]> git.ipfire.org Git - thirdparty/squid.git/blob - src/comm.cc
SourceFormat Enforcement
[thirdparty/squid.git] / src / comm.cc
1 /*
2 * Copyright (C) 1996-2015 The Squid Software Foundation and contributors
3 *
4 * Squid software is distributed under GPLv2+ license and includes
5 * contributions from numerous individuals and organizations.
6 * Please see the COPYING and CONTRIBUTORS files for details.
7 */
8
9 /* DEBUG: section 05 Socket Functions */
10
11 #include "squid.h"
12 #include "ClientInfo.h"
13 #include "comm/AcceptLimiter.h"
14 #include "comm/comm_internal.h"
15 #include "comm/Connection.h"
16 #include "comm/IoCallback.h"
17 #include "comm/Loops.h"
18 #include "comm/Read.h"
19 #include "comm/TcpAcceptor.h"
20 #include "comm/Write.h"
21 #include "CommRead.h"
22 #include "compat/cmsg.h"
23 #include "DescriptorSet.h"
24 #include "event.h"
25 #include "fd.h"
26 #include "fde.h"
27 #include "globals.h"
28 #include "icmp/net_db.h"
29 #include "ip/Intercept.h"
30 #include "ip/QosConfig.h"
31 #include "ip/tools.h"
32 #include "pconn.h"
33 #include "profiler/Profiler.h"
34 #include "SBuf.h"
35 #include "SquidConfig.h"
36 #include "StatCounters.h"
37 #include "StoreIOBuffer.h"
38 #include "tools.h"
39
40 #if USE_OPENSSL
41 #include "ssl/support.h"
42 #endif
43
44 #include <cerrno>
45 #include <cmath>
46 #if _SQUID_CYGWIN_
47 #include <sys/ioctl.h>
48 #endif
49 #ifdef HAVE_NETINET_TCP_H
50 #include <netinet/tcp.h>
51 #endif
52 #if HAVE_SYS_UN_H
53 #include <sys/un.h>
54 #endif
55
56 /*
57 * New C-like simple comm code. This stuff is a mess and doesn't really buy us anything.
58 */
59
60 static IOCB commHalfClosedReader;
61 static void comm_init_opened(const Comm::ConnectionPointer &conn, const char *note, struct addrinfo *AI);
62 static int comm_apply_flags(int new_socket, Ip::Address &addr, int flags, struct addrinfo *AI);
63
64 #if USE_DELAY_POOLS
65 CBDATA_CLASS_INIT(CommQuotaQueue);
66
67 static void commHandleWriteHelper(void * data);
68 #endif
69
70 /* STATIC */
71
72 static DescriptorSet *TheHalfClosed = NULL; /// the set of half-closed FDs
73 static bool WillCheckHalfClosed = false; /// true if check is scheduled
74 static EVH commHalfClosedCheck;
75 static void commPlanHalfClosedCheck();
76
77 static Comm::Flag commBind(int s, struct addrinfo &);
78 static void commSetReuseAddr(int);
79 static void commSetNoLinger(int);
80 #ifdef TCP_NODELAY
81 static void commSetTcpNoDelay(int);
82 #endif
83 static void commSetTcpRcvbuf(int, int);
84
85 fd_debug_t *fdd_table = NULL;
86
87 bool
88 isOpen(const int fd)
89 {
90 return fd >= 0 && fd_table && fd_table[fd].flags.open != 0;
91 }
92
93 /**
94 * Empty the read buffers
95 *
96 * This is a magical routine that empties the read buffers.
97 * Under some platforms (Linux) if a buffer has data in it before
98 * you call close(), the socket will hang and take quite a while
99 * to timeout.
100 */
101 static void
102 comm_empty_os_read_buffers(int fd)
103 {
104 #if _SQUID_LINUX_
105 #if USE_OPENSSL
106 // Bug 4146: SSL-Bump BIO does not release sockets on close.
107 if (fd_table[fd].ssl)
108 return;
109 #endif
110
111 /* prevent those nasty RST packets */
112 char buf[SQUID_TCP_SO_RCVBUF];
113 if (fd_table[fd].flags.nonblocking) {
114 while (FD_READ_METHOD(fd, buf, SQUID_TCP_SO_RCVBUF) > 0) {};
115 }
116 #endif
117 }
118
119 /**
120 * synchronous wrapper around udp socket functions
121 */
122 int
123 comm_udp_recvfrom(int fd, void *buf, size_t len, int flags, Ip::Address &from)
124 {
125 ++ statCounter.syscalls.sock.recvfroms;
126 debugs(5,8, "comm_udp_recvfrom: FD " << fd << " from " << from);
127 struct addrinfo *AI = NULL;
128 Ip::Address::InitAddr(AI);
129 int x = recvfrom(fd, buf, len, flags, AI->ai_addr, &AI->ai_addrlen);
130 from = *AI;
131 Ip::Address::FreeAddr(AI);
132 return x;
133 }
134
135 int
136 comm_udp_recv(int fd, void *buf, size_t len, int flags)
137 {
138 Ip::Address nul;
139 return comm_udp_recvfrom(fd, buf, len, flags, nul);
140 }
141
142 ssize_t
143 comm_udp_send(int s, const void *buf, size_t len, int flags)
144 {
145 return send(s, buf, len, flags);
146 }
147
148 bool
149 comm_has_incomplete_write(int fd)
150 {
151 assert(isOpen(fd) && COMMIO_FD_WRITECB(fd) != NULL);
152 return COMMIO_FD_WRITECB(fd)->active();
153 }
154
155 /**
156 * Queue a write. handler/handler_data are called when the write fully
157 * completes, on error, or on file descriptor close.
158 */
159
160 /* Return the local port associated with fd. */
161 unsigned short
162 comm_local_port(int fd)
163 {
164 Ip::Address temp;
165 struct addrinfo *addr = NULL;
166 fde *F = &fd_table[fd];
167
168 /* If the fd is closed already, just return */
169
170 if (!F->flags.open) {
171 debugs(5, 0, "comm_local_port: FD " << fd << " has been closed.");
172 return 0;
173 }
174
175 if (F->local_addr.port())
176 return F->local_addr.port();
177
178 if (F->sock_family == AF_INET)
179 temp.setIPv4();
180
181 Ip::Address::InitAddr(addr);
182
183 if (getsockname(fd, addr->ai_addr, &(addr->ai_addrlen)) ) {
184 debugs(50, DBG_IMPORTANT, "comm_local_port: Failed to retrieve TCP/UDP port number for socket: FD " << fd << ": " << xstrerror());
185 Ip::Address::FreeAddr(addr);
186 return 0;
187 }
188 temp = *addr;
189
190 Ip::Address::FreeAddr(addr);
191
192 if (F->local_addr.isAnyAddr()) {
193 /* save the whole local address, not just the port. */
194 F->local_addr = temp;
195 } else {
196 F->local_addr.port(temp.port());
197 }
198
199 debugs(5, 6, "comm_local_port: FD " << fd << ": port " << F->local_addr.port() << "(family=" << F->sock_family << ")");
200 return F->local_addr.port();
201 }
202
203 static Comm::Flag
204 commBind(int s, struct addrinfo &inaddr)
205 {
206 ++ statCounter.syscalls.sock.binds;
207
208 if (bind(s, inaddr.ai_addr, inaddr.ai_addrlen) == 0) {
209 debugs(50, 6, "commBind: bind socket FD " << s << " to " << fd_table[s].local_addr);
210 return Comm::OK;
211 }
212
213 debugs(50, 0, "commBind: Cannot bind socket FD " << s << " to " << fd_table[s].local_addr << ": " << xstrerror());
214
215 return Comm::COMM_ERROR;
216 }
217
218 /**
219 * Create a socket. Default is blocking, stream (TCP) socket. IO_TYPE
220 * is OR of flags specified in comm.h. Defaults TOS
221 */
222 int
223 comm_open(int sock_type,
224 int proto,
225 Ip::Address &addr,
226 int flags,
227 const char *note)
228 {
229 return comm_openex(sock_type, proto, addr, flags, note);
230 }
231
232 void
233 comm_open_listener(int sock_type,
234 int proto,
235 Comm::ConnectionPointer &conn,
236 const char *note)
237 {
238 /* all listener sockets require bind() */
239 conn->flags |= COMM_DOBIND;
240
241 /* attempt native enabled port. */
242 conn->fd = comm_openex(sock_type, proto, conn->local, conn->flags, note);
243 }
244
245 int
246 comm_open_listener(int sock_type,
247 int proto,
248 Ip::Address &addr,
249 int flags,
250 const char *note)
251 {
252 int sock = -1;
253
254 /* all listener sockets require bind() */
255 flags |= COMM_DOBIND;
256
257 /* attempt native enabled port. */
258 sock = comm_openex(sock_type, proto, addr, flags, note);
259
260 return sock;
261 }
262
263 static bool
264 limitError(int const anErrno)
265 {
266 return anErrno == ENFILE || anErrno == EMFILE;
267 }
268
269 void
270 comm_set_v6only(int fd, int tos)
271 {
272 #ifdef IPV6_V6ONLY
273 if (setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, (char *) &tos, sizeof(int)) < 0) {
274 debugs(50, DBG_IMPORTANT, "comm_open: setsockopt(IPV6_V6ONLY) " << (tos?"ON":"OFF") << " for FD " << fd << ": " << xstrerror());
275 }
276 #else
277 debugs(50, 0, "WARNING: comm_open: setsockopt(IPV6_V6ONLY) not supported on this platform");
278 #endif /* sockopt */
279 }
280
281 /**
282 * Set the socket option required for TPROXY spoofing for:
283 * - Linux TPROXY v4 support,
284 * - OpenBSD divert-to support,
285 * - FreeBSD IPFW TPROXY v4 support.
