]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/cgroup-util.c
5b94b02a27e7e9ce581dc59f4b9fb628da2390a0
[thirdparty/systemd.git] / src / basic / cgroup-util.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <ftw.h>
5 #include <limits.h>
6 #include <signal.h>
7 #include <stddef.h>
8 #include <stdlib.h>
9 #include <sys/types.h>
10 #include <sys/utsname.h>
11 #include <sys/xattr.h>
12 #include <unistd.h>
13
14 #include "alloc-util.h"
15 #include "cgroup-util.h"
16 #include "def.h"
17 #include "dirent-util.h"
18 #include "extract-word.h"
19 #include "fd-util.h"
20 #include "fileio.h"
21 #include "format-util.h"
22 #include "fs-util.h"
23 #include "log.h"
24 #include "login-util.h"
25 #include "macro.h"
26 #include "missing_magic.h"
27 #include "mkdir.h"
28 #include "parse-util.h"
29 #include "path-util.h"
30 #include "process-util.h"
31 #include "set.h"
32 #include "special.h"
33 #include "stat-util.h"
34 #include "stdio-util.h"
35 #include "string-table.h"
36 #include "string-util.h"
37 #include "strv.h"
38 #include "unit-name.h"
39 #include "user-util.h"
40
41 static int cg_enumerate_items(const char *controller, const char *path, FILE **_f, const char *item) {
42 _cleanup_free_ char *fs = NULL;
43 FILE *f;
44 int r;
45
46 assert(_f);
47
48 r = cg_get_path(controller, path, item, &fs);
49 if (r < 0)
50 return r;
51
52 f = fopen(fs, "re");
53 if (!f)
54 return -errno;
55
56 *_f = f;
57 return 0;
58 }
59
60 int cg_enumerate_processes(const char *controller, const char *path, FILE **_f) {
61 return cg_enumerate_items(controller, path, _f, "cgroup.procs");
62 }
63
64 int cg_read_pid(FILE *f, pid_t *_pid) {
65 unsigned long ul;
66
67 /* Note that the cgroup.procs might contain duplicates! See
68 * cgroups.txt for details. */
69
70 assert(f);
71 assert(_pid);
72
73 errno = 0;
74 if (fscanf(f, "%lu", &ul) != 1) {
75
76 if (feof(f))
77 return 0;
78
79 return errno_or_else(EIO);
80 }
81
82 if (ul <= 0)
83 return -EIO;
84
85 *_pid = (pid_t) ul;
86 return 1;
87 }
88
89 int cg_read_event(
90 const char *controller,
91 const char *path,
92 const char *event,
93 char **ret) {
94
95 _cleanup_free_ char *events = NULL, *content = NULL;
96 int r;
97
98 r = cg_get_path(controller, path, "cgroup.events", &events);
99 if (r < 0)
100 return r;
101
102 r = read_full_file(events, &content, NULL);
103 if (r < 0)
104 return r;
105
106 for (const char *p = content;;) {
107 _cleanup_free_ char *line = NULL, *key = NULL, *val = NULL;
108 const char *q;
109
110 r = extract_first_word(&p, &line, "\n", 0);
111 if (r < 0)
112 return r;
113 if (r == 0)
114 return -ENOENT;
115
116 q = line;
117 r = extract_first_word(&q, &key, " ", 0);
118 if (r < 0)
119 return r;
120 if (r == 0)
121 return -EINVAL;
122
123 if (!streq(key, event))
124 continue;
125
126 val = strdup(q);
127 if (!val)
128 return -ENOMEM;
129
130 *ret = TAKE_PTR(val);
131 return 0;
132 }
133 }
134
135 bool cg_ns_supported(void) {
136 static thread_local int enabled = -1;
137
138 if (enabled >= 0)
139 return enabled;
140
141 if (access("/proc/self/ns/cgroup", F_OK) < 0) {
142 if (errno != ENOENT)
143 log_debug_errno(errno, "Failed to check whether /proc/self/ns/cgroup is available, assuming not: %m");
144 enabled = false;
145 } else
146 enabled = true;
147
148 return enabled;
149 }
150
151 int cg_enumerate_subgroups(const char *controller, const char *path, DIR **_d) {
152 _cleanup_free_ char *fs = NULL;
153 int r;
154 DIR *d;
155
156 assert(_d);
157
158 /* This is not recursive! */
159
160 r = cg_get_path(controller, path, NULL, &fs);
161 if (r < 0)
162 return r;
163
164 d = opendir(fs);
165 if (!d)
166 return -errno;
167
168 *_d = d;
169 return 0;
170 }
171
172 int cg_read_subgroup(DIR *d, char **fn) {
173 struct dirent *de;
174
175 assert(d);
176 assert(fn);
177
178 FOREACH_DIRENT_ALL(de, d, return -errno) {
179 char *b;
180
181 if (de->d_type != DT_DIR)
182 continue;
183
184 if (dot_or_dot_dot(de->d_name))
185 continue;
186
187 b = strdup(de->d_name);
188 if (!b)
189 return -ENOMEM;
190
191 *fn = b;
192 return 1;
193 }
194
195 return 0;
196 }
197
198 int cg_rmdir(const char *controller, const char *path) {
199 _cleanup_free_ char *p = NULL;
200 int r;
201
202 r = cg_get_path(controller, path, NULL, &p);
203 if (r < 0)
204 return r;
205
206 r = rmdir(p);
207 if (r < 0 && errno != ENOENT)
208 return -errno;
209
210 r = cg_hybrid_unified();
211 if (r <= 0)
212 return r;
213
214 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
215 r = cg_rmdir(SYSTEMD_CGROUP_CONTROLLER_LEGACY, path);
216 if (r < 0)
217 log_warning_errno(r, "Failed to remove compat systemd cgroup %s: %m", path);
218 }
219
220 return 0;
221 }
222
223 static int cg_kill_items(
224 const char *controller,
225 const char *path,
226 int sig,
227 CGroupFlags flags,
228 Set *s,
229 cg_kill_log_func_t log_kill,
230 void *userdata,
231 const char *item) {
232
233 _cleanup_set_free_ Set *allocated_set = NULL;
234 bool done = false;
235 int r, ret = 0, ret_log_kill = 0;
236 pid_t my_pid;
237
238 assert(sig >= 0);
239
240 /* Don't send SIGCONT twice. Also, SIGKILL always works even when process is suspended, hence don't send
241 * SIGCONT on SIGKILL. */
242 if (IN_SET(sig, SIGCONT, SIGKILL))
243 flags &= ~CGROUP_SIGCONT;
244
245 /* This goes through the tasks list and kills them all. This
246 * is repeated until no further processes are added to the
247 * tasks list, to properly handle forking processes */
248
249 if (!s) {
250 s = allocated_set = set_new(NULL);
251 if (!s)
252 return -ENOMEM;
253 }
254
255 my_pid = getpid_cached();
256
257 do {
258 _cleanup_fclose_ FILE *f = NULL;
259 pid_t pid = 0;
260 done = true;
261
262 r = cg_enumerate_items(controller, path, &f, item);
263 if (r < 0) {
264 if (ret >= 0 && r != -ENOENT)
265 return r;
266
267 return ret;
268 }
269
270 while ((r = cg_read_pid(f, &pid)) > 0) {
271
272 if ((flags & CGROUP_IGNORE_SELF) && pid == my_pid)
273 continue;
274
275 if (set_get(s, PID_TO_PTR(pid)) == PID_TO_PTR(pid))
276 continue;
277
278 if (log_kill)
279 ret_log_kill = log_kill(pid, sig, userdata);
280
281 /* If we haven't killed this process yet, kill
