]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/socket-util.c
Merge pull request #23906 from poettering/isdigitisalpha
[thirdparty/systemd.git] / src / basic / socket-util.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <arpa/inet.h>
4 #include <errno.h>
5 #include <limits.h>
6 #include <net/if.h>
7 #include <netdb.h>
8 #include <netinet/ip.h>
9 #include <poll.h>
10 #include <stddef.h>
11 #include <stdint.h>
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <sys/ioctl.h>
15 #include <unistd.h>
16 #include <linux/if.h>
17
18 #include "alloc-util.h"
19 #include "errno-util.h"
20 #include "escape.h"
21 #include "fd-util.h"
22 #include "fileio.h"
23 #include "format-util.h"
24 #include "io-util.h"
25 #include "log.h"
26 #include "memory-util.h"
27 #include "parse-util.h"
28 #include "path-util.h"
29 #include "process-util.h"
30 #include "socket-util.h"
31 #include "string-table.h"
32 #include "string-util.h"
33 #include "strv.h"
34 #include "sysctl-util.h"
35 #include "user-util.h"
36 #include "utf8.h"
37
38 #if ENABLE_IDN
39 # define IDN_FLAGS NI_IDN
40 #else
41 # define IDN_FLAGS 0
42 #endif
43
44 static const char* const socket_address_type_table[] = {
45 [SOCK_STREAM] = "Stream",
46 [SOCK_DGRAM] = "Datagram",
47 [SOCK_RAW] = "Raw",
48 [SOCK_RDM] = "ReliableDatagram",
49 [SOCK_SEQPACKET] = "SequentialPacket",
50 [SOCK_DCCP] = "DatagramCongestionControl",
51 };
52
53 DEFINE_STRING_TABLE_LOOKUP(socket_address_type, int);
54
55 int socket_address_verify(const SocketAddress *a, bool strict) {
56 assert(a);
57
58 /* With 'strict' we enforce additional sanity constraints which are not set by the standard,
59 * but should only apply to sockets we create ourselves. */
60
61 switch (socket_address_family(a)) {
62
63 case AF_INET:
64 if (a->size != sizeof(struct sockaddr_in))
65 return -EINVAL;
66
67 if (a->sockaddr.in.sin_port == 0)
68 return -EINVAL;
69
70 if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM))
71 return -EINVAL;
72
73 return 0;
74
75 case AF_INET6:
76 if (a->size != sizeof(struct sockaddr_in6))
77 return -EINVAL;
78
79 if (a->sockaddr.in6.sin6_port == 0)
80 return -EINVAL;
81
82 if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM))
83 return -EINVAL;
84
85 return 0;
86
87 case AF_UNIX:
88 if (a->size < offsetof(struct sockaddr_un, sun_path))
89 return -EINVAL;
90 if (a->size > sizeof(struct sockaddr_un) + !strict)
91 /* If !strict, allow one extra byte, since getsockname() on Linux will append
92 * a NUL byte if we have path sockets that are above sun_path's full size. */
93 return -EINVAL;
94
95 if (a->size > offsetof(struct sockaddr_un, sun_path) &&
96 a->sockaddr.un.sun_path[0] != 0 &&
97 strict) {
98 /* Only validate file system sockets here, and only in strict mode */
99 const char *e;
100
101 e = memchr(a->sockaddr.un.sun_path, 0, sizeof(a->sockaddr.un.sun_path));
102 if (e) {
103 /* If there's an embedded NUL byte, make sure the size of the socket address matches it */
104 if (a->size != offsetof(struct sockaddr_un, sun_path) + (e - a->sockaddr.un.sun_path) + 1)
105 return -EINVAL;
106 } else {
107 /* If there's no embedded NUL byte, then the size needs to match the whole
108 * structure or the structure with one extra NUL byte suffixed. (Yeah, Linux is awful,
109 * and considers both equivalent: getsockname() even extends sockaddr_un beyond its
110 * size if the path is non NUL terminated.) */
111 if (!IN_SET(a->size, sizeof(a->sockaddr.un.sun_path), sizeof(a->sockaddr.un.sun_path)+1))
112 return -EINVAL;
113 }
114 }
115
116 if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET))
117 return -EINVAL;
118
119 return 0;
120
121 case AF_NETLINK:
122
123 if (a->size != sizeof(struct sockaddr_nl))
124 return -EINVAL;
125
126 if (!IN_SET(a->type, 0, SOCK_RAW, SOCK_DGRAM))
127 return -EINVAL;
128
129 return 0;
130
131 case AF_VSOCK:
132 if (a->size != sizeof(struct sockaddr_vm))
133 return -EINVAL;
134
135 if (!IN_SET(a->type, 0, SOCK_STREAM, SOCK_DGRAM))
136 return -EINVAL;
137
138 return 0;
139
140 default:
141 return -EAFNOSUPPORT;
142 }
143 }
144
145 int socket_address_print(const SocketAddress *a, char **ret) {
146 int r;
147
148 assert(a);
149 assert(ret);
150
151 r = socket_address_verify(a, false); /* We do non-strict validation, because we want to be
152 * able to pretty-print any socket the kernel considers
153 * valid. We still need to do validation to know if we
154 * can meaningfully print the address. */
155 if (r < 0)
156 return r;
157
158 if (socket_address_family(a) == AF_NETLINK) {
159 _cleanup_free_ char *sfamily = NULL;
160
161 r = netlink_family_to_string_alloc(a->protocol, &sfamily);
