]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/v850/sim-main.h
sim: fully merge sim_state_base into sim_state
[thirdparty/binutils-gdb.git] / sim / v850 / sim-main.h
1 #ifndef SIM_MAIN_H
2 #define SIM_MAIN_H
3
4 /* The v850 has 32bit words, numbered 31 (MSB) to 0 (LSB) */
5
6 #define WITH_TARGET_WORD_MSB 31
7
8 #include "sim-basics.h"
9 #include "sim-signal.h"
10 #include "sim-fpu.h"
11 #include "sim-base.h"
12
13 #include "simops.h"
14 #include "bfd.h"
15
16
17 typedef signed8 int8;
18 typedef unsigned8 uint8;
19 typedef signed16 int16;
20 typedef unsigned16 uint16;
21 typedef signed32 int32;
22 typedef unsigned32 uint32;
23 typedef unsigned32 reg_t;
24 typedef unsigned64 reg64_t;
25
26
27 /* The current state of the processor; registers, memory, etc. */
28
29 typedef struct _v850_regs {
30 reg_t regs[32]; /* general-purpose registers */
31 reg_t sregs[32]; /* system registers, including psw */
32 reg_t pc;
33 int dummy_mem; /* where invalid accesses go */
34 reg_t mpu0_sregs[28]; /* mpu0 system registers */
35 reg_t mpu1_sregs[28]; /* mpu1 system registers */
36 reg_t fpu_sregs[28]; /* fpu system registers */
37 reg_t selID_sregs[7][32]; /* system registers, selID 1 thru selID 7 */
38 reg64_t vregs[32]; /* vector registers. */
39 } v850_regs;
40
41 struct _sim_cpu
42 {
43 /* ... simulator specific members ... */
44 v850_regs reg;
45 reg_t psw_mask; /* only allow non-reserved bits to be set */
46 sim_event *pending_nmi;
47 /* ... base type ... */
48 sim_cpu_base base;
49 };
50
51 /* For compatibility, until all functions converted to passing
52 SIM_DESC as an argument */
53 extern SIM_DESC simulator;
54
55
56 #define V850_ROM_SIZE 0x8000
57 #define V850_LOW_END 0x200000
58 #define V850_HIGH_START 0xffe000
59
60
61 /* Because we are still using the old semantic table, provide compat
62 macro's that store the instruction where the old simops expects
63 it. */
64
65 extern uint32 OP[4];
66 #if 0
67 OP[0] = inst & 0x1f; /* RRRRR -> reg1 */
68 OP[1] = (inst >> 11) & 0x1f; /* rrrrr -> reg2 */
69 OP[2] = (inst >> 16) & 0xffff; /* wwwww -> reg3 OR imm16 */
70 OP[3] = inst;
71 #endif
72
73 #define SAVE_1 \
74 PC = cia; \
75 OP[0] = instruction_0 & 0x1f; \
76 OP[1] = (instruction_0 >> 11) & 0x1f; \
77 OP[2] = 0; \
78 OP[3] = instruction_0
79
80 #define COMPAT_1(CALL) \
81 SAVE_1; \
82 PC += (CALL); \
83 nia = PC
84
85 #define SAVE_2 \
86 PC = cia; \
87 OP[0] = instruction_0 & 0x1f; \
88 OP[1] = (instruction_0 >> 11) & 0x1f; \
89 OP[2] = instruction_1; \
90 OP[3] = (instruction_1 << 16) | instruction_0
91
92 #define COMPAT_2(CALL) \
93 SAVE_2; \
94 PC += (CALL); \
95 nia = PC
96
97
98 /* new */
99 #define GR ((CPU)->reg.regs)
100 #define SR ((CPU)->reg.sregs)
