]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/hashmap.c
Turn mempool_enabled() into a weak symbol
[thirdparty/systemd.git] / src / basic / hashmap.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <fnmatch.h>
5 #include <pthread.h>
6 #include <stdint.h>
7 #include <stdlib.h>
8
9 #include "alloc-util.h"
10 #include "fileio.h"
11 #include "hashmap.h"
12 #include "macro.h"
13 #include "memory-util.h"
14 #include "mempool.h"
15 #include "missing_syscall.h"
16 #include "process-util.h"
17 #include "random-util.h"
18 #include "set.h"
19 #include "siphash24.h"
20 #include "string-util.h"
21 #include "strv.h"
22
23 #if ENABLE_DEBUG_HASHMAP
24 #include "list.h"
25 #endif
26
27 /*
28 * Implementation of hashmaps.
29 * Addressing: open
30 * - uses less RAM compared to closed addressing (chaining), because
31 * our entries are small (especially in Sets, which tend to contain
32 * the majority of entries in systemd).
33 * Collision resolution: Robin Hood
34 * - tends to equalize displacement of entries from their optimal buckets.
35 * Probe sequence: linear
36 * - though theoretically worse than random probing/uniform hashing/double
37 * hashing, it is good for cache locality.
38 *
39 * References:
40 * Celis, P. 1986. Robin Hood Hashing.
41 * Ph.D. Dissertation. University of Waterloo, Waterloo, Ont., Canada, Canada.
42 * https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf
43 * - The results are derived for random probing. Suggests deletion with
44 * tombstones and two mean-centered search methods. None of that works
45 * well for linear probing.
46 *
47 * Janson, S. 2005. Individual displacements for linear probing hashing with different insertion policies.
48 * ACM Trans. Algorithms 1, 2 (October 2005), 177-213.
49 * DOI=10.1145/1103963.1103964 http://doi.acm.org/10.1145/1103963.1103964
50 * http://www.math.uu.se/~svante/papers/sj157.pdf
51 * - Applies to Robin Hood with linear probing. Contains remarks on
52 * the unsuitability of mean-centered search with linear probing.
53 *
54 * Viola, A. 2005. Exact distribution of individual displacements in linear probing hashing.
55 * ACM Trans. Algorithms 1, 2 (October 2005), 214-242.
56 * DOI=10.1145/1103963.1103965 http://doi.acm.org/10.1145/1103963.1103965
57 * - Similar to Janson. Note that Viola writes about C_{m,n} (number of probes
58 * in a successful search), and Janson writes about displacement. C = d + 1.
59 *
60 * Goossaert, E. 2013. Robin Hood hashing: backward shift deletion.
61 * http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/
62 * - Explanation of backward shift deletion with pictures.
63 *
64 * Khuong, P. 2013. The Other Robin Hood Hashing.
65 * http://www.pvk.ca/Blog/2013/11/26/the-other-robin-hood-hashing/
66 * - Short summary of random vs. linear probing, and tombstones vs. backward shift.
67 */
68
69 /*
70 * XXX Ideas for improvement:
71 * For unordered hashmaps, randomize iteration order, similarly to Perl:
72 * http://blog.booking.com/hardening-perls-hash-function.html
73 */
74
75 /* INV_KEEP_FREE = 1 / (1 - max_load_factor)
76 * e.g. 1 / (1 - 0.8) = 5 ... keep one fifth of the buckets free. */
77 #define INV_KEEP_FREE 5U
78
79 /* Fields common to entries of all hashmap/set types */
80 struct hashmap_base_entry {
81 const void *key;
82 };
83
84 /* Entry types for specific hashmap/set types
85 * hashmap_base_entry must be at the beginning of each entry struct. */
86
87 struct plain_hashmap_entry {
88 struct hashmap_base_entry b;
89 void *value;
90 };
91
92 struct ordered_hashmap_entry {
93 struct plain_hashmap_entry p;
94 unsigned iterate_next, iterate_previous;
95 };
96
97 struct set_entry {
98 struct hashmap_base_entry b;
99 };
100
101 /* In several functions it is advantageous to have the hash table extended
102 * virtually by a couple of additional buckets. We reserve special index values
103 * for these "swap" buckets. */
104 #define _IDX_SWAP_BEGIN (UINT_MAX - 3)
105 #define IDX_PUT (_IDX_SWAP_BEGIN + 0)
106 #define IDX_TMP (_IDX_SWAP_BEGIN + 1)
107 #define _IDX_SWAP_END (_IDX_SWAP_BEGIN + 2)
108
109 #define IDX_FIRST (UINT_MAX - 1) /* special index for freshly initialized iterators */
110 #define IDX_NIL UINT_MAX /* special index value meaning "none" or "end" */
111
112 assert_cc(IDX_FIRST == _IDX_SWAP_END);
113 assert_cc(IDX_FIRST == _IDX_ITERATOR_FIRST);
114
115 /* Storage space for the "swap" buckets.
116 * All entry types can fit into an ordered_hashmap_entry. */
117 struct swap_entries {
118 struct ordered_hashmap_entry e[_IDX_SWAP_END - _IDX_SWAP_BEGIN];
119 };
120
121 /* Distance from Initial Bucket */
122 typedef uint8_t dib_raw_t;
123 #define DIB_RAW_OVERFLOW ((dib_raw_t)0xfdU) /* indicates DIB value is greater than representable */
124 #define DIB_RAW_REHASH ((dib_raw_t)0xfeU) /* entry yet to be rehashed during in-place resize */
125 #define DIB_RAW_FREE ((dib_raw_t)0xffU) /* a free bucket */
126 #define DIB_RAW_INIT ((char)DIB_RAW_FREE) /* a byte to memset a DIB store with when initializing */
127
128 #define DIB_FREE UINT_MAX
129
130 #if ENABLE_DEBUG_HASHMAP
131 struct hashmap_debug_info {
132 LIST_FIELDS(struct hashmap_debug_info, debug_list);
133 unsigned max_entries; /* high watermark of n_entries */
134
135 /* who allocated this hashmap */
136 int line;
137 const char *file;
138 const char *func;
139
140 /* fields to detect modification while iterating */
141 unsigned put_count; /* counts puts into the hashmap */
142 unsigned rem_count; /* counts removals from hashmap */
143 unsigned last_rem_idx; /* remembers last removal index */
144 };
145
146 /* Tracks all existing hashmaps. Get at it from gdb. See sd_dump_hashmaps.py */
147 static LIST_HEAD(struct hashmap_debug_info, hashmap_debug_list);
148 static pthread_mutex_t hashmap_debug_list_mutex = PTHREAD_MUTEX_INITIALIZER;
149 #endif
150
151 enum HashmapType {
152 HASHMAP_TYPE_PLAIN,
153 HASHMAP_TYPE_ORDERED,
154 HASHMAP_TYPE_SET,
155 _HASHMAP_TYPE_MAX
156 };
157
158 struct _packed_ indirect_storage {
159 void *storage; /* where buckets and DIBs are stored */
160 uint8_t hash_key[HASH_KEY_SIZE]; /* hash key; changes during resize */
161
162 unsigned n_entries; /* number of stored entries */
163 unsigned n_buckets; /* number of buckets */
164
165 unsigned idx_lowest_entry; /* Index below which all buckets are free.
166 Makes "while (hashmap_steal_first())" loops
167 O(n) instead of O(n^2) for unordered hashmaps. */
168 uint8_t _pad[3]; /* padding for the whole HashmapBase */
169 /* The bitfields in HashmapBase complete the alignment of the whole thing. */
170 };
171
172 struct direct_storage {
173 /* This gives us 39 bytes on 64bit, or 35 bytes on 32bit.
174 * That's room for 4 set_entries + 4 DIB bytes + 3 unused bytes on 64bit,
175 * or 7 set_entries + 7 DIB bytes + 0 unused bytes on 32bit. */
176 uint8_t storage[sizeof(struct indirect_storage)];
177 };
178
179 #define DIRECT_BUCKETS(entry_t) \
180 (sizeof(struct direct_storage) / (sizeof(entry_t) + sizeof(dib_raw_t)))
181
182 /* We should be able to store at least one entry directly. */
183 assert_cc(DIRECT_BUCKETS(struct ordered_hashmap_entry) >= 1);
184
185 /* We have 3 bits for n_direct_entries. */
186 assert_cc(DIRECT_BUCKETS(struct set_entry) < (1 << 3));
187
188 /* Hashmaps with directly stored entries all use this shared hash key.
189 * It's no big deal if the key is guessed, because there can be only
190 * a handful of directly stored entries in a hashmap. When a hashmap
191 * outgrows direct storage, it gets its own key for indirect storage. */
192 static uint8_t shared_hash_key[HASH_KEY_SIZE];
193
194 /* Fields that all hashmap/set types must have */
195 struct HashmapBase {
196 const struct hash_ops *hash_ops; /* hash and compare ops to use */
197
198 union _packed_ {
199 struct indirect_storage indirect; /* if has_indirect */
200 struct direct_storage direct; /* if !has_indirect */
201 };
202
203 enum HashmapType type:2; /* HASHMAP_TYPE_* */
204 bool has_indirect:1; /* whether indirect storage is used */
205 unsigned n_direct_entries:3; /* Number of entries in direct storage.