162 if (r < 0)
163 return r;
164
165 r = asprintf(ret, "%s %u", sfamily, a->sockaddr.nl.nl_groups);
166 if (r < 0)
167 return -ENOMEM;
168
169 return 0;
170 }
171
172 return sockaddr_pretty(&a->sockaddr.sa, a->size, false, true, ret);
173 }
174
175 bool socket_address_can_accept(const SocketAddress *a) {
176 assert(a);
177
178 return
179 IN_SET(a->type, SOCK_STREAM, SOCK_SEQPACKET);
180 }
181
182 bool socket_address_equal(const SocketAddress *a, const SocketAddress *b) {
183 assert(a);
184 assert(b);
185
186 /* Invalid addresses are unequal to all */
187 if (socket_address_verify(a, false) < 0 ||
188 socket_address_verify(b, false) < 0)
189 return false;
190
191 if (a->type != b->type)
192 return false;
193
194 if (socket_address_family(a) != socket_address_family(b))
195 return false;
196
197 switch (socket_address_family(a)) {
198
199 case AF_INET:
200 if (a->sockaddr.in.sin_addr.s_addr != b->sockaddr.in.sin_addr.s_addr)
201 return false;
202
203 if (a->sockaddr.in.sin_port != b->sockaddr.in.sin_port)
204 return false;
205
206 break;
207
208 case AF_INET6:
209 if (memcmp(&a->sockaddr.in6.sin6_addr, &b->sockaddr.in6.sin6_addr, sizeof(a->sockaddr.in6.sin6_addr)) != 0)
210 return false;
211
212 if (a->sockaddr.in6.sin6_port != b->sockaddr.in6.sin6_port)
213 return false;
214
215 break;
216
217 case AF_UNIX:
218 if (a->size <= offsetof(struct sockaddr_un, sun_path) ||
219 b->size <= offsetof(struct sockaddr_un, sun_path))
220 return false;
221
222 if ((a->sockaddr.un.sun_path[0] == 0) != (b->sockaddr.un.sun_path[0] == 0))
223 return false;
224
225 if (a->sockaddr.un.sun_path[0]) {
226 if (!path_equal_or_files_same(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, 0))
227 return false;
228 } else {
229 if (a->size != b->size)
230 return false;
231
232 if (memcmp(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, a->size) != 0)
233 return false;
234 }
235
236 break;
237
238 case AF_NETLINK:
239 if (a->protocol != b->protocol)
240 return false;
241
242 if (a->sockaddr.nl.nl_groups != b->sockaddr.nl.nl_groups)
243 return false;
244
245 break;
246
247 case AF_VSOCK:
248 if (a->sockaddr.vm.svm_cid != b->sockaddr.vm.svm_cid)
249 return false;
250
251 if (a->sockaddr.vm.svm_port != b->sockaddr.vm.svm_port)
252 return false;
253
254 break;
255
256 default:
257 /* Cannot compare, so we assume the addresses are different */
258 return false;
259 }
260
261 return true;
262 }
263
264 const char* socket_address_get_path(const SocketAddress *a) {
265 assert(a);
266
267 if (socket_address_family(a) != AF_UNIX)
268 return NULL;
269
270 if (a->sockaddr.un.sun_path[0] == 0)
271 return NULL;
272
273 /* Note that this is only safe because we know that there's an extra NUL byte after the sockaddr_un
274 * structure. On Linux AF_UNIX file system socket addresses don't have to be NUL terminated if they take up the
275 * full sun_path space. */
276 assert_cc(sizeof(union sockaddr_union) >= sizeof(struct sockaddr_un)+1);
277 return a->sockaddr.un.sun_path;
278 }
279
280 bool socket_ipv6_is_supported(void) {
281 static int cached = -1;
282
283 if (cached < 0) {
284
285 if (access("/proc/net/if_inet6", F_OK) < 0) {
286
287 if (errno != ENOENT) {
288 log_debug_errno(errno, "Unexpected error when checking whether /proc/net/if_inet6 exists: %m");
289 return false;
290 }
291
292 cached = false;
293 } else
294 cached = true;
295 }
296
297 return cached;
298 }
299
300 bool socket_ipv6_is_enabled(void) {
301 _cleanup_free_ char *v = NULL;
302 int r;
303
304 /* Much like socket_ipv6_is_supported(), but also checks that the sysctl that disables IPv6 on all
305 * interfaces isn't turned on */
306
307 if (!socket_ipv6_is_supported())
308 return false;
309
310 r = sysctl_read_ip_property(AF_INET6, "all", "disable_ipv6", &v);
311 if (r < 0) {
312 log_debug_errno(r, "Unexpected error reading 'net.ipv6.conf.all.disable_ipv6' sysctl: %m");
313 return true;
314 }
315
316 r = parse_boolean(v);
317 if (r < 0) {
318 log_debug_errno(r, "Failed to pare 'net.ipv6.conf.all.disable_ipv6' sysctl: %m");
319 return true;
320 }
321
322 return !r;
323 }
324
325 bool socket_address_matches_fd(const SocketAddress *a, int fd) {
326 SocketAddress b;
327 socklen_t solen;
328
329 assert(a);
330 assert(fd >= 0);
331
332 b.size = sizeof(b.sockaddr);
333 if (getsockname(fd, &b.sockaddr.sa, &b.size) < 0)
334 return false;
335
336 if (b.sockaddr.sa.sa_family != a->sockaddr.sa.sa_family)
337 return false;
338
339 solen = sizeof(b.type);
340 if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &b.type, &solen) < 0)
341 return false;
342
343 if (b.type != a->type)
344 return false;
345
