]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/socket-util.c
Merge pull request #18777 from yuwata/network-set-ifname-to-engines
[thirdparty/systemd.git] / src / basic / socket-util.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <arpa/inet.h>
4 #include <errno.h>
5 #include <limits.h>
6 #include <net/if.h>
7 #include <netdb.h>
8 #include <netinet/ip.h>
9 #include <poll.h>
10 #include <stddef.h>
11 #include <stdint.h>
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <sys/ioctl.h>
15 #include <unistd.h>
16 #include <linux/if.h>
17
18 #include "alloc-util.h"
19 #include "errno-util.h"
20 #include "escape.h"
21 #include "fd-util.h"
22 #include "fileio.h"
23 #include "format-util.h"
24 #include "io-util.h"
25 #include "log.h"
26 #include "memory-util.h"
27 #include "parse-util.h"
28 #include "path-util.h"
29 #include "process-util.h"
30 #include "socket-util.h"
31 #include "string-table.h"
32 #include "string-util.h"
33 #include "strv.h"
34 #include "sysctl-util.h"
35 #include "user-util.h"
36 #include "utf8.h"
37
38 #if ENABLE_IDN
39 # define IDN_FLAGS NI_IDN
40 #else
41 # define IDN_FLAGS 0
42 #endif
43
44 static const char* const socket_address_type_table[] = {
45 [SOCK_STREAM] = "Stream",
46 [SOCK_DGRAM] = "Datagram",
47 [SOCK_RAW] = "Raw",
48 [SOCK_RDM] = "ReliableDatagram",
49 [SOCK_SEQPACKET] = "SequentialPacket",
50 [SOCK_DCCP] = "DatagramCongestionControl",
51 };
52
53 DEFINE_STRING_TABLE_LOOKUP(socket_address_type, int);
54
55 int socket_address_verify(const SocketAddress *a, bool strict) {
56 assert(a);
57
58 /* With 'strict' we enforce additional sanity constraints which are not set by the standard,
59 * but should only apply to sockets we create ourselves. */
60
61 switch (socket_address_family(a)) {
62
63 case AF_INET:
64 if (a->size != sizeof(struct sockaddr_in))
65 return -EINVAL;
66
67 if (a->sockaddr.in.sin_port == 0)
68 return -EINVAL;
69
70 if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM))
71 return -EINVAL;
72
73 return 0;
74
75 case AF_INET6:
76 if (a->size != sizeof(struct sockaddr_in6))
77 return -EINVAL;
78
79 if (a->sockaddr.in6.sin6_port == 0)
80 return -EINVAL;
81
82 if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM))
83 return -EINVAL;
84
85 return 0;
86
87 case AF_UNIX:
88 if (a->size < offsetof(struct sockaddr_un, sun_path))
89 return -EINVAL;
90 if (a->size > sizeof(struct sockaddr_un) + !strict)
91 /* If !strict, allow one extra byte, since getsockname() on Linux will append
92 * a NUL byte if we have path sockets that are above sun_path's full size. */
93 return -EINVAL;
94
95 if (a->size > offsetof(struct sockaddr_un, sun_path) &&
96 a->sockaddr.un.sun_path[0] != 0 &&
97 strict) {
98 /* Only validate file system sockets here, and only in strict mode */
99 const char *e;
100
101 e = memchr(a->sockaddr.un.sun_path, 0, sizeof(a->sockaddr.un.sun_path));
102 if (e) {
103 /* If there's an embedded NUL byte, make sure the size of the socket address matches it */
104 if (a->size != offsetof(struct sockaddr_un, sun_path) + (e - a->sockaddr.un.sun_path) + 1)
105 return -EINVAL;
106 } else {
107 /* If there's no embedded NUL byte, then the size needs to match the whole
108 * structure or the structure with one extra NUL byte suffixed. (Yeah, Linux is awful,
109 * and considers both equivalent: getsockname() even extends sockaddr_un beyond its
110 * size if the path is non NUL terminated.)*/
111 if (!IN_SET(a->size, sizeof(a->sockaddr.un.sun_path), sizeof(a->sockaddr.un.sun_path)+1))
112 return -EINVAL;
113 }
114 }
115
116 if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET))
117 return -EINVAL;
118
119 return 0;
120
121 case AF_NETLINK:
122
123 if (a->size != sizeof(struct sockaddr_nl))
124 return -EINVAL;
125
126 if (!IN_SET(a->type, 0, SOCK_RAW, SOCK_DGRAM))
127 return -EINVAL;
128
129 return 0;
130
131 case AF_VSOCK:
132 if (a->size != sizeof(struct sockaddr_vm))
133 return -EINVAL;
134
135 if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM))
136 return -EINVAL;
137
138 return 0;
139
140 default:
141 return -EAFNOSUPPORT;
142 }
143 }
144
145 int socket_address_print(const SocketAddress *a, char **ret) {
146 int r;
147
148 assert(a);
149 assert(ret);
150
151 r = socket_address_verify(a, false); /* We do non-strict validation, because we want to be
152 * able to pretty-print any socket the kernel considers
153 * valid. We still need to do validation to know if we
154 * can meaningfully print the address. */