286 */
287 void
288 comm_set_transparent(int fd)
289 {
290 #if _SQUID_LINUX_ && defined(IP_TRANSPARENT) // Linux
291 # define soLevel SOL_IP
292 # define soFlag IP_TRANSPARENT
293 bool doneSuid = false;
294
295 #elif defined(SO_BINDANY) // OpenBSD 4.7+ and NetBSD with PF
296 # define soLevel SOL_SOCKET
297 # define soFlag SO_BINDANY
298 enter_suid();
299 bool doneSuid = true;
300
301 #elif defined(IP_BINDANY) // FreeBSD with IPFW
302 # define soLevel IPPROTO_IP
303 # define soFlag IP_BINDANY
304 enter_suid();
305 bool doneSuid = true;
306
307 #else
308 debugs(50, DBG_CRITICAL, "WARNING: comm_open: setsockopt(TPROXY) not supported on this platform");
309 #endif /* sockopt */
310
311 #if defined(soLevel) && defined(soFlag)
312 int tos = 1;
313 if (setsockopt(fd, soLevel, soFlag, (char *) &tos, sizeof(int)) < 0) {
314 debugs(50, DBG_IMPORTANT, "comm_open: setsockopt(TPROXY) on FD " << fd << ": " << xstrerror());
315 } else {
316 /* mark the socket as having transparent options */
317 fd_table[fd].flags.transparent = true;
318 }
319 if (doneSuid)
320 leave_suid();
321 #endif
322 }
323
324 /**
325 * Create a socket. Default is blocking, stream (TCP) socket. IO_TYPE
326 * is OR of flags specified in defines.h:COMM_*
327 */
328 int
329 comm_openex(int sock_type,
330 int proto,
331 Ip::Address &addr,
332 int flags,
333 const char *note)
334 {
335 int new_socket;
336 struct addrinfo *AI = NULL;
337
338 PROF_start(comm_open);
339 /* Create socket for accepting new connections. */
340 ++ statCounter.syscalls.sock.sockets;
341
342 /* Setup the socket addrinfo details for use */
343 addr.getAddrInfo(AI);
344 AI->ai_socktype = sock_type;
345 AI->ai_protocol = proto;
346
347 debugs(50, 3, "comm_openex: Attempt open socket for: " << addr );
348
349 new_socket = socket(AI->ai_family, AI->ai_socktype, AI->ai_protocol);
350
351 /* under IPv6 there is the possibility IPv6 is present but disabled. */
352 /* try again as IPv4-native if possible */
353 if ( new_socket < 0 && Ip::EnableIpv6 && addr.isIPv6() && addr.setIPv4() ) {
354 /* attempt to open this IPv4-only. */
355 Ip::Address::FreeAddr(AI);
356 /* Setup the socket addrinfo details for use */
357 addr.getAddrInfo(AI);
358 AI->ai_socktype = sock_type;
359 AI->ai_protocol = proto;
360 debugs(50, 3, "comm_openex: Attempt fallback open socket for: " << addr );
361 new_socket = socket(AI->ai_family, AI->ai_socktype, AI->ai_protocol);
362 debugs(50, 2, HERE << "attempt open " << note << " socket on: " << addr);
363 }
364
365 if (new_socket < 0) {
366 /* Increase the number of reserved fd's if calls to socket()
367 * are failing because the open file table is full. This
368 * limits the number of simultaneous clients */
369
370 if (limitError(errno)) {
371 debugs(50, DBG_IMPORTANT, "comm_open: socket failure: " << xstrerror());
372 fdAdjustReserved();
373 } else {
374 debugs(50, DBG_CRITICAL, "comm_open: socket failure: " << xstrerror());
375 }
376
377 Ip::Address::FreeAddr(AI);
378
379 PROF_stop(comm_open);
380 return -1;
381 }
382
383 // XXX: temporary for the transition. comm_openex will eventually have a conn to play with.
384 Comm::ConnectionPointer conn = new Comm::Connection;
385 conn->local = addr;
386 conn->fd = new_socket;
387
388 debugs(50, 3, "comm_openex: Opened socket " << conn << " : family=" << AI->ai_family << ", type=" << AI->ai_socktype << ", protocol=" << AI->ai_protocol );
389
390 if ( Ip::EnableIpv6&IPV6_SPECIAL_SPLITSTACK && addr.isIPv6() )
391 comm_set_v6only(conn->fd, 1);
392
393 /* Windows Vista supports Dual-Sockets. BUT defaults them to V6ONLY. Turn it OFF. */
394 /* Other OS may have this administratively disabled for general use. Same deal. */
395 if ( Ip::EnableIpv6&IPV6_SPECIAL_V4MAPPING && addr.isIPv6() )
396 comm_set_v6only(conn->fd, 0);
397
398 comm_init_opened(conn, note, AI);
399 new_socket = comm_apply_flags(conn->fd, addr, flags, AI);
400
401 Ip::Address::FreeAddr(AI);
402
403 PROF_stop(comm_open);
404
405 // XXX transition only. prevent conn from closing the new FD on function exit.
406 conn->fd = -1;
407 return new_socket;
408 }
409
410 /// update FD tables after a local or remote (IPC) comm_openex();
411 void
412 comm_init_opened(const Comm::ConnectionPointer &conn,
413 const char *note,
414 struct addrinfo *AI)
415 {
416 assert(Comm::IsConnOpen(conn));
417 assert(AI);
418
419 /* update fdstat */
420 debugs(5, 5, HERE << conn << " is a new socket");
421
422 assert(!isOpen(conn->fd)); // NP: global isOpen checks the fde entry for openness not the Comm::Connection
423 fd_open(conn->fd, FD_SOCKET, note);
424
425 fdd_table[conn->fd].close_file = NULL;
426 fdd_table[conn->fd].close_line = 0;
427
428 fde *F = &fd_table[conn->fd];
429 F->local_addr = conn->local;
430
431 F->sock_family = AI->ai_family;
432 }
433
434 /// apply flags after a local comm_open*() call;
435 /// returns new_socket or -1 on error
436 static int
437 comm_apply_flags(int new_socket,
438 Ip::Address &addr,
439 int flags,
440 struct addrinfo *AI)
441 {
442 assert(new_socket >= 0);
443 assert(AI);
444 const int sock_type = AI->ai_socktype;
445
446 if (!(flags & COMM_NOCLOEXEC))
447 commSetCloseOnExec(new_socket);
448
449 if ((flags & COMM_REUSEADDR))
450 commSetReuseAddr(new_socket);
451
452 if (addr.port() > (unsigned short) 0) {
453 #if _SQUID_WINDOWS_
454 if (sock_type != SOCK_DGRAM)
455 #endif
456 commSetNoLinger(new_socket);
457
458 if (opt_reuseaddr)
459 commSetReuseAddr(new_socket);
460 }
461
462 /* MUST be done before binding or face OS Error: "(99) Cannot assign requested address"... */
463 if ((flags & COMM_TRANSPARENT)) {
464 comm_set_transparent(new_socket);
465 }
466
467 if ( (flags & COMM_DOBIND) || addr.port() > 0 || !addr.isAnyAddr() ) {
468 if ( !(flags & COMM_DOBIND) && addr.isAnyAddr() )
469 debugs(5, DBG_IMPORTANT,"WARNING: Squid is attempting to bind() port " << addr << " without being a listener.");
470 if ( addr.isNoAddr() )
471 debugs(5,0,"CRITICAL: Squid is attempting to bind() port " << addr << "!!");
472
473 if (commBind(new_socket, *AI) != Comm::OK) {
474 comm_close(new_socket);
475 return -1;
476 }
477 }
478
479 if (flags & COMM_NONBLOCKING)
480 if (commSetNonBlocking(new_socket) == Comm::COMM_ERROR) {
481 comm_close(new_socket);
482 return -1;
483 }
484
485 #ifdef TCP_NODELAY
486 if (sock_type == SOCK_STREAM)
487 commSetTcpNoDelay(new_socket);
488
489 #endif
490
491 if (Config.tcpRcvBufsz > 0 && sock_type == SOCK_STREAM)
492 commSetTcpRcvbuf(new_socket, Config.tcpRcvBufsz);
493
494 return new_socket;
495 }
496
497 void
498 comm_import_opened(const Comm::ConnectionPointer &conn,
499 const char *note,
500 struct addrinfo *AI)
501 {
502 debugs(5, 2, HERE << conn);
503 assert(Comm::IsConnOpen(conn));
504 assert(AI);
505
506 comm_init_opened(conn, note, AI);
507
508 if (!(conn->flags & COMM_NOCLOEXEC))
509 fd_table[conn->fd].flags.close_on_exec = true;
510
511 if (conn->local.port() > (unsigned short) 0) {
512 #if _SQUID_WINDOWS_
513 if (AI->ai_socktype != SOCK_DGRAM)
514 #endif
515 fd_table[conn->fd].flags.nolinger = true;
516 }
517
518 if ((conn->flags & COMM_TRANSPARENT))
519 fd_table[conn->fd].flags.transparent = true;
520
521 if (conn->flags & COMM_NONBLOCKING)
522 fd_table[conn->fd].flags.nonblocking = true;
523
524 #ifdef TCP_NODELAY
525 if (AI->ai_socktype == SOCK_STREAM)
526 fd_table[conn->fd].flags.nodelay = true;
527 #endif
528
529 /* no fd_table[fd].flags. updates needed for these conditions:
530 * if ((flags & COMM_REUSEADDR)) ...
