]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/cgroup.c
tests: reflect that we can now handle devices with very long sysfs paths
[thirdparty/systemd.git] / src / core / cgroup.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <fcntl.h>
4
5 #include "sd-messages.h"
6
7 #include "af-list.h"
8 #include "alloc-util.h"
9 #include "blockdev-util.h"
10 #include "bpf-devices.h"
11 #include "bpf-firewall.h"
12 #include "bpf-foreign.h"
13 #include "bpf-socket-bind.h"
14 #include "btrfs-util.h"
15 #include "bus-error.h"
16 #include "cgroup-setup.h"
17 #include "cgroup-util.h"
18 #include "cgroup.h"
19 #include "fd-util.h"
20 #include "fileio.h"
21 #include "in-addr-prefix-util.h"
22 #include "inotify-util.h"
23 #include "io-util.h"
24 #include "ip-protocol-list.h"
25 #include "limits-util.h"
26 #include "nulstr-util.h"
27 #include "parse-util.h"
28 #include "path-util.h"
29 #include "percent-util.h"
30 #include "process-util.h"
31 #include "procfs-util.h"
32 #include "restrict-ifaces.h"
33 #include "special.h"
34 #include "stat-util.h"
35 #include "stdio-util.h"
36 #include "string-table.h"
37 #include "string-util.h"
38 #include "virt.h"
39
40 #if BPF_FRAMEWORK
41 #include "bpf-dlopen.h"
42 #include "bpf-link.h"
43 #include "bpf/restrict_fs/restrict-fs-skel.h"
44 #endif
45
46 #define CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
47
48 /* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
49 * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
50 * out specific attributes from us. */
51 #define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
52
53 uint64_t tasks_max_resolve(const TasksMax *tasks_max) {
54 if (tasks_max->scale == 0)
55 return tasks_max->value;
56
57 return system_tasks_max_scale(tasks_max->value, tasks_max->scale);
58 }
59
60 bool manager_owns_host_root_cgroup(Manager *m) {
61 assert(m);
62
63 /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
64 * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
65 * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
66 * we run in any kind of container virtualization. */
67
68 if (MANAGER_IS_USER(m))
69 return false;
70
71 if (detect_container() > 0)
72 return false;
73
74 return empty_or_root(m->cgroup_root);
75 }
76
77 bool unit_has_startup_cgroup_constraints(Unit *u) {
78 assert(u);
79
80 /* Returns true if this unit has any directives which apply during
81 * startup/shutdown phases. */
82
83 CGroupContext *c;
84
85 c = unit_get_cgroup_context(u);
86 if (!c)
87 return false;
88
89 return c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID ||
90 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
91 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
92 c->startup_cpuset_cpus.set ||
93 c->startup_cpuset_mems.set;
94 }
95
96 bool unit_has_host_root_cgroup(Unit *u) {
97 assert(u);
98
99 /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
100 * the manager manages the root cgroup. */
101
102 if (!manager_owns_host_root_cgroup(u->manager))
103 return false;
104
105 return unit_has_name(u, SPECIAL_ROOT_SLICE);
106 }
107
108 static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
109 int r;
110
111 r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
112 if (r < 0)
113 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
114 strna(attribute), empty_to_root(u->cgroup_path), (int) strcspn(value, NEWLINE), value);
115
116 return r;
117 }
118
119 static void cgroup_compat_warn(void) {
120 static bool cgroup_compat_warned = false;
121
122 if (cgroup_compat_warned)
123 return;
124
125 log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
126 "See cgroup-compat debug messages for details.");
127
128 cgroup_compat_warned = true;
129 }
130
131 #define log_cgroup_compat(unit, fmt, ...) do { \
132 cgroup_compat_warn(); \
133 log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
134 } while (false)
135
136 void cgroup_context_init(CGroupContext *c) {
137 assert(c);
138
139 /* Initialize everything to the kernel defaults. */
140
141 *c = (CGroupContext) {
142 .cpu_weight = CGROUP_WEIGHT_INVALID,
143 .startup_cpu_weight = CGROUP_WEIGHT_INVALID,
144 .cpu_quota_per_sec_usec = USEC_INFINITY,
145 .cpu_quota_period_usec = USEC_INFINITY,
146
147 .cpu_shares = CGROUP_CPU_SHARES_INVALID,
148 .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
149
150 .memory_high = CGROUP_LIMIT_MAX,
151 .memory_max = CGROUP_LIMIT_MAX,
152 .memory_swap_max = CGROUP_LIMIT_MAX,
153
154 .memory_limit = CGROUP_LIMIT_MAX,
155
156 .io_weight = CGROUP_WEIGHT_INVALID,
157 .startup_io_weight = CGROUP_WEIGHT_INVALID,
158
159 .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
160 .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
161
162 .tasks_max = TASKS_MAX_UNSET,
163
164 .moom_swap = MANAGED_OOM_AUTO,
165 .moom_mem_pressure = MANAGED_OOM_AUTO,
166 .moom_preference = MANAGED_OOM_PREFERENCE_NONE,
167 };
168 }
169
170 void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
171 assert(c);
172 assert(a);
173
174 LIST_REMOVE(device_allow, c->device_allow, a);
175 free(a->path);
176 free(a);
177 }
178
179 void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
180 assert(c);
181 assert(w);
182
183 LIST_REMOVE(device_weights, c->io_device_weights, w);
184 free(w->path);
185 free(w);
186 }
187
188 void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
189 assert(c);
190 assert(l);
191
192 LIST_REMOVE(device_latencies, c->io_device_latencies, l);
193 free(l->path);
194 free(l);
195 }
196
197 void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
198 assert(c);
199 assert(l);
200
201 LIST_REMOVE(device_limits, c->io_device_limits, l);
202 free(l->path);
203 free(l);
204 }
205
206 void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
207 assert(c);
208 assert(w);
209
210 LIST_REMOVE(device_weights, c->blockio_device_weights, w);
211 free(w->path);
212 free(w);
213 }
214
215 void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
216 assert(c);
217 assert(b);
218
219 LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
220 free(b->path);
221 free(b);
222 }
223
224 void cgroup_context_remove_bpf_foreign_program(CGroupContext *c, CGroupBPFForeignProgram *p) {
225 assert(c);
226 assert(p);
227
228 LIST_REMOVE(programs, c->bpf_foreign_programs, p);
229 free(p->bpffs_path);
230 free(p);
231 }
232
233 void cgroup_context_remove_socket_bind(CGroupSocketBindItem **head) {
234 assert(head);
235
236 while (*head) {
237 CGroupSocketBindItem *h = *head;
238 LIST_REMOVE(socket_bind_items, *head, h);
239 free(h);
240 }
241 }
242
243 void cgroup_context_done(CGroupContext *c) {
244 assert(c);
245
246 while (c->io_device_weights)
247 cgroup_context_free_io_device_weight(c, c->io_device_weights);
248
249 while (c->io_device_latencies)
250 cgroup_context_free_io_device_latency(c, c->io_device_latencies);
251
252 while (c->io_device_limits)
253 cgroup_context_free_io_device_limit(c, c->io_device_limits);
254
255 while (c->blockio_device_weights)
256 cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
257
258 while (c->blockio_device_bandwidths)
259 cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
260
261 while (c->device_allow)
262 cgroup_context_free_device_allow(c, c->device_allow);
263
264 cgroup_context_remove_socket_bind(&c->socket_bind_allow);
265 cgroup_context_remove_socket_bind(&c->socket_bind_deny);
266
267 c->ip_address_allow = set_free(c->ip_address_allow);
268 c->ip_address_deny = set_free(c->ip_address_deny);
269
270 c->ip_filters_ingress = strv_free(c->ip_filters_ingress);
271 c->ip_filters_egress = strv_free(c->ip_filters_egress);
272
273 while (c->bpf_foreign_programs)
274 cgroup_context_remove_bpf_foreign_program(c, c->bpf_foreign_programs);
275
276 c->restrict_network_interfaces = set_free(c->restrict_network_interfaces);
277
278 cpu_set_reset(&c->cpuset_cpus);
279 cpu_set_reset(&c->startup_cpuset_cpus);
280 cpu_set_reset(&c->cpuset_mems);
281 cpu_set_reset(&c->startup_cpuset_mems);
282 }
283
284 static int unit_get_kernel_memory_limit(Unit *u, const char *file, uint64_t *ret) {
285 assert(u);
286
287 if (!u->cgroup_realized)
288 return -EOWNERDEAD;
289
290 return cg_get_attribute_as_uint64("memory", u->cgroup_path, file, ret);
291 }
292
293 static int unit_compare_memory_limit(Unit *u, const char *property_name, uint64_t *ret_unit_value, uint64_t *ret_kernel_value) {
294 CGroupContext *c;
295 CGroupMask m;
296 const char *file;
297 uint64_t unit_value;
298 int r;
299
300 /* Compare kernel memcg configuration against our internal systemd state. Unsupported (and will
301 * return -ENODATA) on cgroup v1.
302 *
303 * Returns:
304 *
305 * <0: On error.
306 * 0: If the kernel memory setting doesn't match our configuration.