346 if (a->protocol != 0) {
347 solen = sizeof(b.protocol);
348 if (getsockopt(fd, SOL_SOCKET, SO_PROTOCOL, &b.protocol, &solen) < 0)
349 return false;
350
351 if (b.protocol != a->protocol)
352 return false;
353 }
354
355 return socket_address_equal(a, &b);
356 }
357
358 int sockaddr_port(const struct sockaddr *_sa, unsigned *ret_port) {
359 const union sockaddr_union *sa = (const union sockaddr_union*) _sa;
360
361 /* Note, this returns the port as 'unsigned' rather than 'uint16_t', as AF_VSOCK knows larger ports */
362
363 assert(sa);
364
365 switch (sa->sa.sa_family) {
366
367 case AF_INET:
368 *ret_port = be16toh(sa->in.sin_port);
369 return 0;
370
371 case AF_INET6:
372 *ret_port = be16toh(sa->in6.sin6_port);
373 return 0;
374
375 case AF_VSOCK:
376 *ret_port = sa->vm.svm_port;
377 return 0;
378
379 default:
380 return -EAFNOSUPPORT;
381 }
382 }
383
384 const union in_addr_union *sockaddr_in_addr(const struct sockaddr *_sa) {
385 const union sockaddr_union *sa = (const union sockaddr_union*) _sa;
386
387 if (!sa)
388 return NULL;
389
390 switch (sa->sa.sa_family) {
391
392 case AF_INET:
393 return (const union in_addr_union*) &sa->in.sin_addr;
394
395 case AF_INET6:
396 return (const union in_addr_union*) &sa->in6.sin6_addr;
397
398 default:
399 return NULL;
400 }
401 }
402
403 int sockaddr_set_in_addr(
404 union sockaddr_union *u,
405 int family,
406 const union in_addr_union *a,
407 uint16_t port) {
408
409 assert(u);
410 assert(a);
411
412 switch (family) {
413
414 case AF_INET:
415 u->in = (struct sockaddr_in) {
416 .sin_family = AF_INET,
417 .sin_addr = a->in,
418 .sin_port = htobe16(port),
419 };
420
421 return 0;
422
423 case AF_INET6:
424 u->in6 = (struct sockaddr_in6) {
425 .sin6_family = AF_INET6,
426 .sin6_addr = a->in6,
427 .sin6_port = htobe16(port),
428 };
429
430 return 0;
431
432 default:
433 return -EAFNOSUPPORT;
434
435 }
436 }
437
438 int sockaddr_pretty(
439 const struct sockaddr *_sa,
440 socklen_t salen,
441 bool translate_ipv6,
442 bool include_port,
443 char **ret) {
444
445 union sockaddr_union *sa = (union sockaddr_union*) _sa;
446 char *p;
447 int r;
448
449 assert(sa);
450 assert(salen >= sizeof(sa->sa.sa_family));
451
452 switch (sa->sa.sa_family) {
453
454 case AF_INET: {
455 uint32_t a;
456
457 a = be32toh(sa->in.sin_addr.s_addr);
458
459 if (include_port)
460 r = asprintf(&p,
461 "%u.%u.%u.%u:%u",
462 a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF,
463 be16toh(sa->in.sin_port));
464 else
465 r = asprintf(&p,
466 "%u.%u.%u.%u",
467 a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF);
468 if (r < 0)
469 return -ENOMEM;
470 break;
471 }
472
473 case AF_INET6: {
474 static const unsigned char ipv4_prefix[] = {
475 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF
476 };
477
478 if (translate_ipv6 &&
479 memcmp(&sa->in6.sin6_addr, ipv4_prefix, sizeof(ipv4_prefix)) == 0) {
480 const uint8_t *a = sa->in6.sin6_addr.s6_addr+12;
481 if (include_port)
482 r = asprintf(&p,
483 "%u.%u.%u.%u:%u",
484 a[0], a[1], a[2], a[3],
485 be16toh(sa->in6.sin6_port));
486 else
487 r = asprintf(&p,
488 "%u.%u.%u.%u",
489 a[0], a[1], a[2], a[3]);
490 if (r < 0)
491 return -ENOMEM;
492 } else {
493 const char *a = IN6_ADDR_TO_STRING(&sa->in6.sin6_addr);
494
495 if (include_port) {
496 if (asprintf(&p,
497 "[%s]:%u%s%s",
498 a,
499 be16toh(sa->in6.sin6_port),
500 sa->in6.sin6_scope_id != 0 ? "%" : "",
501 FORMAT_IFNAME_FULL(sa->in6.sin6_scope_id, FORMAT_IFNAME_IFINDEX)) < 0)
502 return -ENOMEM;
503 } else {
504 if (sa->in6.sin6_scope_id != 0)
505 p = strjoin(a, "%", FORMAT_IFNAME_FULL(sa->in6.sin6_scope_id, FORMAT_IFNAME_IFINDEX));
506 else
507 p = strdup(a);
508 if (!p)
509 return -ENOMEM;
510 }
511 }
512
513 break;
514 }
515
516 case AF_UNIX:
517 if (salen <= offsetof(struct sockaddr_un, sun_path) ||
518 (sa->un.sun_path[0] == 0 && salen == offsetof(struct sockaddr_un, sun_path) + 1))
519 /* The name must have at least one character (and the leading NUL does not count) */
520 p = strdup("<unnamed>");
521 else {
522 /* Note that we calculate the path pointer here through the .un_buffer[] field, in order to
523 * outtrick bounds checking tools such as ubsan, which are too smart for their own good: on
524 * Linux the kernel may return sun_path[] data one byte longer than the declared size of the
525 * field. */
526 char *path = (char*) sa->un_buffer + offsetof(struct sockaddr_un, sun_path);
527 size_t path_len = salen - offsetof(struct sockaddr_un, sun_path);
528
529 if (path[0] == 0) {
530 /* Abstract socket. When parsing address information from, we
531 * explicitly reject overly long paths and paths with embedded NULs.