531 * if ((flags & COMM_DOBIND) ...) ...
532 */
533 }
534
535 // XXX: now that raw-FD timeouts are only unset for pipes and files this SHOULD be a no-op.
536 // With handler already unset. Leaving this present until that can be verified for all code paths.
537 void
538 commUnsetFdTimeout(int fd)
539 {
540 debugs(5, 3, HERE << "Remove timeout for FD " << fd);
541 assert(fd >= 0);
542 assert(fd < Squid_MaxFD);
543 fde *F = &fd_table[fd];
544 assert(F->flags.open);
545
546 F->timeoutHandler = NULL;
547 F->timeout = 0;
548 }
549
550 int
551 commSetConnTimeout(const Comm::ConnectionPointer &conn, int timeout, AsyncCall::Pointer &callback)
552 {
553 debugs(5, 3, HERE << conn << " timeout " << timeout);
554 assert(Comm::IsConnOpen(conn));
555 assert(conn->fd < Squid_MaxFD);
556 fde *F = &fd_table[conn->fd];
557 assert(F->flags.open);
558
559 if (timeout < 0) {
560 F->timeoutHandler = NULL;
561 F->timeout = 0;
562 } else {
563 if (callback != NULL) {
564 typedef CommTimeoutCbParams Params;
565 Params &params = GetCommParams<Params>(callback);
566 params.conn = conn;
567 F->timeoutHandler = callback;
568 }
569
570 F->timeout = squid_curtime + (time_t) timeout;
571 }
572
573 return F->timeout;
574 }
575
576 int
577 commUnsetConnTimeout(const Comm::ConnectionPointer &conn)
578 {
579 debugs(5, 3, HERE << "Remove timeout for " << conn);
580 AsyncCall::Pointer nil;
581 return commSetConnTimeout(conn, -1, nil);
582 }
583
584 int
585 comm_connect_addr(int sock, const Ip::Address &address)
586 {
587 Comm::Flag status = Comm::OK;
588 fde *F = &fd_table[sock];
589 int x = 0;
590 int err = 0;
591 socklen_t errlen;
592 struct addrinfo *AI = NULL;
593 PROF_start(comm_connect_addr);
594
595 assert(address.port() != 0);
596
597 debugs(5, 9, HERE << "connecting socket FD " << sock << " to " << address << " (want family: " << F->sock_family << ")");
598
599 /* Handle IPv6 over IPv4-only socket case.
600 * this case must presently be handled here since the getAddrInfo asserts on bad mappings.
601 * NP: because commResetFD is private to ConnStateData we have to return an error and
602 * trust its handled properly.
603 */
604 if (F->sock_family == AF_INET && !address.isIPv4()) {
605 errno = ENETUNREACH;
606 return Comm::ERR_PROTOCOL;
607 }
608
609 /* Handle IPv4 over IPv6-only socket case.
610 * This case is presently handled here as it's both a known case and it's
611 * uncertain what error will be returned by the IPv6 stack in such case. It's
612 * possible this will also be handled by the errno checks below after connect()
613 * but needs carefull cross-platform verification, and verifying the address
614 * condition here is simple.
615 */
616 if (!F->local_addr.isIPv4() && address.isIPv4()) {
617 errno = ENETUNREACH;
618 return Comm::ERR_PROTOCOL;
619 }
620
621 address.getAddrInfo(AI, F->sock_family);
622
623 /* Establish connection. */
624 errno = 0;
625
626 if (!F->flags.called_connect) {
627 F->flags.called_connect = true;
628 ++ statCounter.syscalls.sock.connects;
629
630 x = connect(sock, AI->ai_addr, AI->ai_addrlen);
631
632 // XXX: ICAP code refuses callbacks during a pending comm_ call
633 // Async calls development will fix this.
634 if (x == 0) {
635 x = -1;
636 errno = EINPROGRESS;
637 }
638
639 if (x < 0) {
640 debugs(5,5, "comm_connect_addr: sock=" << sock << ", addrinfo( " <<
641 " flags=" << AI->ai_flags <<
642 ", family=" << AI->ai_family <<
643 ", socktype=" << AI->ai_socktype <<
644 ", protocol=" << AI->ai_protocol <<
645 ", &addr=" << AI->ai_addr <<
646 ", addrlen=" << AI->ai_addrlen <<
647 " )" );
648 debugs(5, 9, "connect FD " << sock << ": (" << x << ") " << xstrerror());
649 debugs(14,9, "connecting to: " << address );
650 }
651 } else {
652 #if _SQUID_NEWSOS6_
653 /* Makoto MATSUSHITA <matusita@ics.es.osaka-u.ac.jp> */
654
655 connect(sock, AI->ai_addr, AI->ai_addrlen);
656
657 if (errno == EINVAL) {
658 errlen = sizeof(err);
659 x = getsockopt(sock, SOL_SOCKET, SO_ERROR, &err, &errlen);
660
661 if (x >= 0)
662 errno = x;
663 }
664
665 #else
666 errlen = sizeof(err);
667
668 x = getsockopt(sock, SOL_SOCKET, SO_ERROR, &err, &errlen);
669
670 if (x == 0)
671 errno = err;
672
673 #if _SQUID_SOLARIS_
674 /*
675 * Solaris 2.4's socket emulation doesn't allow you
676 * to determine the error from a failed non-blocking
677 * connect and just returns EPIPE. Create a fake
678 * error message for connect. -- fenner@parc.xerox.com
679 */
680 if (x < 0 && errno == EPIPE)
681 errno = ENOTCONN;
682
683 #endif
684 #endif
685
686 }
687
688 Ip::Address::FreeAddr(AI);
689
690 PROF_stop(comm_connect_addr);
691
692 if (errno == 0 || errno == EISCONN)
693 status = Comm::OK;
694 else if (ignoreErrno(errno))
695 status = Comm::INPROGRESS;
696 else if (errno == EAFNOSUPPORT || errno == EINVAL)
697 return Comm::ERR_PROTOCOL;
698 else
699 return Comm::COMM_ERROR;
700
701 address.toStr(F->ipaddr, MAX_IPSTRLEN);
702
703 F->remote_port = address.port(); /* remote_port is HS */
704
705 if (status == Comm::OK) {
706 debugs(5, DBG_DATA, "comm_connect_addr: FD " << sock << " connected to " << address);
707 } else if (status == Comm::INPROGRESS) {
708 debugs(5, DBG_DATA, "comm_connect_addr: FD " << sock << " connection pending");
709 }
710
711 return status;
712 }
713
714 void
715 commCallCloseHandlers(int fd)
716 {
717 fde *F = &fd_table[fd];
718 debugs(5, 5, "commCallCloseHandlers: FD " << fd);
719
720 while (F->closeHandler != NULL) {
721 AsyncCall::Pointer call = F->closeHandler;
722 F->closeHandler = call->Next();
723 call->setNext(NULL);
724 // If call is not canceled schedule it for execution else ignore it
725 if (!call->canceled()) {
726 debugs(5, 5, "commCallCloseHandlers: ch->handler=" << call);
727 ScheduleCallHere(call);
728 }
729 }
730 }
731
732 #if LINGERING_CLOSE
733 static void
734 commLingerClose(int fd, void *unused)
735 {
736 LOCAL_ARRAY(char, buf, 1024);
737 int n;
738 n = FD_READ_METHOD(fd, buf, 1024);
739
740 if (n < 0)
741 debugs(5, 3, "commLingerClose: FD " << fd << " read: " << xstrerror());
742
743 comm_close(fd);
744 }
745
746 static void
747 commLingerTimeout(const FdeCbParams &params)
748 {
749 debugs(5, 3, "commLingerTimeout: FD " << params.fd);
750 comm_close(params.fd);
751 }
752
753 /*
754 * Inspired by apache
755 */
756 void
757 comm_lingering_close(int fd)
758 {
759 #if USE_OPENSSL
760 if (fd_table[fd].ssl)
761 ssl_shutdown_method(fd_table[fd].ssl);
762 #endif
763
764 if (shutdown(fd, 1) < 0) {
765 comm_close(fd);
766 return;
767 }
768
769 fd_note(fd, "lingering close");
770 AsyncCall::Pointer call = commCbCall(5,4, "commLingerTimeout", FdeCbPtrFun(commLingerTimeout, NULL));
771
772 debugs(5, 3, HERE << "FD " << fd << " timeout " << timeout);
773 assert(fd_table[fd].flags.open);
774 if (callback != NULL) {
775 typedef FdeCbParams Params;
776 Params &params = GetCommParams<Params>(callback);
777 params.fd = fd;
778 fd_table[fd].timeoutHandler = callback;
779 fd_table[fd].timeout = squid_curtime + static_cast<time_t>(10);
780 }
781
782 Comm::SetSelect(fd, COMM_SELECT_READ, commLingerClose, NULL, 0);
783 }
784
785 #endif
786
787 /**
788 * enable linger with time of 0 so that when the socket is
789 * closed, TCP generates a RESET
790 */
791 void
792 comm_reset_close(const Comm::ConnectionPointer &conn)
793 {
794 struct linger L;
795 L.l_onoff = 1;
796 L.l_linger = 0;
797
798 if (setsockopt(conn->fd, SOL_SOCKET, SO_LINGER, (char *) &L, sizeof(L)) < 0)
799 debugs(50, DBG_CRITICAL, "ERROR: Closing " << conn << " with TCP RST: " << xstrerror());
800
801 conn->close();
802 }
803
804 // Legacy close function.