155 if (r < 0)
156 return r;
157
158 if (socket_address_family(a) == AF_NETLINK) {
159 _cleanup_free_ char *sfamily = NULL;
160
161 r = netlink_family_to_string_alloc(a->protocol, &sfamily);
162 if (r < 0)
163 return r;
164
165 r = asprintf(ret, "%s %u", sfamily, a->sockaddr.nl.nl_groups);
166 if (r < 0)
167 return -ENOMEM;
168
169 return 0;
170 }
171
172 return sockaddr_pretty(&a->sockaddr.sa, a->size, false, true, ret);
173 }
174
175 bool socket_address_can_accept(const SocketAddress *a) {
176 assert(a);
177
178 return
179 IN_SET(a->type, SOCK_STREAM, SOCK_SEQPACKET);
180 }
181
182 bool socket_address_equal(const SocketAddress *a, const SocketAddress *b) {
183 assert(a);
184 assert(b);
185
186 /* Invalid addresses are unequal to all */
187 if (socket_address_verify(a, false) < 0 ||
188 socket_address_verify(b, false) < 0)
189 return false;
190
191 if (a->type != b->type)
192 return false;
193
194 if (socket_address_family(a) != socket_address_family(b))
195 return false;
196
197 switch (socket_address_family(a)) {
198
199 case AF_INET:
200 if (a->sockaddr.in.sin_addr.s_addr != b->sockaddr.in.sin_addr.s_addr)
201 return false;
202
203 if (a->sockaddr.in.sin_port != b->sockaddr.in.sin_port)
204 return false;
205
206 break;
207
208 case AF_INET6:
209 if (memcmp(&a->sockaddr.in6.sin6_addr, &b->sockaddr.in6.sin6_addr, sizeof(a->sockaddr.in6.sin6_addr)) != 0)
210 return false;
211
212 if (a->sockaddr.in6.sin6_port != b->sockaddr.in6.sin6_port)
213 return false;
214
215 break;
216
217 case AF_UNIX:
218 if (a->size <= offsetof(struct sockaddr_un, sun_path) ||
219 b->size <= offsetof(struct sockaddr_un, sun_path))
220 return false;
221
222 if ((a->sockaddr.un.sun_path[0] == 0) != (b->sockaddr.un.sun_path[0] == 0))
223 return false;
224
225 if (a->sockaddr.un.sun_path[0]) {
226 if (!path_equal_or_files_same(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, 0))
227 return false;
228 } else {
229 if (a->size != b->size)
230 return false;
231
232 if (memcmp(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, a->size) != 0)
233 return false;
234 }
235
236 break;
237
238 case AF_NETLINK:
239 if (a->protocol != b->protocol)
240 return false;
241
242 if (a->sockaddr.nl.nl_groups != b->sockaddr.nl.nl_groups)
243 return false;
244
245 break;
246
247 case AF_VSOCK:
248 if (a->sockaddr.vm.svm_cid != b->sockaddr.vm.svm_cid)
249 return false;
250
251 if (a->sockaddr.vm.svm_port != b->sockaddr.vm.svm_port)
252 return false;
253
254 break;
255
256 default:
257 /* Cannot compare, so we assume the addresses are different */
258 return false;
259 }
260
261 return true;
262 }
263
264 const char* socket_address_get_path(const SocketAddress *a) {
265 assert(a);
266
267 if (socket_address_family(a) != AF_UNIX)
268 return NULL;
269
270 if (a->sockaddr.un.sun_path[0] == 0)
271 return NULL;
272
273 /* Note that this is only safe because we know that there's an extra NUL byte after the sockaddr_un
274 * structure. On Linux AF_UNIX file system socket addresses don't have to be NUL terminated if they take up the
275 * full sun_path space. */
276 assert_cc(sizeof(union sockaddr_union) >= sizeof(struct sockaddr_un)+1);
277 return a->sockaddr.un.sun_path;
278 }
279
280 bool socket_ipv6_is_supported(void) {
281 static int cached = -1;
282
283 if (cached < 0) {
284
285 if (access("/proc/net/if_inet6", F_OK) < 0) {
286
287 if (errno != ENOENT) {
288 log_debug_errno(errno, "Unexpected error when checking whether /proc/net/if_inet6 exists: %m");
289 return false;
290 }
291
292 cached = false;
293 } else
294 cached = true;
295 }
296
297 return cached;
298 }
299
300 bool socket_ipv6_is_enabled(void) {
301 _cleanup_free_ char *v = NULL;
302 int r;
303
304 /* Much like socket_ipv6_is_supported(), but also checks that the sysctl that disables IPv6 on all
305 * interfaces isn't turned on */
306
307 if (!socket_ipv6_is_supported())
308 return false;
309
310 r = sysctl_read_ip_property(AF_INET6, "all", "disable_ipv6", &v);
311 if (r < 0) {
312 log_debug_errno(r, "Unexpected error reading 'net.ipv6.conf.all.disable_ipv6' sysctl: %m");
313 return true;
314 }
315
316 r = parse_boolean(v);
317 if (r < 0) {
318 log_debug_errno(r, "Failed to pare 'net.ipv6.conf.all.disable_ipv6' sysctl: %m");
319 return true;
320 }
321
322 return !r;
323 }
324
325 bool socket_address_matches_fd(const SocketAddress *a, int fd) {
326 SocketAddress b;
327 socklen_t solen;
328
329 assert(a);
330 assert(fd >= 0);
331
332 b.size = sizeof(b.sockaddr);