101 #define VR ((CPU)->reg.vregs)
102 #define MPU0_SR ((STATE_CPU (sd, 0))->reg.mpu0_sregs)
103 #define MPU1_SR ((STATE_CPU (sd, 0))->reg.mpu1_sregs)
104 #define FPU_SR ((STATE_CPU (sd, 0))->reg.fpu_sregs)
105
106 /* old */
107 #define State (STATE_CPU (simulator, 0)->reg)
108 #define PC (State.pc)
109 #define SP_REGNO 3
110 #define SP (State.regs[SP_REGNO])
111 #define EP (State.regs[30])
112
113 #define EIPC (State.sregs[0])
114 #define EIPSW (State.sregs[1])
115 #define FEPC (State.sregs[2])
116 #define FEPSW (State.sregs[3])
117 #define ECR (State.sregs[4])
118 #define PSW (State.sregs[5])
119 #define PSW_REGNO 5
120 #define EIIC (State.sregs[13])
121 #define FEIC (State.sregs[14])
122 #define DBIC (SR[15])
123 #define CTPC (SR[16])
124 #define CTPSW (SR[17])
125 #define DBPC (State.sregs[18])
126 #define DBPSW (State.sregs[19])
127 #define CTBP (State.sregs[20])
128 #define DIR (SR[21])
129 #define EIWR (SR[28])
130 #define FEWR (SR[29])
131 #define DBWR (SR[30])
132 #define BSEL (SR[31])
133
134 #define PSW_US BIT32 (8)
135 #define PSW_NP 0x80
136 #define PSW_EP 0x40
137 #define PSW_ID 0x20
138 #define PSW_SAT 0x10
139 #define PSW_CY 0x8
140 #define PSW_OV 0x4
141 #define PSW_S 0x2
142 #define PSW_Z 0x1
143
144 #define PSW_NPV (1<<18)
145 #define PSW_DMP (1<<17)
146 #define PSW_IMP (1<<16)
147
148 #define ECR_EICC 0x0000ffff
149 #define ECR_FECC 0xffff0000
150
151 /* FPU */
152
153 #define FPSR (FPU_SR[6])
154 #define FPSR_REGNO 6
155 #define FPEPC (FPU_SR[7])
156 #define FPST (FPU_SR[8])
157 #define FPST_REGNO 8
158 #define FPCC (FPU_SR[9])
159 #define FPCFG (FPU_SR[10])
160 #define FPCFG_REGNO 10
161
162 #define FPSR_DEM 0x00200000
163 #define FPSR_SEM 0x00100000
164 #define FPSR_RM 0x000c0000
165 #define FPSR_RN 0x00000000
166 #define FPSR_FS 0x00020000
167 #define FPSR_PR 0x00010000
168
169 #define FPSR_XC 0x0000fc00
170 #define FPSR_XCE 0x00008000
171 #define FPSR_XCV 0x00004000
172 #define FPSR_XCZ 0x00002000
173 #define FPSR_XCO 0x00001000
174 #define FPSR_XCU 0x00000800
175 #define FPSR_XCI 0x00000400
176
177 #define FPSR_XE 0x000003e0
178 #define FPSR_XEV 0x00000200
179 #define FPSR_XEZ 0x00000100
180 #define FPSR_XEO 0x00000080
181 #define FPSR_XEU 0x00000040
182 #define FPSR_XEI 0x00000020
183
184 #define FPSR_XP 0x0000001f
185 #define FPSR_XPV 0x00000010
186 #define FPSR_XPZ 0x00000008
187 #define FPSR_XPO 0x00000004
188 #define FPSR_XPU 0x00000002
189 #define FPSR_XPI 0x00000001
190
191 #define FPST_PR 0x00008000
192 #define FPST_XCE 0x00002000
193 #define FPST_XCV 0x00001000
194 #define FPST_XCZ 0x00000800
195 #define FPST_XCO 0x00000400
196 #define FPST_XCU 0x00000200
197 #define FPST_XCI 0x00000100
198
199 #define FPST_XPV 0x00000010