206 * Only valid if !has_indirect. */
207 bool from_pool:1; /* whether was allocated from mempool */
208 bool dirty:1; /* whether dirtied since last iterated_cache_get() */
209 bool cached:1; /* whether this hashmap is being cached */
210
211 #if ENABLE_DEBUG_HASHMAP
212 struct hashmap_debug_info debug;
213 #endif
214 };
215
216 /* Specific hash types
217 * HashmapBase must be at the beginning of each hashmap struct. */
218
219 struct Hashmap {
220 struct HashmapBase b;
221 };
222
223 struct OrderedHashmap {
224 struct HashmapBase b;
225 unsigned iterate_list_head, iterate_list_tail;
226 };
227
228 struct Set {
229 struct HashmapBase b;
230 };
231
232 typedef struct CacheMem {
233 const void **ptr;
234 size_t n_populated;
235 bool active:1;
236 } CacheMem;
237
238 struct IteratedCache {
239 HashmapBase *hashmap;
240 CacheMem keys, values;
241 };
242
243 DEFINE_MEMPOOL(hashmap_pool, Hashmap, 8);
244 DEFINE_MEMPOOL(ordered_hashmap_pool, OrderedHashmap, 8);
245 /* No need for a separate Set pool */
246 assert_cc(sizeof(Hashmap) == sizeof(Set));
247
248 struct hashmap_type_info {
249 size_t head_size;
250 size_t entry_size;
251 struct mempool *mempool;
252 unsigned n_direct_buckets;
253 };
254
255 static _used_ const struct hashmap_type_info hashmap_type_info[_HASHMAP_TYPE_MAX] = {
256 [HASHMAP_TYPE_PLAIN] = {
257 .head_size = sizeof(Hashmap),
258 .entry_size = sizeof(struct plain_hashmap_entry),
259 .mempool = &hashmap_pool,
260 .n_direct_buckets = DIRECT_BUCKETS(struct plain_hashmap_entry),
261 },
262 [HASHMAP_TYPE_ORDERED] = {
263 .head_size = sizeof(OrderedHashmap),
264 .entry_size = sizeof(struct ordered_hashmap_entry),
265 .mempool = &ordered_hashmap_pool,
266 .n_direct_buckets = DIRECT_BUCKETS(struct ordered_hashmap_entry),
267 },
268 [HASHMAP_TYPE_SET] = {
269 .head_size = sizeof(Set),
270 .entry_size = sizeof(struct set_entry),
271 .mempool = &hashmap_pool,
272 .n_direct_buckets = DIRECT_BUCKETS(struct set_entry),
273 },
274 };
275
276 #if VALGRIND
277 _destructor_ static void cleanup_pools(void) {
278 _cleanup_free_ char *t = NULL;
279 int r;
280
281 /* Be nice to valgrind */
282
283 /* The pool is only allocated by the main thread, but the memory can
284 * be passed to other threads. Let's clean up if we are the main thread
285 * and no other threads are live. */
286 /* We build our own is_main_thread() here, which doesn't use C11
287 * TLS based caching of the result. That's because valgrind apparently
288 * doesn't like malloc() (which C11 TLS internally uses) to be called
289 * from a GCC destructors. */
290 if (getpid() != gettid())
291 return;
292
293 r = get_proc_field("/proc/self/status", "Threads", WHITESPACE, &t);
294 if (r < 0 || !streq(t, "1"))
295 return;
296
297 mempool_drop(&hashmap_pool);
298 mempool_drop(&ordered_hashmap_pool);
299 }
300 #endif
301
302 static unsigned n_buckets(HashmapBase *h) {
303 return h->has_indirect ? h->indirect.n_buckets
304 : hashmap_type_info[h->type].n_direct_buckets;
305 }
306
307 static unsigned n_entries(HashmapBase *h) {
308 return h->has_indirect ? h->indirect.n_entries
309 : h->n_direct_entries;
310 }
311
312 static void n_entries_inc(HashmapBase *h) {
313 if (h->has_indirect)
314 h->indirect.n_entries++;
315 else
316 h->n_direct_entries++;
317 }
318
319 static void n_entries_dec(HashmapBase *h) {
320 if (h->has_indirect)
321 h->indirect.n_entries--;
322 else
323 h->n_direct_entries--;
324 }
325
326 static void* storage_ptr(HashmapBase *h) {
327 return h->has_indirect ? h->indirect.storage
328 : h->direct.storage;
329 }
330
331 static uint8_t* hash_key(HashmapBase *h) {
332 return h->has_indirect ? h->indirect.hash_key
333 : shared_hash_key;
334 }
335
336 static unsigned base_bucket_hash(HashmapBase *h, const void *p) {
337 struct siphash state;
338 uint64_t hash;
339
340 siphash24_init(&state, hash_key(h));
341
342 h->hash_ops->hash(p, &state);
343
344 hash = siphash24_finalize(&state);
345
346 return (unsigned) (hash % n_buckets(h));
347 }
348 #define bucket_hash(h, p) base_bucket_hash(HASHMAP_BASE(h), p)
349
350 static void base_set_dirty(HashmapBase *h) {
351 h->dirty = true;
352 }
353 #define hashmap_set_dirty(h) base_set_dirty(HASHMAP_BASE(h))
354
355 static void get_hash_key(uint8_t hash_key[HASH_KEY_SIZE], bool reuse_is_ok) {
356 static uint8_t current[HASH_KEY_SIZE];
357 static bool current_initialized = false;
358
359 /* Returns a hash function key to use. In order to keep things
360 * fast we will not generate a new key each time we allocate a
361 * new hash table. Instead, we'll just reuse the most recently
362 * generated one, except if we never generated one or when we
363 * are rehashing an entire hash table because we reached a
364 * fill level */
365
366 if (!current_initialized || !reuse_is_ok) {
367 random_bytes(current, sizeof(current));
368 current_initialized = true;
369 }
370
371 memcpy(hash_key, current, sizeof(current));
372 }
373
374 static struct hashmap_base_entry* bucket_at(HashmapBase *h, unsigned idx) {
375 return (struct hashmap_base_entry*)
376 ((uint8_t*) storage_ptr(h) + idx * hashmap_type_info[h->type].entry_size);
377 }
378
379 static struct plain_hashmap_entry* plain_bucket_at(Hashmap *h, unsigned idx) {
380 return (struct plain_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx);
381 }
382
383 static struct ordered_hashmap_entry* ordered_bucket_at(OrderedHashmap *h, unsigned idx) {
384 return (struct ordered_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx);
385 }
386
387 static struct set_entry *set_bucket_at(Set *h, unsigned idx) {
388 return (struct set_entry*) bucket_at(HASHMAP_BASE(h), idx);
389 }
390
391 static struct ordered_hashmap_entry* bucket_at_swap(struct swap_entries *swap, unsigned idx) {
392 return &swap->e[idx - _IDX_SWAP_BEGIN];
393 }
394
395 /* Returns a pointer to the bucket at index idx.
396 * Understands real indexes and swap indexes, hence "_virtual". */
397 static struct hashmap_base_entry* bucket_at_virtual(HashmapBase *h, struct swap_entries *swap,
398 unsigned idx) {
399 if (idx < _IDX_SWAP_BEGIN)
400 return bucket_at(h, idx);
401
402 if (idx < _IDX_SWAP_END)
403 return &bucket_at_swap(swap, idx)->p.b;
404
405 assert_not_reached();
406 }
407
408 static dib_raw_t* dib_raw_ptr(HashmapBase *h) {
409 return (dib_raw_t*)
410 ((uint8_t*) storage_ptr(h) + hashmap_type_info[h->type].entry_size * n_buckets(h));
411 }
412
413 static unsigned bucket_distance(HashmapBase *h, unsigned idx, unsigned from) {
414 return idx >= from ? idx - from
415 : n_buckets(h) + idx - from;
416 }
417
418 static unsigned bucket_calculate_dib(HashmapBase *h, unsigned idx, dib_raw_t raw_dib) {
419 unsigned initial_bucket;
420
421 if (raw_dib == DIB_RAW_FREE)
422 return DIB_FREE;
423
424 if (_likely_(raw_dib < DIB_RAW_OVERFLOW))
425 return raw_dib;
426
427 /*
428 * Having an overflow DIB value is very unlikely. The hash function
429 * would have to be bad. For example, in a table of size 2^24 filled
430 * to load factor 0.9 the maximum observed DIB is only about 60.
431 * In theory (assuming I used Maxima correctly), for an infinite size
432 * hash table with load factor 0.8 the probability of a given entry
433 * having DIB > 40 is 1.9e-8.
434 * This returns the correct DIB value by recomputing the hash value in
435 * the unlikely case. XXX Hitting this case could be a hint to rehash.