532 * But we might get such a socket from the outside. Let's return
533 * something meaningful and printable in this case. */
534
535 _cleanup_free_ char *e = NULL;
536
537 e = cescape_length(path + 1, path_len - 1);
538 if (!e)
539 return -ENOMEM;
540
541 p = strjoin("@", e);
542 } else {
543 if (path[path_len - 1] == '\0')
544 /* We expect a terminating NUL and don't print it */
545 path_len --;
546
547 p = cescape_length(path, path_len);
548 }
549 }
550 if (!p)
551 return -ENOMEM;
552
553 break;
554
555 case AF_VSOCK:
556 if (include_port) {
557 if (sa->vm.svm_cid == VMADDR_CID_ANY)
558 r = asprintf(&p, "vsock::%u", sa->vm.svm_port);
559 else
560 r = asprintf(&p, "vsock:%u:%u", sa->vm.svm_cid, sa->vm.svm_port);
561 } else
562 r = asprintf(&p, "vsock:%u", sa->vm.svm_cid);
563 if (r < 0)
564 return -ENOMEM;
565 break;
566
567 default:
568 return -EOPNOTSUPP;
569 }
570
571 *ret = p;
572 return 0;
573 }
574
575 int getpeername_pretty(int fd, bool include_port, char **ret) {
576 union sockaddr_union sa;
577 socklen_t salen = sizeof(sa);
578 int r;
579
580 assert(fd >= 0);
581 assert(ret);
582
583 if (getpeername(fd, &sa.sa, &salen) < 0)
584 return -errno;
585
586 if (sa.sa.sa_family == AF_UNIX) {
587 struct ucred ucred = UCRED_INVALID;
588
589 /* UNIX connection sockets are anonymous, so let's use
590 * PID/UID as pretty credentials instead */
591
592 r = getpeercred(fd, &ucred);
593 if (r < 0)
594 return r;
595
596 if (asprintf(ret, "PID "PID_FMT"/UID "UID_FMT, ucred.pid, ucred.uid) < 0)
597 return -ENOMEM;
598
599 return 0;
600 }
601
602 /* For remote sockets we translate IPv6 addresses back to IPv4
603 * if applicable, since that's nicer. */
604
605 return sockaddr_pretty(&sa.sa, salen, true, include_port, ret);
606 }
607
608 int getsockname_pretty(int fd, char **ret) {
609 union sockaddr_union sa;
610 socklen_t salen = sizeof(sa);
611
612 assert(fd >= 0);
613 assert(ret);
614
615 if (getsockname(fd, &sa.sa, &salen) < 0)
616 return -errno;
617
618 /* For local sockets we do not translate IPv6 addresses back
619 * to IPv6 if applicable, since this is usually used for
620 * listening sockets where the difference between IPv4 and
621 * IPv6 matters. */
622
623 return sockaddr_pretty(&sa.sa, salen, false, true, ret);
624 }
625
626 int socknameinfo_pretty(union sockaddr_union *sa, socklen_t salen, char **_ret) {
627 int r;
628 char host[NI_MAXHOST], *ret;
629
630 assert(_ret);
631
632 r = getnameinfo(&sa->sa, salen, host, sizeof(host), NULL, 0, IDN_FLAGS);
633 if (r != 0) {
634 int saved_errno = errno;
635
636 r = sockaddr_pretty(&sa->sa, salen, true, true, &ret);
637 if (r < 0)
638 return r;
639
640 log_debug_errno(saved_errno, "getnameinfo(%s) failed: %m", ret);
641 } else {
642 ret = strdup(host);
643 if (!ret)
644 return -ENOMEM;
645 }
646
647 *_ret = ret;
648 return 0;
649 }
650
651 static const char* const netlink_family_table[] = {
652 [NETLINK_ROUTE] = "route",
653 [NETLINK_FIREWALL] = "firewall",
654 [NETLINK_INET_DIAG] = "inet-diag",
655 [NETLINK_NFLOG] = "nflog",
656 [NETLINK_XFRM] = "xfrm",
657 [NETLINK_SELINUX] = "selinux",
658 [NETLINK_ISCSI] = "iscsi",
659 [NETLINK_AUDIT] = "audit",
660 [NETLINK_FIB_LOOKUP] = "fib-lookup",
661 [NETLINK_CONNECTOR] = "connector",
662 [NETLINK_NETFILTER] = "netfilter",
663 [NETLINK_IP6_FW] = "ip6-fw",
664 [NETLINK_DNRTMSG] = "dnrtmsg",
665 [NETLINK_KOBJECT_UEVENT] = "kobject-uevent",
666 [NETLINK_GENERIC] = "generic",
667 [NETLINK_SCSITRANSPORT] = "scsitransport",
668 [NETLINK_ECRYPTFS] = "ecryptfs",
669 [NETLINK_RDMA] = "rdma",
670 };
671
672 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(netlink_family, int, INT_MAX);
673
674 static const char* const socket_address_bind_ipv6_only_table[_SOCKET_ADDRESS_BIND_IPV6_ONLY_MAX] = {
675 [SOCKET_ADDRESS_DEFAULT] = "default",
676 [SOCKET_ADDRESS_BOTH] = "both",
677 [SOCKET_ADDRESS_IPV6_ONLY] = "ipv6-only"
678 };
679
680 DEFINE_STRING_TABLE_LOOKUP(socket_address_bind_ipv6_only, SocketAddressBindIPv6Only);
681
682 SocketAddressBindIPv6Only socket_address_bind_ipv6_only_or_bool_from_string(const char *n) {
683 int r;
684
685 r = parse_boolean(n);
686 if (r > 0)
687 return SOCKET_ADDRESS_IPV6_ONLY;
688 if (r == 0)
689 return SOCKET_ADDRESS_BOTH;
690
691 return socket_address_bind_ipv6_only_from_string(n);
692 }
693
694 bool sockaddr_equal(const union sockaddr_union *a, const union sockaddr_union *b) {
695 assert(a);
696 assert(b);
697
698 if (a->sa.sa_family != b->sa.sa_family)
699 return false;
700
701 if (a->sa.sa_family == AF_INET)
702 return a->in.sin_addr.s_addr == b->in.sin_addr.s_addr;
703
704 if (a->sa.sa_family == AF_INET6)
705 return memcmp(&a->in6.sin6_addr, &b->in6.sin6_addr, sizeof(a->in6.sin6_addr)) == 0;
706
707 if (a->sa.sa_family == AF_VSOCK)
708 return a->vm.svm_cid == b->vm.svm_cid;
709
710 return false;
711 }
712
713 int fd_set_sndbuf(int fd, size_t n, bool increase) {
714 int r, value;
715 socklen_t l = sizeof(value);
716
717 if (n > INT_MAX)
718 return -ERANGE;
719
720 r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l);
721 if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
722 return 0;
723
724 /* First, try to set the buffer size with SO_SNDBUF. */
725 r = setsockopt_int(fd, SOL_SOCKET, SO_SNDBUF, n);
726 if (r < 0)
727 return r;
728
729 /* SO_SNDBUF above may set to the kernel limit, instead of the requested size.
730 * So, we need to check the actual buffer size here. */
731 l = sizeof(value);
732 r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l);
733 if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
734 return 1;
735
736 /* If we have the privileges we will ignore the kernel limit. */
737 r = setsockopt_int(fd, SOL_SOCKET, SO_SNDBUFFORCE, n);
738 if (r < 0)
739 return r;
740
741 return 1;
742 }
743
744 int fd_set_rcvbuf(int fd, size_t n, bool increase) {
745 int r, value;
746 socklen_t l = sizeof(value);
747
748 if (n > INT_MAX)
749 return -ERANGE;
750
751 r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l);
752 if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
753 return 0;
754
755 /* First, try to set the buffer size with SO_RCVBUF. */
756 r = setsockopt_int(fd, SOL_SOCKET, SO_RCVBUF, n);
757 if (r < 0)
758 return r;
759
760 /* SO_RCVBUF above may set to the kernel limit, instead of the requested size.
