]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/random-util.c
Merge pull request #16388 from keszybz/xdg-desktop-fuzz-case
[thirdparty/systemd.git] / src / basic / random-util.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #if defined(__i386__) || defined(__x86_64__)
4 #include <cpuid.h>
5 #endif
6
7 #include <elf.h>
8 #include <errno.h>
9 #include <fcntl.h>
10 #include <linux/random.h>
11 #include <pthread.h>
12 #include <stdbool.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <sys/ioctl.h>
17 #include <sys/time.h>
18
19 #if HAVE_SYS_AUXV_H
20 # include <sys/auxv.h>
21 #endif
22
23 #include "alloc-util.h"
24 #include "errno-util.h"
25 #include "fd-util.h"
26 #include "fileio.h"
27 #include "io-util.h"
28 #include "missing_random.h"
29 #include "missing_syscall.h"
30 #include "parse-util.h"
31 #include "random-util.h"
32 #include "siphash24.h"
33 #include "time-util.h"
34
35 static bool srand_called = false;
36
37 int rdrand(unsigned long *ret) {
38
39 /* So, you are a "security researcher", and you wonder why we bother with using raw RDRAND here,
40 * instead of sticking to /dev/urandom or getrandom()?
41 *
42 * Here's why: early boot. On Linux, during early boot the random pool that backs /dev/urandom and
43 * getrandom() is generally not initialized yet. It is very common that initialization of the random
44 * pool takes a longer time (up to many minutes), in particular on embedded devices that have no
45 * explicit hardware random generator, as well as in virtualized environments such as major cloud
46 * installations that do not provide virtio-rng or a similar mechanism.
47 *
48 * In such an environment using getrandom() synchronously means we'd block the entire system boot-up
49 * until the pool is initialized, i.e. *very* long. Using getrandom() asynchronously (GRND_NONBLOCK)
50 * would mean acquiring randomness during early boot would simply fail. Using /dev/urandom would mean
51 * generating many kmsg log messages about our use of it before the random pool is properly
52 * initialized. Neither of these outcomes is desirable.
53 *
54 * Thus, for very specific purposes we use RDRAND instead of either of these three options. RDRAND
55 * provides us quickly and relatively reliably with random values, without having to delay boot,
56 * without triggering warning messages in kmsg.
57 *
58 * Note that we use RDRAND only under very specific circumstances, when the requirements on the
59 * quality of the returned entropy permit it. Specifically, here are some cases where we *do* use
60 * RDRAND:
61 *
62 * • UUID generation: UUIDs are supposed to be universally unique but are not cryptographic
63 * key material. The quality and trust level of RDRAND should hence be OK: UUIDs should be
64 * generated in a way that is reliably unique, but they do not require ultimate trust into
65 * the entropy generator. systemd generates a number of UUIDs during early boot, including
66 * 'invocation IDs' for every unit spawned that identify the specific invocation of the
67 * service globally, and a number of others. Other alternatives for generating these UUIDs
68 * have been considered, but don't really work: for example, hashing uuids from a local
69 * system identifier combined with a counter falls flat because during early boot disk
70 * storage is not yet available (think: initrd) and thus a system-specific ID cannot be
71 * stored or retrieved yet.
72 *
73 * • Hash table seed generation: systemd uses many hash tables internally. Hash tables are
74 * generally assumed to have O(1) access complexity, but can deteriorate to prohibitive
75 * O(n) access complexity if an attacker manages to trigger a large number of hash
76 * collisions. Thus, systemd (as any software employing hash tables should) uses seeded
77 * hash functions for its hash tables, with a seed generated randomly. The hash tables
78 * systemd employs watch the fill level closely and reseed if necessary. This allows use of
79 * a low quality RNG initially, as long as it improves should a hash table be under attack:
80 * the attacker after all needs to trigger many collisions to exploit it for the purpose
81 * of DoS, but if doing so improves the seed the attack surface is reduced as the attack
82 * takes place.
83 *
84 * Some cases where we do NOT use RDRAND are:
85 *
86 * • Generation of cryptographic key material 🔑
87 *
88 * • Generation of cryptographic salt values 🧂
89 *
90 * This function returns:
91 *
92 * -EOPNOTSUPP → RDRAND is not available on this system 😔
93 * -EAGAIN → The operation failed this time, but is likely to work if you try again a few
94 * times ♻
95 * -EUCLEAN → We got some random value, but it looked strange, so we refused using it.