200 #define FPST_XPZ 0x00000008
201 #define FPST_XPO 0x00000004
202 #define FPST_XPU 0x00000002
203 #define FPST_XPI 0x00000001
204
205 #define FPCFG_RM 0x00000180
206 #define FPCFG_XEV 0x00000010
207 #define FPCFG_XEZ 0x00000008
208 #define FPCFG_XEO 0x00000004
209 #define FPCFG_XEU 0x00000002
210 #define FPCFG_XEI 0x00000001
211
212 #define GET_FPCC()\
213 ((FPSR >> 24) &0xf)
214
215 #define CLEAR_FPCC(bbb)\
216 (FPSR &= ~(1 << (bbb+24)))
217
218 #define SET_FPCC(bbb)\
219 (FPSR |= 1 << (bbb+24))
220
221 #define TEST_FPCC(bbb)\
222 ((FPSR & (1 << (bbb+24))) != 0)
223
224 #define FPSR_GET_ROUND() \
225 (((FPSR & FPSR_RM) == FPSR_RN) ? sim_fpu_round_near \
226 : ((FPSR & FPSR_RM) == 0x00040000) ? sim_fpu_round_up \
227 : ((FPSR & FPSR_RM) == 0x00080000) ? sim_fpu_round_down \
228 : sim_fpu_round_zero)
229
230
231 enum FPU_COMPARE {
232 FPU_CMP_F = 0,
233 FPU_CMP_UN,
234 FPU_CMP_EQ,
235 FPU_CMP_UEQ,
236 FPU_CMP_OLT,
237 FPU_CMP_ULT,
238 FPU_CMP_OLE,
239 FPU_CMP_ULE,
240 FPU_CMP_SF,
241 FPU_CMP_NGLE,
242 FPU_CMP_SEQ,
243 FPU_CMP_NGL,
244 FPU_CMP_LT,
245 FPU_CMP_NGE,
246 FPU_CMP_LE,
247 FPU_CMP_NGT
248 };
249
250
251 /* MPU */
252 #define MPM (MPU1_SR[0])
253 #define MPC (MPU1_SR[1])
254 #define MPC_REGNO 1
255 #define TID (MPU1_SR[2])
256 #define PPA (MPU1_SR[3])
257 #define PPM (MPU1_SR[4])
258 #define PPC (MPU1_SR[5])
259 #define DCC (MPU1_SR[6])
260 #define DCV0 (MPU1_SR[7])
261 #define DCV1 (MPU1_SR[8])
262 #define SPAL (MPU1_SR[10])
263 #define SPAU (MPU1_SR[11])
264 #define IPA0L (MPU1_SR[12])
265 #define IPA0U (MPU1_SR[13])
266 #define IPA1L (MPU1_SR[14])
267 #define IPA1U (MPU1_SR[15])
268 #define IPA2L (MPU1_SR[16])
269 #define IPA2U (MPU1_SR[17])
270 #define IPA3L (MPU1_SR[18])
271 #define IPA3U (MPU1_SR[19])
272 #define DPA0L (MPU1_SR[20])
273 #define DPA0U (MPU1_SR[21])
274 #define DPA1L (MPU1_SR[22])
275 #define DPA1U (MPU1_SR[23])
276 #define DPA2L (MPU1_SR[24])
277 #define DPA2U (MPU1_SR[25])
278 #define DPA3L (MPU1_SR[26])
279 #define DPA3U (MPU1_SR[27])
280
281 #define PPC_PPE 0x1
282 #define SPAL_SPE 0x1
283 #define SPAL_SPS 0x10
284
285 #define VIP (MPU0_SR[0])
286 #define VMECR (MPU0_SR[4])
287 #define VMTID (MPU0_SR[5])
288 #define VMADR (MPU0_SR[6])
289 #define VPECR (MPU0_SR[8])
290 #define VPTID (MPU0_SR[9])
291 #define VPADR (MPU0_SR[10])
292 #define VDECR (MPU0_SR[12])
293 #define VDTID (MPU0_SR[13])
294
295 #define MPM_AUE 0x2
296 #define MPM_MPE 0x1
297
298 #define VMECR_VMX 0x2
299 #define VMECR_VMR 0x4
300 #define VMECR_VMW 0x8
301 #define VMECR_VMS 0x10
302 #define VMECR_VMRMW 0x20
303 #define VMECR_VMMS 0x40
304
305 #define IPA2ADDR(IPA) ((IPA) & 0x1fffff80)
306 #define IPA_IPE 0x1
307 #define IPA_IPX 0x2
308 #define IPA_IPR 0x4