282 * it */
283 if (kill(pid, sig) < 0) {
284 if (ret >= 0 && errno != ESRCH)
285 ret = -errno;
286 } else {
287 if (flags & CGROUP_SIGCONT)
288 (void) kill(pid, SIGCONT);
289
290 if (ret == 0) {
291 if (log_kill)
292 ret = ret_log_kill;
293 else
294 ret = 1;
295 }
296 }
297
298 done = false;
299
300 r = set_put(s, PID_TO_PTR(pid));
301 if (r < 0) {
302 if (ret >= 0)
303 return r;
304
305 return ret;
306 }
307 }
308
309 if (r < 0) {
310 if (ret >= 0)
311 return r;
312
313 return ret;
314 }
315
316 /* To avoid racing against processes which fork
317 * quicker than we can kill them we repeat this until
318 * no new pids need to be killed. */
319
320 } while (!done);
321
322 return ret;
323 }
324
325 int cg_kill(
326 const char *controller,
327 const char *path,
328 int sig,
329 CGroupFlags flags,
330 Set *s,
331 cg_kill_log_func_t log_kill,
332 void *userdata) {
333 int r;
334
335 r = cg_kill_items(controller, path, sig, flags, s, log_kill, userdata, "cgroup.procs");
336 if (r < 0 || sig != SIGKILL)
337 return r;
338
339 /* Only in case of killing with SIGKILL and when using cgroupsv2, kill remaining threads manually as
340 a workaround for kernel bug. It was fixed in 5.2-rc5 (c03cd7738a83), backported to 4.19.66
341 (4340d175b898) and 4.14.138 (feb6b123b7dd). */
342 r = cg_unified_controller(controller);
343 if (r <= 0)
344 return r;
345
346 return cg_kill_items(controller, path, sig, flags, s, log_kill, userdata, "cgroup.threads");
347 }
348
349 int cg_kill_recursive(
350 const char *controller,
351 const char *path,
352 int sig,
353 CGroupFlags flags,
354 Set *s,
355 cg_kill_log_func_t log_kill,
356 void *userdata) {
357
358 _cleanup_set_free_ Set *allocated_set = NULL;
359 _cleanup_closedir_ DIR *d = NULL;
360 int r, ret;
361 char *fn;
362
363 assert(path);
364 assert(sig >= 0);
365
366 if (!s) {
367 s = allocated_set = set_new(NULL);
368 if (!s)
369 return -ENOMEM;
370 }
371
372 ret = cg_kill(controller, path, sig, flags, s, log_kill, userdata);
373
374 r = cg_enumerate_subgroups(controller, path, &d);
375 if (r < 0) {
376 if (ret >= 0 && r != -ENOENT)
377 return r;
378
379 return ret;
380 }
381
382 while ((r = cg_read_subgroup(d, &fn)) > 0) {
383 _cleanup_free_ char *p = NULL;
384
385 p = path_join(empty_to_root(path), fn);
386 free(fn);
387 if (!p)
388 return -ENOMEM;
389
390 r = cg_kill_recursive(controller, p, sig, flags, s, log_kill, userdata);
391 if (r != 0 && ret >= 0)
392 ret = r;
393 }
394 if (ret >= 0 && r < 0)
395 ret = r;
396
397 if (flags & CGROUP_REMOVE) {
398 r = cg_rmdir(controller, path);
399 if (r < 0 && ret >= 0 && !IN_SET(r, -ENOENT, -EBUSY))
400 return r;
401 }
402
403 return ret;
404 }
405
406 static const char *controller_to_dirname(const char *controller) {
407 const char *e;
408
409 assert(controller);
410
411 /* Converts a controller name to the directory name below
412 * /sys/fs/cgroup/ we want to mount it to. Effectively, this
413 * just cuts off the name= prefixed used for named
414 * hierarchies, if it is specified. */
415
416 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER)) {
417 if (cg_hybrid_unified() > 0)
418 controller = SYSTEMD_CGROUP_CONTROLLER_HYBRID;
419 else
420 controller = SYSTEMD_CGROUP_CONTROLLER_LEGACY;
421 }
422
423 e = startswith(controller, "name=");
424 if (e)
425 return e;
426
427 return controller;
428 }
429
430 static int join_path_legacy(const char *controller, const char *path, const char *suffix, char **fs) {
431 const char *dn;
432 char *t = NULL;
433
434 assert(fs);
435 assert(controller);
436
437 dn = controller_to_dirname(controller);
438
439 if (isempty(path) && isempty(suffix))
440 t = path_join("/sys/fs/cgroup", dn);
441 else if (isempty(path))
442 t = path_join("/sys/fs/cgroup", dn, suffix);
443 else if (isempty(suffix))
444 t = path_join("/sys/fs/cgroup", dn, path);
445 else
446 t = path_join("/sys/fs/cgroup", dn, path, suffix);
447 if (!t)
448 return -ENOMEM;
449
450 *fs = t;
451 return 0;
452 }
453
454 static int join_path_unified(const char *path, const char *suffix, char **fs) {
455 char *t;
456
457 assert(fs);
458
459 if (isempty(path) && isempty(suffix))
460 t = strdup("/sys/fs/cgroup");
461 else if (isempty(path))
462 t = path_join("/sys/fs/cgroup", suffix);
463 else if (isempty(suffix))
464 t = path_join("/sys/fs/cgroup", path);
465 else
466 t = path_join("/sys/fs/cgroup", path, suffix);
467 if (!t)
468 return -ENOMEM;
469
470 *fs = t;
471 return 0;
472 }
473
474 int cg_get_path(const char *controller, const char *path, const char *suffix, char **fs) {
475 int r;
476
477 assert(fs);
478
479 if (!controller) {
480 char *t;
481
482 /* If no controller is specified, we return the path
483 * *below* the controllers, without any prefix. */
484
485 if (!path && !suffix)
486 return -EINVAL;
487
488 if (!suffix)
489 t = strdup(path);
490 else if (!path)
491 t = strdup(suffix);
492 else
493 t = path_join(path, suffix);
494 if (!t)
495 return -ENOMEM;
496
497 *fs = path_simplify(t, false);
498 return 0;
499 }
500
501 if (!cg_controller_is_valid(controller))
502 return -EINVAL;
503
504 r = cg_all_unified();
505 if (r < 0)
506 return r;
507 if (r > 0)
508 r = join_path_unified(path, suffix, fs);
509 else
510 r = join_path_legacy(controller, path, suffix, fs);
511 if (r < 0)
512 return r;
513
514 path_simplify(*fs, false);
515 return 0;
516 }
517
518 static int controller_is_accessible(const char *controller) {
519 int r;
520
521 assert(controller);
522
523 /* Checks whether a specific controller is accessible,
524 * i.e. its hierarchy mounted. In the unified hierarchy all
525 * controllers are considered accessible, except for the named
526 * hierarchies */
527
528 if (!cg_controller_is_valid(controller))
529 return -EINVAL;
530
531 r = cg_all_unified();
532 if (r < 0)
533 return r;
534 if (r > 0) {
535 /* We don't support named hierarchies if we are using
536 * the unified hierarchy. */
537
538 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER))
539 return 0;
540
541 if (startswith(controller, "name="))
542 return -EOPNOTSUPP;
543
544 } else {
545 const char *cc, *dn;
546