761 * So, we need to check the actual buffer size here. */
762 l = sizeof(value);
763 r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l);
764 if (r >= 0 && l == sizeof(value) && increase ? (size_t) value >= n*2 : (size_t) value == n*2)
765 return 1;
766
767 /* If we have the privileges we will ignore the kernel limit. */
768 r = setsockopt_int(fd, SOL_SOCKET, SO_RCVBUFFORCE, n);
769 if (r < 0)
770 return r;
771
772 return 1;
773 }
774
775 static const char* const ip_tos_table[] = {
776 [IPTOS_LOWDELAY] = "low-delay",
777 [IPTOS_THROUGHPUT] = "throughput",
778 [IPTOS_RELIABILITY] = "reliability",
779 [IPTOS_LOWCOST] = "low-cost",
780 };
781
782 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ip_tos, int, 0xff);
783
784 bool ifname_valid_char(char a) {
785 if ((unsigned char) a >= 127U)
786 return false;
787
788 if ((unsigned char) a <= 32U)
789 return false;
790
791 if (IN_SET(a,
792 ':', /* colons are used by the legacy "alias" interface logic */
793 '/', /* slashes cannot work, since we need to use network interfaces in sysfs paths, and in paths slashes are separators */
794 '%')) /* %d is used in the kernel's weird foo%d format string naming feature which we really really don't want to ever run into by accident */
795 return false;
796
797 return true;
798 }
799
800 bool ifname_valid_full(const char *p, IfnameValidFlags flags) {
801 bool numeric = true;
802
803 /* Checks whether a network interface name is valid. This is inspired by dev_valid_name() in the kernel sources
804 * but slightly stricter, as we only allow non-control, non-space ASCII characters in the interface name. We
805 * also don't permit names that only container numbers, to avoid confusion with numeric interface indexes. */
806
807 assert(!(flags & ~_IFNAME_VALID_ALL));
808
809 if (isempty(p))
810 return false;
811
812 /* A valid ifindex? If so, it's valid iff IFNAME_VALID_NUMERIC is set */
813 if (parse_ifindex(p) >= 0)
814 return flags & IFNAME_VALID_NUMERIC;
815
816 if (flags & IFNAME_VALID_ALTERNATIVE) {
817 if (strlen(p) >= ALTIFNAMSIZ)
818 return false;
819 } else {
820 if (strlen(p) >= IFNAMSIZ)
821 return false;
822 }
823
824 if (dot_or_dot_dot(p))
825 return false;
826
827 /* Let's refuse "all" and "default" as interface name, to avoid collisions with the special sysctl
828 * directories /proc/sys/net/{ipv4,ipv6}/conf/{all,default} */
829 if (!FLAGS_SET(flags, IFNAME_VALID_SPECIAL) && STR_IN_SET(p, "all", "default"))
830 return false;
831
832 for (const char *t = p; *t; t++) {
833 if (!ifname_valid_char(*t))
834 return false;
835
836 numeric = numeric && ascii_isdigit(*t);
837 }
838
839 /* It's fully numeric but didn't parse as valid ifindex above? if so, it must be too large or zero or
840 * so, let's refuse that. */
841 if (numeric)
842 return false;
843
844 return true;
845 }
846
847 bool address_label_valid(const char *p) {
848
849 if (isempty(p))
850 return false;
851
852 if (strlen(p) >= IFNAMSIZ)
853 return false;
854
855 while (*p) {
856 if ((uint8_t) *p >= 127U)
857 return false;
858
859 if ((uint8_t) *p <= 31U)
860 return false;
861 p++;
862 }
863
864 return true;
865 }
866
867 int getpeercred(int fd, struct ucred *ucred) {
868 socklen_t n = sizeof(struct ucred);
869 struct ucred u;
870 int r;
871
872 assert(fd >= 0);
873 assert(ucred);
874
875 r = getsockopt(fd, SOL_SOCKET, SO_PEERCRED, &u, &n);
876 if (r < 0)
877 return -errno;
878
879 if (n != sizeof(struct ucred))
880 return -EIO;
881
882 /* Check if the data is actually useful and not suppressed due to namespacing issues */
883 if (!pid_is_valid(u.pid))
884 return -ENODATA;
885
886 /* Note that we don't check UID/GID here, as namespace translation works differently there: instead of
887 * receiving in "invalid" user/group we get the overflow UID/GID. */
888
889 *ucred = u;
890 return 0;
891 }
892
893 int getpeersec(int fd, char **ret) {
894 _cleanup_free_ char *s = NULL;
895 socklen_t n = 64;
896
897 assert(fd >= 0);
898 assert(ret);
899
900 for (;;) {
901 s = new0(char, n+1);
902 if (!s)
903 return -ENOMEM;
904
905 if (getsockopt(fd, SOL_SOCKET, SO_PEERSEC, s, &n) >= 0)
906 break;
907
908 if (errno != ERANGE)
909 return -errno;
910
911 s = mfree(s);
912 }
913
914 if (isempty(s))
915 return -EOPNOTSUPP;
916
917 *ret = TAKE_PTR(s);
918
919 return 0;
920 }
921
922 int getpeergroups(int fd, gid_t **ret) {
923 socklen_t n = sizeof(gid_t) * 64;
924 _cleanup_free_ gid_t *d = NULL;
925
926 assert(fd >= 0);
927 assert(ret);
928
929 for (;;) {
930 d = malloc(n);
931 if (!d)
932 return -ENOMEM;
933
934 if (getsockopt(fd, SOL_SOCKET, SO_PEERGROUPS, d, &n) >= 0)
935 break;
936
937 if (errno != ERANGE)
938 return -errno;
939
940 d = mfree(d);
941 }
942
943 assert_se(n % sizeof(gid_t) == 0);
944 n /= sizeof(gid_t);
945
946 if ((socklen_t) (int) n != n)
947 return -E2BIG;
948
949 *ret = TAKE_PTR(d);
950
951 return (int) n;
952 }
953
954 ssize_t send_one_fd_iov_sa(
955 int transport_fd,
956 int fd,
957 const struct iovec *iov, size_t iovlen,
958 const struct sockaddr *sa, socklen_t len,
959 int flags) {
960
961 CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int))) control = {};
962 struct msghdr mh = {
963 .msg_name = (struct sockaddr*) sa,
964 .msg_namelen = len,
965 .msg_iov = (struct iovec *)iov,
966 .msg_iovlen = iovlen,
967 };
968 ssize_t k;
969
970 assert(transport_fd >= 0);
971
972 /*
973 * We need either an FD or data to send.