307 * >0: If the kernel memory setting matches our configuration.
308 *
309 * The following values are only guaranteed to be populated on return >=0:
310 *
311 * - ret_unit_value will contain our internal expected value for the unit, page-aligned.
312 * - ret_kernel_value will contain the actual value presented by the kernel. */
313
314 assert(u);
315
316 r = cg_all_unified();
317 if (r < 0)
318 return log_debug_errno(r, "Failed to determine cgroup hierarchy version: %m");
319
320 /* Unsupported on v1.
321 *
322 * We don't return ENOENT, since that could actually mask a genuine problem where somebody else has
323 * silently masked the controller. */
324 if (r == 0)
325 return -ENODATA;
326
327 /* The root slice doesn't have any controller files, so we can't compare anything. */
328 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
329 return -ENODATA;
330
331 /* It's possible to have MemoryFoo set without systemd wanting to have the memory controller enabled,
332 * for example, in the case of DisableControllers= or cgroup_disable on the kernel command line. To
333 * avoid specious errors in these scenarios, check that we even expect the memory controller to be
334 * enabled at all. */
335 m = unit_get_target_mask(u);
336 if (!FLAGS_SET(m, CGROUP_MASK_MEMORY))
337 return -ENODATA;
338
339 assert_se(c = unit_get_cgroup_context(u));
340
341 if (streq(property_name, "MemoryLow")) {
342 unit_value = unit_get_ancestor_memory_low(u);
343 file = "memory.low";
344 } else if (streq(property_name, "MemoryMin")) {
345 unit_value = unit_get_ancestor_memory_min(u);
346 file = "memory.min";
347 } else if (streq(property_name, "MemoryHigh")) {
348 unit_value = c->memory_high;
349 file = "memory.high";
350 } else if (streq(property_name, "MemoryMax")) {
351 unit_value = c->memory_max;
352 file = "memory.max";
353 } else if (streq(property_name, "MemorySwapMax")) {
354 unit_value = c->memory_swap_max;
355 file = "memory.swap.max";
356 } else
357 return -EINVAL;
358
359 r = unit_get_kernel_memory_limit(u, file, ret_kernel_value);
360 if (r < 0)
361 return log_unit_debug_errno(u, r, "Failed to parse %s: %m", file);
362
363 /* It's intended (soon) in a future kernel to not expose cgroup memory limits rounded to page
364 * boundaries, but instead separate the user-exposed limit, which is whatever userspace told us, from
365 * our internal page-counting. To support those future kernels, just check the value itself first
366 * without any page-alignment. */
367 if (*ret_kernel_value == unit_value) {
368 *ret_unit_value = unit_value;
369 return 1;
370 }
371
372 /* The current kernel behaviour, by comparison, is that even if you write a particular number of
373 * bytes into a cgroup memory file, it always returns that number page-aligned down (since the kernel
374 * internally stores cgroup limits in pages). As such, so long as it aligns properly, everything is
375 * cricket. */
376 if (unit_value != CGROUP_LIMIT_MAX)
377 unit_value = PAGE_ALIGN_DOWN(unit_value);
378
379 *ret_unit_value = unit_value;
380
381 return *ret_kernel_value == *ret_unit_value;
382 }
383
384 #define FORMAT_CGROUP_DIFF_MAX 128
385
386 static char *format_cgroup_memory_limit_comparison(char *buf, size_t l, Unit *u, const char *property_name) {
387 uint64_t kval, sval;
388 int r;
389
390 assert(u);
391 assert(buf);
392 assert(l > 0);
393
394 r = unit_compare_memory_limit(u, property_name, &sval, &kval);
395
396 /* memory.swap.max is special in that it relies on CONFIG_MEMCG_SWAP (and the default swapaccount=1).
397 * In the absence of reliably being able to detect whether memcg swap support is available or not,
398 * only complain if the error is not ENOENT. */
399 if (r > 0 || IN_SET(r, -ENODATA, -EOWNERDEAD) ||
400 (r == -ENOENT && streq(property_name, "MemorySwapMax"))) {
401 buf[0] = 0;
402 return buf;
403 }
404
405 if (r < 0) {
406 (void) snprintf(buf, l, " (error getting kernel value: %s)", strerror_safe(r));
407 return buf;
408 }
409
410 (void) snprintf(buf, l, " (different value in kernel: %" PRIu64 ")", kval);
411
412 return buf;
413 }
414
415 void cgroup_context_dump(Unit *u, FILE* f, const char *prefix) {
416 _cleanup_free_ char *disable_controllers_str = NULL, *cpuset_cpus = NULL, *cpuset_mems = NULL, *startup_cpuset_cpus = NULL, *startup_cpuset_mems = NULL;
417 CGroupContext *c;
418 struct in_addr_prefix *iaai;
419
420 char cda[FORMAT_CGROUP_DIFF_MAX];
421 char cdb[FORMAT_CGROUP_DIFF_MAX];
422 char cdc[FORMAT_CGROUP_DIFF_MAX];
423 char cdd[FORMAT_CGROUP_DIFF_MAX];
424 char cde[FORMAT_CGROUP_DIFF_MAX];
425
426 assert(u);
427 assert(f);
428
429 assert_se(c = unit_get_cgroup_context(u));
430
431 prefix = strempty(prefix);
432
433 (void) cg_mask_to_string(c->disable_controllers, &disable_controllers_str);
434
435 cpuset_cpus = cpu_set_to_range_string(&c->cpuset_cpus);
436 startup_cpuset_cpus = cpu_set_to_range_string(&c->startup_cpuset_cpus);
437 cpuset_mems = cpu_set_to_range_string(&c->cpuset_mems);
438 startup_cpuset_mems = cpu_set_to_range_string(&c->startup_cpuset_mems);
439
440 fprintf(f,
441 "%sCPUAccounting: %s\n"
442 "%sIOAccounting: %s\n"
443 "%sBlockIOAccounting: %s\n"
444 "%sMemoryAccounting: %s\n"
445 "%sTasksAccounting: %s\n"
446 "%sIPAccounting: %s\n"
447 "%sCPUWeight: %" PRIu64 "\n"
448 "%sStartupCPUWeight: %" PRIu64 "\n"
449 "%sCPUShares: %" PRIu64 "\n"
450 "%sStartupCPUShares: %" PRIu64 "\n"
451 "%sCPUQuotaPerSecSec: %s\n"
452 "%sCPUQuotaPeriodSec: %s\n"
453 "%sAllowedCPUs: %s\n"
454 "%sStartupAllowedCPUs: %s\n"
455 "%sAllowedMemoryNodes: %s\n"
456 "%sStartupAllowedMemoryNodes: %s\n"
457 "%sIOWeight: %" PRIu64 "\n"
458 "%sStartupIOWeight: %" PRIu64 "\n"
459 "%sBlockIOWeight: %" PRIu64 "\n"
460 "%sStartupBlockIOWeight: %" PRIu64 "\n"
461 "%sDefaultMemoryMin: %" PRIu64 "\n"
462 "%sDefaultMemoryLow: %" PRIu64 "\n"
463 "%sMemoryMin: %" PRIu64 "%s\n"
464 "%sMemoryLow: %" PRIu64 "%s\n"
465 "%sMemoryHigh: %" PRIu64 "%s\n"
466 "%sMemoryMax: %" PRIu64 "%s\n"
467 "%sMemorySwapMax: %" PRIu64 "%s\n"
468 "%sMemoryLimit: %" PRIu64 "\n"
469 "%sTasksMax: %" PRIu64 "\n"
470 "%sDevicePolicy: %s\n"
471 "%sDisableControllers: %s\n"
472 "%sDelegate: %s\n"
473 "%sManagedOOMSwap: %s\n"
474 "%sManagedOOMMemoryPressure: %s\n"
475 "%sManagedOOMMemoryPressureLimit: " PERMYRIAD_AS_PERCENT_FORMAT_STR "\n"
476 "%sManagedOOMPreference: %s\n",
477 prefix, yes_no(c->cpu_accounting),
478 prefix, yes_no(c->io_accounting),
479 prefix, yes_no(c->blockio_accounting),
480 prefix, yes_no(c->memory_accounting),
481 prefix, yes_no(c->tasks_accounting),
482 prefix, yes_no(c->ip_accounting),
483 prefix, c->cpu_weight,
484 prefix, c->startup_cpu_weight,
485 prefix, c->cpu_shares,
486 prefix, c->startup_cpu_shares,
487 prefix, FORMAT_TIMESPAN(c->cpu_quota_per_sec_usec, 1),
488 prefix, FORMAT_TIMESPAN(c->cpu_quota_period_usec, 1),
489 prefix, strempty(cpuset_cpus),
490 prefix, strempty(startup_cpuset_cpus),
491 prefix, strempty(cpuset_mems),
492 prefix, strempty(startup_cpuset_mems),
493 prefix, c->io_weight,
494 prefix, c->startup_io_weight,
495 prefix, c->blockio_weight,
496 prefix, c->startup_blockio_weight,
497 prefix, c->default_memory_min,