309 #define IPE0 (IPA0L & IPA_IPE)
310 #define IPE1 (IPA1L & IPA_IPE)
311 #define IPE2 (IPA2L & IPA_IPE)
312 #define IPE3 (IPA3L & IPA_IPE)
313 #define IPX0 (IPA0L & IPA_IPX)
314 #define IPX1 (IPA1L & IPA_IPX)
315 #define IPX2 (IPA2L & IPA_IPX)
316 #define IPX3 (IPA3L & IPA_IPX)
317 #define IPR0 (IPA0L & IPA_IPR)
318 #define IPR1 (IPA1L & IPA_IPR)
319 #define IPR2 (IPA2L & IPA_IPR)
320 #define IPR3 (IPA3L & IPA_IPR)
321
322 #define DPA2ADDR(DPA) ((DPA) & 0x1fffff80)
323 #define DPA_DPE 0x1
324 #define DPA_DPR 0x4
325 #define DPA_DPW 0x8
326 #define DPE0 (DPA0L & DPA_DPE)
327 #define DPE1 (DPA1L & DPA_DPE)
328 #define DPE2 (DPA2L & DPA_DPE)
329 #define DPE3 (DPA3L & DPA_DPE)
330 #define DPR0 (DPA0L & DPA_DPR)
331 #define DPR1 (DPA1L & DPA_DPR)
332 #define DPR2 (DPA2L & DPA_DPR)
333 #define DPR3 (DPA3L & DPA_DPR)
334 #define DPW0 (DPA0L & DPA_DPW)
335 #define DPW1 (DPA1L & DPA_DPW)
336 #define DPW2 (DPA2L & DPA_DPW)
337 #define DPW3 (DPA3L & DPA_DPW)
338
339 #define DCC_DCE0 0x1
340 #define DCC_DCE1 0x10000
341
342 #define PPA2ADDR(PPA) ((PPA) & 0x1fffff80)
343 #define PPC_PPC 0xfffffffe
344 #define PPC_PPE 0x1
345 #define PPC_PPM 0x0000fff8
346
347
348 #define SEXT3(x) ((((x)&0x7)^(~0x3))+0x4)
349
350 /* sign-extend a 4-bit number */
351 #define SEXT4(x) ((((x)&0xf)^(~0x7))+0x8)
352
353 /* sign-extend a 5-bit number */
354 #define SEXT5(x) ((((x)&0x1f)^(~0xf))+0x10)
355
356 /* sign-extend a 9-bit number */
357 #define SEXT9(x) ((((x)&0x1ff)^(~0xff))+0x100)
358
359 /* sign-extend a 22-bit number */
360 #define SEXT22(x) ((((x)&0x3fffff)^(~0x1fffff))+0x200000)
361
362 /* sign extend a 40 bit number */
363 #define SEXT40(x) ((((x) & UNSIGNED64 (0xffffffffff)) \
364 ^ (~UNSIGNED64 (0x7fffffffff))) \
365 + UNSIGNED64 (0x8000000000))
366
367 /* sign extend a 44 bit number */
368 #define SEXT44(x) ((((x) & UNSIGNED64 (0xfffffffffff)) \
369 ^ (~ UNSIGNED64 (0x7ffffffffff))) \
370 + UNSIGNED64 (0x80000000000))
371
372 /* sign extend a 60 bit number */
373 #define SEXT60(x) ((((x) & UNSIGNED64 (0xfffffffffffffff)) \
374 ^ (~ UNSIGNED64 (0x7ffffffffffffff))) \
375 + UNSIGNED64 (0x800000000000000))
376
377 /* No sign extension */
378 #define NOP(x) (x)
379
380 #define INC_ADDR(x,i) x = ((State.MD && x == MOD_E) ? MOD_S : (x)+(i))
381
382 #define RLW(x) load_mem (x, 4)
383
384 /* Function declarations. */
385
386 #define IMEM16(EA) \
387 sim_core_read_aligned_2 (CPU, PC, exec_map, (EA))
388
389 #define IMEM16_IMMED(EA,N) \
390 sim_core_read_aligned_2 (STATE_CPU (sd, 0), \
391 PC, exec_map, (EA) + (N) * 2)
392
393 #define load_mem(ADDR,LEN) \
394 sim_core_read_unaligned_##LEN (STATE_CPU (simulator, 0), \
395 PC, read_map, (ADDR))
396
397 #define store_mem(ADDR,LEN,DATA) \