805 void
806 old_comm_reset_close(int fd)
807 {
808 struct linger L;
809 L.l_onoff = 1;
810 L.l_linger = 0;
811
812 if (setsockopt(fd, SOL_SOCKET, SO_LINGER, (char *) &L, sizeof(L)) < 0)
813 debugs(50, DBG_CRITICAL, "ERROR: Closing FD " << fd << " with TCP RST: " << xstrerror());
814
815 comm_close(fd);
816 }
817
818 #if USE_OPENSSL
819 void
820 commStartSslClose(const FdeCbParams &params)
821 {
822 assert(fd_table[params.fd].ssl != NULL);
823 ssl_shutdown_method(fd_table[params.fd].ssl);
824 }
825 #endif
826
827 void
828 comm_close_complete(const FdeCbParams &params)
829 {
830 #if USE_OPENSSL
831 fde *F = &fd_table[params.fd];
832
833 if (F->ssl) {
834 SSL_free(F->ssl);
835 F->ssl = NULL;
836 }
837
838 if (F->dynamicSslContext) {
839 SSL_CTX_free(F->dynamicSslContext);
840 F->dynamicSslContext = NULL;
841 }
842 #endif
843 fd_close(params.fd); /* update fdstat */
844 close(params.fd);
845
846 ++ statCounter.syscalls.sock.closes;
847
848 /* When one connection closes, give accept() a chance, if need be */
849 Comm::AcceptLimiter::Instance().kick();
850 }
851
852 /*
853 * Close the socket fd.
854 *
855 * + call write handlers with ERR_CLOSING
856 * + call read handlers with ERR_CLOSING
857 * + call closing handlers
858 *
859 * NOTE: Comm::ERR_CLOSING will NOT be called for CommReads' sitting in a
860 * DeferredReadManager.
861 */
862 void
863 _comm_close(int fd, char const *file, int line)
864 {
865 debugs(5, 3, "comm_close: start closing FD " << fd);
866 assert(fd >= 0);
867 assert(fd < Squid_MaxFD);
868
869 fde *F = &fd_table[fd];
870 fdd_table[fd].close_file = file;
871 fdd_table[fd].close_line = line;
872
873 if (F->closing())
874 return;
875
876 /* XXX: is this obsolete behind F->closing() ? */
877 if ( (shutting_down || reconfiguring) && (!F->flags.open || F->type == FD_FILE))
878 return;
879
880 /* The following fails because ipc.c is doing calls to pipe() to create sockets! */
881 if (!isOpen(fd)) {
882 debugs(50, DBG_IMPORTANT, HERE << "BUG 3556: FD " << fd << " is not an open socket.");
883 // XXX: do we need to run close(fd) or fd_close(fd) here?
884 return;
885 }
886
887 assert(F->type != FD_FILE);
888
889 PROF_start(comm_close);
890
891 F->flags.close_request = true;
892
893 #if USE_OPENSSL
894 if (F->ssl) {
895 AsyncCall::Pointer startCall=commCbCall(5,4, "commStartSslClose",
896 FdeCbPtrFun(commStartSslClose, NULL));
897 FdeCbParams &startParams = GetCommParams<FdeCbParams>(startCall);
898 startParams.fd = fd;
899 ScheduleCallHere(startCall);
900 }
901 #endif
902
903 // a half-closed fd may lack a reader, so we stop monitoring explicitly
904 if (commHasHalfClosedMonitor(fd))
905 commStopHalfClosedMonitor(fd);
906 commUnsetFdTimeout(fd);
907
908 // notify read/write handlers after canceling select reservations, if any
909 if (COMMIO_FD_WRITECB(fd)->active()) {
910 Comm::SetSelect(fd, COMM_SELECT_WRITE, NULL, NULL, 0);
911 COMMIO_FD_WRITECB(fd)->finish(Comm::ERR_CLOSING, errno);
912 }
913 if (COMMIO_FD_READCB(fd)->active()) {
914 Comm::SetSelect(fd, COMM_SELECT_READ, NULL, NULL, 0);
915 COMMIO_FD_READCB(fd)->finish(Comm::ERR_CLOSING, errno);
916 }
917
918 #if USE_DELAY_POOLS
919 if (ClientInfo *clientInfo = F->clientInfo) {
920 if (clientInfo->selectWaiting) {
921 clientInfo->selectWaiting = false;
922 // kick queue or it will get stuck as commWriteHandle is not called
923 clientInfo->kickQuotaQueue();
924 }
925 }
926 #endif
927
928 commCallCloseHandlers(fd);
929
930 comm_empty_os_read_buffers(fd);
931
932 AsyncCall::Pointer completeCall=commCbCall(5,4, "comm_close_complete",
933 FdeCbPtrFun(comm_close_complete, NULL));
934 FdeCbParams &completeParams = GetCommParams<FdeCbParams>(completeCall);
935 completeParams.fd = fd;
936 // must use async call to wait for all callbacks
937 // scheduled before comm_close() to finish
938 ScheduleCallHere(completeCall);
939
940 PROF_stop(comm_close);
941 }
942
943 /* Send a udp datagram to specified TO_ADDR. */
944 int
945 comm_udp_sendto(int fd,
946 const Ip::Address &to_addr,
947 const void *buf,
948 int len)
949 {
950 PROF_start(comm_udp_sendto);
951 ++ statCounter.syscalls.sock.sendtos;
952
953 debugs(50, 3, "comm_udp_sendto: Attempt to send UDP packet to " << to_addr <<
954 " using FD " << fd << " using Port " << comm_local_port(fd) );
955
956 struct addrinfo *AI = NULL;
957 to_addr.getAddrInfo(AI, fd_table[fd].sock_family);
958 int x = sendto(fd, buf, len, 0, AI->ai_addr, AI->ai_addrlen);
959 Ip::Address::FreeAddr(AI);
960
961 PROF_stop(comm_udp_sendto);
962
963 if (x >= 0)
964 return x;
965
966 #if _SQUID_LINUX_
967
968 if (ECONNREFUSED != errno)
969 #endif
970
971 debugs(50, DBG_IMPORTANT, "comm_udp_sendto: FD " << fd << ", (family=" << fd_table[fd].sock_family << ") " << to_addr << ": " << xstrerror());
972
973 return Comm::COMM_ERROR;
974 }
975
976 void
977 comm_add_close_handler(int fd, CLCB * handler, void *data)
978 {
979 debugs(5, 5, "comm_add_close_handler: FD " << fd << ", handler=" <<
980 handler << ", data=" << data);
981
982 AsyncCall::Pointer call=commCbCall(5,4, "SomeCloseHandler",
983 CommCloseCbPtrFun(handler, data));
984 comm_add_close_handler(fd, call);
985 }
986
987 void
988 comm_add_close_handler(int fd, AsyncCall::Pointer &call)
989 {
990 debugs(5, 5, "comm_add_close_handler: FD " << fd << ", AsyncCall=" << call);
991
992 /*TODO:Check for a similar scheduled AsyncCall*/
993 // for (c = fd_table[fd].closeHandler; c; c = c->next)
994 // assert(c->handler != handler || c->data != data);
995
996 call->setNext(fd_table[fd].closeHandler);
997
998 fd_table[fd].closeHandler = call;
999 }
1000
1001 // remove function-based close handler
1002 void
1003 comm_remove_close_handler(int fd, CLCB * handler, void *data)
1004 {
1005 assert(isOpen(fd));
1006 /* Find handler in list */
1007 debugs(5, 5, "comm_remove_close_handler: FD " << fd << ", handler=" <<
1008 handler << ", data=" << data);
1009
1010 AsyncCall::Pointer p, prev = NULL;
1011 for (p = fd_table[fd].closeHandler; p != NULL; prev = p, p = p->Next()) {
1012 typedef CommCbFunPtrCallT<CommCloseCbPtrFun> Call;
1013 const Call *call = dynamic_cast<const Call*>(p.getRaw());
1014 if (!call) // method callbacks have their own comm_remove_close_handler
1015 continue;
1016
1017 typedef CommCloseCbParams Params;
1018 const Params &params = GetCommParams<Params>(p);
1019 if (call->dialer.handler == handler && params.data == data)