96 * This failure might or might not be temporary. 😕
97 */
98
99 #if defined(__i386__) || defined(__x86_64__)
100 static int have_rdrand = -1;
101 unsigned long v;
102 uint8_t success;
103
104 if (have_rdrand < 0) {
105 uint32_t eax, ebx, ecx, edx;
106
107 /* Check if RDRAND is supported by the CPU */
108 if (__get_cpuid(1, &eax, &ebx, &ecx, &edx) == 0) {
109 have_rdrand = false;
110 return -EOPNOTSUPP;
111 }
112
113 /* Compat with old gcc where bit_RDRND didn't exist yet */
114 #ifndef bit_RDRND
115 #define bit_RDRND (1U << 30)
116 #endif
117
118 have_rdrand = !!(ecx & bit_RDRND);
119 }
120
121 if (have_rdrand == 0)
122 return -EOPNOTSUPP;
123
124 asm volatile("rdrand %0;"
125 "setc %1"
126 : "=r" (v),
127 "=qm" (success));
128 msan_unpoison(&success, sizeof(success));
129 if (!success)
130 return -EAGAIN;
131
132 /* Apparently on some AMD CPUs RDRAND will sometimes (after a suspend/resume cycle?) report success
133 * via the carry flag but nonetheless return the same fixed value -1 in all cases. This appears to be
134 * a bad bug in the CPU or firmware. Let's deal with that and work-around this by explicitly checking
135 * for this special value (and also 0, just to be sure) and filtering it out. This is a work-around
136 * only however and something AMD really should fix properly. The Linux kernel should probably work
137 * around this issue by turning off RDRAND altogether on those CPUs. See:
138 * https://github.com/systemd/systemd/issues/11810 */
139 if (v == 0 || v == ULONG_MAX)
140 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN),
141 "RDRAND returned suspicious value %lx, assuming bad hardware RNG, not using value.", v);
142
143 *ret = v;
144 return 0;
145 #else
146 return -EOPNOTSUPP;
147 #endif
148 }
149
150 int genuine_random_bytes(void *p, size_t n, RandomFlags flags) {
151 static int have_syscall = -1;
152 _cleanup_close_ int fd = -1;
153 bool got_some = false;
154 int r;
155
156 /* Gathers some high-quality randomness from the kernel (or potentially mid-quality randomness from
157 * the CPU if the RANDOM_ALLOW_RDRAND flag is set). This call won't block, unless the RANDOM_BLOCK
158 * flag is set. If RANDOM_MAY_FAIL is set, an error is returned if the random pool is not
159 * initialized. Otherwise it will always return some data from the kernel, regardless of whether the
160 * random pool is fully initialized or not. If RANDOM_EXTEND_WITH_PSEUDO is set, and some but not
161 * enough better quality randomness could be acquired, the rest is filled up with low quality
162 * randomness.
163 *
164 * Of course, when creating cryptographic key material you really shouldn't use RANDOM_ALLOW_DRDRAND
165 * or even RANDOM_EXTEND_WITH_PSEUDO.
166 *
167 * When generating UUIDs it's fine to use RANDOM_ALLOW_RDRAND but not OK to use
168 * RANDOM_EXTEND_WITH_PSEUDO. In fact RANDOM_EXTEND_WITH_PSEUDO is only really fine when invoked via
169 * an "all bets are off" wrapper, such as random_bytes(), see below. */
170
171 if (n == 0)
172 return 0;
173
174 if (FLAGS_SET(flags, RANDOM_ALLOW_RDRAND))
175 /* Try x86-64' RDRAND intrinsic if we have it. We only use it if high quality randomness is
176 * not required, as we don't trust it (who does?). Note that we only do a single iteration of
177 * RDRAND here, even though the Intel docs suggest calling this in a tight loop of 10
178 * invocations or so. That's because we don't really care about the quality here. We
179 * generally prefer using RDRAND if the caller allows us to, since this way we won't upset
180 * the kernel's random subsystem by accessing it before the pool is initialized (after all it
181 * will kmsg log about every attempt to do so)..*/
182 for (;;) {
183 unsigned long u;
184 size_t m;
185
186 if (rdrand(&u) < 0) {
187 if (got_some && FLAGS_SET(flags, RANDOM_EXTEND_WITH_PSEUDO)) {
188 /* Fill in the remaining bytes using pseudo-random values */
189 pseudo_random_bytes(p, n);
190 return 0;
191 }
192
193 /* OK, this didn't work, let's go to getrandom() + /dev/urandom instead */
194 break;
195 }
196
197 m = MIN(sizeof(u), n);
198 memcpy(p, &u, m);
199
200 p = (uint8_t*) p + m;
201 n -= m;
202
203 if (n == 0)
204 return 0; /* Yay, success! */
205
206 got_some = true;
207 }
208
209 /* Use the getrandom() syscall unless we know we don't have it. */
210 if (have_syscall != 0 && !HAS_FEATURE_MEMORY_SANITIZER) {
211
212 for (;;) {
213 r = getrandom(p, n,
214 (FLAGS_SET(flags, RANDOM_BLOCK) ? 0 : GRND_NONBLOCK) |
215 (FLAGS_SET(flags, RANDOM_ALLOW_INSECURE) ? GRND_INSECURE : 0));
216 if (r > 0) {
217 have_syscall = true;
218
219 if ((size_t) r == n)
220 return 0; /* Yay, success! */
221
222 assert((size_t) r < n);
223 p = (uint8_t*) p + r;
224 n -= r;
225
226 if (FLAGS_SET(flags, RANDOM_EXTEND_WITH_PSEUDO)) {
227 /* Fill in the remaining bytes using pseudo-random values */
228 pseudo_random_bytes(p, n);
229 return 0;
230 }
231
232 got_some = true;
233
234 /* Hmm, we didn't get enough good data but the caller insists on good data? Then try again */
235 if (FLAGS_SET(flags, RANDOM_BLOCK))
236 continue;
237
238 /* Fill in the rest with /dev/urandom */
239 break;
240
241 } else if (r == 0) {
242 have_syscall = true;
243 return -EIO;
244
245 } else if (ERRNO_IS_NOT_SUPPORTED(errno)) {
246 /* We lack the syscall, continue with reading from /dev/urandom. */
247 have_syscall = false;
248 break;
249
250 } else if (errno == EAGAIN) {
251 /* The kernel has no entropy whatsoever. Let's remember to use the syscall
252 * the next time again though.