974 * If there's nothing, return an error.
975 */
976 if (fd < 0 && !iov)
977 return -EINVAL;
978
979 if (fd >= 0) {
980 struct cmsghdr *cmsg;
981
982 mh.msg_control = &control;
983 mh.msg_controllen = sizeof(control);
984
985 cmsg = CMSG_FIRSTHDR(&mh);
986 cmsg->cmsg_level = SOL_SOCKET;
987 cmsg->cmsg_type = SCM_RIGHTS;
988 cmsg->cmsg_len = CMSG_LEN(sizeof(int));
989 memcpy(CMSG_DATA(cmsg), &fd, sizeof(int));
990 }
991 k = sendmsg(transport_fd, &mh, MSG_NOSIGNAL | flags);
992 if (k < 0)
993 return (ssize_t) -errno;
994
995 return k;
996 }
997
998 int send_one_fd_sa(
999 int transport_fd,
1000 int fd,
1001 const struct sockaddr *sa, socklen_t len,
1002 int flags) {
1003
1004 assert(fd >= 0);
1005
1006 return (int) send_one_fd_iov_sa(transport_fd, fd, NULL, 0, sa, len, flags);
1007 }
1008
1009 ssize_t receive_one_fd_iov(
1010 int transport_fd,
1011 struct iovec *iov, size_t iovlen,
1012 int flags,
1013 int *ret_fd) {
1014
1015 CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(int))) control;
1016 struct msghdr mh = {
1017 .msg_control = &control,
1018 .msg_controllen = sizeof(control),
1019 .msg_iov = iov,
1020 .msg_iovlen = iovlen,
1021 };
1022 struct cmsghdr *found;
1023 ssize_t k;
1024
1025 assert(transport_fd >= 0);
1026 assert(ret_fd);
1027
1028 /*
1029 * Receive a single FD via @transport_fd. We don't care for
1030 * the transport-type. We retrieve a single FD at most, so for
1031 * packet-based transports, the caller must ensure to send
1032 * only a single FD per packet. This is best used in
1033 * combination with send_one_fd().
1034 */
1035
1036 k = recvmsg_safe(transport_fd, &mh, MSG_CMSG_CLOEXEC | flags);
1037 if (k < 0)
1038 return k;
1039
1040 found = cmsg_find(&mh, SOL_SOCKET, SCM_RIGHTS, CMSG_LEN(sizeof(int)));
1041 if (!found) {
1042 cmsg_close_all(&mh);
1043
1044 /* If didn't receive an FD or any data, return an error. */
1045 if (k == 0)
1046 return -EIO;
1047 }
1048
1049 if (found)
1050 *ret_fd = *(int*) CMSG_DATA(found);
1051 else
1052 *ret_fd = -1;
1053
1054 return k;
1055 }
1056
1057 int receive_one_fd(int transport_fd, int flags) {
1058 int fd;
1059 ssize_t k;
1060
1061 k = receive_one_fd_iov(transport_fd, NULL, 0, flags, &fd);
1062 if (k == 0)
1063 return fd;
1064
1065 /* k must be negative, since receive_one_fd_iov() only returns
1066 * a positive value if data was received through the iov. */
1067 assert(k < 0);
1068 return (int) k;
1069 }
1070
1071 ssize_t next_datagram_size_fd(int fd) {
1072 ssize_t l;
1073 int k;
1074
1075 /* This is a bit like FIONREAD/SIOCINQ, however a bit more powerful. The difference being: recv(MSG_PEEK) will
1076 * actually cause the next datagram in the queue to be validated regarding checksums, which FIONREAD doesn't
1077 * do. This difference is actually of major importance as we need to be sure that the size returned here
1078 * actually matches what we will read with recvmsg() next, as otherwise we might end up allocating a buffer of
1079 * the wrong size. */
1080
1081 l = recv(fd, NULL, 0, MSG_PEEK|MSG_TRUNC);
1082 if (l < 0) {
1083 if (IN_SET(errno, EOPNOTSUPP, EFAULT))
1084 goto fallback;
1085
1086 return -errno;
1087 }
1088 if (l == 0)
1089 goto fallback;
1090
1091 return l;
1092
1093 fallback:
1094 k = 0;
1095
1096 /* Some sockets (AF_PACKET) do not support null-sized recv() with MSG_TRUNC set, let's fall back to FIONREAD
1097 * for them. Checksums don't matter for raw sockets anyway, hence this should be fine. */
1098
1099 if (ioctl(fd, FIONREAD, &k) < 0)
1100 return -errno;
1101
1102 return (ssize_t) k;
1103 }
1104
1105 /* Put a limit on how many times will attempt to call accept4(). We loop
1106 * only on "transient" errors, but let's make sure we don't loop forever. */
1107 #define MAX_FLUSH_ITERATIONS 1024
1108
1109 int flush_accept(int fd) {
1110
1111 int r, b;
1112 socklen_t l = sizeof(b);
1113
1114 /* Similar to flush_fd() but flushes all incoming connections by accepting and immediately closing
1115 * them. */
1116
1117 if (getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, &b, &l) < 0)
1118 return -errno;
1119
1120 assert(l == sizeof(b));
1121 if (!b) /* Let's check if this socket accepts connections before calling accept(). accept4() can
1122 * return EOPNOTSUPP if the fd is not a listening socket, which we should treat as a fatal
1123 * error, or in case the incoming TCP connection triggered a network issue, which we want to
1124 * treat as a transient error. Thus, let's rule out the first reason for EOPNOTSUPP early, so
1125 * we can loop safely on transient errors below. */
1126 return -ENOTTY;
1127
1128 for (unsigned iteration = 0;; iteration++) {
1129 int cfd;
1130
1131 r = fd_wait_for_event(fd, POLLIN, 0);
1132 if (r < 0) {
1133 if (r == -EINTR)
1134 continue;
1135
1136 return r;
1137 }
1138 if (r == 0)
1139 return 0;
1140
1141 if (iteration >= MAX_FLUSH_ITERATIONS)
1142 return log_debug_errno(SYNTHETIC_ERRNO(EBUSY),
1143 "Failed to flush connections within " STRINGIFY(MAX_FLUSH_ITERATIONS) " iterations.");