333 if (getsockname(fd, &b.sockaddr.sa, &b.size) < 0)
334 return false;
335
336 if (b.sockaddr.sa.sa_family != a->sockaddr.sa.sa_family)
337 return false;
338
339 solen = sizeof(b.type);
340 if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &b.type, &solen) < 0)
341 return false;
342
343 if (b.type != a->type)
344 return false;
345
346 if (a->protocol != 0) {
347 solen = sizeof(b.protocol);
348 if (getsockopt(fd, SOL_SOCKET, SO_PROTOCOL, &b.protocol, &solen) < 0)
349 return false;
350
351 if (b.protocol != a->protocol)
352 return false;
353 }
354
355 return socket_address_equal(a, &b);
356 }
357
358 int sockaddr_port(const struct sockaddr *_sa, unsigned *ret_port) {
359 const union sockaddr_union *sa = (const union sockaddr_union*) _sa;
360
361 /* Note, this returns the port as 'unsigned' rather than 'uint16_t', as AF_VSOCK knows larger ports */
362
363 assert(sa);
364
365 switch (sa->sa.sa_family) {
366
367 case AF_INET:
368 *ret_port = be16toh(sa->in.sin_port);
369 return 0;
370
371 case AF_INET6:
372 *ret_port = be16toh(sa->in6.sin6_port);
373 return 0;
374
375 case AF_VSOCK:
376 *ret_port = sa->vm.svm_port;
377 return 0;
378
379 default:
380 return -EAFNOSUPPORT;
381 }
382 }
383
384 const union in_addr_union *sockaddr_in_addr(const struct sockaddr *_sa) {
385 const union sockaddr_union *sa = (const union sockaddr_union*) _sa;
386
387 if (!sa)
388 return NULL;
389
390 switch (sa->sa.sa_family) {
391
392 case AF_INET:
393 return (const union in_addr_union*) &sa->in.sin_addr;
394
395 case AF_INET6:
396 return (const union in_addr_union*) &sa->in6.sin6_addr;
397
398 default:
399 return NULL;
400 }
401 }
402
403 int sockaddr_pretty(
404 const struct sockaddr *_sa,
405 socklen_t salen,
406 bool translate_ipv6,
407 bool include_port,
408 char **ret) {
409
410 union sockaddr_union *sa = (union sockaddr_union*) _sa;
411 char *p;
412 int r;
413
414 assert(sa);
415 assert(salen >= sizeof(sa->sa.sa_family));
416
417 switch (sa->sa.sa_family) {
418
419 case AF_INET: {
420 uint32_t a;
421
422 a = be32toh(sa->in.sin_addr.s_addr);
423
424 if (include_port)
425 r = asprintf(&p,
426 "%u.%u.%u.%u:%u",
427 a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF,
428 be16toh(sa->in.sin_port));
429 else
430 r = asprintf(&p,
431 "%u.%u.%u.%u",
432 a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF);
433 if (r < 0)
434 return -ENOMEM;
435 break;
436 }
437
438 case AF_INET6: {
439 static const unsigned char ipv4_prefix[] = {
440 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF
441 };
442
443 if (translate_ipv6 &&
444 memcmp(&sa->in6.sin6_addr, ipv4_prefix, sizeof(ipv4_prefix)) == 0) {
445 const uint8_t *a = sa->in6.sin6_addr.s6_addr+12;
446 if (include_port)
447 r = asprintf(&p,
448 "%u.%u.%u.%u:%u",
449 a[0], a[1], a[2], a[3],
450 be16toh(sa->in6.sin6_port));
451 else
452 r = asprintf(&p,
453 "%u.%u.%u.%u",
454 a[0], a[1], a[2], a[3]);
455 if (r < 0)
456 return -ENOMEM;
457 } else {
458 char a[INET6_ADDRSTRLEN], ifname[IF_NAMESIZE + 1];
459
460 inet_ntop(AF_INET6, &sa->in6.sin6_addr, a, sizeof(a));
461 if (sa->in6.sin6_scope_id != 0)
462 format_ifname_full(sa->in6.sin6_scope_id, ifname, FORMAT_IFNAME_IFINDEX);
463
464 if (include_port) {
465 r = asprintf(&p,
466 "[%s]:%u%s%s",
467 a,
468 be16toh(sa->in6.sin6_port),
469 sa->in6.sin6_scope_id != 0 ? "%" : "",
470 sa->in6.sin6_scope_id != 0 ? ifname : "");
471 if (r < 0)
472 return -ENOMEM;
473 } else {
474 p = sa->in6.sin6_scope_id != 0 ? strjoin(a, "%", ifname) : strdup(a);
475 if (!p)
476 return -ENOMEM;
477 }
478 }
479
480 break;
481 }
482
483 case AF_UNIX:
484 if (salen <= offsetof(struct sockaddr_un, sun_path) ||
485 (sa->un.sun_path[0] == 0 && salen == offsetof(struct sockaddr_un, sun_path) + 1))
486 /* The name must have at least one character (and the leading NUL does not count) */
487 p = strdup("<unnamed>");
488 else {
489 /* Note that we calculate the path pointer here through the .un_buffer[] field, in order to
490 * outtrick bounds checking tools such as ubsan, which are too smart for their own good: on
491 * Linux the kernel may return sun_path[] data one byte longer than the declared size of the
492 * field. */
493 char *path = (char*) sa->un_buffer + offsetof(struct sockaddr_un, sun_path);
494 size_t path_len = salen - offsetof(struct sockaddr_un, sun_path);
495
496 if (path[0] == 0) {
497 /* Abstract socket. When parsing address information from, we
498 * explicitly reject overly long paths and paths with embedded NULs.