436 */
437 initial_bucket = bucket_hash(h, bucket_at(h, idx)->key);
438 return bucket_distance(h, idx, initial_bucket);
439 }
440
441 static void bucket_set_dib(HashmapBase *h, unsigned idx, unsigned dib) {
442 dib_raw_ptr(h)[idx] = dib != DIB_FREE ? MIN(dib, DIB_RAW_OVERFLOW) : DIB_RAW_FREE;
443 }
444
445 static unsigned skip_free_buckets(HashmapBase *h, unsigned idx) {
446 dib_raw_t *dibs;
447
448 dibs = dib_raw_ptr(h);
449
450 for ( ; idx < n_buckets(h); idx++)
451 if (dibs[idx] != DIB_RAW_FREE)
452 return idx;
453
454 return IDX_NIL;
455 }
456
457 static void bucket_mark_free(HashmapBase *h, unsigned idx) {
458 memzero(bucket_at(h, idx), hashmap_type_info[h->type].entry_size);
459 bucket_set_dib(h, idx, DIB_FREE);
460 }
461
462 static void bucket_move_entry(HashmapBase *h, struct swap_entries *swap,
463 unsigned from, unsigned to) {
464 struct hashmap_base_entry *e_from, *e_to;
465
466 assert(from != to);
467
468 e_from = bucket_at_virtual(h, swap, from);
469 e_to = bucket_at_virtual(h, swap, to);
470
471 memcpy(e_to, e_from, hashmap_type_info[h->type].entry_size);
472
473 if (h->type == HASHMAP_TYPE_ORDERED) {
474 OrderedHashmap *lh = (OrderedHashmap*) h;
475 struct ordered_hashmap_entry *le, *le_to;
476
477 le_to = (struct ordered_hashmap_entry*) e_to;
478
479 if (le_to->iterate_next != IDX_NIL) {
480 le = (struct ordered_hashmap_entry*)
481 bucket_at_virtual(h, swap, le_to->iterate_next);
482 le->iterate_previous = to;
483 }
484
485 if (le_to->iterate_previous != IDX_NIL) {
486 le = (struct ordered_hashmap_entry*)
487 bucket_at_virtual(h, swap, le_to->iterate_previous);
488 le->iterate_next = to;
489 }
490
491 if (lh->iterate_list_head == from)
492 lh->iterate_list_head = to;
493 if (lh->iterate_list_tail == from)
494 lh->iterate_list_tail = to;
495 }
496 }
497
498 static unsigned next_idx(HashmapBase *h, unsigned idx) {
499 return (idx + 1U) % n_buckets(h);
500 }
501
502 static unsigned prev_idx(HashmapBase *h, unsigned idx) {
503 return (n_buckets(h) + idx - 1U) % n_buckets(h);
504 }
505
506 static void* entry_value(HashmapBase *h, struct hashmap_base_entry *e) {
507 switch (h->type) {
508
509 case HASHMAP_TYPE_PLAIN:
510 case HASHMAP_TYPE_ORDERED:
511 return ((struct plain_hashmap_entry*)e)->value;
512
513 case HASHMAP_TYPE_SET:
514 return (void*) e->key;
515
516 default:
517 assert_not_reached();
518 }
519 }
520
521 static void base_remove_entry(HashmapBase *h, unsigned idx) {
522 unsigned left, right, prev, dib;
523 dib_raw_t raw_dib, *dibs;
524
525 dibs = dib_raw_ptr(h);
526 assert(dibs[idx] != DIB_RAW_FREE);
527
528 #if ENABLE_DEBUG_HASHMAP
529 h->debug.rem_count++;
530 h->debug.last_rem_idx = idx;
531 #endif
532
533 left = idx;
534 /* Find the stop bucket ("right"). It is either free or has DIB == 0. */
535 for (right = next_idx(h, left); ; right = next_idx(h, right)) {
536 raw_dib = dibs[right];
537 if (IN_SET(raw_dib, 0, DIB_RAW_FREE))
538 break;
539
540 /* The buckets are not supposed to be all occupied and with DIB > 0.
541 * That would mean we could make everyone better off by shifting them
542 * backward. This scenario is impossible. */
543 assert(left != right);
544 }
545
546 if (h->type == HASHMAP_TYPE_ORDERED) {
547 OrderedHashmap *lh = (OrderedHashmap*) h;
548 struct ordered_hashmap_entry *le = ordered_bucket_at(lh, idx);
549
550 if (le->iterate_next != IDX_NIL)
551 ordered_bucket_at(lh, le->iterate_next)->iterate_previous = le->iterate_previous;
552 else
553 lh->iterate_list_tail = le->iterate_previous;
554
555 if (le->iterate_previous != IDX_NIL)
556 ordered_bucket_at(lh, le->iterate_previous)->iterate_next = le->iterate_next;
557 else
558 lh->iterate_list_head = le->iterate_next;
559 }
560
561 /* Now shift all buckets in the interval (left, right) one step backwards */
562 for (prev = left, left = next_idx(h, left); left != right;
563 prev = left, left = next_idx(h, left)) {
564 dib = bucket_calculate_dib(h, left, dibs[left]);
565 assert(dib != 0);
566 bucket_move_entry(h, NULL, left, prev);
567 bucket_set_dib(h, prev, dib - 1);
568 }
569
570 bucket_mark_free(h, prev);
571 n_entries_dec(h);
572 base_set_dirty(h);
573 }
574 #define remove_entry(h, idx) base_remove_entry(HASHMAP_BASE(h), idx)
575
576 static unsigned hashmap_iterate_in_insertion_order(OrderedHashmap *h, Iterator *i) {
577 struct ordered_hashmap_entry *e;
578 unsigned idx;
579
580 assert(h);
581 assert(i);
582
583 if (i->idx == IDX_NIL)
584 goto at_end;
585
586 if (i->idx == IDX_FIRST && h->iterate_list_head == IDX_NIL)
587 goto at_end;
588
589 if (i->idx == IDX_FIRST) {
590 idx = h->iterate_list_head;
591 e = ordered_bucket_at(h, idx);
592 } else {
593 idx = i->idx;
594 e = ordered_bucket_at(h, idx);
595 /*
596 * We allow removing the current entry while iterating, but removal may cause
597 * a backward shift. The next entry may thus move one bucket to the left.
598 * To detect when it happens, we remember the key pointer of the entry we were
599 * going to iterate next. If it does not match, there was a backward shift.
600 */
601 if (e->p.b.key != i->next_key) {
602 idx = prev_idx(HASHMAP_BASE(h), idx);
603 e = ordered_bucket_at(h, idx);
604 }
605 assert(e->p.b.key == i->next_key);
606 }
607
608 #if ENABLE_DEBUG_HASHMAP
609 i->prev_idx = idx;
610 #endif
611
612 if (e->iterate_next != IDX_NIL) {
613 struct ordered_hashmap_entry *n;
614 i->idx = e->iterate_next;
615 n = ordered_bucket_at(h, i->idx);
616 i->next_key = n->p.b.key;
617 } else
618 i->idx = IDX_NIL;
619
620 return idx;
621
622 at_end:
623 i->idx = IDX_NIL;
624 return IDX_NIL;
625 }
626
627 static unsigned hashmap_iterate_in_internal_order(HashmapBase *h, Iterator *i) {
628 unsigned idx;
629
630 assert(h);
631 assert(i);
632
633 if (i->idx == IDX_NIL)
634 goto at_end;
635
636 if (i->idx == IDX_FIRST) {
637 /* fast forward to the first occupied bucket */
638 if (h->has_indirect) {
639 i->idx = skip_free_buckets(h, h->indirect.idx_lowest_entry);
640 h->indirect.idx_lowest_entry = i->idx;
641 } else
642 i->idx = skip_free_buckets(h, 0);
643
644 if (i->idx == IDX_NIL)
645 goto at_end;
646 } else {
647 struct hashmap_base_entry *e;
648
649 assert(i->idx > 0);
650
651 e = bucket_at(h, i->idx);
652 /*
653 * We allow removing the current entry while iterating, but removal may cause
654 * a backward shift. The next entry may thus move one bucket to the left.
655 * To detect when it happens, we remember the key pointer of the entry we were
656 * going to iterate next. If it does not match, there was a backward shift.