398 sim_core_write_unaligned_##LEN (STATE_CPU (simulator, 0), \
399 PC, write_map, (ADDR), (DATA))
400
401
402 /* compare cccc field against PSW */
403 int condition_met (unsigned code);
404
405
406 /* Debug/tracing calls */
407
408 enum op_types
409 {
410 OP_UNKNOWN,
411 OP_NONE,
412 OP_TRAP,
413 OP_REG,
414 OP_REG_REG,
415 OP_REG_REG_CMP,
416 OP_REG_REG_MOVE,
417 OP_IMM_REG,
418 OP_IMM_REG_CMP,
419 OP_IMM_REG_MOVE,
420 OP_COND_BR,
421 OP_LOAD16,
422 OP_STORE16,
423 OP_LOAD32,
424 OP_STORE32,
425 OP_JUMP,
426 OP_IMM_REG_REG,
427 OP_UIMM_REG_REG,
428 OP_IMM16_REG_REG,
429 OP_UIMM16_REG_REG,
430 OP_BIT,
431 OP_EX1,
432 OP_EX2,
433 OP_LDSR,
434 OP_STSR,
435 OP_BIT_CHANGE,
436 OP_REG_REG_REG,
437 OP_REG_REG3,
438 OP_IMM_REG_REG_REG,
439 OP_PUSHPOP1,
440 OP_PUSHPOP2,
441 OP_PUSHPOP3,
442 };
443
444 #ifdef DEBUG
445 void trace_input (char *name, enum op_types type, int size);
446 void trace_output (enum op_types result);
447 void trace_result (int has_result, unsigned32 result);
448
449 extern int trace_num_values;
450 extern unsigned32 trace_values[];
451 extern unsigned32 trace_pc;
452 extern const char *trace_name;
453 extern int trace_module;
454
455 #define TRACE_BRANCH0() \
456 do { \
457 if (TRACE_BRANCH_P (CPU)) { \
458 trace_module = TRACE_BRANCH_IDX; \
459 trace_pc = cia; \
460 trace_name = itable[MY_INDEX].name; \
461 trace_num_values = 0; \
462 trace_result (1, (nia)); \
463 } \
464 } while (0)
465
466 #define TRACE_BRANCH1(IN1) \
467 do { \
468 if (TRACE_BRANCH_P (CPU)) { \
469 trace_module = TRACE_BRANCH_IDX; \
470 trace_pc = cia; \
471 trace_name = itable[MY_INDEX].name; \
472 trace_values[0] = (IN1); \
473 trace_num_values = 1; \
474 trace_result (1, (nia)); \
475 } \
476 } while (0)
477
478 #define TRACE_BRANCH2(IN1, IN2) \
479 do { \
480 if (TRACE_BRANCH_P (CPU)) { \
481 trace_module = TRACE_BRANCH_IDX; \
482 trace_pc = cia; \
483 trace_name = itable[MY_INDEX].name; \
484 trace_values[0] = (IN1); \
485 trace_values[1] = (IN2); \
486 trace_num_values = 2; \
487 trace_result (1, (nia)); \
488 } \
489 } while (0)
490
491 #define TRACE_BRANCH3(IN1, IN2, IN3) \
492 do { \
493 if (TRACE_BRANCH_P (CPU)) { \
494 trace_module = TRACE_BRANCH_IDX; \
495 trace_pc = cia; \
496 trace_name = itable[MY_INDEX].name; \
497 trace_values[0] = (IN1); \
498 trace_values[1] = (IN2); \
499 trace_values[2] = (IN3); \
500 trace_num_values = 3; \
501 trace_result (1, (nia)); \
502 } \
503 } while (0)
504
505 #define TRACE_LD(ADDR,RESULT) \
506 do { \
507 if (TRACE_MEMORY_P (CPU)) { \
508 trace_module = TRACE_MEMORY_IDX; \
509 trace_pc = cia; \
510 trace_name = itable[MY_INDEX].name; \
511 trace_values[0] = (ADDR); \
512 trace_num_values = 1; \
