IPX)
343 #define IPX2 (IPA2L & IPA_IPX)
344 #define IPX3 (IPA3L & IPA_IPX)
345 #define IPR0 (IPA0L & IPA_IPR)
346 #define IPR1 (IPA1L & IPA_IPR)
347 #define IPR2 (IPA2L & IPA_IPR)
348 #define IPR3 (IPA3L & IPA_IPR)
349
350 #define DPA2ADDR(DPA) ((DPA) & 0x1fffff80)
351 #define DPA_DPE 0x1
352 #define DPA_DPR 0x4
353 #define DPA_DPW 0x8
354 #define DPE0 (DPA0L & DPA_DPE)
355 #define DPE1 (DPA1L & DPA_DPE)
356 #define DPE2 (DPA2L & DPA_DPE)
357 #define DPE3 (DPA3L & DPA_DPE)
358 #define DPR0 (DPA0L & DPA_DPR)
359 #define DPR1 (DPA1L & DPA_DPR)
360 #define DPR2 (DPA2L & DPA_DPR)
361 #define DPR3 (DPA3L & DPA_DPR)
362 #define DPW0 (DPA0L & DPA_DPW)
363 #define DPW1 (DPA1L & DPA_DPW)
364 #define DPW2 (DPA2L & DPA_DPW)
365 #define DPW3 (DPA3L & DPA_DPW)
366
367 #define DCC_DCE0 0x1
368 #define DCC_DCE1 0x10000
369
370 #define PPA2ADDR(PPA) ((PPA) & 0x1fffff80)
371 #define PPC_PPC 0xfffffffe
372 #define PPC_PPE 0x1
373 #define PPC_PPM 0x0000fff8
374
375
376 #define SEXT3(x) ((((x)&0x7)^(~0x3))+0x4)
377
378 /* sign-extend a 4-bit number */
379 #define SEXT4(x) ((((x)&0xf)^(~0x7))+0x8)
380
381 /* sign-extend a 5-bit number */
382 #define SEXT5(x) ((((x)&0x1f)^(~0xf))+0x10)
383
384 /* sign-extend a 9-bit number */
385 #define SEXT9(x) ((((x)&0x1ff)^(~0xff))+0x100)
386
387 /* sign-extend a 22-bit number */
388 #define SEXT22(x) ((((x)&0x3fffff)^(~0x1fffff))+0x200000)
389
390 /* sign extend a 40 bit number */
391 #define SEXT40(x) ((((x) & UNSIGNED64 (0xffffffffff)) \
392 ^ (~UNSIGNED64 (0x7fffffffff))) \
393 + UNSIGNED64 (0x8000000000))
394
395 /* sign extend a 44 bit number */
396 #define SEXT44(x) ((((x) & UNSIGNED64 (0xfffffffffff)) \
397 ^ (~ UNSIGNED64 (0x7ffffffffff))) \
398 + UNSIGNED64 (0x80000000000))
399
400 /* sign extend a 60 bit number */
401 #define SEXT60(x) ((((x) & UNSIGNED64 (0xfffffffffffffff)) \
402 ^ (~ UNSIGNED64 (0x7ffffffffffffff))) \
403 + UNSIGNED64 (0x800000000000000))
404
405 /* No sign extension */
406 #define NOP(x) (x)
407
408 #define INC_ADDR(x,i) x = ((State.MD && x == MOD_E) ? MOD_S : (x)+(i))
409
410 #define RLW(x) load_mem (x, 4)
411
412 /* Function declarations. */
413
414 #define IMEM16(EA) \
415 sim_core_read_aligned_2 (CPU, PC, exec_map, (EA))
416
417 #define IMEM16_IMMED(EA,N) \
418 sim_core_read_aligned_2 (STATE_CPU (sd, 0), \
419 PC, exec_map, (EA) + (N) * 2)
420
421 #define load_mem(ADDR,LEN) \
422 sim_core_read_unaligned_##LEN (STATE_CPU (simulator, 0), \
423 PC, read_map, (ADDR))
424
425 #define store_mem(ADDR,LEN,DATA) \
426 sim_core_write_unaligned_##LEN (STATE_CPU (simulator, 0), \
427 PC, write_map, (ADDR), (DATA))
428
429
430 /* compare cccc field against PSW */