547 dn = controller_to_dirname(controller);
548 cc = strjoina("/sys/fs/cgroup/", dn);
549
550 if (laccess(cc, F_OK) < 0)
551 return -errno;
552 }
553
554 return 0;
555 }
556
557 int cg_get_path_and_check(const char *controller, const char *path, const char *suffix, char **fs) {
558 int r;
559
560 assert(controller);
561 assert(fs);
562
563 /* Check if the specified controller is actually accessible */
564 r = controller_is_accessible(controller);
565 if (r < 0)
566 return r;
567
568 return cg_get_path(controller, path, suffix, fs);
569 }
570
571 int cg_set_xattr(const char *controller, const char *path, const char *name, const void *value, size_t size, int flags) {
572 _cleanup_free_ char *fs = NULL;
573 int r;
574
575 assert(path);
576 assert(name);
577 assert(value || size <= 0);
578
579 r = cg_get_path(controller, path, NULL, &fs);
580 if (r < 0)
581 return r;
582
583 if (setxattr(fs, name, value, size, flags) < 0)
584 return -errno;
585
586 return 0;
587 }
588
589 int cg_get_xattr(const char *controller, const char *path, const char *name, void *value, size_t size) {
590 _cleanup_free_ char *fs = NULL;
591 ssize_t n;
592 int r;
593
594 assert(path);
595 assert(name);
596
597 r = cg_get_path(controller, path, NULL, &fs);
598 if (r < 0)
599 return r;
600
601 n = getxattr(fs, name, value, size);
602 if (n < 0)
603 return -errno;
604
605 return (int) n;
606 }
607
608 int cg_pid_get_path(const char *controller, pid_t pid, char **path) {
609 _cleanup_fclose_ FILE *f = NULL;
610 const char *fs, *controller_str;
611 int unified, r;
612 size_t cs = 0;
613
614 assert(path);
615 assert(pid >= 0);
616
617 if (controller) {
618 if (!cg_controller_is_valid(controller))
619 return -EINVAL;
620 } else
621 controller = SYSTEMD_CGROUP_CONTROLLER;
622
623 unified = cg_unified_controller(controller);
624 if (unified < 0)
625 return unified;
626 if (unified == 0) {
627 if (streq(controller, SYSTEMD_CGROUP_CONTROLLER))
628 controller_str = SYSTEMD_CGROUP_CONTROLLER_LEGACY;
629 else
630 controller_str = controller;
631
632 cs = strlen(controller_str);
633 }
634
635 fs = procfs_file_alloca(pid, "cgroup");
636 r = fopen_unlocked(fs, "re", &f);
637 if (r == -ENOENT)
638 return -ESRCH;
639 if (r < 0)
640 return r;
641
642 for (;;) {
643 _cleanup_free_ char *line = NULL;
644 char *e, *p;
645
646 r = read_line(f, LONG_LINE_MAX, &line);
647 if (r < 0)
648 return r;
649 if (r == 0)
650 break;
651
652 if (unified) {
653 e = startswith(line, "0:");
654 if (!e)
655 continue;
656
657 e = strchr(e, ':');
658 if (!e)
659 continue;
660 } else {
661 char *l;
662 size_t k;
663 const char *word, *state;
664 bool found = false;
665
666 l = strchr(line, ':');
667 if (!l)
668 continue;
669
670 l++;
671 e = strchr(l, ':');
672 if (!e)
673 continue;
674
675 *e = 0;
676 FOREACH_WORD_SEPARATOR(word, k, l, ",", state)
677 if (k == cs && memcmp(word, controller_str, cs) == 0) {
678 found = true;
679 break;
680 }
681 if (!found)
682 continue;
683 }
684
685 p = strdup(e + 1);
686 if (!p)
687 return -ENOMEM;
688
689 /* Truncate suffix indicating the process is a zombie */
690 e = endswith(p, " (deleted)");
691 if (e)
692 *e = 0;
693
694 *path = p;
695 return 0;
696 }
697
698 return -ENODATA;
699 }
700
701 int cg_install_release_agent(const char *controller, const char *agent) {
702 _cleanup_free_ char *fs = NULL, *contents = NULL;
703 const char *sc;
704 int r;
705
706 assert(agent);
707
708 r = cg_unified_controller(controller);
709 if (r < 0)
710 return r;
711 if (r > 0) /* doesn't apply to unified hierarchy */
712 return -EOPNOTSUPP;
713
714 r = cg_get_path(controller, NULL, "release_agent", &fs);
715 if (r < 0)
716 return r;
717
718 r = read_one_line_file(fs, &contents);
719 if (r < 0)
720 return r;
721
722 sc = strstrip(contents);
723 if (isempty(sc)) {
724 r = write_string_file(fs, agent, WRITE_STRING_FILE_DISABLE_BUFFER);
725 if (r < 0)
726 return r;
727 } else if (!path_equal(sc, agent))
728 return -EEXIST;
729
730 fs = mfree(fs);
731 r = cg_get_path(controller, NULL, "notify_on_release", &fs);
732 if (r < 0)
733 return r;
734
735 contents = mfree(contents);
736 r = read_one_line_file(fs, &contents);
737 if (r < 0)
738 return r;
739
740 sc = strstrip(contents);
741 if (streq(sc, "0")) {
742 r = write_string_file(fs, "1", WRITE_STRING_FILE_DISABLE_BUFFER);
743 if (r < 0)
744 return r;
745
746 return 1;
747 }
748
749 if (!streq(sc, "1"))
750 return -EIO;
751
752 return 0;
753 }
754
755 int cg_uninstall_release_agent(const char *controller) {
756 _cleanup_free_ char *fs = NULL;
757 int r;
758
759 r = cg_unified_controller(controller);
760 if (r < 0)
761 return r;
762 if (r > 0) /* Doesn't apply to unified hierarchy */
763 return -EOPNOTSUPP;
764
765 r = cg_get_path(controller, NULL, "notify_on_release", &fs);
766 if (r < 0)
767 return r;
768
769 r = write_string_file(fs, "0", WRITE_STRING_FILE_DISABLE_BUFFER);
770 if (r < 0)
771 return r;
772
773 fs = mfree(fs);
774
775 r = cg_get_path(controller, NULL, "release_agent", &fs);
776 if (r < 0)
777 return r;
778
779 r = write_string_file(fs, "", WRITE_STRING_FILE_DISABLE_BUFFER);
780 if (r < 0)
781 return r;
782
783 return 0;
784 }
785
786 int cg_is_empty(const char *controller, const char *path) {
787 _cleanup_fclose_ FILE *f = NULL;
788 pid_t pid;
789 int r;
790
791 assert(path);
792
793 r = cg_enumerate_processes(controller, path, &f);
794 if (r == -ENOENT)
795 return true;
796 if (r < 0)
797 return r;
798
799 r = cg_read_pid(f, &pid);
800 if (r < 0)
801 return r;
802
803 return r == 0;
804 }
805
806 int cg_is_empty_recursive(const char *controller, const char *path) {
807 int r;
808
809 assert(path);
810
811 /* The root cgroup is always populated */
812 if (controller && empty_or_root(path))
813 return false;
814
815 r = cg_unified_controller(controller);
816 if (r < 0)
817 return r;
818 if (r > 0) {
819 _cleanup_free_ char *t = NULL;
820
821 /* On the unified hierarchy we can check empty state
822 * via the "populated" attribute of "cgroup.events". */
823
824 r = cg_read_event(controller, path, "populated", &t);
825 if (r == -ENOENT)
826 return true;
827 if (r < 0)
828 return r;
829