513 trace_result (1, (RESULT)); \
514 } \
515 } while (0)
516
517 #define TRACE_LD_NAME(NAME, ADDR,RESULT) \
518 do { \
519 if (TRACE_MEMORY_P (CPU)) { \
520 trace_module = TRACE_MEMORY_IDX; \
521 trace_pc = cia; \
522 trace_name = (NAME); \
523 trace_values[0] = (ADDR); \
524 trace_num_values = 1; \
525 trace_result (1, (RESULT)); \
526 } \
527 } while (0)
528
529 #define TRACE_ST(ADDR,RESULT) \
530 do { \
531 if (TRACE_MEMORY_P (CPU)) { \
532 trace_module = TRACE_MEMORY_IDX; \
533 trace_pc = cia; \
534 trace_name = itable[MY_INDEX].name; \
535 trace_values[0] = (ADDR); \
536 trace_num_values = 1; \
537 trace_result (1, (RESULT)); \
538 } \
539 } while (0)
540
541 #define TRACE_FP_INPUT_FPU1(V0) \
542 do { \
543 if (TRACE_FPU_P (CPU)) \
544 { \
545 unsigned64 f0; \
546 sim_fpu_to64 (&f0, (V0)); \
547 trace_input_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
548 } \
549 } while (0)
550
551 #define TRACE_FP_INPUT_FPU2(V0, V1) \
552 do { \
553 if (TRACE_FPU_P (CPU)) \
554 { \
555 unsigned64 f0, f1; \
556 sim_fpu_to64 (&f0, (V0)); \
557 sim_fpu_to64 (&f1, (V1)); \
558 trace_input_fp2 (SD, CPU, TRACE_FPU_IDX, f0, f1); \
559 } \
560 } while (0)
561
562 #define TRACE_FP_INPUT_FPU3(V0, V1, V2) \
563 do { \
564 if (TRACE_FPU_P (CPU)) \
565 { \
566 unsigned64 f0, f1, f2; \
567 sim_fpu_to64 (&f0, (V0)); \
568 sim_fpu_to64 (&f1, (V1)); \
569 sim_fpu_to64 (&f2, (V2)); \
570 trace_input_fp3 (SD, CPU, TRACE_FPU_IDX, f0, f1, f2); \
571 } \
572 } while (0)
573
574 #define TRACE_FP_INPUT_BOOL1_FPU2(V0, V1, V2) \
575 do { \
576 if (TRACE_FPU_P (CPU)) \
577 { \
578 int d0 = (V0); \
579 unsigned64 f1, f2; \
580 TRACE_DATA *data = CPU_TRACE_DATA (CPU); \
581 TRACE_IDX (data) = TRACE_FPU_IDX; \
582 sim_fpu_to64 (&f1, (V1)); \
583 sim_fpu_to64 (&f2, (V2)); \
584 save_data (SD, data, trace_fmt_bool, sizeof (d0), &d0); \
585 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f1); \
586 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f2); \
587 } \
588 } while (0)
589
590 #define TRACE_FP_INPUT_WORD2(V0, V1) \
591 do { \
592 if (TRACE_FPU_P (CPU)) \
593 trace_input_word2 (SD, CPU, TRACE_FPU_IDX, (V0), (V1)); \
594 } while (0)
595
596 #define TRACE_FP_RESULT_FPU1(R0) \
597 do { \
598 if (TRACE_FPU_P (CPU)) \
599 { \
600 unsigned64 f0; \
601 sim_fpu_to64 (&f0, (R0)); \
602 trace_result_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
603 } \
604 } while (0)
605
606 #define TRACE_FP_RESULT_WORD1(R0) TRACE_FP_RESULT_WORD(R0)
607
608 #define TRACE_FP_RESULT_WORD2(R0, R1) \
609 do { \
610 if (TRACE_FPU_P (CPU)) \
611 trace_result_word2 (SD, CPU, TRACE_FPU_IDX, (R0), (R1)); \
612 } while (0)
613
614 #else
615 #define trace_input(NAME, IN1, IN2)
616 #define trace_output(RESULT)