431 int condition_met (unsigned code);
432
433
434 /* Debug/tracing calls */
435
436 enum op_types
437 {
438 OP_UNKNOWN,
439 OP_NONE,
440 OP_TRAP,
441 OP_REG,
442 OP_REG_REG,
443 OP_REG_REG_CMP,
444 OP_REG_REG_MOVE,
445 OP_IMM_REG,
446 OP_IMM_REG_CMP,
447 OP_IMM_REG_MOVE,
448 OP_COND_BR,
449 OP_LOAD16,
450 OP_STORE16,
451 OP_LOAD32,
452 OP_STORE32,
453 OP_JUMP,
454 OP_IMM_REG_REG,
455 OP_UIMM_REG_REG,
456 OP_IMM16_REG_REG,
457 OP_UIMM16_REG_REG,
458 OP_BIT,
459 OP_EX1,
460 OP_EX2,
461 OP_LDSR,
462 OP_STSR,
463 OP_BIT_CHANGE,
464 OP_REG_REG_REG,
465 OP_REG_REG3,
466 OP_IMM_REG_REG_REG,
467 OP_PUSHPOP1,
468 OP_PUSHPOP2,
469 OP_PUSHPOP3,
470 };
471
472 #ifdef DEBUG
473 void trace_input (char *name, enum op_types type, int size);
474 void trace_output (enum op_types result);
475 void trace_result (int has_result, unsigned32 result);
476
477 extern int trace_num_values;
478 extern unsigned32 trace_values[];
479 extern unsigned32 trace_pc;
480 extern const char *trace_name;
481 extern int trace_module;
482
483 #define TRACE_BRANCH0() \
484 do { \
485 if (TRACE_BRANCH_P (CPU)) { \
486 trace_module = TRACE_BRANCH_IDX; \
487 trace_pc = cia; \
488 trace_name = itable[MY_INDEX].name; \
489 trace_num_values = 0; \
490 trace_result (1, (nia)); \
491 } \
492 } while (0)
493
494 #define TRACE_BRANCH1(IN1) \
495 do { \
496 if (TRACE_BRANCH_P (CPU)) { \
497 trace_module = TRACE_BRANCH_IDX; \
498 trace_pc = cia; \
499 trace_name = itable[MY_INDEX].name; \
500 trace_values[0] = (IN1); \
501 trace_num_values = 1; \
502 trace_result (1, (nia)); \
503 } \
504 } while (0)
505
506 #define TRACE_BRANCH2(IN1, IN2) \
507 do { \
508 if (TRACE_BRANCH_P (CPU)) { \
509 trace_module = TRACE_BRANCH_IDX; \
510 trace_pc = cia; \
511 trace_name = itable[MY_INDEX].name; \
512 trace_values[0] = (IN1); \
513 trace_values[1] = (IN2); \
514 trace_num_values = 2; \
515 trace_result (1, (nia)); \
516 } \
517 } while (0)
518
519 #define TRACE_BRANCH3(IN1, IN2, IN3) \
520 do { \
521 if (TRACE_BRANCH_P (CPU)) { \
522 trace_module = TRACE_BRANCH_IDX; \
523 trace_pc = cia; \
524 trace_name = itable[MY_INDEX].name; \
525 trace_values[0] = (IN1); \
526 trace_values[1] = (IN2); \
527 trace_values[2] = (IN3); \
528 trace_num_values = 3; \
529 trace_result (1, (nia)); \
530 } \
531 } while (0)
532
533 #define TRACE_LD(ADDR,RESULT) \
534 do { \
535 if (TRACE_MEMORY_P (CPU)) { \
536 trace_module = TRACE_MEMORY_IDX; \
537 trace_pc = cia; \
538 trace_name = itable[MY_INDEX].name; \
539 trace_values[0] = (ADDR); \
540 trace_num_values = 1; \
541 trace_result (1, (RESULT)); \
542 } \
543 } while (0)
544
545 #define TRACE_LD_NAME(NAME, ADDR,RESULT) \
546 do { \