499 * But we might get such a socket from the outside. Let's return
500 * something meaningful and printable in this case. */
501
502 _cleanup_free_ char *e = NULL;
503
504 e = cescape_length(path + 1, path_len - 1);
505 if (!e)
506 return -ENOMEM;
507
508 p = strjoin("@", e);
509 } else {
510 if (path[path_len - 1] == '\0')
511 /* We expect a terminating NUL and don't print it */
512 path_len --;
513
514 p = cescape_length(path, path_len);
515 }
516 }
517 if (!p)
518 return -ENOMEM;
519
520 break;
521
522 case AF_VSOCK:
523 if (include_port) {
524 if (sa->vm.svm_cid == VMADDR_CID_ANY)
525 r = asprintf(&p, "vsock::%u", sa->vm.svm_port);
526 else
527 r = asprintf(&p, "vsock:%u:%u", sa->vm.svm_cid, sa->vm.svm_port);
528 } else
529 r = asprintf(&p, "vsock:%u", sa->vm.svm_cid);
530 if (r < 0)
531 return -ENOMEM;
532 break;
533
534 default:
535 return -EOPNOTSUPP;
536 }
537
538 *ret = p;
539 return 0;
540 }
541
542 int getpeername_pretty(int fd, bool include_port, char **ret) {
543 union sockaddr_union sa;
544 socklen_t salen = sizeof(sa);
545 int r;
546
547 assert(fd >= 0);
548 assert(ret);
549
550 if (getpeername(fd, &sa.sa, &salen) < 0)
551 return -errno;
552
553 if (sa.sa.sa_family == AF_UNIX) {
554 struct ucred ucred = {};
555
556 /* UNIX connection sockets are anonymous, so let's use
557 * PID/UID as pretty credentials instead */
558
559 r = getpeercred(fd, &ucred);
560 if (r < 0)
561 return r;
562
563 if (asprintf(ret, "PID "PID_FMT"/UID "UID_FMT, ucred.pid, ucred.uid) < 0)
564 return -ENOMEM;
565
566 return 0;
567 }
568
569 /* For remote sockets we translate IPv6 addresses back to IPv4
570 * if applicable, since that's nicer. */
571
572 return sockaddr_pretty(&sa.sa, salen, true, include_port, ret);
573 }
574
575 int getsockname_pretty(int fd, char **ret) {
576 union sockaddr_union sa;
577 socklen_t salen = sizeof(sa);
578
579 assert(fd >= 0);
580 assert(ret);
581
582 if (getsockname(fd, &sa.sa, &salen) < 0)
583 return -errno;
584
585 /* For local sockets we do not translate IPv6 addresses back
586 * to IPv6 if applicable, since this is usually used for
587 * listening sockets where the difference between IPv4 and
588 * IPv6 matters. */
589
590 return sockaddr_pretty(&sa.sa, salen, false, true, ret);
591 }
592
593 int socknameinfo_pretty(union sockaddr_union *sa, socklen_t salen, char **_ret) {
594 int r;
595 char host[NI_MAXHOST], *ret;
596
597 assert(_ret);
598
599 r = getnameinfo(&sa->sa, salen, host, sizeof(host), NULL, 0, IDN_FLAGS);
600 if (r != 0) {
601 int saved_errno = errno;
602
603 r = sockaddr_pretty(&sa->sa, salen, true, true, &ret);
604 if (r < 0)
605 return r;
606
607 log_debug_errno(saved_errno, "getnameinfo(%s) failed: %m", ret);
608 } else {
609 ret = strdup(host);
610 if (!ret)
611 return -ENOMEM;
612 }
613
614 *_ret = ret;
615 return 0;
616 }
617
618 static const char* const netlink_family_table[] = {
619 [NETLINK_ROUTE] = "route",
620 [NETLINK_FIREWALL] = "firewall",
621 [NETLINK_INET_DIAG] = "inet-diag",
622 [NETLINK_NFLOG] = "nflog",
623 [NETLINK_XFRM] = "xfrm",
624 [NETLINK_SELINUX] = "selinux",
625 [NETLINK_ISCSI] = "iscsi",
626 [NETLINK_AUDIT] = "audit",
627 [NETLINK_FIB_LOOKUP] = "fib-lookup",
628 [NETLINK_CONNECTOR] = "connector",
629 [NETLINK_NETFILTER] = "netfilter",
630 [NETLINK_IP6_FW] = "ip6-fw",
631 [NETLINK_DNRTMSG] = "dnrtmsg",
632 [NETLINK_KOBJECT_UEVENT] = "kobject-uevent",
633 [NETLINK_GENERIC] = "generic",
634 [NETLINK_SCSITRANSPORT] = "scsitransport",
635 [NETLINK_ECRYPTFS] = "ecryptfs",
636 [NETLINK_RDMA] = "rdma",
637 };
638
639 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(netlink_family, int, INT_MAX);
640
641 static const char* const socket_address_bind_ipv6_only_table[_SOCKET_ADDRESS_BIND_IPV6_ONLY_MAX] = {
642 [SOCKET_ADDRESS_DEFAULT] = "default",
643 [SOCKET_ADDRESS_BOTH] = "both",
644 [SOCKET_ADDRESS_IPV6_ONLY] = "ipv6-only"
645 };
646
647 DEFINE_STRING_TABLE_LOOKUP(socket_address_bind_ipv6_only, SocketAddressBindIPv6Only);
648
649 SocketAddressBindIPv6Only socket_address_bind_ipv6_only_or_bool_from_string(const char *n) {
650 int r;
651
652 r = parse_boolean(n);
653 if (r > 0)
654 return SOCKET_ADDRESS_IPV6_ONLY;
655 if (r == 0)
656 return SOCKET_ADDRESS_BOTH;
657
658 return socket_address_bind_ipv6_only_from_string(n);
659 }
660
661 bool sockaddr_equal(const union sockaddr_union *a, const union sockaddr_union *b) {
662 assert(a);
663 assert(b);
664
665 if (a->sa.sa_family != b->sa.sa_family)
666 return false;
667
668 if (a->sa.sa_family == AF_INET)
669 return a->in.sin_addr.s_addr == b->in.sin_addr.s_addr;
670
671 if (a->sa.sa_family == AF_INET6)
672 return memcmp(&a->in6.sin6_addr, &b->in6.sin6_addr, sizeof(a->in6.sin6_addr)) == 0;
673
674 if (a->sa.sa_family == AF_VSOCK)
675 return a->vm.svm_cid == b->vm.svm_cid;
676
677 return false;
678 }
679
680 int fd_set_sndbuf(int fd, size_t n, bool increase) {
681 int r, value;
682 socklen_t l = sizeof(value);
683
684 if (n > INT_MAX)
685 return -ERANGE;
686
687 r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l);
688 if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
689 return 0;
690
691 /* First, try to set the buffer size with SO_SNDBUF. */
692 r = setsockopt_int(fd, SOL_SOCKET, SO_SNDBUF, n);
693 if (r < 0)
694 return r;
695
696 /* SO_SNDBUF above may set to the kernel limit, instead of the requested size.