1020 break; /* This is our handler */
1021 }
1022
1023 // comm_close removes all close handlers so our handler may be gone
1024 if (p != NULL) {
1025 p->dequeue(fd_table[fd].closeHandler, prev);
1026 p->cancel("comm_remove_close_handler");
1027 }
1028 }
1029
1030 // remove method-based close handler
1031 void
1032 comm_remove_close_handler(int fd, AsyncCall::Pointer &call)
1033 {
1034 assert(isOpen(fd));
1035 debugs(5, 5, "comm_remove_close_handler: FD " << fd << ", AsyncCall=" << call);
1036
1037 // comm_close removes all close handlers so our handler may be gone
1038 AsyncCall::Pointer p, prev = NULL;
1039 for (p = fd_table[fd].closeHandler; p != NULL && p != call; prev = p, p = p->Next());
1040
1041 if (p != NULL)
1042 p->dequeue(fd_table[fd].closeHandler, prev);
1043 call->cancel("comm_remove_close_handler");
1044 }
1045
1046 static void
1047 commSetNoLinger(int fd)
1048 {
1049
1050 struct linger L;
1051 L.l_onoff = 0; /* off */
1052 L.l_linger = 0;
1053
1054 if (setsockopt(fd, SOL_SOCKET, SO_LINGER, (char *) &L, sizeof(L)) < 0)
1055 debugs(50, 0, "commSetNoLinger: FD " << fd << ": " << xstrerror());
1056
1057 fd_table[fd].flags.nolinger = true;
1058 }
1059
1060 static void
1061 commSetReuseAddr(int fd)
1062 {
1063 int on = 1;
1064
1065 if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &on, sizeof(on)) < 0)
1066 debugs(50, DBG_IMPORTANT, "commSetReuseAddr: FD " << fd << ": " << xstrerror());
1067 }
1068
1069 static void
1070 commSetTcpRcvbuf(int fd, int size)
1071 {
1072 if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, (char *) &size, sizeof(size)) < 0)
1073 debugs(50, DBG_IMPORTANT, "commSetTcpRcvbuf: FD " << fd << ", SIZE " << size << ": " << xstrerror());
1074 if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF, (char *) &size, sizeof(size)) < 0)
1075 debugs(50, DBG_IMPORTANT, "commSetTcpRcvbuf: FD " << fd << ", SIZE " << size << ": " << xstrerror());
1076 #ifdef TCP_WINDOW_CLAMP
1077 if (setsockopt(fd, SOL_TCP, TCP_WINDOW_CLAMP, (char *) &size, sizeof(size)) < 0)
1078 debugs(50, DBG_IMPORTANT, "commSetTcpRcvbuf: FD " << fd << ", SIZE " << size << ": " << xstrerror());
1079 #endif
1080 }
1081
1082 int
1083 commSetNonBlocking(int fd)
1084 {
1085 #if !_SQUID_WINDOWS_
1086 int flags;
1087 int dummy = 0;
1088 #endif
1089 #if _SQUID_WINDOWS_
1090 int nonblocking = TRUE;
1091
1092 #if _SQUID_CYGWIN_
1093 if (fd_table[fd].type != FD_PIPE) {
1094 #endif
1095
1096 if (ioctl(fd, FIONBIO, &nonblocking) < 0) {
1097 debugs(50, 0, "commSetNonBlocking: FD " << fd << ": " << xstrerror() << " " << fd_table[fd].type);
1098 return Comm::COMM_ERROR;
1099 }
1100
1101 #if _SQUID_CYGWIN_
1102 } else {
1103 #endif
1104 #endif
1105 #if !_SQUID_WINDOWS_
1106
1107 if ((flags = fcntl(fd, F_GETFL, dummy)) < 0) {
1108 debugs(50, 0, "FD " << fd << ": fcntl F_GETFL: " << xstrerror());
1109 return Comm::COMM_ERROR;
1110 }
1111
1112 if (fcntl(fd, F_SETFL, flags | SQUID_NONBLOCK) < 0) {
1113 debugs(50, 0, "commSetNonBlocking: FD " << fd << ": " << xstrerror());
1114 return Comm::COMM_ERROR;
1115 }
1116
1117 #endif
1118 #if _SQUID_CYGWIN_
1119 }
1120 #endif
1121 fd_table[fd].flags.nonblocking = true;
1122
1123 return 0;
1124 }
1125
1126 int
1127 commUnsetNonBlocking(int fd)
1128 {
1129 #if _SQUID_WINDOWS_
1130 int nonblocking = FALSE;
1131
1132 if (ioctlsocket(fd, FIONBIO, (unsigned long *) &nonblocking) < 0) {
1133 #else
1134 int flags;
1135 int dummy = 0;
1136
1137 if ((flags = fcntl(fd, F_GETFL, dummy)) < 0) {
1138 debugs(50, 0, "FD " << fd << ": fcntl F_GETFL: " << xstrerror());
1139 return Comm::COMM_ERROR;
1140 }
1141
1142 if (fcntl(fd, F_SETFL, flags & (~SQUID_NONBLOCK)) < 0) {
1143 #endif
1144 debugs(50, 0, "commUnsetNonBlocking: FD " << fd << ": " << xstrerror());
1145 return Comm::COMM_ERROR;
1146 }
1147
1148 fd_table[fd].flags.nonblocking = false;
1149 return 0;
1150 }
1151
1152 void
1153 commSetCloseOnExec(int fd)
1154 {
1155 #ifdef FD_CLOEXEC
1156 int flags;
1157 int dummy = 0;
1158
1159 if ((flags = fcntl(fd, F_GETFD, dummy)) < 0) {
1160 debugs(50, 0, "FD " << fd << ": fcntl F_GETFD: " << xstrerror());
1161 return;
1162 }
1163
1164 if (fcntl(fd, F_SETFD, flags | FD_CLOEXEC) < 0)
1165 debugs(50, 0, "FD " << fd << ": set close-on-exec failed: " << xstrerror());
1166
1167 fd_table[fd].flags.close_on_exec = true;
1168
1169 #endif
1170 }
1171
1172 #ifdef TCP_NODELAY
1173 static void
1174 commSetTcpNoDelay(int fd)
1175 {
1176 int on = 1;
1177
1178 if (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *) &on, sizeof(on)) < 0)
1179 debugs(50, DBG_IMPORTANT, "commSetTcpNoDelay: FD " << fd << ": " << xstrerror());
1180
1181 fd_table[fd].flags.nodelay = true;
1182 }
1183
1184 #endif
1185
1186 void
1187 commSetTcpKeepalive(int fd, int idle, int interval, int timeout)
1188 {
1189 int on = 1;
1190 #ifdef TCP_KEEPCNT
1191 if (timeout && interval) {
1192 int count = (timeout + interval - 1) / interval;
1193 if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPCNT, &count, sizeof(on)) < 0)
1194 debugs(5, DBG_IMPORTANT, "commSetKeepalive: FD " << fd << ": " << xstrerror());
1195 }
1196 #endif
1197 #ifdef TCP_KEEPIDLE
1198 if (idle) {
1199 if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPIDLE, &idle, sizeof(on)) < 0)
1200 debugs(5, DBG_IMPORTANT, "commSetKeepalive: FD " << fd << ": " << xstrerror());
1201 }
1202 #endif
1203 #ifdef TCP_KEEPINTVL
1204 if (interval) {
1205 if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPINTVL, &interval, sizeof(on)) < 0)
1206 debugs(5, DBG_IMPORTANT, "commSetKeepalive: FD " << fd << ": " << xstrerror());
1207 }
1208 #endif
1209 if (setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (char *) &on, sizeof(on)) < 0)
1210 debugs(5, DBG_IMPORTANT, "commSetKeepalive: FD " << fd << ": " << xstrerror());
1211 }
1212
1213 void
1214 comm_init(void)
1215 {
1216 fd_table =(fde *) xcalloc(Squid_MaxFD, sizeof(fde));
1217 fdd_table = (fd_debug_t *)xcalloc(Squid_MaxFD, sizeof(fd_debug_t));
1218
1219 /* make sure the accept() socket FIFO delay queue exists */
1220 Comm::AcceptLimiter::Instance();
1221
1222 // make sure the IO pending callback table exists
1223 Comm::CallbackTableInit();
1224
1225 /* XXX account fd_table */
1226 /* Keep a few file descriptors free so that we don't run out of FD's
1227 * after accepting a client but before it opens a socket or a file.