657 */
658 if (e->key != i->next_key)
659 e = bucket_at(h, --i->idx);
660
661 assert(e->key == i->next_key);
662 }
663
664 idx = i->idx;
665 #if ENABLE_DEBUG_HASHMAP
666 i->prev_idx = idx;
667 #endif
668
669 i->idx = skip_free_buckets(h, i->idx + 1);
670 if (i->idx != IDX_NIL)
671 i->next_key = bucket_at(h, i->idx)->key;
672 else
673 i->idx = IDX_NIL;
674
675 return idx;
676
677 at_end:
678 i->idx = IDX_NIL;
679 return IDX_NIL;
680 }
681
682 static unsigned hashmap_iterate_entry(HashmapBase *h, Iterator *i) {
683 if (!h) {
684 i->idx = IDX_NIL;
685 return IDX_NIL;
686 }
687
688 #if ENABLE_DEBUG_HASHMAP
689 if (i->idx == IDX_FIRST) {
690 i->put_count = h->debug.put_count;
691 i->rem_count = h->debug.rem_count;
692 } else {
693 /* While iterating, must not add any new entries */
694 assert(i->put_count == h->debug.put_count);
695 /* ... or remove entries other than the current one */
696 assert(i->rem_count == h->debug.rem_count ||
697 (i->rem_count == h->debug.rem_count - 1 &&
698 i->prev_idx == h->debug.last_rem_idx));
699 /* Reset our removals counter */
700 i->rem_count = h->debug.rem_count;
701 }
702 #endif
703
704 return h->type == HASHMAP_TYPE_ORDERED ? hashmap_iterate_in_insertion_order((OrderedHashmap*) h, i)
705 : hashmap_iterate_in_internal_order(h, i);
706 }
707
708 bool _hashmap_iterate(HashmapBase *h, Iterator *i, void **value, const void **key) {
709 struct hashmap_base_entry *e;
710 void *data;
711 unsigned idx;
712
713 idx = hashmap_iterate_entry(h, i);
714 if (idx == IDX_NIL) {
715 if (value)
716 *value = NULL;
717 if (key)
718 *key = NULL;
719
720 return false;
721 }
722
723 e = bucket_at(h, idx);
724 data = entry_value(h, e);
725 if (value)
726 *value = data;
727 if (key)
728 *key = e->key;
729
730 return true;
731 }
732
733 #define HASHMAP_FOREACH_IDX(idx, h, i) \
734 for ((i) = ITERATOR_FIRST, (idx) = hashmap_iterate_entry((h), &(i)); \
735 (idx != IDX_NIL); \
736 (idx) = hashmap_iterate_entry((h), &(i)))
737
738 IteratedCache* _hashmap_iterated_cache_new(HashmapBase *h) {
739 IteratedCache *cache;
740
741 assert(h);
742 assert(!h->cached);
743
744 if (h->cached)
745 return NULL;
746
747 cache = new0(IteratedCache, 1);
748 if (!cache)
749 return NULL;
750
751 cache->hashmap = h;
752 h->cached = true;
753
754 return cache;
755 }
756
757 static void reset_direct_storage(HashmapBase *h) {
758 const struct hashmap_type_info *hi = &hashmap_type_info[h->type];
759 void *p;
760
761 assert(!h->has_indirect);
762
763 p = mempset(h->direct.storage, 0, hi->entry_size * hi->n_direct_buckets);
764 memset(p, DIB_RAW_INIT, sizeof(dib_raw_t) * hi->n_direct_buckets);
765 }
766
767 static void shared_hash_key_initialize(void) {
768 random_bytes(shared_hash_key, sizeof(shared_hash_key));
769 }
770
771 static struct HashmapBase* hashmap_base_new(const struct hash_ops *hash_ops, enum HashmapType type HASHMAP_DEBUG_PARAMS) {
772 HashmapBase *h;
773 const struct hashmap_type_info *hi = &hashmap_type_info[type];
774
775 bool use_pool = mempool_enabled && mempool_enabled();
776
777 h = use_pool ? mempool_alloc0_tile(hi->mempool) : malloc0(hi->head_size);
778 if (!h)
779 return NULL;
780
781 h->type = type;
782 h->from_pool = use_pool;
783 h->hash_ops = hash_ops ?: &trivial_hash_ops;
784
785 if (type == HASHMAP_TYPE_ORDERED) {
786 OrderedHashmap *lh = (OrderedHashmap*)h;
787 lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL;
788 }
789
790 reset_direct_storage(h);
791
792 static pthread_once_t once = PTHREAD_ONCE_INIT;
793 assert_se(pthread_once(&once, shared_hash_key_initialize) == 0);
794
795 #if ENABLE_DEBUG_HASHMAP
796 h->debug.func = func;
797 h->debug.file = file;
798 h->debug.line = line;
799 assert_se(pthread_mutex_lock(&hashmap_debug_list_mutex) == 0);
800 LIST_PREPEND(debug_list, hashmap_debug_list, &h->debug);
801 assert_se(pthread_mutex_unlock(&hashmap_debug_list_mutex) == 0);
802 #endif
803
804 return h;
805 }
806
807 Hashmap *_hashmap_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
808 return (Hashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_PLAIN HASHMAP_DEBUG_PASS_ARGS);
809 }
810
811 OrderedHashmap *_ordered_hashmap_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
812 return (OrderedHashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_ORDERED HASHMAP_DEBUG_PASS_ARGS);
813 }
814
815 Set *_set_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
816 return (Set*) hashmap_base_new(hash_ops, HASHMAP_TYPE_SET HASHMAP_DEBUG_PASS_ARGS);
817 }
818
819 static int hashmap_base_ensure_allocated(HashmapBase **h, const struct hash_ops *hash_ops,
820 enum HashmapType type HASHMAP_DEBUG_PARAMS) {
821 HashmapBase *q;
822
823 assert(h);
824
825 if (*h)
826 return 0;
827
828 q = hashmap_base_new(hash_ops, type HASHMAP_DEBUG_PASS_ARGS);
829 if (!q)
830 return -ENOMEM;
831
832 *h = q;
833 return 1;
834 }
835
836 int _hashmap_ensure_allocated(Hashmap **h, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
837 return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_PLAIN HASHMAP_DEBUG_PASS_ARGS);
838 }
839
840 int _ordered_hashmap_ensure_allocated(OrderedHashmap **h, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
841 return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_ORDERED HASHMAP_DEBUG_PASS_ARGS);
842 }
843
844 int _set_ensure_allocated(Set **s, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
845 return hashmap_base_ensure_allocated((HashmapBase**)s, hash_ops, HASHMAP_TYPE_SET HASHMAP_DEBUG_PASS_ARGS);
846 }
847
848 int _hashmap_ensure_put(Hashmap **h, const struct hash_ops *hash_ops, const void *key, void *value HASHMAP_DEBUG_PARAMS) {
849 int r;
850
851 r = _hashmap_ensure_allocated(h, hash_ops HASHMAP_DEBUG_PASS_ARGS);
852 if (r < 0)
853 return r;
854
855 return hashmap_put(*h, key, value);
856 }
857
858 int _ordered_hashmap_ensure_put(OrderedHashmap **h, const struct hash_ops *hash_ops, const void *key, void *value HASHMAP_DEBUG_PARAMS) {
859 int r;
860
861 r = _ordered_hashmap_ensure_allocated(h, hash_ops HASHMAP_DEBUG_PASS_ARGS);
862 if (r < 0)
863 return r;
864
865 return ordered_hashmap_put(*h, key, value);
866 }
867
868 static void hashmap_free_no_clear(HashmapBase *h) {
869 assert(!h->has_indirect);
870 assert(h->n_direct_entries == 0);
871
872 #if ENABLE_DEBUG_HASHMAP
873 assert_se(pthread_mutex_lock(&hashmap_debug_list_mutex) == 0);
874 LIST_REMOVE(debug_list, hashmap_debug_list, &h->debug);
875 assert_se(pthread_mutex_unlock(&hashmap_debug_list_mutex) == 0);
876 #endif
877
878 if (h->from_pool) {
879 /* Ensure that the object didn't get migrated between threads. */
880 assert_se(is_main_thread());
881 mempool_free_tile(hashmap_type_info[h->type].mempool, h);
882 } else
883 free(h);
884 }
885
886 HashmapBase* _hashmap_free(HashmapBase *h, free_func_t default_free_key, free_func_t default_free_value) {
887 if (h) {
888 _hashmap_clear(h, default_free_key, default_free_value);
889 hashmap_free_no_clear(h);
890 }
891
892 return NULL;
893 }
894
895 void _hashmap_clear(HashmapBase *h, free_func_t default_free_key, free_func_t default_free_value) {
896 free_func_t free_key, free_value;
897 if (!h)
898 return;
899
900 free_key = h->hash_ops->free_key ?: default_free_key;
901 free_value = h->hash_ops->free_value ?: default_free_value;
902
903 if (free_key || free_value) {
904
905 /* If destructor calls are defined, let's destroy things defensively: let's take the item out of the
906 * hash table, and only then call the destructor functions. If these destructors then try to unregister
907 * themselves from our hash table a second time, the entry is already gone. */
908
909 while (_hashmap_size(h) > 0) {
910 void *k = NULL;
911 void *v;
912
913 v = _hashmap_first_key_and_value(h, true, &k);
914
915 if (free_key)
916 free_key(k);
917
918 if (free_value)
919 free_value(v);
920 }
921 }
922
923 if (h->has_indirect) {
924 free(h->indirect.storage);
925 h->has_indirect = false;
926 }
927
928 h->n_direct_entries = 0;
929 reset_direct_storage(h);
930
931 if (h->type == HASHMAP_TYPE_ORDERED) {
932 OrderedHashmap *lh = (OrderedHashmap*) h;
933 lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL;
934 }
935
936 base_set_dirty(h);
937 }
938
939 static int resize_buckets(HashmapBase *h, unsigned entries_add);
940
941 /*
942 * Finds an empty bucket to put an entry into, starting the scan at 'idx'.
943 * Performs Robin Hood swaps as it goes. The entry to put must be placed
944 * by the caller into swap slot IDX_PUT.
945 * If used for in-place resizing, may leave a displaced entry in swap slot
946 * IDX_PUT. Caller must rehash it next.
947 * Returns: true if it left a displaced entry to rehash next in IDX_PUT,
948 * false otherwise.