697 * So, we need to check the actual buffer size here. */
698 l = sizeof(value);
699 r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l);
700 if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
701 return 1;
702
703 /* If we have the privileges we will ignore the kernel limit. */
704 r = setsockopt_int(fd, SOL_SOCKET, SO_SNDBUFFORCE, n);
705 if (r < 0)
706 return r;
707
708 return 1;
709 }
710
711 int fd_set_rcvbuf(int fd, size_t n, bool increase) {
712 int r, value;
713 socklen_t l = sizeof(value);
714
715 if (n > INT_MAX)
716 return -ERANGE;
717
718 r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l);
719 if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
720 return 0;
721
722 /* First, try to set the buffer size with SO_RCVBUF. */
723 r = setsockopt_int(fd, SOL_SOCKET, SO_RCVBUF, n);
724 if (r < 0)
725 return r;
726
727 /* SO_RCVBUF above may set to the kernel limit, instead of the requested size.
728 * So, we need to check the actual buffer size here. */
729 l = sizeof(value);
730 r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l);
731 if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
732 return 1;
733
734 /* If we have the privileges we will ignore the kernel limit. */
735 r = setsockopt_int(fd, SOL_SOCKET, SO_RCVBUFFORCE, n);
736 if (r < 0)
737 return r;
738
739 return 1;
740 }
741
742 static const char* const ip_tos_table[] = {
743 [IPTOS_LOWDELAY] = "low-delay",
744 [IPTOS_THROUGHPUT] = "throughput",
745 [IPTOS_RELIABILITY] = "reliability",
746 [IPTOS_LOWCOST] = "low-cost",
747 };
748
749 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ip_tos, int, 0xff);
750
751 bool ifname_valid_full(const char *p, IfnameValidFlags flags) {
752 bool numeric = true;
753
754 /* Checks whether a network interface name is valid. This is inspired by dev_valid_name() in the kernel sources
755 * but slightly stricter, as we only allow non-control, non-space ASCII characters in the interface name. We
756 * also don't permit names that only container numbers, to avoid confusion with numeric interface indexes. */
757
758 assert(!(flags & ~_IFNAME_VALID_ALL));
759
760 if (isempty(p))
761 return false;
762
763 /* A valid ifindex? If so, it's valid iff IFNAME_VALID_NUMERIC is set */
764 if (parse_ifindex(p) >= 0)
765 return flags & IFNAME_VALID_NUMERIC;
766
767 if (flags & IFNAME_VALID_ALTERNATIVE) {
768 if (strlen(p) >= ALTIFNAMSIZ)
769 return false;
770 } else {
771 if (strlen(p) >= IFNAMSIZ)
772 return false;
773 }
774
775 if (dot_or_dot_dot(p))
776 return false;
777
778 /* Let's refuse "all" and "default" as interface name, to avoid collisions with the special sysctl
779 * directories /proc/sys/net/{ipv4,ipv6}/conf/{all,default} */
780 if (STR_IN_SET(p, "all", "default"))
781 return false;
782
783 for (const char *t = p; *t; t++) {
784 if ((unsigned char) *t >= 127U)
785 return false;
786
787 if ((unsigned char) *t <= 32U)
788 return false;
789
790 if (IN_SET(*t,
791 ':', /* colons are used by the legacy "alias" interface logic */
792 '/', /* slashes cannot work, since we need to use network interfaces in sysfs paths, and in paths slashes are separators */
793 '%')) /* %d is used in the kernel's weird foo%d format string naming feature which we really really don't want to ever run into by accident */
794 return false;
795
796 numeric = numeric && (*t >= '0' && *t <= '9');
797 }
798
799 /* It's fully numeric but didn't parse as valid ifindex above? if so, it must be too large or zero or
800 * so, let's refuse that. */
801 if (numeric)
802 return false;
803
804 return true;
805 }
806
807 bool address_label_valid(const char *p) {
808
809 if (isempty(p))
810 return false;
811
812 if (strlen(p) >= IFNAMSIZ)
813 return false;
814
815 while (*p) {
816 if ((uint8_t) *p >= 127U)
817 return false;
818
819 if ((uint8_t) *p <= 31U)
820 return false;
821 p++;
822 }
823
824 return true;
825 }
826
827 int getpeercred(int fd, struct ucred *ucred) {
828 socklen_t n = sizeof(struct ucred);
829 struct ucred u;
830 int r;
831
832 assert(fd >= 0);
833 assert(ucred);
834
835 r = getsockopt(fd, SOL_SOCKET, SO_PEERCRED, &u, &n);
836 if (r < 0)
837 return -errno;
838
839 if (n != sizeof(struct ucred))
840 return -EIO;
841
842 /* Check if the data is actually useful and not suppressed due to namespacing issues */
843 if (!pid_is_valid(u.pid))
844 return -ENODATA;
845
846 /* Note that we don't check UID/GID here, as namespace translation works differently there: instead of
847 * receiving in "invalid" user/group we get the overflow UID/GID. */
848
849 *ucred = u;
850 return 0;
851 }
852
853 int getpeersec(int fd, char **ret) {
854 _cleanup_free_ char *s = NULL;
855 socklen_t n = 64;
856
857 assert(fd >= 0);
858 assert(ret);
859
860 for (;;) {
861 s = new0(char, n+1);
862 if (!s)
863 return -ENOMEM;
864
865 if (getsockopt(fd, SOL_SOCKET, SO_PEERSEC, s, &n) >= 0)
866 break;
867
868 if (errno != ERANGE)
869 return -errno;
870
871 s = mfree(s);
872 }
873
874 if (isempty(s))
875 return -EOPNOTSUPP;
876
877 *ret = TAKE_PTR(s);
878
879 return 0;
880 }
881
882 int getpeergroups(int fd, gid_t **ret) {
883 socklen_t n = sizeof(gid_t) * 64;
884 _cleanup_free_ gid_t *d = NULL;
885
886 assert(fd >= 0);
887 assert(ret);
888
889 for (;;) {
890 d = malloc(n);
891 if (!d)
892 return -ENOMEM;
893
894 if (getsockopt(fd, SOL_SOCKET, SO_PEERGROUPS, d, &n) >= 0)
895 break;
896
897 if (errno != ERANGE)
898 return -errno;
899
900 d = mfree(d);
901 }
902
903 assert_se(n % sizeof(gid_t) == 0);
904 n /= sizeof(gid_t);
905
906 if ((socklen_t) (int) n != n)
907 return -E2BIG;
908
909 *ret = TAKE_PTR(d);
910
911 return (int) n;
912 }
913
914 ssize_t send_one_fd_iov_sa(
915 int transport_fd,
916 int fd,
917 struct iovec *iov, size_t iovlen,
918 const struct sockaddr *sa, socklen_t len,
919 int flags) {
920
921 CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int))) control = {};
922 struct msghdr mh = {
923 .msg_name = (struct sockaddr*) sa,
924 .msg_namelen = len,
925 .msg_iov = iov,
926 .msg_iovlen = iovlen,
927 };
928 ssize_t k;
929
930 assert(transport_fd >= 0);
931
932 /*
933 * We need either an FD or data to send.