830 return streq(t, "0");
831 } else {
832 _cleanup_closedir_ DIR *d = NULL;
833 char *fn;
834
835 r = cg_is_empty(controller, path);
836 if (r <= 0)
837 return r;
838
839 r = cg_enumerate_subgroups(controller, path, &d);
840 if (r == -ENOENT)
841 return true;
842 if (r < 0)
843 return r;
844
845 while ((r = cg_read_subgroup(d, &fn)) > 0) {
846 _cleanup_free_ char *p = NULL;
847
848 p = path_join(path, fn);
849 free(fn);
850 if (!p)
851 return -ENOMEM;
852
853 r = cg_is_empty_recursive(controller, p);
854 if (r <= 0)
855 return r;
856 }
857 if (r < 0)
858 return r;
859
860 return true;
861 }
862 }
863
864 int cg_split_spec(const char *spec, char **controller, char **path) {
865 char *t = NULL, *u = NULL;
866 const char *e;
867
868 assert(spec);
869
870 if (*spec == '/') {
871 if (!path_is_normalized(spec))
872 return -EINVAL;
873
874 if (path) {
875 t = strdup(spec);
876 if (!t)
877 return -ENOMEM;
878
879 *path = path_simplify(t, false);
880 }
881
882 if (controller)
883 *controller = NULL;
884
885 return 0;
886 }
887
888 e = strchr(spec, ':');
889 if (!e) {
890 if (!cg_controller_is_valid(spec))
891 return -EINVAL;
892
893 if (controller) {
894 t = strdup(spec);
895 if (!t)
896 return -ENOMEM;
897
898 *controller = t;
899 }
900
901 if (path)
902 *path = NULL;
903
904 return 0;
905 }
906
907 t = strndup(spec, e-spec);
908 if (!t)
909 return -ENOMEM;
910 if (!cg_controller_is_valid(t)) {
911 free(t);
912 return -EINVAL;
913 }
914
915 if (isempty(e+1))
916 u = NULL;
917 else {
918 u = strdup(e+1);
919 if (!u) {
920 free(t);
921 return -ENOMEM;
922 }
923
924 if (!path_is_normalized(u) ||
925 !path_is_absolute(u)) {
926 free(t);
927 free(u);
928 return -EINVAL;
929 }
930
931 path_simplify(u, false);
932 }
933
934 if (controller)
935 *controller = t;
936 else
937 free(t);
938
939 if (path)
940 *path = u;
941 else
942 free(u);
943
944 return 0;
945 }
946
947 int cg_mangle_path(const char *path, char **result) {
948 _cleanup_free_ char *c = NULL, *p = NULL;
949 char *t;
950 int r;
951
952 assert(path);
953 assert(result);
954
955 /* First, check if it already is a filesystem path */
956 if (path_startswith(path, "/sys/fs/cgroup")) {
957
958 t = strdup(path);
959 if (!t)
960 return -ENOMEM;
961
962 *result = path_simplify(t, false);
963 return 0;
964 }
965
966 /* Otherwise, treat it as cg spec */
967 r = cg_split_spec(path, &c, &p);
968 if (r < 0)
969 return r;
970
971 return cg_get_path(c ?: SYSTEMD_CGROUP_CONTROLLER, p ?: "/", NULL, result);
972 }
973
974 int cg_get_root_path(char **path) {
975 char *p, *e;
976 int r;
977
978 assert(path);
979
980 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 1, &p);
981 if (r < 0)
982 return r;
983
984 e = endswith(p, "/" SPECIAL_INIT_SCOPE);
985 if (!e)
986 e = endswith(p, "/" SPECIAL_SYSTEM_SLICE); /* legacy */
987 if (!e)
988 e = endswith(p, "/system"); /* even more legacy */
989 if (e)
990 *e = 0;
991
992 *path = p;
993 return 0;
994 }
995
996 int cg_shift_path(const char *cgroup, const char *root, const char **shifted) {
997 _cleanup_free_ char *rt = NULL;
998 char *p;
999 int r;
1000
1001 assert(cgroup);
1002 assert(shifted);
1003
1004 if (!root) {
1005 /* If the root was specified let's use that, otherwise
1006 * let's determine it from PID 1 */
1007
1008 r = cg_get_root_path(&rt);
1009 if (r < 0)
1010 return r;
1011
1012 root = rt;
1013 }
1014
1015 p = path_startswith(cgroup, root);
1016 if (p && p > cgroup)
1017 *shifted = p - 1;
1018 else
1019 *shifted = cgroup;
1020
1021 return 0;
1022 }
1023
1024 int cg_pid_get_path_shifted(pid_t pid, const char *root, char **cgroup) {
1025 _cleanup_free_ char *raw = NULL;
1026 const char *c;
1027 int r;
1028
1029 assert(pid >= 0);
1030 assert(cgroup);
1031
1032 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &raw);
1033 if (r < 0)
1034 return r;
1035
1036 r = cg_shift_path(raw, root, &c);
1037 if (r < 0)
1038 return r;
1039
1040 if (c == raw)
1041 *cgroup = TAKE_PTR(raw);
1042 else {
1043 char *n;
1044
1045 n = strdup(c);
1046 if (!n)
1047 return -ENOMEM;
1048
1049 *cgroup = n;
1050 }
1051
1052 return 0;
1053 }
1054
1055 int cg_path_decode_unit(const char *cgroup, char **unit) {
1056 char *c, *s;
1057 size_t n;
1058
1059 assert(cgroup);
1060 assert(unit);
1061
1062 n = strcspn(cgroup, "/");
1063 if (n < 3)
1064 return -ENXIO;
1065
1066 c = strndupa(cgroup, n);
1067 c = cg_unescape(c);
1068
1069 if (!unit_name_is_valid(c, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
1070 return -ENXIO;
1071
1072 s = strdup(c);
1073 if (!s)
1074 return -ENOMEM;
1075
1076 *unit = s;
1077 return 0;
1078 }
1079
1080 static bool valid_slice_name(const char *p, size_t n) {
1081
1082 if (!p)
1083 return false;
1084
1085 if (n < STRLEN("x.slice"))
1086 return false;
1087
1088 if (memcmp(p + n - 6, ".slice", 6) == 0) {
1089 char buf[n+1], *c;
1090
1091 memcpy(buf, p, n);
1092 buf[n] = 0;
1093
1094 c = cg_unescape(buf);
1095
1096 return unit_name_is_valid(c, UNIT_NAME_PLAIN);
1097 }
1098
1099 return false;
1100 }
1101
1102 static const char *skip_slices(const char *p) {
1103 assert(p);
1104
1105 /* Skips over all slice assignments */
1106
1107 for (;;) {
1108 size_t n;
1109
1110 p += strspn(p, "/");
1111
1112 n = strcspn(p, "/");
1113 if (!valid_slice_name(p, n))
1114 return p;
1115
1116 p += n;
1117 }
1118 }
1119
1120 int cg_path_get_unit(const char *path, char **ret) {
1121 const char *e;
1122 char *unit;
1123 int r;
1124
1125 assert(path);
1126 assert(ret);
1127
1128 e = skip_slices(path);
1129
1130 r = cg_path_decode_unit(e, &unit);
1131 if (r < 0)
1132 return r;
1133
1134 /* We skipped over the slices, don't accept any now */
1135 if (endswith(unit, ".slice")) {
1136 free(unit);
1137 return -ENXIO;
1138 }
1139
1140 *ret = unit;
1141 return 0;
1142 }
1143
1144 int cg_pid_get_unit(pid_t pid, char **unit) {
1145 _cleanup_free_ char *cgroup = NULL;
1146 int r;
1147
1148 assert(unit);
1149
1150 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1151 if (r < 0)
1152 return r;
1153
1154 return cg_path_get_unit(cgroup, unit);
1155 }
1156
1157 /**
1158 * Skip session-*.scope, but require it to be there.