949 */
950 static bool hashmap_put_robin_hood(HashmapBase *h, unsigned idx,
951 struct swap_entries *swap) {
952 dib_raw_t raw_dib, *dibs;
953 unsigned dib, distance;
954
955 #if ENABLE_DEBUG_HASHMAP
956 h->debug.put_count++;
957 #endif
958
959 dibs = dib_raw_ptr(h);
960
961 for (distance = 0; ; distance++) {
962 raw_dib = dibs[idx];
963 if (IN_SET(raw_dib, DIB_RAW_FREE, DIB_RAW_REHASH)) {
964 if (raw_dib == DIB_RAW_REHASH)
965 bucket_move_entry(h, swap, idx, IDX_TMP);
966
967 if (h->has_indirect && h->indirect.idx_lowest_entry > idx)
968 h->indirect.idx_lowest_entry = idx;
969
970 bucket_set_dib(h, idx, distance);
971 bucket_move_entry(h, swap, IDX_PUT, idx);
972 if (raw_dib == DIB_RAW_REHASH) {
973 bucket_move_entry(h, swap, IDX_TMP, IDX_PUT);
974 return true;
975 }
976
977 return false;
978 }
979
980 dib = bucket_calculate_dib(h, idx, raw_dib);
981
982 if (dib < distance) {
983 /* Found a wealthier entry. Go Robin Hood! */
984 bucket_set_dib(h, idx, distance);
985
986 /* swap the entries */
987 bucket_move_entry(h, swap, idx, IDX_TMP);
988 bucket_move_entry(h, swap, IDX_PUT, idx);
989 bucket_move_entry(h, swap, IDX_TMP, IDX_PUT);
990
991 distance = dib;
992 }
993
994 idx = next_idx(h, idx);
995 }
996 }
997
998 /*
999 * Puts an entry into a hashmap, boldly - no check whether key already exists.
1000 * The caller must place the entry (only its key and value, not link indexes)
1001 * in swap slot IDX_PUT.
1002 * Caller must ensure: the key does not exist yet in the hashmap.
1003 * that resize is not needed if !may_resize.
1004 * Returns: 1 if entry was put successfully.
1005 * -ENOMEM if may_resize==true and resize failed with -ENOMEM.
1006 * Cannot return -ENOMEM if !may_resize.
1007 */
1008 static int hashmap_base_put_boldly(HashmapBase *h, unsigned idx,
1009 struct swap_entries *swap, bool may_resize) {
1010 struct ordered_hashmap_entry *new_entry;
1011 int r;
1012
1013 assert(idx < n_buckets(h));
1014
1015 new_entry = bucket_at_swap(swap, IDX_PUT);
1016
1017 if (may_resize) {
1018 r = resize_buckets(h, 1);
1019 if (r < 0)
1020 return r;
1021 if (r > 0)
1022 idx = bucket_hash(h, new_entry->p.b.key);
1023 }
1024 assert(n_entries(h) < n_buckets(h));
1025
1026 if (h->type == HASHMAP_TYPE_ORDERED) {
1027 OrderedHashmap *lh = (OrderedHashmap*) h;
1028
1029 new_entry->iterate_next = IDX_NIL;
1030 new_entry->iterate_previous = lh->iterate_list_tail;
1031
1032 if (lh->iterate_list_tail != IDX_NIL) {
1033 struct ordered_hashmap_entry *old_tail;
1034
1035 old_tail = ordered_bucket_at(lh, lh->iterate_list_tail);
1036 assert(old_tail->iterate_next == IDX_NIL);
1037 old_tail->iterate_next = IDX_PUT;
1038 }
1039
1040 lh->iterate_list_tail = IDX_PUT;
1041 if (lh->iterate_list_head == IDX_NIL)
1042 lh->iterate_list_head = IDX_PUT;
1043 }
1044
1045 assert_se(hashmap_put_robin_hood(h, idx, swap) == false);
1046
1047 n_entries_inc(h);
1048 #if ENABLE_DEBUG_HASHMAP
1049 h->debug.max_entries = MAX(h->debug.max_entries, n_entries(h));
1050 #endif
1051
1052 base_set_dirty(h);
1053
1054 return 1;
1055 }
1056 #define hashmap_put_boldly(h, idx, swap, may_resize) \
1057 hashmap_base_put_boldly(HASHMAP_BASE(h), idx, swap, may_resize)
1058
1059 /*
1060 * Returns 0 if resize is not needed.
1061 * 1 if successfully resized.
1062 * -ENOMEM on allocation failure.
1063 */
1064 static int resize_buckets(HashmapBase *h, unsigned entries_add) {
1065 struct swap_entries swap;
1066 void *new_storage;
1067 dib_raw_t *old_dibs, *new_dibs;
1068 const struct hashmap_type_info *hi;
1069 unsigned idx, optimal_idx;
1070 unsigned old_n_buckets, new_n_buckets, n_rehashed, new_n_entries;
1071 uint8_t new_shift;
1072 bool rehash_next;
1073
1074 assert(h);
1075
1076 hi = &hashmap_type_info[h->type];
1077 new_n_entries = n_entries(h) + entries_add;
1078
1079 /* overflow? */
1080 if (_unlikely_(new_n_entries < entries_add))
1081 return -ENOMEM;
1082
1083 /* For direct storage we allow 100% load, because it's tiny. */
1084 if (!h->has_indirect && new_n_entries <= hi->n_direct_buckets)
1085 return 0;
1086
1087 /*
1088 * Load factor = n/m = 1 - (1/INV_KEEP_FREE).
1089 * From it follows: m = n + n/(INV_KEEP_FREE - 1)
1090 */
1091 new_n_buckets = new_n_entries + new_n_entries / (INV_KEEP_FREE - 1);
1092 /* overflow? */
1093 if (_unlikely_(new_n_buckets < new_n_entries))
1094 return -ENOMEM;
1095
1096 if (_unlikely_(new_n_buckets > UINT_MAX / (hi->entry_size + sizeof(dib_raw_t))))
1097 return -ENOMEM;
1098
1099 old_n_buckets = n_buckets(h);
1100
1101 if (_likely_(new_n_buckets <= old_n_buckets))
1102 return 0;
1103
1104 new_shift = log2u_round_up(MAX(
1105 new_n_buckets * (hi->entry_size + sizeof(dib_raw_t)),
1106 2 * sizeof(struct direct_storage)));
1107
1108 /* Realloc storage (buckets and DIB array). */
1109 new_storage = realloc(h->has_indirect ? h->indirect.storage : NULL,
1110 1U << new_shift);
1111 if (!new_storage)
1112 return -ENOMEM;
1113
1114 /* Must upgrade direct to indirect storage. */
1115 if (!h->has_indirect) {
1116 memcpy(new_storage, h->direct.storage,
1117 old_n_buckets * (hi->entry_size + sizeof(dib_raw_t)));
1118 h->indirect.n_entries = h->n_direct_entries;
1119 h->indirect.idx_lowest_entry = 0;
1120 h->n_direct_entries = 0;
1121 }
1122
1123 /* Get a new hash key. If we've just upgraded to indirect storage,
1124 * allow reusing a previously generated key. It's still a different key
1125 * from the shared one that we used for direct storage. */
1126 get_hash_key(h->indirect.hash_key, !h->has_indirect);
1127
1128 h->has_indirect = true;
1129 h->indirect.storage = new_storage;
1130 h->indirect.n_buckets = (1U << new_shift) /
1131 (hi->entry_size + sizeof(dib_raw_t));
1132
1133 old_dibs = (dib_raw_t*)((uint8_t*) new_storage + hi->entry_size * old_n_buckets);
1134 new_dibs = dib_raw_ptr(h);
1135
1136 /*
1137 * Move the DIB array to the new place, replacing valid DIB values with
1138 * DIB_RAW_REHASH to indicate all of the used buckets need rehashing.
1139 * Note: Overlap is not possible, because we have at least doubled the
1140 * number of buckets and dib_raw_t is smaller than any entry type.
1141 */
1142 for (idx = 0; idx < old_n_buckets; idx++) {
1143 assert(old_dibs[idx] != DIB_RAW_REHASH);
1144 new_dibs[idx] = old_dibs[idx] == DIB_RAW_FREE ? DIB_RAW_FREE
1145 : DIB_RAW_REHASH;
1146 }
1147
1148 /* Zero the area of newly added entries (including the old DIB area) */
1149 memzero(bucket_at(h, old_n_buckets),
1150 (n_buckets(h) - old_n_buckets) * hi->entry_size);
1151
1152 /* The upper half of the new DIB array needs initialization */
1153 memset(&new_dibs[old_n_buckets], DIB_RAW_INIT,
1154 (n_buckets(h) - old_n_buckets) * sizeof(dib_raw_t));
1155
1156 /* Rehash entries that need it */
1157 n_rehashed = 0;
1158 for (idx = 0; idx < old_n_buckets; idx++) {
1159 if (new_dibs[idx] != DIB_RAW_REHASH)
1160 continue;
1161
1162 optimal_idx = bucket_hash(h, bucket_at(h, idx)->key);
1163
1164 /*
1165 * Not much to do if by luck the entry hashes to its current
1166 * location. Just set its DIB.
1167 */
1168 if (optimal_idx == idx) {
1169 new_dibs[idx] = 0;
1170 n_rehashed++;
1171 continue;
1172 }
1173
1174 new_dibs[idx] = DIB_RAW_FREE;
1175 bucket_move_entry(h, &swap, idx, IDX_PUT);
1176 /* bucket_move_entry does not clear the source */
1177 memzero(bucket_at(h, idx), hi->entry_size);
1178
1179 do {
1180 /*
1181 * Find the new bucket for the current entry. This may make
1182 * another entry homeless and load it into IDX_PUT.