934 * If there's nothing, return an error.
935 */
936 if (fd < 0 && !iov)
937 return -EINVAL;
938
939 if (fd >= 0) {
940 struct cmsghdr *cmsg;
941
942 mh.msg_control = &control;
943 mh.msg_controllen = sizeof(control);
944
945 cmsg = CMSG_FIRSTHDR(&mh);
946 cmsg->cmsg_level = SOL_SOCKET;
947 cmsg->cmsg_type = SCM_RIGHTS;
948 cmsg->cmsg_len = CMSG_LEN(sizeof(int));
949 memcpy(CMSG_DATA(cmsg), &fd, sizeof(int));
950 }
951 k = sendmsg(transport_fd, &mh, MSG_NOSIGNAL | flags);
952 if (k < 0)
953 return (ssize_t) -errno;
954
955 return k;
956 }
957
958 int send_one_fd_sa(
959 int transport_fd,
960 int fd,
961 const struct sockaddr *sa, socklen_t len,
962 int flags) {
963
964 assert(fd >= 0);
965
966 return (int) send_one_fd_iov_sa(transport_fd, fd, NULL, 0, sa, len, flags);
967 }
968
969 ssize_t receive_one_fd_iov(
970 int transport_fd,
971 struct iovec *iov, size_t iovlen,
972 int flags,
973 int *ret_fd) {
974
975 CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int))) control;
976 struct msghdr mh = {
977 .msg_control = &control,
978 .msg_controllen = sizeof(control),
979 .msg_iov = iov,
980 .msg_iovlen = iovlen,
981 };
982 struct cmsghdr *found;
983 ssize_t k;
984
985 assert(transport_fd >= 0);
986 assert(ret_fd);
987
988 /*
989 * Receive a single FD via @transport_fd. We don't care for
990 * the transport-type. We retrieve a single FD at most, so for
991 * packet-based transports, the caller must ensure to send
992 * only a single FD per packet. This is best used in
993 * combination with send_one_fd().
994 */
995
996 k = recvmsg_safe(transport_fd, &mh, MSG_CMSG_CLOEXEC | flags);
997 if (k < 0)
998 return k;
999
1000 found = cmsg_find(&mh, SOL_SOCKET, SCM_RIGHTS, CMSG_LEN(sizeof(int)));
1001 if (!found) {
1002 cmsg_close_all(&mh);
1003
1004 /* If didn't receive an FD or any data, return an error. */
1005 if (k == 0)
1006 return -EIO;
1007 }
1008
1009 if (found)
1010 *ret_fd = *(int*) CMSG_DATA(found);
1011 else
1012 *ret_fd = -1;
1013
1014 return k;
1015 }
1016
1017 int receive_one_fd(int transport_fd, int flags) {
1018 int fd;
1019 ssize_t k;
1020
1021 k = receive_one_fd_iov(transport_fd, NULL, 0, flags, &fd);
1022 if (k == 0)
1023 return fd;
1024
1025 /* k must be negative, since receive_one_fd_iov() only returns
1026 * a positive value if data was received through the iov. */
1027 assert(k < 0);
1028 return (int) k;
1029 }
1030
1031 ssize_t next_datagram_size_fd(int fd) {
1032 ssize_t l;
1033 int k;
1034
1035 /* This is a bit like FIONREAD/SIOCINQ, however a bit more powerful. The difference being: recv(MSG_PEEK) will
1036 * actually cause the next datagram in the queue to be validated regarding checksums, which FIONREAD doesn't
1037 * do. This difference is actually of major importance as we need to be sure that the size returned here
1038 * actually matches what we will read with recvmsg() next, as otherwise we might end up allocating a buffer of
1039 * the wrong size. */
1040
1041 l = recv(fd, NULL, 0, MSG_PEEK|MSG_TRUNC);
1042 if (l < 0) {
1043 if (IN_SET(errno, EOPNOTSUPP, EFAULT))
1044 goto fallback;
1045
1046 return -errno;
1047 }
1048 if (l == 0)
1049 goto fallback;
1050
1051 return l;
1052
1053 fallback:
1054 k = 0;
1055
1056 /* Some sockets (AF_PACKET) do not support null-sized recv() with MSG_TRUNC set, let's fall back to FIONREAD
1057 * for them. Checksums don't matter for raw sockets anyway, hence this should be fine. */
1058
1059 if (ioctl(fd, FIONREAD, &k) < 0)
1060 return -errno;
1061
1062 return (ssize_t) k;
1063 }
1064
1065 /* Put a limit on how many times will attempt to call accept4(). We loop
1066 * only on "transient" errors, but let's make sure we don't loop forever. */
1067 #define MAX_FLUSH_ITERATIONS 1024
1068
1069 int flush_accept(int fd) {
1070
1071 int r, b;
1072 socklen_t l = sizeof(b);
1073
1074 /* Similar to flush_fd() but flushes all incoming connections by accepting and immediately closing
1075 * them. */
1076
1077 if (getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, &b, &l) < 0)
1078 return -errno;
1079
1080 assert(l == sizeof(b));
1081 if (!b) /* Let's check if this socket accepts connections before calling accept(). accept4() can
1082 * return EOPNOTSUPP if the fd is not a listening socket, which we should treat as a fatal
1083 * error, or in case the incoming TCP connection triggered a network issue, which we want to
1084 * treat as a transient error. Thus, let's rule out the first reason for EOPNOTSUPP early, so
1085 * we can loop safely on transient errors below. */
1086 return -ENOTTY;
1087
1088 for (unsigned iteration = 0;; iteration++) {
1089 int cfd;
1090
1091 r = fd_wait_for_event(fd, POLLIN, 0);
1092 if (r < 0) {
1093 if (r == -EINTR)
1094 continue;
1095
1096 return r;
1097 }
1098 if (r == 0)
1099 return 0;
1100
1101 if (iteration >= MAX_FLUSH_ITERATIONS)
1102 return log_debug_errno(SYNTHETIC_ERRNO(EBUSY),