617 #define trace_result(HAS_RESULT, RESULT)
618
619 #define TRACE_ALU_INPUT0()
620 #define TRACE_ALU_INPUT1(IN0)
621 #define TRACE_ALU_INPUT2(IN0, IN1)
622 #define TRACE_ALU_INPUT2(IN0, IN1)
623 #define TRACE_ALU_INPUT2(IN0, IN1 INS2)
624 #define TRACE_ALU_RESULT(RESULT)
625
626 #define TRACE_BRANCH0()
627 #define TRACE_BRANCH1(IN1)
628 #define TRACE_BRANCH2(IN1, IN2)
629 #define TRACE_BRANCH2(IN1, IN2, IN3)
630
631 #define TRACE_LD(ADDR,RESULT)
632 #define TRACE_ST(ADDR,RESULT)
633
634 #endif
635
636 #define GPR_SET(N, VAL) (State.regs[(N)] = (VAL))
637 #define GPR_CLEAR(N) (State.regs[(N)] = 0)
638
639 extern void divun ( unsigned int N,
640 unsigned long int als,
641 unsigned long int sfi,
642 unsigned32 /*unsigned long int*/ * quotient_ptr,
643 unsigned32 /*unsigned long int*/ * remainder_ptr,
644 int *overflow_ptr
645 );
646 extern void divn ( unsigned int N,
647 unsigned long int als,
648 unsigned long int sfi,
649 signed32 /*signed long int*/ * quotient_ptr,
650 signed32 /*signed long int*/ * remainder_ptr,
651 int *overflow_ptr
652 );
653 extern int type1_regs[];
654 extern int type2_regs[];
655 extern int type3_regs[];
656
657 #define SESR_OV (1 << 0)
658 #define SESR_SOV (1 << 1)
659
660 #define SESR (State.sregs[12])
661
662 #define ROUND_Q62_Q31(X) ((((X) + (1 << 30)) >> 31) & 0xffffffff)
663 #define ROUND_Q62_Q15(X) ((((X) + (1 << 30)) >> 47) & 0xffff)
664 #define ROUND_Q31_Q15(X) ((((X) + (1 << 15)) >> 15) & 0xffff)
665 #define ROUND_Q30_Q15(X) ((((X) + (1 << 14)) >> 15) & 0xffff)
666
667 #define SAT16(X) \
668 do \
669 { \
670 signed64 z = (X); \
671 if (z > 0x7fff) \
672 { \
673 SESR |= SESR_OV | SESR_SOV; \
674 z = 0x7fff; \
675 } \
676 else if (z < -0x8000) \
677 { \
678 SESR |= SESR_OV | SESR_SOV; \
679 z = - 0x8000; \
680 } \
681 (X) = z; \
682 } \
683 while (0)
684
685 #define SAT32(X) \
686 do \
687 { \
688 signed64 z = (X); \
689 if (z > 0x7fffffff) \
690 { \
691 SESR |= SESR_OV | SESR_SOV; \
692 z = 0x7fffffff; \
693 } \
694 else if (z < -0x80000000) \
695 { \
696 SESR |= SESR_OV | SESR_SOV; \
697 z = - 0x80000000; \
698 } \
699 (X) = z; \
700 } \
701 while (0)
702
703 #define ABS16(X) \
704 do \
705 { \
706 signed64 z = (X) & 0xffff; \
707 if (z == 0x8000) \
708 { \
709 SESR |= SESR_OV | SESR_SOV; \
710 z = 0x7fff; \
711 } \
712 else if (z & 0x8000) \
713 { \
714 z = (- z) & 0xffff; \
715 } \
716 (X) = z; \
717 } \
718 while (0)
719
720 #define ABS32(X) \
721 do \
722 { \
723 signed64 z = (X) & 0xffffffff; \
724 if (z == 0x80000000) \
725 { \
726 SESR |= SESR_OV | SESR_SOV; \
727 z = 0x7fffffff; \
728 } \
729 else if (z & 0x80000000) \
730 { \
731 z = (- z) & 0xffffffff; \
732 } \
733 (X) = z; \
734 } \
735 while (0)
736
737 #endif