498 prefix, c->default_memory_low,
499 prefix, c->memory_min, format_cgroup_memory_limit_comparison(cda, sizeof(cda), u, "MemoryMin"),
500 prefix, c->memory_low, format_cgroup_memory_limit_comparison(cdb, sizeof(cdb), u, "MemoryLow"),
501 prefix, c->memory_high, format_cgroup_memory_limit_comparison(cdc, sizeof(cdc), u, "MemoryHigh"),
502 prefix, c->memory_max, format_cgroup_memory_limit_comparison(cdd, sizeof(cdd), u, "MemoryMax"),
503 prefix, c->memory_swap_max, format_cgroup_memory_limit_comparison(cde, sizeof(cde), u, "MemorySwapMax"),
504 prefix, c->memory_limit,
505 prefix, tasks_max_resolve(&c->tasks_max),
506 prefix, cgroup_device_policy_to_string(c->device_policy),
507 prefix, strempty(disable_controllers_str),
508 prefix, yes_no(c->delegate),
509 prefix, managed_oom_mode_to_string(c->moom_swap),
510 prefix, managed_oom_mode_to_string(c->moom_mem_pressure),
511 prefix, PERMYRIAD_AS_PERCENT_FORMAT_VAL(UINT32_SCALE_TO_PERMYRIAD(c->moom_mem_pressure_limit)),
512 prefix, managed_oom_preference_to_string(c->moom_preference));
513
514 if (c->delegate) {
515 _cleanup_free_ char *t = NULL;
516
517 (void) cg_mask_to_string(c->delegate_controllers, &t);
518
519 fprintf(f, "%sDelegateControllers: %s\n",
520 prefix,
521 strempty(t));
522 }
523
524 LIST_FOREACH(device_allow, a, c->device_allow)
525 fprintf(f,
526 "%sDeviceAllow: %s %s%s%s\n",
527 prefix,
528 a->path,
529 a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
530
531 LIST_FOREACH(device_weights, iw, c->io_device_weights)
532 fprintf(f,
533 "%sIODeviceWeight: %s %" PRIu64 "\n",
534 prefix,
535 iw->path,
536 iw->weight);
537
538 LIST_FOREACH(device_latencies, l, c->io_device_latencies)
539 fprintf(f,
540 "%sIODeviceLatencyTargetSec: %s %s\n",
541 prefix,
542 l->path,
543 FORMAT_TIMESPAN(l->target_usec, 1));
544
545 LIST_FOREACH(device_limits, il, c->io_device_limits)
546 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
547 if (il->limits[type] != cgroup_io_limit_defaults[type])
548 fprintf(f,
549 "%s%s: %s %s\n",
550 prefix,
551 cgroup_io_limit_type_to_string(type),
552 il->path,
553 FORMAT_BYTES(il->limits[type]));
554
555 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
556 fprintf(f,
557 "%sBlockIODeviceWeight: %s %" PRIu64,
558 prefix,
559 w->path,
560 w->weight);
561
562 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
563 if (b->rbps != CGROUP_LIMIT_MAX)
564 fprintf(f,
565 "%sBlockIOReadBandwidth: %s %s\n",
566 prefix,
567 b->path,
568 FORMAT_BYTES(b->rbps));
569 if (b->wbps != CGROUP_LIMIT_MAX)
570 fprintf(f,
571 "%sBlockIOWriteBandwidth: %s %s\n",
572 prefix,
573 b->path,
574 FORMAT_BYTES(b->wbps));
575 }
576
577 SET_FOREACH(iaai, c->ip_address_allow) {
578 _cleanup_free_ char *k = NULL;
579
580 (void) in_addr_prefix_to_string(iaai->family, &iaai->address, iaai->prefixlen, &k);
581 fprintf(f, "%sIPAddressAllow: %s\n", prefix, strnull(k));
582 }
583
584 SET_FOREACH(iaai, c->ip_address_deny) {
585 _cleanup_free_ char *k = NULL;
586
587 (void) in_addr_prefix_to_string(iaai->family, &iaai->address, iaai->prefixlen, &k);
588 fprintf(f, "%sIPAddressDeny: %s\n", prefix, strnull(k));
589 }
590
591 STRV_FOREACH(path, c->ip_filters_ingress)
592 fprintf(f, "%sIPIngressFilterPath: %s\n", prefix, *path);
593
594 STRV_FOREACH(path, c->ip_filters_egress)
595 fprintf(f, "%sIPEgressFilterPath: %s\n", prefix, *path);
596
597 LIST_FOREACH(programs, p, c->bpf_foreign_programs)
598 fprintf(f, "%sBPFProgram: %s:%s",
599 prefix, bpf_cgroup_attach_type_to_string(p->attach_type), p->bpffs_path);
600
601 if (c->socket_bind_allow) {
602 fprintf(f, "%sSocketBindAllow:", prefix);
603 LIST_FOREACH(socket_bind_items, bi, c->socket_bind_allow)
604 cgroup_context_dump_socket_bind_item(bi, f);
605 fputc('\n', f);
606 }
607
608 if (c->socket_bind_deny) {
609 fprintf(f, "%sSocketBindDeny:", prefix);
610 LIST_FOREACH(socket_bind_items, bi, c->socket_bind_deny)
611 cgroup_context_dump_socket_bind_item(bi, f);
612 fputc('\n', f);
613 }
614
615 if (c->restrict_network_interfaces) {
616 char *iface;
617 SET_FOREACH(iface, c->restrict_network_interfaces)
618 fprintf(f, "%sRestrictNetworkInterfaces: %s\n", prefix, iface);
619 }
620 }
621
622 void cgroup_context_dump_socket_bind_item(const CGroupSocketBindItem *item, FILE *f) {
623 const char *family, *colon1, *protocol = "", *colon2 = "";
624
625 family = strempty(af_to_ipv4_ipv6(item->address_family));
626 colon1 = isempty(family) ? "" : ":";
627
628 if (item->ip_protocol != 0) {
629 protocol = ip_protocol_to_tcp_udp(item->ip_protocol);
630 colon2 = ":";
631 }
632
633 if (item->nr_ports == 0)
634 fprintf(f, " %s%s%s%sany", family, colon1, protocol, colon2);
635 else if (item->nr_ports == 1)
636 fprintf(f, " %s%s%s%s%" PRIu16, family, colon1, protocol, colon2, item->port_min);
637 else {
638 uint16_t port_max = item->port_min + item->nr_ports - 1;
639 fprintf(f, " %s%s%s%s%" PRIu16 "-%" PRIu16, family, colon1, protocol, colon2,
640 item->port_min, port_max);
641 }
642 }
643
644 int cgroup_add_device_allow(CGroupContext *c, const char *dev, const char *mode) {
645 _cleanup_free_ CGroupDeviceAllow *a = NULL;
646 _cleanup_free_ char *d = NULL;
647
648 assert(c);
649 assert(dev);
650 assert(isempty(mode) || in_charset(mode, "rwm"));
651
652 a = new(CGroupDeviceAllow, 1);
653 if (!a)
654 return -ENOMEM;
655
656 d = strdup(dev);
657 if (!d)
658 return -ENOMEM;
659
660 *a = (CGroupDeviceAllow) {
661 .path = TAKE_PTR(d),
662 .r = isempty(mode) || strchr(mode, 'r'),
663 .w = isempty(mode) || strchr(mode, 'w'),
664 .m = isempty(mode) || strchr(mode, 'm'),
665 };
666
667 LIST_PREPEND(device_allow, c->device_allow, a);
668 TAKE_PTR(a);
669
670 return 0;
671 }
672
673 int cgroup_add_bpf_foreign_program(CGroupContext *c, uint32_t attach_type, const char *bpffs_path) {
674 CGroupBPFForeignProgram *p;
675 _cleanup_free_ char *d = NULL;
676
677 assert(c);
678 assert(bpffs_path);
679
680 if (!path_is_normalized(bpffs_path) || !path_is_absolute(bpffs_path))
681 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Path is not normalized: %m");
682
683 d = strdup(bpffs_path);
684 if (!d)
685 return log_oom();
686
687 p = new(CGroupBPFForeignProgram, 1);
688 if (!p)
689 return log_oom();
690
691 *p = (CGroupBPFForeignProgram) {
692 .attach_type = attach_type,
693 .bpffs_path = TAKE_PTR(d),
694 };
695
696 LIST_PREPEND(programs, c->bpf_foreign_programs, TAKE_PTR(p));
697
698 return 0;
699 }
700
701 #define UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(entry) \
702 uint64_t unit_get_ancestor_##entry(Unit *u) { \
703 CGroupContext *c; \
704 \
705 /* 1. Is entry set in this unit? If so, use that. \
706 * 2. Is the default for this entry set in any \
707 * ancestor? If so, use that. \
708 * 3. Otherwise, return CGROUP_LIMIT_MIN. */ \
709 \
710 assert(u); \
711 \
712 c = unit_get_cgroup_context(u); \
713 if (c && c->entry##_set) \
714 return c->entry; \
715 \
716 while ((u = UNIT_GET_SLICE(u))) { \
717 c = unit_get_cgroup_context(u); \
718 if (c && c->default_##entry##_set) \
719 return c->default_##entry; \
720 } \
721 \
722 /* We've reached the root, but nobody had default for \