1103 "Failed to flush connections within " STRINGIFY(MAX_FLUSH_ITERATIONS) " iterations.");
1104
1105 cfd = accept4(fd, NULL, NULL, SOCK_NONBLOCK|SOCK_CLOEXEC);
1106 if (cfd < 0) {
1107 if (errno == EAGAIN)
1108 return 0;
1109
1110 if (ERRNO_IS_ACCEPT_AGAIN(errno))
1111 continue;
1112
1113 return -errno;
1114 }
1115
1116 safe_close(cfd);
1117 }
1118 }
1119
1120 struct cmsghdr* cmsg_find(struct msghdr *mh, int level, int type, socklen_t length) {
1121 struct cmsghdr *cmsg;
1122
1123 assert(mh);
1124
1125 CMSG_FOREACH(cmsg, mh)
1126 if (cmsg->cmsg_level == level &&
1127 cmsg->cmsg_type == type &&
1128 (length == (socklen_t) -1 || length == cmsg->cmsg_len))
1129 return cmsg;
1130
1131 return NULL;
1132 }
1133
1134 int socket_ioctl_fd(void) {
1135 int fd;
1136
1137 /* Create a socket to invoke the various network interface ioctl()s on. Traditionally only AF_INET was good for
1138 * that. Since kernel 4.6 AF_NETLINK works for this too. We first try to use AF_INET hence, but if that's not
1139 * available (for example, because it is made unavailable via SECCOMP or such), we'll fall back to the more
1140 * generic AF_NETLINK. */
1141
1142 fd = socket(AF_INET, SOCK_DGRAM|SOCK_CLOEXEC, 0);
1143 if (fd < 0)
1144 fd = socket(AF_NETLINK, SOCK_RAW|SOCK_CLOEXEC, NETLINK_GENERIC);
1145 if (fd < 0)
1146 return -errno;
1147
1148 return fd;
1149 }
1150
1151 int sockaddr_un_unlink(const struct sockaddr_un *sa) {
1152 const char *p, * nul;
1153
1154 assert(sa);
1155
1156 if (sa->sun_family != AF_UNIX)
1157 return -EPROTOTYPE;
1158
1159 if (sa->sun_path[0] == 0) /* Nothing to do for abstract sockets */
1160 return 0;
1161
1162 /* The path in .sun_path is not necessarily NUL terminated. Let's fix that. */
1163 nul = memchr(sa->sun_path, 0, sizeof(sa->sun_path));
1164 if (nul)
1165 p = sa->sun_path;
1166 else
1167 p = memdupa_suffix0(sa->sun_path, sizeof(sa->sun_path));
1168
1169 if (unlink(p) < 0)
1170 return -errno;
1171
1172 return 1;
1173 }
1174
1175 int sockaddr_un_set_path(struct sockaddr_un *ret, const char *path) {
1176 size_t l;
1177
1178 assert(ret);
1179 assert(path);
1180
1181 /* Initialize ret->sun_path from the specified argument. This will interpret paths starting with '@' as
1182 * abstract namespace sockets, and those starting with '/' as regular filesystem sockets. It won't accept
1183 * anything else (i.e. no relative paths), to avoid ambiguities. Note that this function cannot be used to
1184 * reference paths in the abstract namespace that include NUL bytes in the name. */
1185
1186 l = strlen(path);
1187 if (l < 2)
1188 return -EINVAL;
1189 if (!IN_SET(path[0], '/', '@'))
1190 return -EINVAL;
1191
1192 /* Don't allow paths larger than the space in sockaddr_un. Note that we are a tiny bit more restrictive than
1193 * the kernel is: we insist on NUL termination (both for abstract namespace and regular file system socket
1194 * addresses!), which the kernel doesn't. We do this to reduce chance of incompatibility with other apps that
1195 * do not expect non-NUL terminated file system path*/
1196 if (l+1 > sizeof(ret->sun_path))
1197 return -EINVAL;
1198
1199 *ret = (struct sockaddr_un) {
1200 .sun_family = AF_UNIX,
1201 };
1202
1203 if (path[0] == '@') {
1204 /* Abstract namespace socket */
1205 memcpy(ret->sun_path + 1, path + 1, l); /* copy *with* trailing NUL byte */
1206 return (int) (offsetof(struct sockaddr_un, sun_path) + l); /* 🔥 *don't* 🔥 include trailing NUL in size */
1207
1208 } else {
1209 assert(path[0] == '/');
1210
1211 /* File system socket */
1212 memcpy(ret->sun_path, path, l + 1); /* copy *with* trailing NUL byte */
1213 return (int) (offsetof(struct sockaddr_un, sun_path) + l + 1); /* include trailing NUL in size */
1214 }
1215 }
1216
1217 int socket_bind_to_ifname(int fd, const char *ifname) {
1218 assert(fd >= 0);
1219
1220 /* Call with NULL to drop binding */
1221
1222 if (setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, ifname, strlen_ptr(ifname)) < 0)
1223 return -errno;
1224
1225 return 0;
1226 }
1227
1228 int socket_bind_to_ifindex(int fd, int ifindex) {
1229 char ifname[IF_NAMESIZE + 1];
1230 int r;
1231
1232 assert(fd >= 0);
1233
1234 if (ifindex <= 0) {
1235 /* Drop binding */
1236 if (setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, NULL, 0) < 0)
1237 return -errno;
1238
1239 return 0;
1240 }
1241
1242 r = setsockopt_int(fd, SOL_SOCKET, SO_BINDTOIFINDEX, ifindex);
1243 if (r != -ENOPROTOOPT)
1244 return r;
1245
1246 /* Fall back to SO_BINDTODEVICE on kernels < 5.0 which didn't have SO_BINDTOIFINDEX */
1247 if (!format_ifname(ifindex, ifname))
1248 return -errno;
1249
1250 return socket_bind_to_ifname(fd, ifname);
1251 }
1252
1253 ssize_t recvmsg_safe(int sockfd, struct msghdr *msg, int flags) {
1254 ssize_t n;
1255
1256 /* A wrapper around recvmsg() that checks for MSG_CTRUNC, and turns it into an error, in a reasonably
1257 * safe way, closing any SCM_RIGHTS fds in the error path.