1228 * Since Squid_MaxFD can be as high as several thousand, don't waste them */
1229 RESERVED_FD = min(100, Squid_MaxFD / 4);
1230
1231 TheHalfClosed = new DescriptorSet;
1232
1233 /* setup the select loop module */
1234 Comm::SelectLoopInit();
1235 }
1236
1237 void
1238 comm_exit(void)
1239 {
1240 delete TheHalfClosed;
1241 TheHalfClosed = NULL;
1242
1243 safe_free(fd_table);
1244 safe_free(fdd_table);
1245 Comm::CallbackTableDestruct();
1246 }
1247
1248 #if USE_DELAY_POOLS
1249 // called when the queue is done waiting for the client bucket to fill
1250 void
1251 commHandleWriteHelper(void * data)
1252 {
1253 CommQuotaQueue *queue = static_cast<CommQuotaQueue*>(data);
1254 assert(queue);
1255
1256 ClientInfo *clientInfo = queue->clientInfo;
1257 // ClientInfo invalidates queue if freed, so if we got here through,
1258 // evenAdd cbdata protections, everything should be valid and consistent
1259 assert(clientInfo);
1260 assert(clientInfo->hasQueue());
1261 assert(clientInfo->hasQueue(queue));
1262 assert(!clientInfo->selectWaiting);
1263 assert(clientInfo->eventWaiting);
1264 clientInfo->eventWaiting = false;
1265
1266 do {
1267 // check that the head descriptor is still relevant
1268 const int head = clientInfo->quotaPeekFd();
1269 Comm::IoCallback *ccb = COMMIO_FD_WRITECB(head);
1270
1271 if (fd_table[head].clientInfo == clientInfo &&
1272 clientInfo->quotaPeekReserv() == ccb->quotaQueueReserv &&
1273 !fd_table[head].closing()) {
1274
1275 // wait for the head descriptor to become ready for writing
1276 Comm::SetSelect(head, COMM_SELECT_WRITE, Comm::HandleWrite, ccb, 0);
1277 clientInfo->selectWaiting = true;
1278 return;
1279 }
1280
1281 clientInfo->quotaDequeue(); // remove the no longer relevant descriptor
1282 // and continue looking for a relevant one
1283 } while (clientInfo->hasQueue());
1284
1285 debugs(77,3, HERE << "emptied queue");
1286 }
1287
1288 bool
1289 ClientInfo::hasQueue() const
1290 {
1291 assert(quotaQueue);
1292 return !quotaQueue->empty();
1293 }
1294
1295 bool
1296 ClientInfo::hasQueue(const CommQuotaQueue *q) const
1297 {
1298 assert(quotaQueue);
1299 return quotaQueue == q;
1300 }
1301
1302 /// returns the first descriptor to be dequeued
1303 int
1304 ClientInfo::quotaPeekFd() const
1305 {
1306 assert(quotaQueue);
1307 return quotaQueue->front();
1308 }
1309
1310 /// returns the reservation ID of the first descriptor to be dequeued
1311 unsigned int
1312 ClientInfo::quotaPeekReserv() const
1313 {
1314 assert(quotaQueue);
1315 return quotaQueue->outs + 1;
1316 }
1317
1318 /// queues a given fd, creating the queue if necessary; returns reservation ID
1319 unsigned int
1320 ClientInfo::quotaEnqueue(int fd)
1321 {
1322 assert(quotaQueue);
1323 return quotaQueue->enqueue(fd);
1324 }
1325
1326 /// removes queue head
1327 void
1328 ClientInfo::quotaDequeue()
1329 {
1330 assert(quotaQueue);
1331 quotaQueue->dequeue();
1332 }
1333
1334 void
1335 ClientInfo::kickQuotaQueue()
1336 {
1337 if (!eventWaiting && !selectWaiting && hasQueue()) {
1338 // wait at least a second if the bucket is empty
1339 const double delay = (bucketSize < 1.0) ? 1.0 : 0.0;
1340 eventAdd("commHandleWriteHelper", &commHandleWriteHelper,
1341 quotaQueue, delay, 0, true);
1342 eventWaiting = true;
1343 }
1344 }
1345
1346 /// calculates how much to write for a single dequeued client
1347 int
1348 ClientInfo::quotaForDequed()
1349 {
1350 /* If we have multiple clients and give full bucketSize to each client then
1351 * clt1 may often get a lot more because clt1->clt2 time distance in the
1352 * select(2) callback order may be a lot smaller than cltN->clt1 distance.
1353 * We divide quota evenly to be more fair. */
1354
1355 if (!rationedCount) {
1356 rationedCount = quotaQueue->size() + 1;
1357
1358 // The delay in ration recalculation _temporary_ deprives clients from
1359 // bytes that should have trickled in while rationedCount was positive.
1360 refillBucket();
1361
1362 // Rounding errors do not accumulate here, but we round down to avoid
1363 // negative bucket sizes after write with rationedCount=1.
1364 rationedQuota = static_cast<int>(floor(bucketSize/rationedCount));
1365 debugs(77,5, HERE << "new rationedQuota: " << rationedQuota <<
1366 '*' << rationedCount);
1367 }
1368
1369 --rationedCount;
1370 debugs(77,7, HERE << "rationedQuota: " << rationedQuota <<
1371 " rations remaining: " << rationedCount);
1372
1373 // update 'last seen' time to prevent clientdb GC from dropping us
1374 last_seen = squid_curtime;
1375 return rationedQuota;
1376 }
1377
1378 ///< adds bytes to the quota bucket based on the rate and passed time
1379 void
1380 ClientInfo::refillBucket()
1381 {
1382 // all these times are in seconds, with double precision
1383 const double currTime = current_dtime;
1384 const double timePassed = currTime - prevTime;
1385
1386 // Calculate allowance for the time passed. Use double to avoid
1387 // accumulating rounding errors for small intervals. For example, always
1388 // adding 1 byte instead of 1.4 results in 29% bandwidth allocation error.
1389 const double gain = timePassed * writeSpeedLimit;
1390
1391 debugs(77,5, HERE << currTime << " clt" << (const char*)hash.key << ": " <<
1392 bucketSize << " + (" << timePassed << " * " << writeSpeedLimit <<
1393 " = " << gain << ')');
1394
1395 // to further combat error accumulation during micro updates,
1396 // quit before updating time if we cannot add at least one byte
1397 if (gain < 1.0)
1398 return;
1399
1400 prevTime = currTime;
1401
1402 // for "first" connections, drain initial fat before refilling but keep
1403 // updating prevTime to avoid bursts after the fat is gone
1404 if (bucketSize > bucketSizeLimit) {
1405 debugs(77,4, HERE << "not refilling while draining initial fat");
1406 return;
1407 }
1408
1409 bucketSize += gain;
1410
1411 // obey quota limits
1412 if (bucketSize > bucketSizeLimit)
1413 bucketSize = bucketSizeLimit;
1414 }
1415
1416 void
1417 ClientInfo::setWriteLimiter(const int aWriteSpeedLimit, const double anInitialBurst, const double aHighWatermark)
1418 {
1419 debugs(77,5, HERE << "Write limits for " << (const char*)hash.key <<
1420 " speed=" << aWriteSpeedLimit << " burst=" << anInitialBurst <<
1421 " highwatermark=" << aHighWatermark);
1422
1423 // set or possibly update traffic shaping parameters
1424 writeLimitingActive = true;
1425 writeSpeedLimit = aWriteSpeedLimit;
1426 bucketSizeLimit = aHighWatermark;
1427
1428 // but some members should only be set once for a newly activated bucket
1429 if (firstTimeConnection) {
1430 firstTimeConnection = false;
1431
1432 assert(!selectWaiting);
1433 assert(!quotaQueue);
1434 quotaQueue = new CommQuotaQueue(this);
1435
1436 bucketSize = anInitialBurst;
1437 prevTime = current_dtime;
1438 }
1439 }
1440
1441 CommQuotaQueue::CommQuotaQueue(ClientInfo *info): clientInfo(info),
1442 ins(0), outs(0)
1443 {
1444 assert(clientInfo);
1445 }
1446
1447 CommQuotaQueue::~CommQuotaQueue()
1448 {
1449 assert(!clientInfo); // ClientInfo should clear this before destroying us
1450 }
1451
1452 /// places the given fd at the end of the queue; returns reservation ID
1453 unsigned int
1454 CommQuotaQueue::enqueue(int fd)
1455 {
1456 debugs(77,5, HERE << "clt" << (const char*)clientInfo->hash.key <<
1457 ": FD " << fd << " with qqid" << (ins+1) << ' ' << fds.size());
1458 fds.push_back(fd);
1459 return ++ins;
1460 }
1461
1462 /// removes queue head
1463 void
1464 CommQuotaQueue::dequeue()
1465 {
1466 assert(!fds.empty());
1467 debugs(77,5, HERE << "clt" << (const char*)clientInfo->hash.key <<
1468 ": FD " << fds.front() << " with qqid" << (outs+1) << ' ' <<
1469 fds.size());
1470 fds.pop_front();
1471 ++outs;
1472 }
1473 #endif
1474
1475 /*
1476 * hm, this might be too general-purpose for all the places we'd
1477 * like to use it.