723 * this entry set, so set it to the kernel default. */ \
724 return CGROUP_LIMIT_MIN; \
725 }
726
727 UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_low);
728 UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_min);
729
730 static void unit_set_xattr_graceful(Unit *u, const char *cgroup_path, const char *name, const void *data, size_t size) {
731 int r;
732
733 assert(u);
734 assert(name);
735
736 if (!cgroup_path) {
737 if (!u->cgroup_path)
738 return;
739
740 cgroup_path = u->cgroup_path;
741 }
742
743 r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, cgroup_path, name, data, size, 0);
744 if (r < 0)
745 log_unit_debug_errno(u, r, "Failed to set '%s' xattr on control group %s, ignoring: %m", name, empty_to_root(cgroup_path));
746 }
747
748 static void unit_remove_xattr_graceful(Unit *u, const char *cgroup_path, const char *name) {
749 int r;
750
751 assert(u);
752 assert(name);
753
754 if (!cgroup_path) {
755 if (!u->cgroup_path)
756 return;
757
758 cgroup_path = u->cgroup_path;
759 }
760
761 r = cg_remove_xattr(SYSTEMD_CGROUP_CONTROLLER, cgroup_path, name);
762 if (r < 0 && r != -ENODATA)
763 log_unit_debug_errno(u, r, "Failed to remove '%s' xattr flag on control group %s, ignoring: %m", name, empty_to_root(cgroup_path));
764 }
765
766 void cgroup_oomd_xattr_apply(Unit *u, const char *cgroup_path) {
767 CGroupContext *c;
768
769 assert(u);
770
771 c = unit_get_cgroup_context(u);
772 if (!c)
773 return;
774
775 if (c->moom_preference == MANAGED_OOM_PREFERENCE_OMIT)
776 unit_set_xattr_graceful(u, cgroup_path, "user.oomd_omit", "1", 1);
777
778 if (c->moom_preference == MANAGED_OOM_PREFERENCE_AVOID)
779 unit_set_xattr_graceful(u, cgroup_path, "user.oomd_avoid", "1", 1);
780
781 if (c->moom_preference != MANAGED_OOM_PREFERENCE_AVOID)
782 unit_remove_xattr_graceful(u, cgroup_path, "user.oomd_avoid");
783
784 if (c->moom_preference != MANAGED_OOM_PREFERENCE_OMIT)
785 unit_remove_xattr_graceful(u, cgroup_path, "user.oomd_omit");
786 }
787
788 static void cgroup_xattr_apply(Unit *u) {
789 bool b;
790
791 assert(u);
792
793 if (!MANAGER_IS_SYSTEM(u->manager))
794 return;
795
796 b = !sd_id128_is_null(u->invocation_id);
797 FOREACH_STRING(xn, "trusted.invocation_id", "user.invocation_id") {
798 if (b)
799 unit_set_xattr_graceful(u, NULL, xn, SD_ID128_TO_STRING(u->invocation_id), 32);
800 else
801 unit_remove_xattr_graceful(u, NULL, xn);
802 }
803
804 /* Indicate on the cgroup whether delegation is on, via an xattr. This is best-effort, as old kernels
805 * didn't support xattrs on cgroups at all. Later they got support for setting 'trusted.*' xattrs,
806 * and even later 'user.*' xattrs. We started setting this field when 'trusted.*' was added, and
807 * given this is now pretty much API, let's continue to support that. But also set 'user.*' as well,
808 * since it is readable by any user, not just CAP_SYS_ADMIN. This hence comes with slightly weaker
809 * security (as users who got delegated cgroups could turn it off if they like), but this shouldn't
810 * be a big problem given this communicates delegation state to clients, but the manager never reads
811 * it. */
812 b = unit_cgroup_delegate(u);
813 FOREACH_STRING(xn, "trusted.delegate", "user.delegate") {
814 if (b)
815 unit_set_xattr_graceful(u, NULL, xn, "1", 1);
816 else
817 unit_remove_xattr_graceful(u, NULL, xn);
818 }
819
820 cgroup_oomd_xattr_apply(u, u->cgroup_path);
821 }
822
823 static int lookup_block_device(const char *p, dev_t *ret) {
824 dev_t rdev, dev = 0;
825 mode_t mode;
826 int r;
827
828 assert(p);
829 assert(ret);
830
831 r = device_path_parse_major_minor(p, &mode, &rdev);
832 if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
833 struct stat st;
834
835 if (stat(p, &st) < 0)
836 return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
837
838 mode = st.st_mode;
839 rdev = st.st_rdev;
840 dev = st.st_dev;
841 } else if (r < 0)
842 return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
843
844 if (S_ISCHR(mode))
845 return log_warning_errno(SYNTHETIC_ERRNO(ENOTBLK),
846 "Device node '%s' is a character device, but block device needed.", p);
847 if (S_ISBLK(mode))
848 *ret = rdev;
849 else if (major(dev) != 0)
850 *ret = dev; /* If this is not a device node then use the block device this file is stored on */
851 else {
852 /* If this is btrfs, getting the backing block device is a bit harder */
853 r = btrfs_get_block_device(p, ret);
854 if (r == -ENOTTY)
855 return log_warning_errno(SYNTHETIC_ERRNO(ENODEV),
856 "'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
857 if (r < 0)
858 return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
859 }
860
861 /* If this is a LUKS/DM device, recursively try to get the originating block device */
862 while (block_get_originating(*ret, ret) > 0);
863
864 /* If this is a partition, try to get the originating block device */
865 (void) block_get_whole_disk(*ret, ret);
866 return 0;
867 }
868
869 static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
870 return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
871 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
872 }
873
874 static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
875 return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
876 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
877 }
878
879 static bool cgroup_context_has_allowed_cpus(CGroupContext *c) {
880 return c->cpuset_cpus.set || c->startup_cpuset_cpus.set;
881 }
882
883 static bool cgroup_context_has_allowed_mems(CGroupContext *c) {
884 return c->cpuset_mems.set || c->startup_cpuset_mems.set;
885 }
886
887 static uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
888 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
889 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
890 return c->startup_cpu_weight;
891 else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
892 return c->cpu_weight;
893 else
894 return CGROUP_WEIGHT_DEFAULT;
895 }
896
897 static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
898 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
899 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
900 return c->startup_cpu_shares;
901 else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
902 return c->cpu_shares;
903 else
904 return CGROUP_CPU_SHARES_DEFAULT;
905 }
906
907 static CPUSet *cgroup_context_allowed_cpus(CGroupContext *c, ManagerState state) {
908 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
909 c->startup_cpuset_cpus.set)
910 return &c->startup_cpuset_cpus;
911 else
912 return &c->cpuset_cpus;
913 }
914
915 static CPUSet *cgroup_context_allowed_mems(CGroupContext *c, ManagerState state) {
916 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
917 c->startup_cpuset_mems.set)
918 return &c->startup_cpuset_mems;
919 else
920 return &c->cpuset_mems;
921 }
922
923 usec_t cgroup_cpu_adjust_period(usec_t period, usec_t quota, usec_t resolution, usec_t max_period) {
924 /* kernel uses a minimum resolution of 1ms, so both period and (quota * period)
925 * need to be higher than that boundary. quota is specified in USecPerSec.