1159 */
1160 static const char *skip_session(const char *p) {
1161 size_t n;
1162
1163 if (isempty(p))
1164 return NULL;
1165
1166 p += strspn(p, "/");
1167
1168 n = strcspn(p, "/");
1169 if (n < STRLEN("session-x.scope"))
1170 return NULL;
1171
1172 if (memcmp(p, "session-", 8) == 0 && memcmp(p + n - 6, ".scope", 6) == 0) {
1173 char buf[n - 8 - 6 + 1];
1174
1175 memcpy(buf, p + 8, n - 8 - 6);
1176 buf[n - 8 - 6] = 0;
1177
1178 /* Note that session scopes never need unescaping,
1179 * since they cannot conflict with the kernel's own
1180 * names, hence we don't need to call cg_unescape()
1181 * here. */
1182
1183 if (!session_id_valid(buf))
1184 return false;
1185
1186 p += n;
1187 p += strspn(p, "/");
1188 return p;
1189 }
1190
1191 return NULL;
1192 }
1193
1194 /**
1195 * Skip user@*.service, but require it to be there.
1196 */
1197 static const char *skip_user_manager(const char *p) {
1198 size_t n;
1199
1200 if (isempty(p))
1201 return NULL;
1202
1203 p += strspn(p, "/");
1204
1205 n = strcspn(p, "/");
1206 if (n < STRLEN("user@x.service"))
1207 return NULL;
1208
1209 if (memcmp(p, "user@", 5) == 0 && memcmp(p + n - 8, ".service", 8) == 0) {
1210 char buf[n - 5 - 8 + 1];
1211
1212 memcpy(buf, p + 5, n - 5 - 8);
1213 buf[n - 5 - 8] = 0;
1214
1215 /* Note that user manager services never need unescaping,
1216 * since they cannot conflict with the kernel's own
1217 * names, hence we don't need to call cg_unescape()
1218 * here. */
1219
1220 if (parse_uid(buf, NULL) < 0)
1221 return NULL;
1222
1223 p += n;
1224 p += strspn(p, "/");
1225
1226 return p;
1227 }
1228
1229 return NULL;
1230 }
1231
1232 static const char *skip_user_prefix(const char *path) {
1233 const char *e, *t;
1234
1235 assert(path);
1236
1237 /* Skip slices, if there are any */
1238 e = skip_slices(path);
1239
1240 /* Skip the user manager, if it's in the path now... */
1241 t = skip_user_manager(e);
1242 if (t)
1243 return t;
1244
1245 /* Alternatively skip the user session if it is in the path... */
1246 return skip_session(e);
1247 }
1248
1249 int cg_path_get_user_unit(const char *path, char **ret) {
1250 const char *t;
1251
1252 assert(path);
1253 assert(ret);
1254
1255 t = skip_user_prefix(path);
1256 if (!t)
1257 return -ENXIO;
1258
1259 /* And from here on it looks pretty much the same as for a system unit, hence let's use the same
1260 * parser. */
1261 return cg_path_get_unit(t, ret);
1262 }
1263
1264 int cg_pid_get_user_unit(pid_t pid, char **unit) {
1265 _cleanup_free_ char *cgroup = NULL;
1266 int r;
1267
1268 assert(unit);
1269
1270 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1271 if (r < 0)
1272 return r;
1273
1274 return cg_path_get_user_unit(cgroup, unit);
1275 }
1276
1277 int cg_path_get_machine_name(const char *path, char **machine) {
1278 _cleanup_free_ char *u = NULL;
1279 const char *sl;
1280 int r;
1281
1282 r = cg_path_get_unit(path, &u);
1283 if (r < 0)
1284 return r;
1285
1286 sl = strjoina("/run/systemd/machines/unit:", u);
1287 return readlink_malloc(sl, machine);
1288 }
1289
1290 int cg_pid_get_machine_name(pid_t pid, char **machine) {
1291 _cleanup_free_ char *cgroup = NULL;
1292 int r;
1293
1294 assert(machine);
1295
1296 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1297 if (r < 0)
1298 return r;
1299
1300 return cg_path_get_machine_name(cgroup, machine);
1301 }
1302
1303 int cg_path_get_session(const char *path, char **session) {
1304 _cleanup_free_ char *unit = NULL;
1305 char *start, *end;
1306 int r;
1307
1308 assert(path);
1309
1310 r = cg_path_get_unit(path, &unit);
1311 if (r < 0)
1312 return r;
1313
1314 start = startswith(unit, "session-");
1315 if (!start)
1316 return -ENXIO;
1317 end = endswith(start, ".scope");
1318 if (!end)
1319 return -ENXIO;
1320
1321 *end = 0;
1322 if (!session_id_valid(start))
1323 return -ENXIO;
1324
1325 if (session) {
1326 char *rr;
1327
1328 rr = strdup(start);
1329 if (!rr)
1330 return -ENOMEM;
1331
1332 *session = rr;
1333 }
1334
1335 return 0;
1336 }
1337
1338 int cg_pid_get_session(pid_t pid, char **session) {
1339 _cleanup_free_ char *cgroup = NULL;
1340 int r;
1341
1342 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1343 if (r < 0)
1344 return r;
1345
1346 return cg_path_get_session(cgroup, session);
1347 }
1348
1349 int cg_path_get_owner_uid(const char *path, uid_t *uid) {
1350 _cleanup_free_ char *slice = NULL;
1351 char *start, *end;
1352 int r;
1353
1354 assert(path);
1355
1356 r = cg_path_get_slice(path, &slice);
1357 if (r < 0)
1358 return r;
1359
1360 start = startswith(slice, "user-");
1361 if (!start)
1362 return -ENXIO;
1363 end = endswith(start, ".slice");
1364 if (!end)
1365 return -ENXIO;
1366
1367 *end = 0;
1368 if (parse_uid(start, uid) < 0)
1369 return -ENXIO;
1370
1371 return 0;
1372 }
1373
1374 int cg_pid_get_owner_uid(pid_t pid, uid_t *uid) {
1375 _cleanup_free_ char *cgroup = NULL;
1376 int r;
1377
1378 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1379 if (r < 0)
1380 return r;
1381
1382 return cg_path_get_owner_uid(cgroup, uid);
1383 }
1384
1385 int cg_path_get_slice(const char *p, char **slice) {
1386 const char *e = NULL;
1387
1388 assert(p);
1389 assert(slice);
1390
1391 /* Finds the right-most slice unit from the beginning, but
1392 * stops before we come to the first non-slice unit. */
1393
1394 for (;;) {
1395 size_t n;
1396
1397 p += strspn(p, "/");
1398
1399 n = strcspn(p, "/");
1400 if (!valid_slice_name(p, n)) {
1401
1402 if (!e) {
1403 char *s;
1404
1405 s = strdup(SPECIAL_ROOT_SLICE);
1406 if (!s)
1407 return -ENOMEM;
1408
1409 *slice = s;
1410 return 0;
1411 }
1412
1413 return cg_path_decode_unit(e, slice);
1414 }
1415
1416 e = p;
1417 p += n;
1418 }
1419 }
1420
1421 int cg_pid_get_slice(pid_t pid, char **slice) {
1422 _cleanup_free_ char *cgroup = NULL;
1423 int r;
1424
1425 assert(slice);
1426
1427 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1428 if (r < 0)
1429 return r;
1430
1431 return cg_path_get_slice(cgroup, slice);
1432 }
1433
1434 int cg_path_get_user_slice(const char *p, char **slice) {
1435 const char *t;
1436 assert(p);
1437 assert(slice);
1438
1439 t = skip_user_prefix(p);
1440 if (!t)
1441 return -ENXIO;
1442
1443 /* And now it looks pretty much the same as for a system
1444 * slice, so let's just use the same parser from here on. */
1445 return cg_path_get_slice(t, slice);
1446 }
1447
1448 int cg_pid_get_user_slice(pid_t pid, char **slice) {
1449 _cleanup_free_ char *cgroup = NULL;
1450 int r;
1451
1452 assert(slice);
1453
1454 r = cg_pid_get_path_shifted(pid, NULL, &cgroup);
1455 if (r < 0)
1456 return r;
1457
1458 return cg_path_get_user_slice(cgroup, slice);
1459 }
1460
1461 char *cg_escape(const char *p) {
1462 bool need_prefix = false;
1463
1464 /* This implements very minimal escaping for names to be used
1465 * as file names in the cgroup tree: any name which might
1466 * conflict with a kernel name or is prefixed with '_' is
1467 * prefixed with a '_'. That way, when reading cgroup names it
1468 * is sufficient to remove a single prefixing underscore if
1469 * there is one. */
1470
1471 /* The return value of this function (unlike cg_unescape())
1472 * needs free()! */
1473
1474 if (IN_SET(p[0], 0, '_', '.') ||
1475 STR_IN_SET(p, "notify_on_release", "release_agent", "tasks") ||
1476 startswith(p, "cgroup."))