1144
1145 cfd = accept4(fd, NULL, NULL, SOCK_NONBLOCK|SOCK_CLOEXEC);
1146 if (cfd < 0) {
1147 if (errno == EAGAIN)
1148 return 0;
1149
1150 if (ERRNO_IS_ACCEPT_AGAIN(errno))
1151 continue;
1152
1153 return -errno;
1154 }
1155
1156 safe_close(cfd);
1157 }
1158 }
1159
1160 struct cmsghdr* cmsg_find(struct msghdr *mh, int level, int type, socklen_t length) {
1161 struct cmsghdr *cmsg;
1162
1163 assert(mh);
1164
1165 CMSG_FOREACH(cmsg, mh)
1166 if (cmsg->cmsg_level == level &&
1167 cmsg->cmsg_type == type &&
1168 (length == (socklen_t) -1 || length == cmsg->cmsg_len))
1169 return cmsg;
1170
1171 return NULL;
1172 }
1173
1174 int socket_ioctl_fd(void) {
1175 int fd;
1176
1177 /* Create a socket to invoke the various network interface ioctl()s on. Traditionally only AF_INET was good for
1178 * that. Since kernel 4.6 AF_NETLINK works for this too. We first try to use AF_INET hence, but if that's not
1179 * available (for example, because it is made unavailable via SECCOMP or such), we'll fall back to the more
1180 * generic AF_NETLINK. */
1181
1182 fd = socket(AF_INET, SOCK_DGRAM|SOCK_CLOEXEC, 0);
1183 if (fd < 0)
1184 fd = socket(AF_NETLINK, SOCK_RAW|SOCK_CLOEXEC, NETLINK_GENERIC);
1185 if (fd < 0)
1186 return -errno;
1187
1188 return fd;
1189 }
1190
1191 int sockaddr_un_unlink(const struct sockaddr_un *sa) {
1192 const char *p, * nul;
1193
1194 assert(sa);
1195
1196 if (sa->sun_family != AF_UNIX)
1197 return -EPROTOTYPE;
1198
1199 if (sa->sun_path[0] == 0) /* Nothing to do for abstract sockets */
1200 return 0;
1201
1202 /* The path in .sun_path is not necessarily NUL terminated. Let's fix that. */
1203 nul = memchr(sa->sun_path, 0, sizeof(sa->sun_path));
1204 if (nul)
1205 p = sa->sun_path;
1206 else
1207 p = memdupa_suffix0(sa->sun_path, sizeof(sa->sun_path));
1208
1209 if (unlink(p) < 0)
1210 return -errno;
1211
1212 return 1;
1213 }
1214
1215 int sockaddr_un_set_path(struct sockaddr_un *ret, const char *path) {
1216 size_t l;
1217
1218 assert(ret);
1219 assert(path);
1220
1221 /* Initialize ret->sun_path from the specified argument. This will interpret paths starting with '@' as
1222 * abstract namespace sockets, and those starting with '/' as regular filesystem sockets. It won't accept
1223 * anything else (i.e. no relative paths), to avoid ambiguities. Note that this function cannot be used to
1224 * reference paths in the abstract namespace that include NUL bytes in the name. */
1225
1226 l = strlen(path);
1227 if (l < 2)
1228 return -EINVAL;
1229 if (!IN_SET(path[0], '/', '@'))
1230 return -EINVAL;
1231
1232 /* Don't allow paths larger than the space in sockaddr_un. Note that we are a tiny bit more restrictive than
1233 * the kernel is: we insist on NUL termination (both for abstract namespace and regular file system socket
1234 * addresses!), which the kernel doesn't. We do this to reduce chance of incompatibility with other apps that
1235 * do not expect non-NUL terminated file system path. */
1236 if (l+1 > sizeof(ret->sun_path))
1237 return path[0] == '@' ? -EINVAL : -ENAMETOOLONG; /* return a recognizable error if this is
1238 * too long to fit into a sockaddr_un, but
1239 * is a file system path, and thus might be
1240 * connectible via O_PATH indirection. */
1241
1242 *ret = (struct sockaddr_un) {
1243 .sun_family = AF_UNIX,
1244 };
1245
1246 if (path[0] == '@') {
1247 /* Abstract namespace socket */
1248 memcpy(ret->sun_path + 1, path + 1, l); /* copy *with* trailing NUL byte */
1249 return (int) (offsetof(struct sockaddr_un, sun_path) + l); /* 🔥 *don't* 🔥 include trailing NUL in size */
1250
1251 } else {
1252 assert(path[0] == '/');
1253
1254 /* File system socket */
1255 memcpy(ret->sun_path, path, l + 1); /* copy *with* trailing NUL byte */
1256 return (int) (offsetof(struct sockaddr_un, sun_path) + l + 1); /* include trailing NUL in size */
1257 }
1258 }
1259
1260 int socket_bind_to_ifname(int fd, const char *ifname) {
1261 assert(fd >= 0);
1262
1263 /* Call with NULL to drop binding */
1264
1265 return RET_NERRNO(setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, ifname, strlen_ptr(ifname)));
1266 }
1267
1268 int socket_bind_to_ifindex(int fd, int ifindex) {
1269 char ifname[IF_NAMESIZE];
1270 int r;
1271
1272 assert(fd >= 0);
1273
1274 if (ifindex <= 0)
1275 /* Drop binding */
1276 return RET_NERRNO(setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, NULL, 0));
1277
1278 r = setsockopt_int(fd, SOL_SOCKET, SO_BINDTOIFINDEX, ifindex);
1279 if (r != -ENOPROTOOPT)
1280 return r;
1281
1282 /* Fall back to SO_BINDTODEVICE on kernels < 5.0 which didn't have SO_BINDTOIFINDEX */
1283 r = format_ifname(ifindex, ifname);
1284 if (r < 0)
1285 return r;
1286
1287 return socket_bind_to_ifname(fd, ifname);
1288 }
1289
1290 ssize_t recvmsg_safe(int sockfd, struct msghdr *msg, int flags) {
1291 ssize_t n;
1292
1293 /* A wrapper around recvmsg() that checks for MSG_CTRUNC, and turns it into an error, in a reasonably
1294 * safe way, closing any SCM_RIGHTS fds in the error path.