926 * Additionally, period must be at most max_period. */
927 assert(quota > 0);
928
929 return MIN(MAX3(period, resolution, resolution * USEC_PER_SEC / quota), max_period);
930 }
931
932 static usec_t cgroup_cpu_adjust_period_and_log(Unit *u, usec_t period, usec_t quota) {
933 usec_t new_period;
934
935 if (quota == USEC_INFINITY)
936 /* Always use default period for infinity quota. */
937 return CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
938
939 if (period == USEC_INFINITY)
940 /* Default period was requested. */
941 period = CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
942
943 /* Clamp to interval [1ms, 1s] */
944 new_period = cgroup_cpu_adjust_period(period, quota, USEC_PER_MSEC, USEC_PER_SEC);
945
946 if (new_period != period) {
947 log_unit_full(u, u->warned_clamping_cpu_quota_period ? LOG_DEBUG : LOG_WARNING,
948 "Clamping CPU interval for cpu.max: period is now %s",
949 FORMAT_TIMESPAN(new_period, 1));
950 u->warned_clamping_cpu_quota_period = true;
951 }
952
953 return new_period;
954 }
955
956 static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
957 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
958
959 xsprintf(buf, "%" PRIu64 "\n", weight);
960 (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
961 }
962
963 static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota, usec_t period) {
964 char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
965
966 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
967 if (quota != USEC_INFINITY)
968 xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
969 MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC), period);
970 else
971 xsprintf(buf, "max " USEC_FMT "\n", period);
972 (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
973 }
974
975 static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
976 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
977
978 xsprintf(buf, "%" PRIu64 "\n", shares);
979 (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
980 }
981
982 static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota, usec_t period) {
983 char buf[DECIMAL_STR_MAX(usec_t) + 2];
984
985 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
986
987 xsprintf(buf, USEC_FMT "\n", period);
988 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
989
990 if (quota != USEC_INFINITY) {
991 xsprintf(buf, USEC_FMT "\n", MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC));
992 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
993 } else
994 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
995 }
996
997 static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
998 return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
999 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
1000 }
1001
1002 static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
1003 return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
1004 CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
1005 }
1006
1007 static void cgroup_apply_unified_cpuset(Unit *u, const CPUSet *cpus, const char *name) {
1008 _cleanup_free_ char *buf = NULL;
1009
1010 buf = cpu_set_to_range_string(cpus);
1011 if (!buf) {
1012 log_oom();
1013 return;
1014 }
1015
1016 (void) set_attribute_and_warn(u, "cpuset", name, buf);
1017 }
1018
1019 static bool cgroup_context_has_io_config(CGroupContext *c) {
1020 return c->io_accounting ||
1021 c->io_weight != CGROUP_WEIGHT_INVALID ||
1022 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
1023 c->io_device_weights ||
1024 c->io_device_latencies ||
1025 c->io_device_limits;
1026 }
1027
1028 static bool cgroup_context_has_blockio_config(CGroupContext *c) {
1029 return c->blockio_accounting ||
1030 c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
1031 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
1032 c->blockio_device_weights ||
1033 c->blockio_device_bandwidths;
1034 }
1035
1036 static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
1037 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1038 c->startup_io_weight != CGROUP_WEIGHT_INVALID)
1039 return c->startup_io_weight;
1040 else if (c->io_weight != CGROUP_WEIGHT_INVALID)
1041 return c->io_weight;
1042 else
1043 return CGROUP_WEIGHT_DEFAULT;
1044 }
1045
1046 static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
1047 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
1048 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
1049 return c->startup_blockio_weight;
1050 else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
1051 return c->blockio_weight;
1052 else
1053 return CGROUP_BLKIO_WEIGHT_DEFAULT;
1054 }
1055
1056 static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
1057 return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
1058 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
1059 }
1060
1061 static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
1062 return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
1063 CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
1064 }
1065
1066 static int set_bfq_weight(Unit *u, const char *controller, dev_t dev, uint64_t io_weight) {
1067 static const char * const prop_names[] = {
1068 "IOWeight",
1069 "BlockIOWeight",
1070 "IODeviceWeight",
1071 "BlockIODeviceWeight",
1072 };
1073 static bool warned = false;
1074 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+STRLEN("\n")];
1075 const char *p;
1076 uint64_t bfq_weight;
1077 int r;
1078
1079 /* FIXME: drop this function when distro kernels properly support BFQ through "io.weight"
1080 * See also: https://github.com/systemd/systemd/pull/13335 and
1081 * https://github.com/torvalds/linux/commit/65752aef0a407e1ef17ec78a7fc31ba4e0b360f9. */
1082 p = strjoina(controller, ".bfq.weight");
1083 /* Adjust to kernel range is 1..1000, the default is 100. */
1084 bfq_weight = BFQ_WEIGHT(io_weight);
1085
1086 if (major(dev) > 0)
1087 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), bfq_weight);
1088 else
1089 xsprintf(buf, "%" PRIu64 "\n", bfq_weight);
1090
1091 r = cg_set_attribute(controller, u->cgroup_path, p, buf);
1092
1093 /* FIXME: drop this when kernels prior
1094 * 795fe54c2a82 ("bfq: Add per-device weight") v5.4
1095 * are not interesting anymore. Old kernels will fail with EINVAL, while new kernels won't return
1096 * EINVAL on properly formatted input by us. Treat EINVAL accordingly. */
1097 if (r == -EINVAL && major(dev) > 0) {
1098 if (!warned) {
1099 log_unit_warning(u, "Kernel version does not accept per-device setting in %s.", p);
1100 warned = true;
1101 }
1102 r = -EOPNOTSUPP; /* mask as unconfigured device */
1103 } else if (r >= 0 && io_weight != bfq_weight)
1104 log_unit_debug(u, "%s=%" PRIu64 " scaled to %s=%" PRIu64,
1105 prop_names[2*(major(dev) > 0) + streq(controller, "blkio")],
1106 io_weight, p, bfq_weight);
1107 return r;
1108 }
1109
1110 static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
1111 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1112 dev_t dev;
1113 int r, r1, r2;
1114
1115 if (lookup_block_device(dev_path, &dev) < 0)
1116 return;
1117
1118 r1 = set_bfq_weight(u, "io", dev, io_weight);
1119
1120 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), io_weight);
1121 r2 = cg_set_attribute("io", u->cgroup_path, "io.weight", buf);
1122
1123 /* Look at the configured device, when both fail, prefer io.weight errno. */
1124 r = r2 == -EOPNOTSUPP ? r1 : r2;
1125
1126 if (r < 0)
1127 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r),
1128 r, "Failed to set 'io[.bfq].weight' attribute on '%s' to '%.*s': %m",
1129 empty_to_root(u->cgroup_path), (int) strcspn(buf, NEWLINE), buf);
1130 }
1131
1132 static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
1133 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1134 dev_t dev;
1135 int r;
1136
1137 r = lookup_block_device(dev_path, &dev);
1138 if (r < 0)
1139 return;
1140
1141 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), blkio_weight);
1142 (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
1143 }
1144
1145 static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
1146 char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
1147 dev_t dev;
1148 int r;
1149
1150 r = lookup_block_device(dev_path, &dev);
1151 if (r < 0)
1152 return;
1153
1154 if (target != USEC_INFINITY)
1155 xsprintf(buf, "%u:%u target=%" PRIu64 "\n", major(dev), minor(dev), target);
1156 else
1157 xsprintf(buf, "%u:%u target=max\n", major(dev), minor(dev));
1158
1159 (void) set_attribute_and_warn(u, "io", "io.latency", buf);
1160 }
1161
1162 static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
1163 char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)],
1164 buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
1165 dev_t dev;
1166
1167 if (lookup_block_device(dev_path, &dev) < 0)
1168 return;
1169
1170 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
1171 if (limits[type] != cgroup_io_limit_defaults[type])
1172 xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
1173 else
1174 xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
1175
1176 xsprintf(buf, "%u:%u rbps=%s wbps=%s riops=%s wiops=%s\n", major(dev), minor(dev),
1177 limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
1178 limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
1179 (void) set_attribute_and_warn(u, "io", "io.max", buf);
1180 }
1181
1182 static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
1183 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