1477 need_prefix = true;
1478 else {
1479 const char *dot;
1480
1481 dot = strrchr(p, '.');
1482 if (dot) {
1483 CGroupController c;
1484 size_t l = dot - p;
1485
1486 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1487 const char *n;
1488
1489 n = cgroup_controller_to_string(c);
1490
1491 if (l != strlen(n))
1492 continue;
1493
1494 if (memcmp(p, n, l) != 0)
1495 continue;
1496
1497 need_prefix = true;
1498 break;
1499 }
1500 }
1501 }
1502
1503 if (need_prefix)
1504 return strjoin("_", p);
1505
1506 return strdup(p);
1507 }
1508
1509 char *cg_unescape(const char *p) {
1510 assert(p);
1511
1512 /* The return value of this function (unlike cg_escape())
1513 * doesn't need free()! */
1514
1515 if (p[0] == '_')
1516 return (char*) p+1;
1517
1518 return (char*) p;
1519 }
1520
1521 #define CONTROLLER_VALID \
1522 DIGITS LETTERS \
1523 "_"
1524
1525 bool cg_controller_is_valid(const char *p) {
1526 const char *t, *s;
1527
1528 if (!p)
1529 return false;
1530
1531 if (streq(p, SYSTEMD_CGROUP_CONTROLLER))
1532 return true;
1533
1534 s = startswith(p, "name=");
1535 if (s)
1536 p = s;
1537
1538 if (IN_SET(*p, 0, '_'))
1539 return false;
1540
1541 for (t = p; *t; t++)
1542 if (!strchr(CONTROLLER_VALID, *t))
1543 return false;
1544
1545 if (t - p > FILENAME_MAX)
1546 return false;
1547
1548 return true;
1549 }
1550
1551 int cg_slice_to_path(const char *unit, char **ret) {
1552 _cleanup_free_ char *p = NULL, *s = NULL, *e = NULL;
1553 const char *dash;
1554 int r;
1555
1556 assert(unit);
1557 assert(ret);
1558
1559 if (streq(unit, SPECIAL_ROOT_SLICE)) {
1560 char *x;
1561
1562 x = strdup("");
1563 if (!x)
1564 return -ENOMEM;
1565 *ret = x;
1566 return 0;
1567 }
1568
1569 if (!unit_name_is_valid(unit, UNIT_NAME_PLAIN))
1570 return -EINVAL;
1571
1572 if (!endswith(unit, ".slice"))
1573 return -EINVAL;
1574
1575 r = unit_name_to_prefix(unit, &p);
1576 if (r < 0)
1577 return r;
1578
1579 dash = strchr(p, '-');
1580
1581 /* Don't allow initial dashes */
1582 if (dash == p)
1583 return -EINVAL;
1584
1585 while (dash) {
1586 _cleanup_free_ char *escaped = NULL;
1587 char n[dash - p + sizeof(".slice")];
1588
1589 #if HAS_FEATURE_MEMORY_SANITIZER
1590 /* msan doesn't instrument stpncpy, so it thinks
1591 * n is later used uninitialized:
1592 * https://github.com/google/sanitizers/issues/926
1593 */
1594 zero(n);
1595 #endif
1596
1597 /* Don't allow trailing or double dashes */
1598 if (IN_SET(dash[1], 0, '-'))
1599 return -EINVAL;
1600
1601 strcpy(stpncpy(n, p, dash - p), ".slice");
1602 if (!unit_name_is_valid(n, UNIT_NAME_PLAIN))
1603 return -EINVAL;
1604
1605 escaped = cg_escape(n);
1606 if (!escaped)
1607 return -ENOMEM;
1608
1609 if (!strextend(&s, escaped, "/", NULL))
1610 return -ENOMEM;
1611
1612 dash = strchr(dash+1, '-');
1613 }
1614
1615 e = cg_escape(unit);
1616 if (!e)
1617 return -ENOMEM;
1618
1619 if (!strextend(&s, e, NULL))
1620 return -ENOMEM;
1621
1622 *ret = TAKE_PTR(s);
1623
1624 return 0;
1625 }
1626
1627 int cg_set_attribute(const char *controller, const char *path, const char *attribute, const char *value) {
1628 _cleanup_free_ char *p = NULL;
1629 int r;
1630
1631 r = cg_get_path(controller, path, attribute, &p);
1632 if (r < 0)
1633 return r;
1634
1635 return write_string_file(p, value, WRITE_STRING_FILE_DISABLE_BUFFER);
1636 }
1637
1638 int cg_get_attribute(const char *controller, const char *path, const char *attribute, char **ret) {
1639 _cleanup_free_ char *p = NULL;
1640 int r;
1641
1642 r = cg_get_path(controller, path, attribute, &p);
1643 if (r < 0)
1644 return r;
1645
1646 return read_one_line_file(p, ret);
1647 }
1648
1649 int cg_get_keyed_attribute(
1650 const char *controller,
1651 const char *path,
1652 const char *attribute,
1653 char **keys,
1654 char **ret_values) {
1655
1656 _cleanup_free_ char *filename = NULL, *contents = NULL;
1657 const char *p;
1658 size_t n, i, n_done = 0;
1659 char **v;
1660 int r;
1661
1662 /* Reads one or more fields of a cgroup v2 keyed attribute file. The 'keys' parameter should be an strv with
1663 * all keys to retrieve. The 'ret_values' parameter should be passed as string size with the same number of
1664 * entries as 'keys'. On success each entry will be set to the value of the matching key.