253 *
254 * If RANDOM_MAY_FAIL is set, return an error so that random_bytes() can
255 * produce some pseudo-random bytes instead. Otherwise, fall back to
256 * /dev/urandom, which we know is empty, but the kernel will produce some
257 * bytes for us on a best-effort basis. */
258 have_syscall = true;
259
260 if (got_some && FLAGS_SET(flags, RANDOM_EXTEND_WITH_PSEUDO)) {
261 /* Fill in the remaining bytes using pseudorandom values */
262 pseudo_random_bytes(p, n);
263 return 0;
264 }
265
266 if (FLAGS_SET(flags, RANDOM_MAY_FAIL))
267 return -ENODATA;
268
269 /* Use /dev/urandom instead */
270 break;
271
272 } else if (errno == EINVAL) {
273
274 /* Most likely: unknown flag. We know that GRND_INSECURE might cause this,
275 * hence try without. */
276
277 if (FLAGS_SET(flags, RANDOM_ALLOW_INSECURE)) {
278 flags = flags &~ RANDOM_ALLOW_INSECURE;
279 continue;
280 }
281
282 return -errno;
283 } else
284 return -errno;
285 }
286 }
287
288 fd = open("/dev/urandom", O_RDONLY|O_CLOEXEC|O_NOCTTY);
289 if (fd < 0)
290 return errno == ENOENT ? -ENOSYS : -errno;
291
292 return loop_read_exact(fd, p, n, true);
293 }
294
295 static void clear_srand_initialization(void) {
296 srand_called = false;
297 }
298
299 void initialize_srand(void) {
300 static bool pthread_atfork_registered = false;
301 unsigned x;
302 #if HAVE_SYS_AUXV_H
303 const void *auxv;
304 #endif
305 unsigned long k;
306
307 if (srand_called)
308 return;
309
310 #if HAVE_SYS_AUXV_H
311 /* The kernel provides us with 16 bytes of entropy in auxv, so let's try to make use of that to seed
312 * the pseudo-random generator. It's better than nothing... But let's first hash it to make it harder
313 * to recover the original value by watching any pseudo-random bits we generate. After all the
314 * AT_RANDOM data might be used by other stuff too (in particular: ASLR), and we probably shouldn't
315 * leak the seed for that. */
316
317 auxv = ULONG_TO_PTR(getauxval(AT_RANDOM));
318 if (auxv) {
319 static const uint8_t auxval_hash_key[16] = {
320 0x92, 0x6e, 0xfe, 0x1b, 0xcf, 0x00, 0x52, 0x9c, 0xcc, 0x42, 0xcf, 0xdc, 0x94, 0x1f, 0x81, 0x0f
321 };
322
323 x = (unsigned) siphash24(auxv, 16, auxval_hash_key);
324 } else
325 #endif
326 x = 0;
327
328 x ^= (unsigned) now(CLOCK_REALTIME);
329 x ^= (unsigned) gettid();
330
331 if (rdrand(&k) >= 0)
332 x ^= (unsigned) k;
333
334 srand(x);
335 srand_called = true;
336
337 if (!pthread_atfork_registered) {
338 (void) pthread_atfork(NULL, NULL, clear_srand_initialization);
339 pthread_atfork_registered = true;
340 }
341 }
342
343 /* INT_MAX gives us only 31 bits, so use 24 out of that. */
344 #if RAND_MAX >= INT_MAX
345 assert_cc(RAND_MAX >= 16777215);
346 # define RAND_STEP 3
347 #else
348 /* SHORT_INT_MAX or lower gives at most 15 bits, we just use 8 out of that. */
349 assert_cc(RAND_MAX >= 255);
350 # define RAND_STEP 1
351 #endif
352
353 void pseudo_random_bytes(void *p, size_t n) {
354 uint8_t *q;
355
356 /* This returns pseudo-random data using libc's rand() function. You probably never want to call this
357 * directly, because why would you use this if you can get better stuff cheaply? Use random_bytes()
358 * instead, see below: it will fall back to this function if there's nothing better to get, but only
359 * then. */
360
361 initialize_srand();
362
363 for (q = p; q < (uint8_t*) p + n; q += RAND_STEP) {
364 unsigned rr;
365
366 rr = (unsigned) rand();
367
368 #if RAND_STEP >= 3
369 if ((size_t) (q - (uint8_t*) p + 2) < n)
370 q[2] = rr >> 16;
371 #endif
372 #if RAND_STEP >= 2
373 if ((size_t) (q - (uint8_t*) p + 1) < n)
374 q[1] = rr >> 8;
375 #endif
376 q[0] = rr;
377 }
378 }
379
380 void random_bytes(void *p, size_t n) {
381
382 /* This returns high quality randomness if we can get it cheaply. If we can't because for some reason
383 * it is not available we'll try some crappy fallbacks.