1184 dev_t dev;
1185
1186 if (lookup_block_device(dev_path, &dev) < 0)
1187 return;
1188
1189 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), rbps);
1190 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
1191
1192 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), wbps);
1193 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
1194 }
1195
1196 static bool unit_has_unified_memory_config(Unit *u) {
1197 CGroupContext *c;
1198
1199 assert(u);
1200
1201 assert_se(c = unit_get_cgroup_context(u));
1202
1203 return unit_get_ancestor_memory_min(u) > 0 || unit_get_ancestor_memory_low(u) > 0 ||
1204 c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX ||
1205 c->memory_swap_max != CGROUP_LIMIT_MAX;
1206 }
1207
1208 static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
1209 char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
1210
1211 if (v != CGROUP_LIMIT_MAX)
1212 xsprintf(buf, "%" PRIu64 "\n", v);
1213
1214 (void) set_attribute_and_warn(u, "memory", file, buf);
1215 }
1216
1217 static void cgroup_apply_firewall(Unit *u) {
1218 assert(u);
1219
1220 /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
1221
1222 if (bpf_firewall_compile(u) < 0)
1223 return;
1224
1225 (void) bpf_firewall_load_custom(u);
1226 (void) bpf_firewall_install(u);
1227 }
1228
1229 static void cgroup_apply_socket_bind(Unit *u) {
1230 assert(u);
1231
1232 (void) bpf_socket_bind_install(u);
1233 }
1234
1235 static void cgroup_apply_restrict_network_interfaces(Unit *u) {
1236 assert(u);
1237
1238 (void) restrict_network_interfaces_install(u);
1239 }
1240
1241 static int cgroup_apply_devices(Unit *u) {
1242 _cleanup_(bpf_program_freep) BPFProgram *prog = NULL;
1243 const char *path;
1244 CGroupContext *c;
1245 CGroupDevicePolicy policy;
1246 int r;
1247
1248 assert_se(c = unit_get_cgroup_context(u));
1249 assert_se(path = u->cgroup_path);
1250
1251 policy = c->device_policy;
1252
1253 if (cg_all_unified() > 0) {
1254 r = bpf_devices_cgroup_init(&prog, policy, c->device_allow);
1255 if (r < 0)
1256 return log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
1257
1258 } else {
1259 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore
1260 * EINVAL here. */
1261
1262 if (c->device_allow || policy != CGROUP_DEVICE_POLICY_AUTO)
1263 r = cg_set_attribute("devices", path, "devices.deny", "a");
1264 else
1265 r = cg_set_attribute("devices", path, "devices.allow", "a");
1266 if (r < 0)
1267 log_unit_full_errno(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
1268 "Failed to reset devices.allow/devices.deny: %m");
1269 }
1270
1271 bool allow_list_static = policy == CGROUP_DEVICE_POLICY_CLOSED ||
1272 (policy == CGROUP_DEVICE_POLICY_AUTO && c->device_allow);
1273 if (allow_list_static)
1274 (void) bpf_devices_allow_list_static(prog, path);
1275
1276 bool any = allow_list_static;
1277 LIST_FOREACH(device_allow, a, c->device_allow) {
1278 char acc[4], *val;
1279 unsigned k = 0;
1280
1281 if (a->r)
1282 acc[k++] = 'r';
1283 if (a->w)
1284 acc[k++] = 'w';
1285 if (a->m)
1286 acc[k++] = 'm';
1287 if (k == 0)
1288 continue;
1289 acc[k++] = 0;
1290
1291 if (path_startswith(a->path, "/dev/"))
1292 r = bpf_devices_allow_list_device(prog, path, a->path, acc);
1293 else if ((val = startswith(a->path, "block-")))
1294 r = bpf_devices_allow_list_major(prog, path, val, 'b', acc);
1295 else if ((val = startswith(a->path, "char-")))
1296 r = bpf_devices_allow_list_major(prog, path, val, 'c', acc);
1297 else {
1298 log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
1299 continue;
1300 }
1301
1302 if (r >= 0)
1303 any = true;
1304 }
1305
1306 if (prog && !any) {
1307 log_unit_warning_errno(u, SYNTHETIC_ERRNO(ENODEV), "No devices matched by device filter.");
1308
1309 /* The kernel verifier would reject a program we would build with the normal intro and outro
1310 but no allow-listing rules (outro would contain an unreachable instruction for successful
1311 return). */
1312 policy = CGROUP_DEVICE_POLICY_STRICT;
1313 }
1314
1315 r = bpf_devices_apply_policy(&prog, policy, any, path, &u->bpf_device_control_installed);
1316 if (r < 0) {
1317 static bool warned = false;
1318
1319 log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
1320 "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
1321 "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
1322 "(This warning is only shown for the first loaded unit using device ACL.)", u->id);
1323
1324 warned = true;
1325 }
1326 return r;
1327 }
1328
1329 static void set_io_weight(Unit *u, uint64_t weight) {
1330 char buf[STRLEN("default \n")+DECIMAL_STR_MAX(uint64_t)];
1331
1332 assert(u);
1333
1334 (void) set_bfq_weight(u, "io", makedev(0, 0), weight);
1335
1336 xsprintf(buf, "default %" PRIu64 "\n", weight);
1337 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
1338 }
1339
1340 static void set_blkio_weight(Unit *u, uint64_t weight) {
1341 char buf[STRLEN("\n")+DECIMAL_STR_MAX(uint64_t)];
1342
1343 assert(u);
1344
1345 (void) set_bfq_weight(u, "blkio", makedev(0, 0), weight);
1346
1347 xsprintf(buf, "%" PRIu64 "\n", weight);
1348 (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
1349 }
1350
1351 static void cgroup_apply_bpf_foreign_program(Unit *u) {
1352 assert(u);
1353
1354 (void) bpf_foreign_install(u);
1355 }
1356
1357 static void cgroup_context_apply(
1358 Unit *u,
1359 CGroupMask apply_mask,
1360 ManagerState state) {
1361
1362 const char *path;
1363 CGroupContext *c;
1364 bool is_host_root, is_local_root;
1365 int r;
1366
1367 assert(u);
1368
1369 /* Nothing to do? Exit early! */
1370 if (apply_mask == 0)
1371 return;
1372
1373 /* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
1374 * attributes should only be managed for cgroups further down the tree. */
1375 is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
1376 is_host_root = unit_has_host_root_cgroup(u);
1377
1378 assert_se(c = unit_get_cgroup_context(u));
1379 assert_se(path = u->cgroup_path);
1380
1381 if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
1382 path = "/";
1383
1384 /* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
1385 * then), and missing cgroups, i.e. EROFS and ENOENT. */
1386
1387 /* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
1388 * setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
1389 * level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
1390 * containers we want to leave control of these to the container manager (and if cgroup v2 delegation is used
1391 * we couldn't even write to them if we wanted to). */
1392 if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
1393
1394 if (cg_all_unified() > 0) {
1395 uint64_t weight;
1396
1397 if (cgroup_context_has_cpu_weight(c))
1398 weight = cgroup_context_cpu_weight(c, state);
1399 else if (cgroup_context_has_cpu_shares(c)) {
1400 uint64_t shares;
1401
1402 shares = cgroup_context_cpu_shares(c, state);
1403 weight = cgroup_cpu_shares_to_weight(shares);
1404
1405 log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
1406 shares, weight, path);
1407 } else
1408 weight = CGROUP_WEIGHT_DEFAULT;
1409
1410 cgroup_apply_unified_cpu_weight(u, weight);
1411 cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
1412
1413 } else {
1414 uint64_t shares;
1415
1416 if (cgroup_context_has_cpu_weight(c)) {
1417 uint64_t weight;
1418
1419 weight = cgroup_context_cpu_weight(c, state);
1420 shares = cgroup_cpu_weight_to_shares(weight);
1421
1422 log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
1423 weight, shares, path);
1424 } else if (cgroup_context_has_cpu_shares(c))
1425 shares = cgroup_context_cpu_shares(c, state);
1426 else
1427 shares = CGROUP_CPU_SHARES_DEFAULT;
1428
1429 cgroup_apply_legacy_cpu_shares(u, shares);
1430 cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
1431 }
1432 }
1433
1434 if ((apply_mask & CGROUP_MASK_CPUSET) && !is_local_root) {
1435 cgroup_apply_unified_cpuset(u, cgroup_context_allowed_cpus(c, state), "cpuset.cpus");
1436 cgroup_apply_unified_cpuset(u, cgroup_context_allowed_mems(c, state), "cpuset.mems");
1437 }
1438
1439 /* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroup v2
1440 * controller), and in case of containers we want to leave control of these attributes to the container manager
1441 * (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
1442 if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
1443 bool has_io, has_blockio;
1444 uint64_t weight;
1445
1446 has_io = cgroup_context_has_io_config(c);
1447 has_blockio = cgroup_context_has_blockio_config(c);
1448
1449 if (has_io)
1450 weight = cgroup_context_io_weight(c, state);
1451 else if (has_blockio) {
1452 uint64_t blkio_weight;
1453
1454 blkio_weight = cgroup_context_blkio_weight(c, state);
1455 weight = cgroup_weight_blkio_to_io(blkio_weight);
1456
1457 log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
1458 blkio_weight, weight);
1459 } else
1460 weight = CGROUP_WEIGHT_DEFAULT;
1461
1462 set_io_weight(u, weight);
1463
1464 if (has_io) {
1465 LIST_FOREACH(device_weights, w, c->io_device_weights)
1466 cgroup_apply_io_device_weight(u, w->path, w->weight);
1467
1468 LIST_FOREACH(device_limits, limit, c->io_device_limits)
1469 cgroup_apply_io_device_limit(u, limit->path, limit->limits);
1470
1471 LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
1472 cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
1473
1474 } else if (has_blockio) {
1475 LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