1665 *
1666 * If the attribute file doesn't exist at all returns ENOENT, if any key is not found returns ENXIO. */
1667
1668 r = cg_get_path(controller, path, attribute, &filename);
1669 if (r < 0)
1670 return r;
1671
1672 r = read_full_file(filename, &contents, NULL);
1673 if (r < 0)
1674 return r;
1675
1676 n = strv_length(keys);
1677 if (n == 0) /* No keys to retrieve? That's easy, we are done then */
1678 return 0;
1679
1680 /* Let's build this up in a temporary array for now in order not to clobber the return parameter on failure */
1681 v = newa0(char*, n);
1682
1683 for (p = contents; *p;) {
1684 const char *w = NULL;
1685
1686 for (i = 0; i < n; i++)
1687 if (!v[i]) {
1688 w = first_word(p, keys[i]);
1689 if (w)
1690 break;
1691 }
1692
1693 if (w) {
1694 size_t l;
1695
1696 l = strcspn(w, NEWLINE);
1697 v[i] = strndup(w, l);
1698 if (!v[i]) {
1699 r = -ENOMEM;
1700 goto fail;
1701 }
1702
1703 n_done++;
1704 if (n_done >= n)
1705 goto done;
1706
1707 p = w + l;
1708 } else
1709 p += strcspn(p, NEWLINE);
1710
1711 p += strspn(p, NEWLINE);
1712 }
1713
1714 r = -ENXIO;
1715
1716 fail:
1717 for (i = 0; i < n; i++)
1718 free(v[i]);
1719
1720 return r;
1721
1722 done:
1723 memcpy(ret_values, v, sizeof(char*) * n);
1724 return 0;
1725 }
1726
1727 int cg_mask_to_string(CGroupMask mask, char **ret) {
1728 _cleanup_free_ char *s = NULL;
1729 size_t n = 0, allocated = 0;
1730 bool space = false;
1731 CGroupController c;
1732
1733 assert(ret);
1734
1735 if (mask == 0) {
1736 *ret = NULL;
1737 return 0;
1738 }
1739
1740 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1741 const char *k;
1742 size_t l;
1743
1744 if (!FLAGS_SET(mask, CGROUP_CONTROLLER_TO_MASK(c)))
1745 continue;
1746
1747 k = cgroup_controller_to_string(c);
1748 l = strlen(k);
1749
1750 if (!GREEDY_REALLOC(s, allocated, n + space + l + 1))
1751 return -ENOMEM;
1752
1753 if (space)
1754 s[n] = ' ';
1755 memcpy(s + n + space, k, l);
1756 n += space + l;
1757
1758 space = true;
1759 }
1760
1761 assert(s);
1762
1763 s[n] = 0;
1764 *ret = TAKE_PTR(s);
1765
1766 return 0;
1767 }
1768
1769 int cg_mask_from_string(const char *value, CGroupMask *ret) {
1770 CGroupMask m = 0;
1771
1772 assert(ret);
1773 assert(value);
1774
1775 for (;;) {
1776 _cleanup_free_ char *n = NULL;
1777 CGroupController v;
1778 int r;
1779
1780 r = extract_first_word(&value, &n, NULL, 0);
1781 if (r < 0)
1782 return r;
1783 if (r == 0)
1784 break;
1785
1786 v = cgroup_controller_from_string(n);
1787 if (v < 0)
1788 continue;
1789
1790 m |= CGROUP_CONTROLLER_TO_MASK(v);
1791 }
1792
1793 *ret = m;
1794 return 0;
1795 }
1796
1797 int cg_mask_supported(CGroupMask *ret) {
1798 CGroupMask mask;
1799 int r;
1800
1801 /* Determines the mask of supported cgroup controllers. Only includes controllers we can make sense of and that
1802 * are actually accessible. Only covers real controllers, i.e. not the CGROUP_CONTROLLER_BPF_xyz
1803 * pseudo-controllers. */
1804
1805 r = cg_all_unified();
1806 if (r < 0)
1807 return r;
1808 if (r > 0) {
1809 _cleanup_free_ char *root = NULL, *controllers = NULL, *path = NULL;
1810
1811 /* In the unified hierarchy we can read the supported
1812 * and accessible controllers from a the top-level
1813 * cgroup attribute */
1814
1815 r = cg_get_root_path(&root);
1816 if (r < 0)
1817 return r;
1818
1819 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, root, "cgroup.controllers", &path);
1820 if (r < 0)
1821 return r;
1822
1823 r = read_one_line_file(path, &controllers);
1824 if (r < 0)
1825 return r;
1826
1827 r = cg_mask_from_string(controllers, &mask);
1828 if (r < 0)
1829 return r;
1830
1831 /* Mask controllers that are not supported in unified hierarchy. */
1832 mask &= CGROUP_MASK_V2;
1833
1834 } else {
1835 CGroupController c;
1836
1837 /* In the legacy hierarchy, we check which hierarchies are mounted. */
1838
1839 mask = 0;
1840 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1841 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
1842 const char *n;
1843
1844 if (!FLAGS_SET(CGROUP_MASK_V1, bit))
1845 continue;
1846
1847 n = cgroup_controller_to_string(c);
1848 if (controller_is_accessible(n) >= 0)
1849 mask |= bit;
1850 }
1851 }
1852
1853 *ret = mask;
1854 return 0;
1855 }
1856
1857 int cg_kernel_controllers(Set **ret) {
1858 _cleanup_set_free_free_ Set *controllers = NULL;
1859 _cleanup_fclose_ FILE *f = NULL;
1860 int r;
1861
1862 assert(ret);
1863
1864 /* Determines the full list of kernel-known controllers. Might include controllers we don't actually support
1865 * and controllers that aren't currently accessible (because not mounted). This does not include "name="
1866 * pseudo-controllers. */
1867
1868 controllers = set_new(&string_hash_ops);
1869 if (!controllers)
1870 return -ENOMEM;
1871
1872 r = fopen_unlocked("/proc/cgroups", "re", &f);
1873 if (r == -ENOENT) {
1874 *ret = NULL;
1875 return 0;
1876 }
1877 if (r < 0)
1878 return r;
1879
1880 /* Ignore the header line */
1881 (void) read_line(f, (size_t) -1, NULL);
1882
1883 for (;;) {
1884 char *controller;
1885 int enabled = 0;
1886
1887 errno = 0;
1888 if (fscanf(f, "%ms %*i %*i %i", &controller, &enabled) != 2) {
1889
1890 if (feof(f))
1891 break;
1892
1893 if (ferror(f))
1894 return errno_or_else(EIO);
1895
1896 return -EBADMSG;
1897 }
1898
1899 if (!enabled) {
1900 free(controller);
1901 continue;
1902 }
1903
1904 if (!cg_controller_is_valid(controller)) {
1905 free(controller);
1906 return -EBADMSG;
1907 }
1908
1909 r = set_consume(controllers, controller);
1910 if (r < 0)
1911 return r;
1912 }
1913
1914 *ret = TAKE_PTR(controllers);
1915
1916 return 0;
1917 }
1918
1919 /* The hybrid mode was initially implemented in v232 and simply mounted cgroup2 on
1920 * /sys/fs/cgroup/systemd. This unfortunately broke other tools (such as docker) which expected the v1
1921 * "name=systemd" hierarchy on /sys/fs/cgroup/systemd. From v233 and on, the hybrid mode mounts v2 on
1922 * /sys/fs/cgroup/unified and maintains "name=systemd" hierarchy on /sys/fs/cgroup/systemd for compatibility
1923 * with other tools.
1924 *
1925 * To keep live upgrade working, we detect and support v232 layout. When v232 layout is detected, to keep
1926 * cgroup v2 process management but disable the compat dual layout, we return true on
1927 * cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) and false on cg_hybrid_unified().