1478 */
1479 int
1480 ignoreErrno(int ierrno)
1481 {
1482 switch (ierrno) {
1483
1484 case EINPROGRESS:
1485
1486 case EWOULDBLOCK:
1487 #if EAGAIN != EWOULDBLOCK
1488
1489 case EAGAIN:
1490 #endif
1491
1492 case EALREADY:
1493
1494 case EINTR:
1495 #ifdef ERESTART
1496
1497 case ERESTART:
1498 #endif
1499
1500 return 1;
1501
1502 default:
1503 return 0;
1504 }
1505
1506 /* NOTREACHED */
1507 }
1508
1509 void
1510 commCloseAllSockets(void)
1511 {
1512 int fd;
1513 fde *F = NULL;
1514
1515 for (fd = 0; fd <= Biggest_FD; ++fd) {
1516 F = &fd_table[fd];
1517
1518 if (!F->flags.open)
1519 continue;
1520
1521 if (F->type != FD_SOCKET)
1522 continue;
1523
1524 if (F->flags.ipc) /* don't close inter-process sockets */
1525 continue;
1526
1527 if (F->timeoutHandler != NULL) {
1528 AsyncCall::Pointer callback = F->timeoutHandler;
1529 F->timeoutHandler = NULL;
1530 debugs(5, 5, "commCloseAllSockets: FD " << fd << ": Calling timeout handler");
1531 ScheduleCallHere(callback);
1532 } else {
1533 debugs(5, 5, "commCloseAllSockets: FD " << fd << ": calling comm_reset_close()");
1534 old_comm_reset_close(fd);
1535 }
1536 }
1537 }
1538
1539 static bool
1540 AlreadyTimedOut(fde *F)
1541 {
1542 if (!F->flags.open)
1543 return true;
1544
1545 if (F->timeout == 0)
1546 return true;
1547
1548 if (F->timeout > squid_curtime)
1549 return true;
1550
1551 return false;
1552 }
1553
1554 static bool
1555 writeTimedOut(int fd)
1556 {
1557 if (!COMMIO_FD_WRITECB(fd)->active())
1558 return false;
1559
1560 if ((squid_curtime - fd_table[fd].writeStart) < Config.Timeout.write)
1561 return false;
1562
1563 return true;
1564 }
1565
1566 void
1567 checkTimeouts(void)
1568 {
1569 int fd;
1570 fde *F = NULL;
1571 AsyncCall::Pointer callback;
1572
1573 for (fd = 0; fd <= Biggest_FD; ++fd) {
1574 F = &fd_table[fd];
1575
1576 if (writeTimedOut(fd)) {
1577 // We have an active write callback and we are timed out
1578 debugs(5, 5, "checkTimeouts: FD " << fd << " auto write timeout");
1579 Comm::SetSelect(fd, COMM_SELECT_WRITE, NULL, NULL, 0);
1580 COMMIO_FD_WRITECB(fd)->finish(Comm::COMM_ERROR, ETIMEDOUT);
1581 } else if (AlreadyTimedOut(F))
1582 continue;
1583
1584 debugs(5, 5, "checkTimeouts: FD " << fd << " Expired");
1585
1586 if (F->timeoutHandler != NULL) {
1587 debugs(5, 5, "checkTimeouts: FD " << fd << ": Call timeout handler");
1588 callback = F->timeoutHandler;
1589 F->timeoutHandler = NULL;
1590 ScheduleCallHere(callback);
1591 } else {
1592 debugs(5, 5, "checkTimeouts: FD " << fd << ": Forcing comm_close()");
1593 comm_close(fd);
1594 }
1595 }
1596 }
1597
1598 /// Start waiting for a possibly half-closed connection to close
1599 // by scheduling a read callback to a monitoring handler that
1600 // will close the connection on read errors.
1601 void
1602 commStartHalfClosedMonitor(int fd)
1603 {
1604 debugs(5, 5, HERE << "adding FD " << fd << " to " << *TheHalfClosed);
1605 assert(isOpen(fd) && !commHasHalfClosedMonitor(fd));
1606 (void)TheHalfClosed->add(fd); // could also assert the result
1607 commPlanHalfClosedCheck(); // may schedule check if we added the first FD
1608 }
1609
1610 static
1611 void
1612 commPlanHalfClosedCheck()
1613 {
1614 if (!WillCheckHalfClosed && !TheHalfClosed->empty()) {
1615 eventAdd("commHalfClosedCheck", &commHalfClosedCheck, NULL, 1.0, 1);
1616 WillCheckHalfClosed = true;
1617 }
1618 }
1619
1620 /// iterates over all descriptors that may need half-closed tests and
1621 /// calls comm_read for those that do; re-schedules the check if needed
1622 static
1623 void
1624 commHalfClosedCheck(void *)
1625 {
1626 debugs(5, 5, HERE << "checking " << *TheHalfClosed);
1627
1628 typedef DescriptorSet::const_iterator DSCI;
1629 const DSCI end = TheHalfClosed->end();
1630 for (DSCI i = TheHalfClosed->begin(); i != end; ++i) {
1631 Comm::ConnectionPointer c = new Comm::Connection; // XXX: temporary. make HalfClosed a list of these.
1632 c->fd = *i;
1633 if (!fd_table[c->fd].halfClosedReader) { // not reading already
1634 AsyncCall::Pointer call = commCbCall(5,4, "commHalfClosedReader",
1635 CommIoCbPtrFun(&commHalfClosedReader, NULL));
1636 Comm::Read(c, call);
1637 fd_table[c->fd].halfClosedReader = call;
1638 } else
1639 c->fd = -1; // XXX: temporary. prevent c replacement erase closing listed FD
1640 }
1641
1642 WillCheckHalfClosed = false; // as far as we know
1643 commPlanHalfClosedCheck(); // may need to check again
1644 }
1645
1646 /// checks whether we are waiting for possibly half-closed connection to close
1647 // We are monitoring if the read handler for the fd is the monitoring handler.
1648 bool
1649 commHasHalfClosedMonitor(int fd)
1650 {
1651 return TheHalfClosed->has(fd);
1652 }
1653
1654 /// stop waiting for possibly half-closed connection to close
1655 void
1656 commStopHalfClosedMonitor(int const fd)
1657 {
1658 debugs(5, 5, HERE << "removing FD " << fd << " from " << *TheHalfClosed);
1659
1660 // cancel the read if one was scheduled
1661 AsyncCall::Pointer reader = fd_table[fd].halfClosedReader;
1662 if (reader != NULL)
1663 Comm::ReadCancel(fd, reader);
1664 fd_table[fd].halfClosedReader = NULL;
1665
1666 TheHalfClosed->del(fd);
1667 }
1668
1669 /// I/O handler for the possibly half-closed connection monitoring code
1670 static void
1671 commHalfClosedReader(const Comm::ConnectionPointer &conn, char *, size_t size, Comm::Flag flag, int, void *)
1672 {
1673 // there cannot be more data coming in on half-closed connections
1674 assert(size == 0);
1675 assert(conn != NULL);
1676 assert(commHasHalfClosedMonitor(conn->fd)); // or we would have canceled the read
1677
1678 fd_table[conn->fd].halfClosedReader = NULL; // done reading, for now
1679
1680 // nothing to do if fd is being closed
1681 if (flag == Comm::ERR_CLOSING)
1682 return;
1683
1684 // if read failed, close the connection
1685 if (flag != Comm::OK) {
1686 debugs(5, 3, HERE << "closing " << conn);
1687 conn->close();
1688 return;
1689 }
1690
1691 // continue waiting for close or error
1692 commPlanHalfClosedCheck(); // make sure this fd will be checked again
1693 }
1694
1695 CommRead::CommRead() : conn(NULL), buf(NULL), len(0), callback(NULL) {}
1696
1697 CommRead::CommRead(const Comm::ConnectionPointer &c, char *buf_, int len_, AsyncCall::Pointer &callback_)
1698 : conn(c), buf(buf_), len(len_), callback(callback_) {}
1699
1700 DeferredRead::DeferredRead () : theReader(NULL), theContext(NULL), theRead(), cancelled(false) {}
1701
1702 DeferredRead::DeferredRead (DeferrableRead *aReader, void *data, CommRead const &aRead) : theReader(aReader), theContext (data), theRead(aRead), cancelled(false) {}
1703
1704 DeferredReadManager::~DeferredReadManager()
1705 {
1706 flushReads();
1707 assert (deferredReads.empty());
1708 }
1709
1710 /* explicit instantiation required for some systems */
1711
1712 /// \cond AUTODOCS_IGNORE
1713 template cbdata_type CbDataList<DeferredRead>::CBDATA_CbDataList;
1714 /// \endcond
1715
1716 void
1717 DeferredReadManager::delayRead(DeferredRead const &aRead)
1718 {
1719 debugs(5, 3, "Adding deferred read on " << aRead.theRead.conn);
1720 CbDataList<DeferredRead> *temp = deferredReads.push_back(aRead);
1721
1722 // We have to use a global function as a closer and point to temp
1723 // instead of "this" because DeferredReadManager is not a job and
1724 // is not even cbdata protected
1725 // XXX: and yet we use cbdata protection functions on it??