1476 weight = cgroup_weight_blkio_to_io(w->weight);
1477
1478 log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
1479 w->weight, weight, w->path);
1480
1481 cgroup_apply_io_device_weight(u, w->path, weight);
1482 }
1483
1484 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
1485 uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
1486
1487 for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
1488 limits[type] = cgroup_io_limit_defaults[type];
1489
1490 limits[CGROUP_IO_RBPS_MAX] = b->rbps;
1491 limits[CGROUP_IO_WBPS_MAX] = b->wbps;
1492
1493 log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
1494 b->rbps, b->wbps, b->path);
1495
1496 cgroup_apply_io_device_limit(u, b->path, limits);
1497 }
1498 }
1499 }
1500
1501 if (apply_mask & CGROUP_MASK_BLKIO) {
1502 bool has_io, has_blockio;
1503
1504 has_io = cgroup_context_has_io_config(c);
1505 has_blockio = cgroup_context_has_blockio_config(c);
1506
1507 /* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
1508 * left to our container manager, too. */
1509 if (!is_local_root) {
1510 uint64_t weight;
1511
1512 if (has_io) {
1513 uint64_t io_weight;
1514
1515 io_weight = cgroup_context_io_weight(c, state);
1516 weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
1517
1518 log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
1519 io_weight, weight);
1520 } else if (has_blockio)
1521 weight = cgroup_context_blkio_weight(c, state);
1522 else
1523 weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
1524
1525 set_blkio_weight(u, weight);
1526
1527 if (has_io)
1528 LIST_FOREACH(device_weights, w, c->io_device_weights) {
1529 weight = cgroup_weight_io_to_blkio(w->weight);
1530
1531 log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
1532 w->weight, weight, w->path);
1533
1534 cgroup_apply_blkio_device_weight(u, w->path, weight);
1535 }
1536 else if (has_blockio)
1537 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
1538 cgroup_apply_blkio_device_weight(u, w->path, w->weight);
1539 }
1540
1541 /* The bandwidth limits are something that make sense to be applied to the host's root but not container
1542 * roots, as there we want the container manager to handle it */
1543 if (is_host_root || !is_local_root) {
1544 if (has_io)
1545 LIST_FOREACH(device_limits, l, c->io_device_limits) {
1546 log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
1547 l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
1548
1549 cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
1550 }
1551 else if (has_blockio)
1552 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
1553 cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
1554 }
1555 }
1556
1557 /* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
1558 * exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
1559 * want to leave control to the container manager (and if proper cgroup v2 delegation is used we couldn't even
1560 * write to this if we wanted to.) */
1561 if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
1562
1563 if (cg_all_unified() > 0) {
1564 uint64_t max, swap_max = CGROUP_LIMIT_MAX;
1565
1566 if (unit_has_unified_memory_config(u)) {
1567 max = c->memory_max;
1568 swap_max = c->memory_swap_max;
1569 } else {
1570 max = c->memory_limit;
1571
1572 if (max != CGROUP_LIMIT_MAX)
1573 log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
1574 }
1575
1576 cgroup_apply_unified_memory_limit(u, "memory.min", unit_get_ancestor_memory_min(u));
1577 cgroup_apply_unified_memory_limit(u, "memory.low", unit_get_ancestor_memory_low(u));
1578 cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high);
1579 cgroup_apply_unified_memory_limit(u, "memory.max", max);
1580 cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
1581
1582 (void) set_attribute_and_warn(u, "memory", "memory.oom.group", one_zero(c->memory_oom_group));
1583
1584 } else {
1585 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
1586 uint64_t val;
1587
1588 if (unit_has_unified_memory_config(u)) {
1589 val = c->memory_max;
1590 log_cgroup_compat(u, "Applying MemoryMax=%" PRIi64 " as MemoryLimit=", val);
1591 } else
1592 val = c->memory_limit;
1593
1594 if (val == CGROUP_LIMIT_MAX)
1595 strncpy(buf, "-1\n", sizeof(buf));
1596 else
1597 xsprintf(buf, "%" PRIu64 "\n", val);
1598
1599 (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
1600 }
1601 }
1602
1603 /* On cgroup v2 we can apply BPF everywhere. On cgroup v1 we apply it everywhere except for the root of
1604 * containers, where we leave this to the manager */
1605 if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
1606 (is_host_root || cg_all_unified() > 0 || !is_local_root))
1607 (void) cgroup_apply_devices(u);
1608
1609 if (apply_mask & CGROUP_MASK_PIDS) {
1610
1611 if (is_host_root) {
1612 /* So, the "pids" controller does not expose anything on the root cgroup, in order not to
1613 * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
1614 * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
1615 * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
1616 * exclusive ownership of the sysctls, but we still want to honour things if the user sets
1617 * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
1618 * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
1619 * it also counts. But if the user never set a limit through us (i.e. we are the default of
1620 * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
1621 * the first time we set a limit. Note that this boolean is flushed out on manager reload,
1622 * which is desirable so that there's an official way to release control of the sysctl from
1623 * systemd: set the limit to unbounded and reload. */
1624
1625 if (tasks_max_isset(&c->tasks_max)) {
1626 u->manager->sysctl_pid_max_changed = true;
1627 r = procfs_tasks_set_limit(tasks_max_resolve(&c->tasks_max));
1628 } else if (u->manager->sysctl_pid_max_changed)
1629 r = procfs_tasks_set_limit(TASKS_MAX);
1630 else
1631 r = 0;
1632 if (r < 0)
1633 log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r,
1634 "Failed to write to tasks limit sysctls: %m");
1635 }
1636
1637 /* The attribute itself is not available on the host root cgroup, and in the container case we want to
1638 * leave it for the container manager. */
1639 if (!is_local_root) {
1640 if (tasks_max_isset(&c->tasks_max)) {
1641 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
1642
1643 xsprintf(buf, "%" PRIu64 "\n", tasks_max_resolve(&c->tasks_max));
1644 (void) set_attribute_and_warn(u, "pids", "pids.max", buf);
1645 } else
1646 (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
1647 }
1648 }
1649
1650 if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
1651 cgroup_apply_firewall(u);
1652
1653 if (apply_mask & CGROUP_MASK_BPF_FOREIGN)
1654 cgroup_apply_bpf_foreign_program(u);
1655
1656 if (apply_mask & CGROUP_MASK_BPF_SOCKET_BIND)
1657 cgroup_apply_socket_bind(u);
1658
1659 if (apply_mask & CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES)
1660 cgroup_apply_restrict_network_interfaces(u);
1661 }
1662
1663 static bool unit_get_needs_bpf_firewall(Unit *u) {
1664 CGroupContext *c;
1665 assert(u);
1666
1667 c = unit_get_cgroup_context(u);
1668 if (!c)
1669 return false;
1670
1671 if (c->ip_accounting ||
1672 !set_isempty(c->ip_address_allow) ||
1673 !set_isempty(c->ip_address_deny) ||
1674 c->ip_filters_ingress ||
1675 c->ip_filters_egress)
1676 return true;
1677
1678 /* If any parent slice has an IP access list defined, it applies too */
1679 for (Unit *p = UNIT_GET_SLICE(u); p; p = UNIT_GET_SLICE(p)) {
1680 c = unit_get_cgroup_context(p);
1681 if (!c)
1682 return false;
1683
1684 if (!set_isempty(c->ip_address_allow) ||
1685 !set_isempty(c->ip_address_deny))
1686 return true;
1687 }
1688
1689 return false;
1690 }
1691
1692 static bool unit_get_needs_bpf_foreign_program(Unit *u) {
1693 CGroupContext *c;
1694 assert(u);
1695
1696 c = unit_get_cgroup_context(u);
1697 if (!c)
1698 return false;
1699
1700 return !LIST_IS_EMPTY(c->bpf_foreign_programs);
1701 }
1702
1703 static bool unit_get_needs_socket_bind(Unit *u) {
1704 CGroupContext *c;
1705 assert(u);
1706
1707 c = unit_get_cgroup_context(u);
1708 if (!c)
1709 return false;
1710
1711 return c->socket_bind_allow || c->socket_bind_deny;
1712 }
1713
1714 static bool unit_get_needs_restrict_network_interfaces(Unit *u) {
1715 CGroupContext *c;
1716 assert(u);
1717
1718 c = unit_get_cgroup_context(u);
1719 if (!c)
1720 return false;
1721
1722 return !set_isempty(c->restrict_network_interfaces);
1723 }
1724
1725 static CGroupMask unit_get_cgroup_mask(Unit *u) {
1726 CGroupMask mask = 0;
1727 CGroupContext *c;
1728
1729 assert(u);
1730
1731 assert_se(c = unit_get_cgroup_context(u));
1732
1733 /* Figure out which controllers we need, based on the cgroup context object */
1734
1735 if (c->cpu_accounting)
1736 mask |= get_cpu_accounting_mask();
1737
1738 if (cgroup_context_has_cpu_weight(c) ||
1739 cgroup_context_has_cpu_shares(c) ||
1740 c->cpu_quota_per_sec_usec != USEC_INFINITY)
1741 mask |= CGROUP_MASK_CPU;
1742
1743 if (cgroup_context_has_allowed_cpus(c) || cgroup_context_has_allowed_mems(c))
1744 mask |= CGROUP_MASK_CPUSET;
1745
1746 if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
1747 mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
1748
1749 if (c->memory_accounting ||
1750 c->memory_limit != CGROUP_LIMIT_MAX ||
1751 unit_has_unified_memory_config(u))
1752 mask |= CGROUP_MASK_MEMORY;
1753
1754 if (c->device_allow ||