547 if (TRACE_MEMORY_P (CPU)) { \
548 trace_module = TRACE_MEMORY_IDX; \
549 trace_pc = cia; \
550 trace_name = (NAME); \
551 trace_values[0] = (ADDR); \
552 trace_num_values = 1; \
553 trace_result (1, (RESULT)); \
554 } \
555 } while (0)
556
557 #define TRACE_ST(ADDR,RESULT) \
558 do { \
559 if (TRACE_MEMORY_P (CPU)) { \
560 trace_module = TRACE_MEMORY_IDX; \
561 trace_pc = cia; \
562 trace_name = itable[MY_INDEX].name; \
563 trace_values[0] = (ADDR); \
564 trace_num_values = 1; \
565 trace_result (1, (RESULT)); \
566 } \
567 } while (0)
568
569 #define TRACE_FP_INPUT_FPU1(V0) \
570 do { \
571 if (TRACE_FPU_P (CPU)) \
572 { \
573 unsigned64 f0; \
574 sim_fpu_to64 (&f0, (V0)); \
575 trace_input_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
576 } \
577 } while (0)
578
579 #define TRACE_FP_INPUT_FPU2(V0, V1) \
580 do { \
581 if (TRACE_FPU_P (CPU)) \
582 { \
583 unsigned64 f0, f1; \
584 sim_fpu_to64 (&f0, (V0)); \
585 sim_fpu_to64 (&f1, (V1)); \
586 trace_input_fp2 (SD, CPU, TRACE_FPU_IDX, f0, f1); \
587 } \
588 } while (0)
589
590 #define TRACE_FP_INPUT_FPU3(V0, V1, V2) \
591 do { \
592 if (TRACE_FPU_P (CPU)) \
593 { \
594 unsigned64 f0, f1, f2; \
595 sim_fpu_to64 (&f0, (V0)); \
596 sim_fpu_to64 (&f1, (V1)); \
597 sim_fpu_to64 (&f2, (V2)); \
598 trace_input_fp3 (SD, CPU, TRACE_FPU_IDX, f0, f1, f2); \
599 } \
600 } while (0)
601
602 #define TRACE_FP_INPUT_BOOL1_FPU2(V0, V1, V2) \
603 do { \
604 if (TRACE_FPU_P (CPU)) \
605 { \
606 int d0 = (V0); \
607 unsigned64 f1, f2; \
608 TRACE_DATA *data = CPU_TRACE_DATA (CPU); \
609 TRACE_IDX (data) = TRACE_FPU_IDX; \
610 sim_fpu_to64 (&f1, (V1)); \
611 sim_fpu_to64 (&f2, (V2)); \
612 save_data (SD, data, trace_fmt_bool, sizeof (d0), &d0); \
613 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f1); \
614 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f2); \
615 } \
616 } while (0)
617
618 #define TRACE_FP_INPUT_WORD2(V0, V1) \
619 do { \
620 if (TRACE_FPU_P (CPU)) \
621 trace_input_word2 (SD, CPU, TRACE_FPU_IDX, (V0), (V1)); \
622 } while (0)
623
624 #define TRACE_FP_RESULT_FPU1(R0) \
625 do { \
626 if (TRACE_FPU_P (CPU)) \
627 { \
628 unsigned64 f0; \
629 sim_fpu_to64 (&f0, (R0)); \
630 trace_result_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
631 } \
632 } while (0)
633
634 #define TRACE_FP_RESULT_WORD1(R0) TRACE_FP_RESULT_WORD(R0)
635
636 #define TRACE_FP_RESULT_WORD2(R0, R1) \
637 do { \
638 if (TRACE_FPU_P (CPU)) \
639 trace_result_word2 (SD, CPU, TRACE_FPU_IDX, (R0), (R1)); \
640 } while (0)
641
642 #else
643 #define trace_input(NAME, IN1, IN2)
644 #define trace_output(RESULT)
645 #define trace_result(HAS_RESULT, RESULT)
646