1183 */
1184 rehash_next = hashmap_put_robin_hood(h, optimal_idx, &swap);
1185 n_rehashed++;
1186
1187 /* Did the current entry displace another one? */
1188 if (rehash_next)
1189 optimal_idx = bucket_hash(h, bucket_at_swap(&swap, IDX_PUT)->p.b.key);
1190 } while (rehash_next);
1191 }
1192
1193 assert(n_rehashed == n_entries(h));
1194
1195 return 1;
1196 }
1197
1198 /*
1199 * Finds an entry with a matching key
1200 * Returns: index of the found entry, or IDX_NIL if not found.
1201 */
1202 static unsigned base_bucket_scan(HashmapBase *h, unsigned idx, const void *key) {
1203 struct hashmap_base_entry *e;
1204 unsigned dib, distance;
1205 dib_raw_t *dibs = dib_raw_ptr(h);
1206
1207 assert(idx < n_buckets(h));
1208
1209 for (distance = 0; ; distance++) {
1210 if (dibs[idx] == DIB_RAW_FREE)
1211 return IDX_NIL;
1212
1213 dib = bucket_calculate_dib(h, idx, dibs[idx]);
1214
1215 if (dib < distance)
1216 return IDX_NIL;
1217 if (dib == distance) {
1218 e = bucket_at(h, idx);
1219 if (h->hash_ops->compare(e->key, key) == 0)
1220 return idx;
1221 }
1222
1223 idx = next_idx(h, idx);
1224 }
1225 }
1226 #define bucket_scan(h, idx, key) base_bucket_scan(HASHMAP_BASE(h), idx, key)
1227
1228 int hashmap_put(Hashmap *h, const void *key, void *value) {
1229 struct swap_entries swap;
1230 struct plain_hashmap_entry *e;
1231 unsigned hash, idx;
1232
1233 assert(h);
1234
1235 hash = bucket_hash(h, key);
1236 idx = bucket_scan(h, hash, key);
1237 if (idx != IDX_NIL) {
1238 e = plain_bucket_at(h, idx);
1239 if (e->value == value)
1240 return 0;
1241 return -EEXIST;
1242 }
1243
1244 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1245 e->b.key = key;
1246 e->value = value;
1247 return hashmap_put_boldly(h, hash, &swap, true);
1248 }
1249
1250 int set_put(Set *s, const void *key) {
1251 struct swap_entries swap;
1252 struct hashmap_base_entry *e;
1253 unsigned hash, idx;
1254
1255 assert(s);
1256
1257 hash = bucket_hash(s, key);
1258 idx = bucket_scan(s, hash, key);
1259 if (idx != IDX_NIL)
1260 return 0;
1261
1262 e = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1263 e->key = key;
1264 return hashmap_put_boldly(s, hash, &swap, true);
1265 }
1266
1267 int _set_ensure_put(Set **s, const struct hash_ops *hash_ops, const void *key HASHMAP_DEBUG_PARAMS) {
1268 int r;
1269
1270 r = _set_ensure_allocated(s, hash_ops HASHMAP_DEBUG_PASS_ARGS);
1271 if (r < 0)
1272 return r;
1273
1274 return set_put(*s, key);
1275 }
1276
1277 int _set_ensure_consume(Set **s, const struct hash_ops *hash_ops, void *key HASHMAP_DEBUG_PARAMS) {
1278 int r;
1279
1280 r = _set_ensure_put(s, hash_ops, key HASHMAP_DEBUG_PASS_ARGS);
1281 if (r <= 0) {
1282 if (hash_ops && hash_ops->free_key)
1283 hash_ops->free_key(key);
1284 else
1285 free(key);
1286 }
1287
1288 return r;
1289 }
1290
1291 int hashmap_replace(Hashmap *h, const void *key, void *value) {
1292 struct swap_entries swap;
1293 struct plain_hashmap_entry *e;
1294 unsigned hash, idx;
1295
1296 assert(h);
1297
1298 hash = bucket_hash(h, key);
1299 idx = bucket_scan(h, hash, key);
1300 if (idx != IDX_NIL) {
1301 e = plain_bucket_at(h, idx);
1302 #if ENABLE_DEBUG_HASHMAP
1303 /* Although the key is equal, the key pointer may have changed,
1304 * and this would break our assumption for iterating. So count
1305 * this operation as incompatible with iteration. */
1306 if (e->b.key != key) {
1307 h->b.debug.put_count++;
1308 h->b.debug.rem_count++;
1309 h->b.debug.last_rem_idx = idx;
1310 }
1311 #endif
1312 e->b.key = key;
1313 e->value = value;
1314 hashmap_set_dirty(h);
1315
1316 return 0;
1317 }
1318
1319 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1320 e->b.key = key;
1321 e->value = value;
1322 return hashmap_put_boldly(h, hash, &swap, true);
1323 }
1324
1325 int hashmap_update(Hashmap *h, const void *key, void *value) {
1326 struct plain_hashmap_entry *e;
1327 unsigned hash, idx;
1328
1329 assert(h);
1330
1331 hash = bucket_hash(h, key);
1332 idx = bucket_scan(h, hash, key);
1333 if (idx == IDX_NIL)
1334 return -ENOENT;
1335
1336 e = plain_bucket_at(h, idx);
1337 e->value = value;
1338 hashmap_set_dirty(h);
1339
1340 return 0;
1341 }
1342
1343 void* _hashmap_get(HashmapBase *h, const void *key) {
1344 struct hashmap_base_entry *e;
1345 unsigned hash, idx;
1346
1347 if (!h)
1348 return NULL;
1349
1350 hash = bucket_hash(h, key);
1351 idx = bucket_scan(h, hash, key);
1352 if (idx == IDX_NIL)
1353 return NULL;
1354
1355 e = bucket_at(h, idx);
1356 return entry_value(h, e);
1357 }
1358
1359 void* hashmap_get2(Hashmap *h, const void *key, void **key2) {
1360 struct plain_hashmap_entry *e;
1361 unsigned hash, idx;
1362
1363 if (!h)
1364 return NULL;
1365
1366 hash = bucket_hash(h, key);
1367 idx = bucket_scan(h, hash, key);
1368 if (idx == IDX_NIL)
1369 return NULL;
1370
1371 e = plain_bucket_at(h, idx);
1372 if (key2)
1373 *key2 = (void*) e->b.key;
1374
1375 return e->value;
1376 }
1377
1378 bool _hashmap_contains(HashmapBase *h, const void *key) {
1379 unsigned hash;
1380
1381 if (!h)
1382 return false;
1383
1384 hash = bucket_hash(h, key);
1385 return bucket_scan(h, hash, key) != IDX_NIL;
1386 }
1387
1388 void* _hashmap_remove(HashmapBase *h, const void *key) {
1389 struct hashmap_base_entry *e;
1390 unsigned hash, idx;
1391 void *data;
1392
1393 if (!h)
1394 return NULL;
1395
1396 hash = bucket_hash(h, key);
1397 idx = bucket_scan(h, hash, key);
1398 if (idx == IDX_NIL)
1399 return NULL;
1400
1401 e = bucket_at(h, idx);
1402 data = entry_value(h, e);
1403 remove_entry(h, idx);
1404
1405 return data;
1406 }
1407
1408 void* hashmap_remove2(Hashmap *h, const void *key, void **rkey) {
1409 struct plain_hashmap_entry *e;
1410 unsigned hash, idx;
1411 void *data;
1412
1413 if (!h) {
1414 if (rkey)
1415 *rkey = NULL;
1416 return NULL;
1417 }
1418
1419 hash = bucket_hash(h, key);
1420 idx = bucket_scan(h, hash, key);
1421 if (idx == IDX_NIL) {
1422 if (rkey)
1423 *rkey = NULL;
1424 return NULL;
1425 }
1426
1427 e = plain_bucket_at(h, idx);
1428 data = e->value;
1429 if (rkey)
1430 *rkey = (void*) e->b.key;
1431
1432 remove_entry(h, idx);
1433
1434 return data;
1435 }
1436
1437 int hashmap_remove_and_put(Hashmap *h, const void *old_key, const void *new_key, void *value) {
1438 struct swap_entries swap;
1439 struct plain_hashmap_entry *e;
1440 unsigned old_hash, new_hash, idx;
1441
1442 if (!h)
1443 return -ENOENT;
1444
1445 old_hash = bucket_hash(h, old_key);
1446 idx = bucket_scan(h, old_hash, old_key);
1447 if (idx == IDX_NIL)
1448 return -ENOENT;
1449
1450 new_hash = bucket_hash(h, new_key);
1451 if (bucket_scan(h, new_hash, new_key) != IDX_NIL)
1452 return -EEXIST;
1453
1454 remove_entry(h, idx);
1455
1456 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1457 e->b.key = new_key;
1458 e->value = value;
1459 assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1);
1460
1461 return 0;
1462 }
1463
1464 int set_remove_and_put(Set *s, const void *old_key, const void *new_key) {
1465 struct swap_entries swap;
1466 struct hashmap_base_entry *e;
1467 unsigned old_hash, new_hash, idx;
1468
1469 if (!s)
1470 return -ENOENT;
1471
1472 old_hash = bucket_hash(s, old_key);
1473 idx = bucket_scan(s, old_hash, old_key);
1474 if (idx == IDX_NIL)
1475 return -ENOENT;
1476
1477 new_hash = bucket_hash(s, new_key);