1726 AsyncCall::Pointer closer = commCbCall(5,4,
1727 "DeferredReadManager::CloseHandler",
1728 CommCloseCbPtrFun(&CloseHandler, temp));
1729 comm_add_close_handler(aRead.theRead.conn->fd, closer);
1730 temp->element.closer = closer; // remeber so that we can cancel
1731 }
1732
1733 void
1734 DeferredReadManager::CloseHandler(const CommCloseCbParams &params)
1735 {
1736 if (!cbdataReferenceValid(params.data))
1737 return;
1738
1739 CbDataList<DeferredRead> *temp = (CbDataList<DeferredRead> *)params.data;
1740
1741 temp->element.closer = NULL;
1742 temp->element.markCancelled();
1743 }
1744
1745 DeferredRead
1746 DeferredReadManager::popHead(CbDataListContainer<DeferredRead> &deferredReads)
1747 {
1748 assert (!deferredReads.empty());
1749
1750 DeferredRead &read = deferredReads.head->element;
1751
1752 // NOTE: at this point the connection has been paused/stalled for an unknown
1753 // amount of time. We must re-validate that it is active and usable.
1754
1755 // If the connection has been closed already. Cancel this read.
1756 if (!Comm::IsConnOpen(read.theRead.conn)) {
1757 if (read.closer != NULL) {
1758 read.closer->cancel("Connection closed before.");
1759 read.closer = NULL;
1760 }
1761 read.markCancelled();
1762 }
1763
1764 if (!read.cancelled) {
1765 comm_remove_close_handler(read.theRead.conn->fd, read.closer);
1766 read.closer = NULL;
1767 }
1768
1769 DeferredRead result = deferredReads.pop_front();
1770
1771 return result;
1772 }
1773
1774 void
1775 DeferredReadManager::kickReads(int const count)
1776 {
1777 /* if we had CbDataList::size() we could consolidate this and flushReads */
1778
1779 if (count < 1) {
1780 flushReads();
1781 return;
1782 }
1783
1784 size_t remaining = count;
1785
1786 while (!deferredReads.empty() && remaining) {
1787 DeferredRead aRead = popHead(deferredReads);
1788 kickARead(aRead);
1789
1790 if (!aRead.cancelled)
1791 --remaining;
1792 }
1793 }
1794
1795 void
1796 DeferredReadManager::flushReads()
1797 {
1798 CbDataListContainer<DeferredRead> reads;
1799 reads = deferredReads;
1800 deferredReads = CbDataListContainer<DeferredRead>();
1801
1802 // XXX: For fairness this SHOULD randomize the order
1803 while (!reads.empty()) {
1804 DeferredRead aRead = popHead(reads);
1805 kickARead(aRead);
1806 }
1807 }
1808
1809 void
1810 DeferredReadManager::kickARead(DeferredRead const &aRead)
1811 {
1812 if (aRead.cancelled)
1813 return;
1814
1815 if (Comm::IsConnOpen(aRead.theRead.conn) && fd_table[aRead.theRead.conn->fd].closing())
1816 return;
1817
1818 debugs(5, 3, "Kicking deferred read on " << aRead.theRead.conn);
1819
1820 aRead.theReader(aRead.theContext, aRead.theRead);
1821 }
1822
1823 void
1824 DeferredRead::markCancelled()
1825 {
1826 cancelled = true;
1827 }
1828
1829 int
1830 CommSelectEngine::checkEvents(int timeout)
1831 {
1832 static time_t last_timeout = 0;
1833
1834 /* No, this shouldn't be here. But it shouldn't be in each comm handler. -adrian */
1835 if (squid_curtime > last_timeout) {
1836 last_timeout = squid_curtime;
1837 checkTimeouts();
1838 }
1839
1840 switch (Comm::DoSelect(timeout)) {
1841
1842 case Comm::OK:
1843
1844 case Comm::TIMEOUT:
1845 return 0;
1846
1847 case Comm::IDLE:
1848
1849 case Comm::SHUTDOWN:
1850 return EVENT_IDLE;
1851
1852 case Comm::COMM_ERROR:
1853 return EVENT_ERROR;
1854
1855 default:
1856 fatal_dump("comm.cc: Internal error -- this should never happen.");
1857 return EVENT_ERROR;
1858 };
1859 }
1860
1861 /// Create a unix-domain socket (UDS) that only supports FD_MSGHDR I/O.
1862 int
1863 comm_open_uds(int sock_type,
1864 int proto,
1865 struct sockaddr_un* addr,
1866 int flags)
1867 {
1868 // TODO: merge with comm_openex() when Ip::Address becomes NetAddress
1869
1870 int new_socket;
1871
1872 PROF_start(comm_open);
1873 /* Create socket for accepting new connections. */
1874 ++ statCounter.syscalls.sock.sockets;
1875
1876 /* Setup the socket addrinfo details for use */
1877 struct addrinfo AI;
1878 AI.ai_flags = 0;
1879 AI.ai_family = PF_UNIX;
1880 AI.ai_socktype = sock_type;
1881 AI.ai_protocol = proto;
1882 AI.ai_addrlen = SUN_LEN(addr);
1883 AI.ai_addr = (sockaddr*)addr;
1884 AI.ai_canonname = NULL;
1885 AI.ai_next = NULL;
1886
1887 debugs(50, 3, HERE << "Attempt open socket for: " << addr->sun_path);
1888
1889 if ((new_socket = socket(AI.ai_family, AI.ai_socktype, AI.ai_protocol)) < 0) {
1890 /* Increase the number of reserved fd's if calls to socket()
1891 * are failing because the open file table is full. This
1892 * limits the number of simultaneous clients */
1893
1894 if (limitError(errno)) {
1895 debugs(50, DBG_IMPORTANT, HERE << "socket failure: " << xstrerror());
1896 fdAdjustReserved();
1897 } else {
1898 debugs(50, DBG_CRITICAL, HERE << "socket failure: " << xstrerror());
1899 }
1900
1901 PROF_stop(comm_open);
1902 return -1;
1903 }
1904
1905 debugs(50, 3, "Opened UDS FD " << new_socket << " : family=" << AI.ai_family << ", type=" << AI.ai_socktype << ", protocol=" << AI.ai_protocol);
1906
1907 /* update fdstat */
1908 debugs(50, 5, HERE << "FD " << new_socket << " is a new socket");
1909
1910 assert(!isOpen(new_socket));
1911 fd_open(new_socket, FD_MSGHDR, NULL);
1912
1913 fdd_table[new_socket].close_file = NULL;
1914
1915 fdd_table[new_socket].close_line = 0;
1916
1917 fd_table[new_socket].sock_family = AI.ai_family;
1918
1919 if (!(flags & COMM_NOCLOEXEC))
1920 commSetCloseOnExec(new_socket);
1921
1922 if (flags & COMM_REUSEADDR)
1923 commSetReuseAddr(new_socket);
1924
1925 if (flags & COMM_NONBLOCKING) {
1926 if (commSetNonBlocking(new_socket) != Comm::OK) {
1927 comm_close(new_socket);
1928 PROF_stop(comm_open);
1929 return -1;
1930 }
1931 }
1932
1933 if (flags & COMM_DOBIND) {
1934 if (commBind(new_socket, AI) != Comm::OK) {
1935 comm_close(new_socket);
1936 PROF_stop(comm_open);
1937 return -1;
1938 }
1939 }
1940
1941 #ifdef TCP_NODELAY
1942 if (sock_type == SOCK_STREAM)
1943 commSetTcpNoDelay(new_socket);
1944
1945 #endif
1946
1947 if (Config.tcpRcvBufsz > 0 && sock_type == SOCK_STREAM)
1948 commSetTcpRcvbuf(new_socket, Config.tcpRcvBufsz);
1949
1950 PROF_stop(comm_open);
1951
1952 return new_socket;
1953 }
1954