1258 *
1259 * Note that unlike our usual coding style this might modify *msg on failure. */
1260
1261 n = recvmsg(sockfd, msg, flags);
1262 if (n < 0)
1263 return -errno;
1264
1265 if (FLAGS_SET(msg->msg_flags, MSG_CTRUNC)) {
1266 cmsg_close_all(msg);
1267 return -EXFULL; /* a recognizable error code */
1268 }
1269
1270 return n;
1271 }
1272
1273 int socket_get_family(int fd, int *ret) {
1274 int af;
1275 socklen_t sl = sizeof(af);
1276
1277 if (getsockopt(fd, SOL_SOCKET, SO_DOMAIN, &af, &sl) < 0)
1278 return -errno;
1279
1280 if (sl != sizeof(af))
1281 return -EINVAL;
1282
1283 return af;
1284 }
1285
1286 int socket_set_recvpktinfo(int fd, int af, bool b) {
1287 int r;
1288
1289 if (af == AF_UNSPEC) {
1290 r = socket_get_family(fd, &af);
1291 if (r < 0)
1292 return r;
1293 }
1294
1295 switch (af) {
1296
1297 case AF_INET:
1298 return setsockopt_int(fd, IPPROTO_IP, IP_PKTINFO, b);
1299
1300 case AF_INET6:
1301 return setsockopt_int(fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, b);
1302
1303 case AF_NETLINK:
1304 return setsockopt_int(fd, SOL_NETLINK, NETLINK_PKTINFO, b);
1305
1306 case AF_PACKET:
1307 return setsockopt_int(fd, SOL_PACKET, PACKET_AUXDATA, b);
1308
1309 default:
1310 return -EAFNOSUPPORT;
1311 }
1312 }
1313
1314 int socket_set_unicast_if(int fd, int af, int ifi) {
1315 be32_t ifindex_be = htobe32(ifi);
1316 int r;
1317
1318 if (af == AF_UNSPEC) {
1319 r = socket_get_family(fd, &af);
1320 if (r < 0)
1321 return r;
1322 }
1323
1324 switch (af) {
1325
1326 case AF_INET:
1327 if (setsockopt(fd, IPPROTO_IP, IP_UNICAST_IF, &ifindex_be, sizeof(ifindex_be)) < 0)
1328 return -errno;
1329
1330 return 0;
1331
1332 case AF_INET6:
1333 if (setsockopt(fd, IPPROTO_IPV6, IPV6_UNICAST_IF, &ifindex_be, sizeof(ifindex_be)) < 0)
1334 return -errno;
1335
1336 return 0;
1337
1338 default:
1339 return -EAFNOSUPPORT;
1340 }
1341 }
1342
1343 int socket_set_option(int fd, int af, int opt_ipv4, int opt_ipv6, int val) {
1344 int r;
1345
1346 if (af == AF_UNSPEC) {
1347 r = socket_get_family(fd, &af);
1348 if (r < 0)
1349 return r;
1350 }
1351
1352 switch (af) {
1353
1354 case AF_INET:
1355 return setsockopt_int(fd, IPPROTO_IP, opt_ipv4, val);
1356
1357 case AF_INET6:
1358 return setsockopt_int(fd, IPPROTO_IPV6, opt_ipv6, val);
1359
1360 default:
1361 return -EAFNOSUPPORT;
1362 }
1363 }
1364
1365 int socket_get_mtu(int fd, int af, size_t *ret) {
1366 int mtu, r;
1367
1368 if (af == AF_UNSPEC) {
1369 r = socket_get_family(fd, &af);
1370 if (r < 0)
1371 return r;
1372 }
1373
1374 switch (af) {
1375
1376 case AF_INET:
1377 r = getsockopt_int(fd, IPPROTO_IP, IP_MTU, &mtu);
1378 break;
1379
1380 case AF_INET6:
1381 r = getsockopt_int(fd, IPPROTO_IPV6, IPV6_MTU, &mtu);
1382 break;
1383
1384 default:
1385 return -EAFNOSUPPORT;
1386 }
1387
1388 if (r < 0)
1389 return r;
1390 if (mtu <= 0)
1391 return -EINVAL;
1392
1393 *ret = (size_t) mtu;
1394 return 0;
1395 }