1478 if (bucket_scan(s, new_hash, new_key) != IDX_NIL)
1479 return -EEXIST;
1480
1481 remove_entry(s, idx);
1482
1483 e = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1484 e->key = new_key;
1485 assert_se(hashmap_put_boldly(s, new_hash, &swap, false) == 1);
1486
1487 return 0;
1488 }
1489
1490 int hashmap_remove_and_replace(Hashmap *h, const void *old_key, const void *new_key, void *value) {
1491 struct swap_entries swap;
1492 struct plain_hashmap_entry *e;
1493 unsigned old_hash, new_hash, idx_old, idx_new;
1494
1495 if (!h)
1496 return -ENOENT;
1497
1498 old_hash = bucket_hash(h, old_key);
1499 idx_old = bucket_scan(h, old_hash, old_key);
1500 if (idx_old == IDX_NIL)
1501 return -ENOENT;
1502
1503 old_key = bucket_at(HASHMAP_BASE(h), idx_old)->key;
1504
1505 new_hash = bucket_hash(h, new_key);
1506 idx_new = bucket_scan(h, new_hash, new_key);
1507 if (idx_new != IDX_NIL)
1508 if (idx_old != idx_new) {
1509 remove_entry(h, idx_new);
1510 /* Compensate for a possible backward shift. */
1511 if (old_key != bucket_at(HASHMAP_BASE(h), idx_old)->key)
1512 idx_old = prev_idx(HASHMAP_BASE(h), idx_old);
1513 assert(old_key == bucket_at(HASHMAP_BASE(h), idx_old)->key);
1514 }
1515
1516 remove_entry(h, idx_old);
1517
1518 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1519 e->b.key = new_key;
1520 e->value = value;
1521 assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1);
1522
1523 return 0;
1524 }
1525
1526 void* _hashmap_remove_value(HashmapBase *h, const void *key, void *value) {
1527 struct hashmap_base_entry *e;
1528 unsigned hash, idx;
1529
1530 if (!h)
1531 return NULL;
1532
1533 hash = bucket_hash(h, key);
1534 idx = bucket_scan(h, hash, key);
1535 if (idx == IDX_NIL)
1536 return NULL;
1537
1538 e = bucket_at(h, idx);
1539 if (entry_value(h, e) != value)
1540 return NULL;
1541
1542 remove_entry(h, idx);
1543
1544 return value;
1545 }
1546
1547 static unsigned find_first_entry(HashmapBase *h) {
1548 Iterator i = ITERATOR_FIRST;
1549
1550 if (!h || !n_entries(h))
1551 return IDX_NIL;
1552
1553 return hashmap_iterate_entry(h, &i);
1554 }
1555
1556 void* _hashmap_first_key_and_value(HashmapBase *h, bool remove, void **ret_key) {
1557 struct hashmap_base_entry *e;
1558 void *key, *data;
1559 unsigned idx;
1560
1561 idx = find_first_entry(h);
1562 if (idx == IDX_NIL) {
1563 if (ret_key)
1564 *ret_key = NULL;
1565 return NULL;
1566 }
1567
1568 e = bucket_at(h, idx);
1569 key = (void*) e->key;
1570 data = entry_value(h, e);
1571
1572 if (remove)
1573 remove_entry(h, idx);
1574
1575 if (ret_key)
1576 *ret_key = key;
1577
1578 return data;
1579 }
1580
1581 unsigned _hashmap_size(HashmapBase *h) {
1582 if (!h)
1583 return 0;
1584
1585 return n_entries(h);
1586 }
1587
1588 unsigned _hashmap_buckets(HashmapBase *h) {
1589 if (!h)
1590 return 0;
1591
1592 return n_buckets(h);
1593 }
1594
1595 int _hashmap_merge(Hashmap *h, Hashmap *other) {
1596 Iterator i;
1597 unsigned idx;
1598
1599 assert(h);
1600
1601 HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) {
1602 struct plain_hashmap_entry *pe = plain_bucket_at(other, idx);
1603 int r;
1604
1605 r = hashmap_put(h, pe->b.key, pe->value);
1606 if (r < 0 && r != -EEXIST)
1607 return r;
1608 }
1609
1610 return 0;
1611 }
1612
1613 int set_merge(Set *s, Set *other) {
1614 Iterator i;
1615 unsigned idx;
1616
1617 assert(s);
1618
1619 HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) {
1620 struct set_entry *se = set_bucket_at(other, idx);
1621 int r;
1622
1623 r = set_put(s, se->b.key);
1624 if (r < 0)
1625 return r;
1626 }
1627
1628 return 0;
1629 }
1630
1631 int _hashmap_reserve(HashmapBase *h, unsigned entries_add) {
1632 int r;
1633
1634 assert(h);
1635
1636 r = resize_buckets(h, entries_add);
1637 if (r < 0)
1638 return r;
1639
1640 return 0;
1641 }
1642
1643 /*
1644 * The same as hashmap_merge(), but every new item from other is moved to h.
1645 * Keys already in h are skipped and stay in other.
1646 * Returns: 0 on success.
1647 * -ENOMEM on alloc failure, in which case no move has been done.
1648 */
1649 int _hashmap_move(HashmapBase *h, HashmapBase *other) {
1650 struct swap_entries swap;
1651 struct hashmap_base_entry *e, *n;
1652 Iterator i;
1653 unsigned idx;
1654 int r;
1655
1656 assert(h);
1657
1658 if (!other)
1659 return 0;
1660
1661 assert(other->type == h->type);
1662
1663 /*
1664 * This reserves buckets for the worst case, where none of other's
1665 * entries are yet present in h. This is preferable to risking
1666 * an allocation failure in the middle of the moving and having to
1667 * rollback or return a partial result.
1668 */
1669 r = resize_buckets(h, n_entries(other));
1670 if (r < 0)
1671 return r;
1672
1673 HASHMAP_FOREACH_IDX(idx, other, i) {
1674 unsigned h_hash;
1675
1676 e = bucket_at(other, idx);
1677 h_hash = bucket_hash(h, e->key);
1678 if (bucket_scan(h, h_hash, e->key) != IDX_NIL)
1679 continue;
1680
1681 n = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1682 n->key = e->key;
1683 if (h->type != HASHMAP_TYPE_SET)
1684 ((struct plain_hashmap_entry*) n)->value =
1685 ((struct plain_hashmap_entry*) e)->value;
1686 assert_se(hashmap_put_boldly(h, h_hash, &swap, false) == 1);
1687
1688 remove_entry(other, idx);
1689 }
1690
1691 return 0;
1692 }
1693
1694 int _hashmap_move_one(HashmapBase *h, HashmapBase *other, const void *key) {
1695 struct swap_entries swap;
1696 unsigned h_hash, other_hash, idx;
1697 struct hashmap_base_entry *e, *n;
1698 int r;
1699
1700 assert(h);
1701
1702 h_hash = bucket_hash(h, key);
1703 if (bucket_scan(h, h_hash, key) != IDX_NIL)
1704 return -EEXIST;
1705
1706 if (!other)
1707 return -ENOENT;
1708
1709 assert(other->type == h->type);
1710
1711 other_hash = bucket_hash(other, key);
1712 idx = bucket_scan(other, other_hash, key);
1713 if (idx == IDX_NIL)
1714 return -ENOENT;
1715
1716 e = bucket_at(other, idx);
1717
1718 n = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1719 n->key = e->key;
1720 if (h->type != HASHMAP_TYPE_SET)
1721 ((struct plain_hashmap_entry*) n)->value =
1722 ((struct plain_hashmap_entry*) e)->value;
1723 r = hashmap_put_boldly(h, h_hash, &swap, true);
1724 if (r < 0)
1725 return r;
1726
1727 remove_entry(other, idx);
1728 return 0;
1729 }
1730
1731 HashmapBase* _hashmap_copy(HashmapBase *h HASHMAP_DEBUG_PARAMS) {
1732 HashmapBase *copy;
1733 int r;
1734
1735 assert(h);
1736
1737 copy = hashmap_base_new(h->hash_ops, h->type HASHMAP_DEBUG_PASS_ARGS);
1738 if (!copy)
1739 return NULL;
1740
1741 switch (h->type) {
1742 case HASHMAP_TYPE_PLAIN:
1743 case HASHMAP_TYPE_ORDERED:
1744 r = hashmap_merge((Hashmap*)copy, (Hashmap*)h);
1745 break;
1746 case HASHMAP_TYPE_SET:
1747 r = set_merge((Set*)copy, (Set*)h);
1748 break;
1749 default:
1750 assert_not_reached();
1751 }
1752
1753 if (r < 0)
1754 return _hashmap_free(copy, false, false);
1755
1756 return copy;
1757 }
1758
1759 char** _hashmap_get_strv(HashmapBase *h) {
1760 char **sv;
1761 Iterator i;
1762 unsigned idx, n;
1763
1764 if (!h)
1765 return new0(char*, 1);
1766
1767 sv = new(char*, n_entries(h)+1);
1768 if (!sv)
1769 return NULL;
1770
1771 n = 0;
1772 HASHMAP_FOREACH_IDX(idx, h, i)
1773 sv[n++] = entry_value(h, bucket_at(h, idx));
1774 sv[n] = NULL;
1775
1776 return sv;
1777 }
1778