1928 */
1929 static thread_local bool unified_systemd_v232;
1930
1931 int cg_unified_cached(bool flush) {
1932 static thread_local CGroupUnified unified_cache = CGROUP_UNIFIED_UNKNOWN;
1933
1934 struct statfs fs;
1935
1936 /* Checks if we support the unified hierarchy. Returns an
1937 * error when the cgroup hierarchies aren't mounted yet or we
1938 * have any other trouble determining if the unified hierarchy
1939 * is supported. */
1940
1941 if (flush)
1942 unified_cache = CGROUP_UNIFIED_UNKNOWN;
1943 else if (unified_cache >= CGROUP_UNIFIED_NONE)
1944 return unified_cache;
1945
1946 if (statfs("/sys/fs/cgroup/", &fs) < 0)
1947 return log_debug_errno(errno, "statfs(\"/sys/fs/cgroup/\") failed: %m");
1948
1949 if (F_TYPE_EQUAL(fs.f_type, CGROUP2_SUPER_MAGIC)) {
1950 log_debug("Found cgroup2 on /sys/fs/cgroup/, full unified hierarchy");
1951 unified_cache = CGROUP_UNIFIED_ALL;
1952 } else if (F_TYPE_EQUAL(fs.f_type, TMPFS_MAGIC)) {
1953 if (statfs("/sys/fs/cgroup/unified/", &fs) == 0 &&
1954 F_TYPE_EQUAL(fs.f_type, CGROUP2_SUPER_MAGIC)) {
1955 log_debug("Found cgroup2 on /sys/fs/cgroup/unified, unified hierarchy for systemd controller");
1956 unified_cache = CGROUP_UNIFIED_SYSTEMD;
1957 unified_systemd_v232 = false;
1958 } else {
1959 if (statfs("/sys/fs/cgroup/systemd/", &fs) < 0)
1960 return log_debug_errno(errno, "statfs(\"/sys/fs/cgroup/systemd\" failed: %m");
1961
1962 if (F_TYPE_EQUAL(fs.f_type, CGROUP2_SUPER_MAGIC)) {
1963 log_debug("Found cgroup2 on /sys/fs/cgroup/systemd, unified hierarchy for systemd controller (v232 variant)");
1964 unified_cache = CGROUP_UNIFIED_SYSTEMD;
1965 unified_systemd_v232 = true;
1966 } else if (F_TYPE_EQUAL(fs.f_type, CGROUP_SUPER_MAGIC)) {
1967 log_debug("Found cgroup on /sys/fs/cgroup/systemd, legacy hierarchy");
1968 unified_cache = CGROUP_UNIFIED_NONE;
1969 } else {
1970 log_debug("Unexpected filesystem type %llx mounted on /sys/fs/cgroup/systemd, assuming legacy hierarchy",
1971 (unsigned long long) fs.f_type);
1972 unified_cache = CGROUP_UNIFIED_NONE;
1973 }
1974 }
1975 } else
1976 return log_debug_errno(SYNTHETIC_ERRNO(ENOMEDIUM),
1977 "Unknown filesystem type %llx mounted on /sys/fs/cgroup.",
1978 (unsigned long long)fs.f_type);
1979
1980 return unified_cache;
1981 }
1982
1983 int cg_unified_controller(const char *controller) {
1984 int r;
1985
1986 r = cg_unified_cached(false);
1987 if (r < 0)
1988 return r;
1989
1990 if (r == CGROUP_UNIFIED_NONE)
1991 return false;
1992
1993 if (r >= CGROUP_UNIFIED_ALL)
1994 return true;
1995
1996 return streq_ptr(controller, SYSTEMD_CGROUP_CONTROLLER);
1997 }
1998
1999 int cg_all_unified(void) {
2000 int r;
2001
2002 r = cg_unified_cached(false);
2003 if (r < 0)
2004 return r;
2005
2006 return r >= CGROUP_UNIFIED_ALL;
2007 }
2008
2009 int cg_hybrid_unified(void) {
2010 int r;
2011
2012 r = cg_unified_cached(false);
2013 if (r < 0)
2014 return r;
2015
2016 return r == CGROUP_UNIFIED_SYSTEMD && !unified_systemd_v232;
2017 }
2018
2019 const uint64_t cgroup_io_limit_defaults[_CGROUP_IO_LIMIT_TYPE_MAX] = {
2020 [CGROUP_IO_RBPS_MAX] = CGROUP_LIMIT_MAX,
2021 [CGROUP_IO_WBPS_MAX] = CGROUP_LIMIT_MAX,
2022 [CGROUP_IO_RIOPS_MAX] = CGROUP_LIMIT_MAX,
2023 [CGROUP_IO_WIOPS_MAX] = CGROUP_LIMIT_MAX,
2024 };
2025
2026 static const char* const cgroup_io_limit_type_table[_CGROUP_IO_LIMIT_TYPE_MAX] = {
2027 [CGROUP_IO_RBPS_MAX] = "IOReadBandwidthMax",
2028 [CGROUP_IO_WBPS_MAX] = "IOWriteBandwidthMax",
2029 [CGROUP_IO_RIOPS_MAX] = "IOReadIOPSMax",
2030 [CGROUP_IO_WIOPS_MAX] = "IOWriteIOPSMax",
2031 };
2032
2033 DEFINE_STRING_TABLE_LOOKUP(cgroup_io_limit_type, CGroupIOLimitType);
2034
2035 bool is_cgroup_fs(const struct statfs *s) {
2036 return is_fs_type(s, CGROUP_SUPER_MAGIC) ||
2037 is_fs_type(s, CGROUP2_SUPER_MAGIC);
2038 }
2039
2040 bool fd_is_cgroup_fs(int fd) {
2041 struct statfs s;
2042
2043 if (fstatfs(fd, &s) < 0)
2044 return -errno;
2045
2046 return is_cgroup_fs(&s);
2047 }
2048
2049 static const char *const cgroup_controller_table[_CGROUP_CONTROLLER_MAX] = {
2050 [CGROUP_CONTROLLER_CPU] = "cpu",
2051 [CGROUP_CONTROLLER_CPUACCT] = "cpuacct",
2052 [CGROUP_CONTROLLER_CPUSET] = "cpuset",
2053 [CGROUP_CONTROLLER_IO] = "io",
2054 [CGROUP_CONTROLLER_BLKIO] = "blkio",
2055 [CGROUP_CONTROLLER_MEMORY] = "memory",
2056 [CGROUP_CONTROLLER_DEVICES] = "devices",
2057 [CGROUP_CONTROLLER_PIDS] = "pids",
2058 [CGROUP_CONTROLLER_BPF_FIREWALL] = "bpf-firewall",
2059 [CGROUP_CONTROLLER_BPF_DEVICES] = "bpf-devices",
2060 };
2061
2062 DEFINE_STRING_TABLE_LOOKUP(cgroup_controller, CGroupController);
2063
2064 CGroupMask get_cpu_accounting_mask(void) {
2065 static CGroupMask needed_mask = (CGroupMask) -1;
2066
2067 /* On kernel ≥4.15 with unified hierarchy, cpu.stat's usage_usec is
2068 * provided externally from the CPU controller, which means we don't
2069 * need to enable the CPU controller just to get metrics. This is good,
2070 * because enabling the CPU controller comes at a minor performance
2071 * hit, especially when it's propagated deep into large hierarchies.
2072 * There's also no separate CPU accounting controller available within
2073 * a unified hierarchy.
2074 *
2075 * This combination of factors results in the desired cgroup mask to
2076 * enable for CPU accounting varying as follows:
2077 *
2078 * ╔═════════════════════╤═════════════════════╗
2079 * ║ Linux ≥4.15 │ Linux <4.15 ║
2080 * ╔═══════════════╬═════════════════════╪═════════════════════╣
2081 * ║ Unified ║ nothing │ CGROUP_MASK_CPU ║
2082 * ╟───────────────╫─────────────────────┼─────────────────────╢
2083 * ║ Hybrid/Legacy ║ CGROUP_MASK_CPUACCT │ CGROUP_MASK_CPUACCT ║
2084 * ╚═══════════════╩═════════════════════╧═════════════════════╝
2085 *
2086 * We check kernel version here instead of manually checking whether
2087 * cpu.stat is present for every cgroup, as that check in itself would
2088 * already be fairly expensive.
2089 *
2090 * Kernels where this patch has been backported will therefore have the
2091 * CPU controller enabled unnecessarily. This is more expensive than
2092 * necessary, but harmless. ☺️
2093 */
2094
2095 if (needed_mask == (CGroupMask) -1) {
2096 if (cg_all_unified()) {
2097 struct utsname u;
2098 assert_se(uname(&u) >= 0);
2099
2100 if (str_verscmp(u.release, "4.15") < 0)
2101 needed_mask = CGROUP_MASK_CPU;
2102 else
2103 needed_mask = 0;
2104 } else
2105 needed_mask = CGROUP_MASK_CPUACCT;
2106 }
2107
2108 return needed_mask;
2109 }
2110
2111 bool cpu_accounting_is_cheap(void) {
2112 return get_cpu_accounting_mask() == 0;
2113 }