1295 *
1296 * Note that unlike our usual coding style this might modify *msg on failure. */
1297
1298 n = recvmsg(sockfd, msg, flags);
1299 if (n < 0)
1300 return -errno;
1301
1302 if (FLAGS_SET(msg->msg_flags, MSG_CTRUNC)) {
1303 cmsg_close_all(msg);
1304 return -EXFULL; /* a recognizable error code */
1305 }
1306
1307 return n;
1308 }
1309
1310 int socket_get_family(int fd, int *ret) {
1311 int af;
1312 socklen_t sl = sizeof(af);
1313
1314 if (getsockopt(fd, SOL_SOCKET, SO_DOMAIN, &af, &sl) < 0)
1315 return -errno;
1316
1317 if (sl != sizeof(af))
1318 return -EINVAL;
1319
1320 return af;
1321 }
1322
1323 int socket_set_recvpktinfo(int fd, int af, bool b) {
1324 int r;
1325
1326 if (af == AF_UNSPEC) {
1327 r = socket_get_family(fd, &af);
1328 if (r < 0)
1329 return r;
1330 }
1331
1332 switch (af) {
1333
1334 case AF_INET:
1335 return setsockopt_int(fd, IPPROTO_IP, IP_PKTINFO, b);
1336
1337 case AF_INET6:
1338 return setsockopt_int(fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, b);
1339
1340 case AF_NETLINK:
1341 return setsockopt_int(fd, SOL_NETLINK, NETLINK_PKTINFO, b);
1342
1343 case AF_PACKET:
1344 return setsockopt_int(fd, SOL_PACKET, PACKET_AUXDATA, b);
1345
1346 default:
1347 return -EAFNOSUPPORT;
1348 }
1349 }
1350
1351 int socket_set_unicast_if(int fd, int af, int ifi) {
1352 be32_t ifindex_be = htobe32(ifi);
1353 int r;
1354
1355 if (af == AF_UNSPEC) {
1356 r = socket_get_family(fd, &af);
1357 if (r < 0)
1358 return r;
1359 }
1360
1361 switch (af) {
1362
1363 case AF_INET:
1364 return RET_NERRNO(setsockopt(fd, IPPROTO_IP, IP_UNICAST_IF, &ifindex_be, sizeof(ifindex_be)));
1365
1366 case AF_INET6:
1367 return RET_NERRNO(setsockopt(fd, IPPROTO_IPV6, IPV6_UNICAST_IF, &ifindex_be, sizeof(ifindex_be)));
1368
1369 default:
1370 return -EAFNOSUPPORT;
1371 }
1372 }
1373
1374 int socket_set_option(int fd, int af, int opt_ipv4, int opt_ipv6, int val) {
1375 int r;
1376
1377 if (af == AF_UNSPEC) {
1378 r = socket_get_family(fd, &af);
1379 if (r < 0)
1380 return r;
1381 }
1382
1383 switch (af) {
1384
1385 case AF_INET:
1386 return setsockopt_int(fd, IPPROTO_IP, opt_ipv4, val);
1387
1388 case AF_INET6:
1389 return setsockopt_int(fd, IPPROTO_IPV6, opt_ipv6, val);
1390
1391 default:
1392 return -EAFNOSUPPORT;
1393 }
1394 }
1395
1396 int socket_get_mtu(int fd, int af, size_t *ret) {
1397 int mtu, r;
1398
1399 if (af == AF_UNSPEC) {
1400 r = socket_get_family(fd, &af);
1401 if (r < 0)
1402 return r;
1403 }
1404
1405 switch (af) {
1406
1407 case AF_INET:
1408 r = getsockopt_int(fd, IPPROTO_IP, IP_MTU, &mtu);
1409 break;
1410
1411 case AF_INET6:
1412 r = getsockopt_int(fd, IPPROTO_IPV6, IPV6_MTU, &mtu);
1413 break;
1414
1415 default:
1416 return -EAFNOSUPPORT;
1417 }
1418
1419 if (r < 0)
1420 return r;
1421 if (mtu <= 0)
1422 return -EINVAL;
1423
1424 *ret = (size_t) mtu;
1425 return 0;
1426 }
1427
1428 int connect_unix_path(int fd, int dir_fd, const char *path) {
1429 _cleanup_close_ int inode_fd = -1;
1430 union sockaddr_union sa = {
1431 .un.sun_family = AF_UNIX,
1432 };
1433 size_t path_len;
1434 socklen_t salen;
1435
1436 assert(fd >= 0);
1437 assert(dir_fd == AT_FDCWD || dir_fd >= 0);
1438 assert(path);
1439
1440 /* Connects to the specified AF_UNIX socket in the file system. Works around the 108 byte size limit
1441 * in sockaddr_un, by going via O_PATH if needed. This hence works for any kind of path. */
1442
1443 path_len = strlen(path);
1444
1445 /* Refuse zero length path early, to make sure AF_UNIX stack won't mistake this for an abstract
1446 * namespace path, since first char is NUL */
1447 if (path_len <= 0)
1448 return -EINVAL;
1449
1450 if (dir_fd == AT_FDCWD && path_len < sizeof(sa.un.sun_path)) {
1451 memcpy(sa.un.sun_path, path, path_len + 1);
1452 salen = offsetof(struct sockaddr_un, sun_path) + path_len + 1;
1453 } else {
1454 const char *proc;
1455 size_t proc_len;
1456
1457 /* If dir_fd is specified, then we need to go the indirect O_PATH route, because connectat()
1458 * does not exist. If the path is too long, we also need to take the indirect route, since we
1459 * can't fit this into a sockaddr_un directly. */
1460
1461 inode_fd = openat(dir_fd, path, O_PATH|O_CLOEXEC);
1462 if (inode_fd < 0)
1463 return -errno;
1464
1465 proc = FORMAT_PROC_FD_PATH(inode_fd);
1466 proc_len = strlen(proc);
1467
1468 assert(proc_len < sizeof(sa.un.sun_path));
1469 memcpy(sa.un.sun_path, proc, proc_len + 1);
1470 salen = offsetof(struct sockaddr_un, sun_path) + proc_len + 1;
1471 }
1472
1473 return RET_NERRNO(connect(fd, &sa.sa, salen));
1474 }