1779 void* ordered_hashmap_next(OrderedHashmap *h, const void *key) {
1780 struct ordered_hashmap_entry *e;
1781 unsigned hash, idx;
1782
1783 if (!h)
1784 return NULL;
1785
1786 hash = bucket_hash(h, key);
1787 idx = bucket_scan(h, hash, key);
1788 if (idx == IDX_NIL)
1789 return NULL;
1790
1791 e = ordered_bucket_at(h, idx);
1792 if (e->iterate_next == IDX_NIL)
1793 return NULL;
1794 return ordered_bucket_at(h, e->iterate_next)->p.value;
1795 }
1796
1797 int set_consume(Set *s, void *value) {
1798 int r;
1799
1800 assert(s);
1801 assert(value);
1802
1803 r = set_put(s, value);
1804 if (r <= 0)
1805 free(value);
1806
1807 return r;
1808 }
1809
1810 int _hashmap_put_strdup_full(Hashmap **h, const struct hash_ops *hash_ops, const char *k, const char *v HASHMAP_DEBUG_PARAMS) {
1811 int r;
1812
1813 r = _hashmap_ensure_allocated(h, hash_ops HASHMAP_DEBUG_PASS_ARGS);
1814 if (r < 0)
1815 return r;
1816
1817 _cleanup_free_ char *kdup = NULL, *vdup = NULL;
1818
1819 kdup = strdup(k);
1820 if (!kdup)
1821 return -ENOMEM;
1822
1823 if (v) {
1824 vdup = strdup(v);
1825 if (!vdup)
1826 return -ENOMEM;
1827 }
1828
1829 r = hashmap_put(*h, kdup, vdup);
1830 if (r < 0) {
1831 if (r == -EEXIST && streq_ptr(v, hashmap_get(*h, kdup)))
1832 return 0;
1833 return r;
1834 }
1835
1836 /* 0 with non-null vdup would mean vdup is already in the hashmap, which cannot be */
1837 assert(vdup == NULL || r > 0);
1838 if (r > 0)
1839 kdup = vdup = NULL;
1840
1841 return r;
1842 }
1843
1844 int _set_put_strndup_full(Set **s, const struct hash_ops *hash_ops, const char *p, size_t n HASHMAP_DEBUG_PARAMS) {
1845 char *c;
1846 int r;
1847
1848 assert(s);
1849 assert(p);
1850
1851 r = _set_ensure_allocated(s, hash_ops HASHMAP_DEBUG_PASS_ARGS);
1852 if (r < 0)
1853 return r;
1854
1855 if (n == SIZE_MAX) {
1856 if (set_contains(*s, (char*) p))
1857 return 0;
1858
1859 c = strdup(p);
1860 } else
1861 c = strndup(p, n);
1862 if (!c)
1863 return -ENOMEM;
1864
1865 return set_consume(*s, c);
1866 }
1867
1868 int _set_put_strdupv_full(Set **s, const struct hash_ops *hash_ops, char **l HASHMAP_DEBUG_PARAMS) {
1869 int n = 0, r;
1870
1871 assert(s);
1872
1873 STRV_FOREACH(i, l) {
1874 r = _set_put_strndup_full(s, hash_ops, *i, SIZE_MAX HASHMAP_DEBUG_PASS_ARGS);
1875 if (r < 0)
1876 return r;
1877
1878 n += r;
1879 }
1880
1881 return n;
1882 }
1883
1884 int set_put_strsplit(Set *s, const char *v, const char *separators, ExtractFlags flags) {
1885 const char *p = v;
1886 int r;
1887
1888 assert(s);
1889 assert(v);
1890
1891 for (;;) {
1892 char *word;
1893
1894 r = extract_first_word(&p, &word, separators, flags);
1895 if (r <= 0)
1896 return r;
1897
1898 r = set_consume(s, word);
1899 if (r < 0)
1900 return r;
1901 }
1902 }
1903
1904 /* expand the cachemem if needed, return true if newly (re)activated. */
1905 static int cachemem_maintain(CacheMem *mem, size_t size) {
1906 assert(mem);
1907
1908 if (!GREEDY_REALLOC(mem->ptr, size)) {
1909 if (size > 0)
1910 return -ENOMEM;
1911 }
1912
1913 if (!mem->active) {
1914 mem->active = true;
1915 return true;
1916 }
1917
1918 return false;
1919 }
1920
1921 int iterated_cache_get(IteratedCache *cache, const void ***res_keys, const void ***res_values, unsigned *res_n_entries) {
1922 bool sync_keys = false, sync_values = false;
1923 size_t size;
1924 int r;
1925
1926 assert(cache);
1927 assert(cache->hashmap);
1928
1929 size = n_entries(cache->hashmap);
1930
1931 if (res_keys) {
1932 r = cachemem_maintain(&cache->keys, size);
1933 if (r < 0)
1934 return r;
1935
1936 sync_keys = r;
1937 } else
1938 cache->keys.active = false;
1939
1940 if (res_values) {
1941 r = cachemem_maintain(&cache->values, size);
1942 if (r < 0)
1943 return r;
1944
1945 sync_values = r;
1946 } else
1947 cache->values.active = false;
1948
1949 if (cache->hashmap->dirty) {
1950 if (cache->keys.active)
1951 sync_keys = true;
1952 if (cache->values.active)
1953 sync_values = true;
1954
1955 cache->hashmap->dirty = false;
1956 }
1957
1958 if (sync_keys || sync_values) {
1959 unsigned i, idx;
1960 Iterator iter;
1961
1962 i = 0;
1963 HASHMAP_FOREACH_IDX(idx, cache->hashmap, iter) {
1964 struct hashmap_base_entry *e;
1965
1966 e = bucket_at(cache->hashmap, idx);
1967
1968 if (sync_keys)
1969 cache->keys.ptr[i] = e->key;
1970 if (sync_values)
1971 cache->values.ptr[i] = entry_value(cache->hashmap, e);
1972 i++;
1973 }
1974 }
1975
1976 if (res_keys)
1977 *res_keys = cache->keys.ptr;
1978 if (res_values)
1979 *res_values = cache->values.ptr;
1980 if (res_n_entries)
1981 *res_n_entries = size;
1982
1983 return 0;
1984 }
1985
1986 IteratedCache* iterated_cache_free(IteratedCache *cache) {
1987 if (cache) {
1988 free(cache->keys.ptr);
1989 free(cache->values.ptr);
1990 }
1991
1992 return mfree(cache);
1993 }
1994
1995 int set_strjoin(Set *s, const char *separator, bool wrap_with_separator, char **ret) {
1996 _cleanup_free_ char *str = NULL;
1997 size_t separator_len, len = 0;
1998 const char *value;
1999 bool first;
2000
2001 assert(ret);
2002
2003 if (set_isempty(s)) {
2004 *ret = NULL;
2005 return 0;
2006 }
2007
2008 separator_len = strlen_ptr(separator);
2009
2010 if (separator_len == 0)
2011 wrap_with_separator = false;
2012
2013 first = !wrap_with_separator;
2014
2015 SET_FOREACH(value, s) {
2016 size_t l = strlen_ptr(value);
2017
2018 if (l == 0)
2019 continue;
2020
2021 if (!GREEDY_REALLOC(str, len + l + (first ? 0 : separator_len) + (wrap_with_separator ? separator_len : 0) + 1))
2022 return -ENOMEM;
2023
2024 if (separator_len > 0 && !first) {
2025 memcpy(str + len, separator, separator_len);
2026 len += separator_len;
2027 }
2028
2029 memcpy(str + len, value, l);
2030 len += l;
2031 first = false;
2032 }
2033
2034 if (wrap_with_separator) {
2035 memcpy(str + len, separator, separator_len);
2036 len += separator_len;
2037 }
2038
2039 str[len] = '\0';
2040
2041 *ret = TAKE_PTR(str);
2042 return 0;
2043 }
2044
2045 bool set_equal(Set *a, Set *b) {
2046 void *p;
2047
2048 /* Checks whether each entry of 'a' is also in 'b' and vice versa, i.e. the two sets contain the same
2049 * entries */
2050
2051 if (a == b)
2052 return true;
2053
2054 if (set_isempty(a) && set_isempty(b))
2055 return true;
2056
2057 if (set_size(a) != set_size(b)) /* Cheap check that hopefully catches a lot of inequality cases
2058 * already */
2059 return false;
2060
2061 SET_FOREACH(p, a)
2062 if (!set_contains(b, p))
2063 return false;
2064
2065 /* If we have the same hashops, then we don't need to check things backwards given we compared the
2066 * size and that all of a is in b. */
2067 if (a->b.hash_ops == b->b.hash_ops)
2068 return true;
2069
2070 SET_FOREACH(p, b)
2071 if (!set_contains(a, p))
2072 return false;
2073
2074 return true;
2075 }
2076
2077 static bool set_fnmatch_one(Set *patterns, const char *needle) {
2078 const char *p;
2079
2080 assert(needle);
2081
2082 SET_FOREACH(p, patterns)
2083 if (fnmatch(p, needle, 0) == 0)
2084 return true;
2085
2086 return false;
2087 }
2088
2089 bool set_fnmatch(Set *include_patterns, Set *exclude_patterns, const char *needle) {
2090 assert(needle);
2091
2092 if (set_fnmatch_one(exclude_patterns, needle))
2093 return false;
2094
2095 if (set_isempty(include_patterns))
2096 return true;
2097
2098 return set_fnmatch_one(include_patterns, needle);
2099 }