384 *
385 * What this function will do:
386 *
387 * • This function will preferably use the CPU's RDRAND operation, if it is available, in
388 * order to return "mid-quality" random values cheaply.
389 *
390 * • Use getrandom() with GRND_NONBLOCK, to return high-quality random values if they are
391 * cheaply available.
392 *
393 * • This function will return pseudo-random data, generated via libc rand() if nothing
394 * better is available.
395 *
396 * • This function will work fine in early boot
397 *
398 * • This function will always succeed
399 *
400 * What this function won't do:
401 *
402 * • This function will never fail: it will give you randomness no matter what. It might not
403 * be high quality, but it will return some, possibly generated via libc's rand() call.
404 *
405 * • This function will never block: if the only way to get good randomness is a blocking,
406 * synchronous getrandom() we'll instead provide you with pseudo-random data.
407 *
408 * This function is hence great for things like seeding hash tables, generating random numeric UNIX
409 * user IDs (that are checked for collisions before use) and such.
410 *
411 * This function is hence not useful for generating UUIDs or cryptographic key material.
412 */
413
414 if (genuine_random_bytes(p, n, RANDOM_EXTEND_WITH_PSEUDO|RANDOM_MAY_FAIL|RANDOM_ALLOW_RDRAND|RANDOM_ALLOW_INSECURE) >= 0)
415 return;
416
417 /* If for some reason some user made /dev/urandom unavailable to us, or the kernel has no entropy, use a PRNG instead. */
418 pseudo_random_bytes(p, n);
419 }
420
421 size_t random_pool_size(void) {
422 _cleanup_free_ char *s = NULL;
423 int r;
424
425 /* Read pool size, if possible */
426 r = read_one_line_file("/proc/sys/kernel/random/poolsize", &s);
427 if (r < 0)
428 log_debug_errno(r, "Failed to read pool size from kernel: %m");
429 else {
430 unsigned sz;
431
432 r = safe_atou(s, &sz);
433 if (r < 0)
434 log_debug_errno(r, "Failed to parse pool size: %s", s);
435 else
436 /* poolsize is in bits on 2.6, but we want bytes */
437 return CLAMP(sz / 8, RANDOM_POOL_SIZE_MIN, RANDOM_POOL_SIZE_MAX);
438 }
439
440 /* Use the minimum as default, if we can't retrieve the correct value */
441 return RANDOM_POOL_SIZE_MIN;
442 }
443
444 int random_write_entropy(int fd, const void *seed, size_t size, bool credit) {
445 int r;
446
447 assert(fd >= 0);
448 assert(seed && size > 0);
449
450 if (credit) {
451 _cleanup_free_ struct rand_pool_info *info = NULL;
452
453 /* The kernel API only accepts "int" as entropy count (which is in bits), let's avoid any
454 * chance for confusion here. */
455 if (size > INT_MAX / 8)
456 return -EOVERFLOW;
457
458 info = malloc(offsetof(struct rand_pool_info, buf) + size);
459 if (!info)
460 return -ENOMEM;
461
462 info->entropy_count = size * 8;
463 info->buf_size = size;
464 memcpy(info->buf, seed, size);
465
466 if (ioctl(fd, RNDADDENTROPY, info) < 0)
467 return -errno;
468 } else {
469 r = loop_write(fd, seed, size, false);
470 if (r < 0)
471 return r;
472 }
473
474 return 0;
475 }