647 #define TRACE_ALU_INPUT0()
648 #define TRACE_ALU_INPUT1(IN0)
649 #define TRACE_ALU_INPUT2(IN0, IN1)
650 #define TRACE_ALU_INPUT2(IN0, IN1)
651 #define TRACE_ALU_INPUT2(IN0, IN1 INS2)
652 #define TRACE_ALU_RESULT(RESULT)
653
654 #define TRACE_BRANCH0()
655 #define TRACE_BRANCH1(IN1)
656 #define TRACE_BRANCH2(IN1, IN2)
657 #define TRACE_BRANCH2(IN1, IN2, IN3)
658
659 #define TRACE_LD(ADDR,RESULT)
660 #define TRACE_ST(ADDR,RESULT)
661
662 #endif
663
664 #define GPR_SET(N, VAL) (State.regs[(N)] = (VAL))
665 #define GPR_CLEAR(N) (State.regs[(N)] = 0)
666
667 extern void divun ( unsigned int N,
668 unsigned long int als,
669 unsigned long int sfi,
670 unsigned32 /*unsigned long int*/ * quotient_ptr,
671 unsigned32 /*unsigned long int*/ * remainder_ptr,
672 int *overflow_ptr
673 );
674 extern void divn ( unsigned int N,
675 unsigned long int als,
676 unsigned long int sfi,
677 signed32 /*signed long int*/ * quotient_ptr,
678 signed32 /*signed long int*/ * remainder_ptr,
679 int *overflow_ptr
680 );
681 extern int type1_regs[];
682 extern int type2_regs[];
683 extern int type3_regs[];
684
685 #define SESR_OV (1 << 0)
686 #define SESR_SOV (1 << 1)
687
688 #define SESR (State.sregs[12])
689
690 #define ROUND_Q62_Q31(X) ((((X) + (1 << 30)) >> 31) & 0xffffffff)
691 #define ROUND_Q62_Q15(X) ((((X) + (1 << 30)) >> 47) & 0xffff)
692 #define ROUND_Q31_Q15(X) ((((X) + (1 << 15)) >> 15) & 0xffff)
693 #define ROUND_Q30_Q15(X) ((((X) + (1 << 14)) >> 15) & 0xffff)
694
695 #define SAT16(X) \
696 do \
697 { \
698 signed64 z = (X); \
699 if (z > 0x7fff) \
700 { \
701 SESR |= SESR_OV | SESR_SOV; \
702 z = 0x7fff; \
703 } \
704 else if (z < -0x8000) \
705 { \
706 SESR |= SESR_OV | SESR_SOV; \
707 z = - 0x8000; \
708 } \
709 (X) = z; \
710 } \
711 while (0)
712
713 #define SAT32(X) \
714 do \
715 { \
716 signed64 z = (X); \
717 if (z > 0x7fffffff) \
718 { \
719 SESR |= SESR_OV | SESR_SOV; \
720 z = 0x7fffffff; \
721 } \
722 else if (z < -0x80000000) \
723 { \
724 SESR |= SESR_OV | SESR_SOV; \
725 z = - 0x80000000; \
726 } \
727 (X) = z; \
728 } \
729 while (0)
730
731 #define ABS16(X) \
732 do \
733 { \
734 signed64 z = (X) & 0xffff; \
735 if (z == 0x8000) \
736 { \
737 SESR |= SESR_OV | SESR_SOV; \
738 z = 0x7fff; \
739 } \
740 else if (z & 0x8000) \
741 { \
742 z = (- z) & 0xffff; \
743 } \
744 (X) = z; \
745 } \
746 while (0)
747
748 #define ABS32(X) \
749 do \
750 { \
751 signed64 z = (X) & 0xffffffff; \
752 if (z == 0x80000000) \
753 { \
754 SESR |= SESR_OV | SESR_SOV; \
755 z = 0x7fffffff; \
756 } \
757 else if (z & 0x80000000) \
758 { \
759 z = (- z) & 0xffffffff; \
760 } \
761 (X) = z; \
762 } \
763 while (0)
764
765 #endif