1755 c->device_policy != CGROUP_DEVICE_POLICY_AUTO)
1756 mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
1757
1758 if (c->tasks_accounting ||
1759 tasks_max_isset(&c->tasks_max))
1760 mask |= CGROUP_MASK_PIDS;
1761
1762 return CGROUP_MASK_EXTEND_JOINED(mask);
1763 }
1764
1765 static CGroupMask unit_get_bpf_mask(Unit *u) {
1766 CGroupMask mask = 0;
1767
1768 /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
1769 * too. */
1770
1771 if (unit_get_needs_bpf_firewall(u))
1772 mask |= CGROUP_MASK_BPF_FIREWALL;
1773
1774 if (unit_get_needs_bpf_foreign_program(u))
1775 mask |= CGROUP_MASK_BPF_FOREIGN;
1776
1777 if (unit_get_needs_socket_bind(u))
1778 mask |= CGROUP_MASK_BPF_SOCKET_BIND;
1779
1780 if (unit_get_needs_restrict_network_interfaces(u))
1781 mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
1782
1783 return mask;
1784 }
1785
1786 CGroupMask unit_get_own_mask(Unit *u) {
1787 CGroupContext *c;
1788
1789 /* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
1790 * mask, as we shouldn't reflect it in the cgroup hierarchy then. */
1791
1792 if (u->load_state != UNIT_LOADED)
1793 return 0;
1794
1795 c = unit_get_cgroup_context(u);
1796 if (!c)
1797 return 0;
1798
1799 return unit_get_cgroup_mask(u) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u);
1800 }
1801
1802 CGroupMask unit_get_delegate_mask(Unit *u) {
1803 CGroupContext *c;
1804
1805 /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
1806 * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
1807 *
1808 * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
1809
1810 if (!unit_cgroup_delegate(u))
1811 return 0;
1812
1813 if (cg_all_unified() <= 0) {
1814 ExecContext *e;
1815
1816 e = unit_get_exec_context(u);
1817 if (e && !exec_context_maintains_privileges(e))
1818 return 0;
1819 }
1820
1821 assert_se(c = unit_get_cgroup_context(u));
1822 return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
1823 }
1824
1825 static CGroupMask unit_get_subtree_mask(Unit *u) {
1826
1827 /* Returns the mask of this subtree, meaning of the group
1828 * itself and its children. */
1829
1830 return unit_get_own_mask(u) | unit_get_members_mask(u);
1831 }
1832
1833 CGroupMask unit_get_members_mask(Unit *u) {
1834 assert(u);
1835
1836 /* Returns the mask of controllers all of the unit's children require, merged */
1837
1838 if (u->cgroup_members_mask_valid)
1839 return u->cgroup_members_mask; /* Use cached value if possible */
1840
1841 u->cgroup_members_mask = 0;
1842
1843 if (u->type == UNIT_SLICE) {
1844 Unit *member;
1845
1846 UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
1847 u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
1848 }
1849
1850 u->cgroup_members_mask_valid = true;
1851 return u->cgroup_members_mask;
1852 }
1853
1854 CGroupMask unit_get_siblings_mask(Unit *u) {
1855 Unit *slice;
1856 assert(u);
1857
1858 /* Returns the mask of controllers all of the unit's siblings
1859 * require, i.e. the members mask of the unit's parent slice
1860 * if there is one. */
1861
1862 slice = UNIT_GET_SLICE(u);
1863 if (slice)
1864 return unit_get_members_mask(slice);
1865
1866 return unit_get_subtree_mask(u); /* we are the top-level slice */
1867 }
1868
1869 static CGroupMask unit_get_disable_mask(Unit *u) {
1870 CGroupContext *c;
1871
1872 c = unit_get_cgroup_context(u);
1873 if (!c)
1874 return 0;
1875
1876 return c->disable_controllers;
1877 }
1878
1879 CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
1880 CGroupMask mask;
1881 Unit *slice;
1882
1883 assert(u);
1884 mask = unit_get_disable_mask(u);
1885
1886 /* Returns the mask of controllers which are marked as forcibly
1887 * disabled in any ancestor unit or the unit in question. */
1888
1889 slice = UNIT_GET_SLICE(u);
1890 if (slice)
1891 mask |= unit_get_ancestor_disable_mask(slice);
1892
1893 return mask;
1894 }
1895
1896 CGroupMask unit_get_target_mask(Unit *u) {
1897 CGroupMask own_mask, mask;
1898
1899 /* This returns the cgroup mask of all controllers to enable for a specific cgroup, i.e. everything
1900 * it needs itself, plus all that its children need, plus all that its siblings need. This is
1901 * primarily useful on the legacy cgroup hierarchy, where we need to duplicate each cgroup in each
1902 * hierarchy that shall be enabled for it. */
1903
1904 own_mask = unit_get_own_mask(u);
1905
1906 if (own_mask & CGROUP_MASK_BPF_FIREWALL & ~u->manager->cgroup_supported)
1907 emit_bpf_firewall_warning(u);
1908
1909 mask = own_mask | unit_get_members_mask(u) | unit_get_siblings_mask(u);
1910
1911 mask &= u->manager->cgroup_supported;
1912 mask &= ~unit_get_ancestor_disable_mask(u);
1913
1914 return mask;
1915 }
1916
1917 CGroupMask unit_get_enable_mask(Unit *u) {
1918 CGroupMask mask;
1919
1920 /* This returns the cgroup mask of all controllers to enable
1921 * for the children of a specific cgroup. This is primarily
1922 * useful for the unified cgroup hierarchy, where each cgroup
1923 * controls which controllers are enabled for its children. */
1924
1925 mask = unit_get_members_mask(u);
1926 mask &= u->manager->cgroup_supported;
1927 mask &= ~unit_get_ancestor_disable_mask(u);
1928
1929 return mask;
1930 }
1931
1932 void unit_invalidate_cgroup_members_masks(Unit *u) {
1933 Unit *slice;
1934
1935 assert(u);
1936
1937 /* Recurse invalidate the member masks cache all the way up the tree */
1938 u->cgroup_members_mask_valid = false;
1939
1940 slice = UNIT_GET_SLICE(u);
1941 if (slice)
1942 unit_invalidate_cgroup_members_masks(slice);
1943 }
1944
1945 const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
1946
1947 /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
1948
1949 while (u) {
1950
1951 if (u->cgroup_path &&
1952 u->cgroup_realized &&
1953 FLAGS_SET(u->cgroup_realized_mask, mask))
1954 return u->cgroup_path;
1955
1956 u = UNIT_GET_SLICE(u);
1957 }
1958
1959 return NULL;
1960 }
1961
1962 static const char *migrate_callback(CGroupMask mask, void *userdata) {
1963 /* If not realized at all, migrate to root ("").
1964 * It may happen if we're upgrading from older version that didn't clean up.
1965 */
1966 return strempty(unit_get_realized_cgroup_path(userdata, mask));
1967 }
1968
1969 char *unit_default_cgroup_path(const Unit *u) {
1970 _cleanup_free_ char *escaped = NULL, *slice_path = NULL;
1971 Unit *slice;
1972 int r;
1973
1974 assert(u);
1975
1976 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1977 return strdup(u->manager->cgroup_root);
1978
1979 slice = UNIT_GET_SLICE(u);
1980 if (slice && !unit_has_name(slice, SPECIAL_ROOT_SLICE)) {
1981 r = cg_slice_to_path(slice->id, &slice_path);
1982 if (r < 0)
1983 return NULL;
1984 }
1985
1986 escaped = cg_escape(u->id);
1987 if (!escaped)
1988 return NULL;
1989
1990 return path_join(empty_to_root(u->manager->cgroup_root), slice_path, escaped);
1991 }
1992
1993 int unit_set_cgroup_path(Unit *u, const char *path) {
1994 _cleanup_free_ char *p = NULL;
1995 int r;
1996
1997 assert(u);
1998
1999 if (streq_ptr(u->cgroup_path, path))
2000 return 0;
2001
2002 if (path) {
2003 p = strdup(path);
2004 if (!p)
2005 return -ENOMEM;
2006 }
2007
2008 if (p) {
2009 r = hashmap_put(u->manager->cgroup_unit, p, u);
2010 if (r < 0)
2011 return r;
2012 }
2013
2014 unit_release_cgroup(u);
2015 u->cgroup_path = TAKE_PTR(p);
2016
2017 return 1;
2018 }
2019
2020 int unit_watch_cgroup(Unit *u) {
2021 _cleanup_free_ char *events = NULL;
2022 int r;
2023
2024 assert(u);
2025
2026 /* Watches the "cgroups.events" attribute of this unit's cgroup for "empty" events, but only if
2027 * cgroupv2 is available. */
2028
2029 if (!u->cgroup_path)
2030 return 0;
2031
2032 if (u->cgroup_control_inotify_wd >= 0)
2033 return 0;
2034
2035 /* Only applies to the unified hierarchy */
2036 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2037 if (r < 0)
2038 return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
2039 if (r == 0)
2040 return 0;
2041
2042 /* No point in watch the top-level slice, it's never going to run empty. */
2043 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
2044 return 0;
2045
2046 r = hashmap_ensure_allocated(&u->manager->cgroup_control_inotify_wd_unit, &trivial_hash_ops);
2047 if (r < 0)
2048 return log_oom();
2049
2050 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
2051 if (r < 0)
2052 return log_oom();
2053
2054 u->cgroup_control_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
2055 if (u->cgroup_control_inotify_wd < 0) {
2056
2057 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
2058 * is not an error */
2059 return 0;
2060
2061 return log_unit_error_errno(u, errno, "Failed to add control inotify watch descriptor for control group %s: %m", empty_to_root(u->cgroup_path));
2062 }
2063
2064 r = hashmap_put(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd), u);
2065 if (r < 0)
2066 return log_unit_error_errno(u, r, "Failed to add control inotify watch descriptor for control group %s to hash map: %m", empty_to_root(u->cgroup_path));
2067
2068 return 0;
2069 }
2070
2071 int unit_watch_cgroup_memory(Unit *u) {
2072 _cleanup_free_ char *events = NULL;
2073 CGroupContext *c;
2074 int r;
2075
2076 assert(u);
2077
2078 /* Watches the "memory.events" attribute of this unit's cgroup for "oom_kill" events, but only if
2079 * cgroupv2 is available. */
2080
2081 if (!u->cgroup_path)
2082 return 0;
2083
2084 c = unit_get_cgroup_context(u);
2085 if (!c)
2086 return 0;
2087
2088 /* The "memory.events" attribute is only available if the memory controller is on. Let's hence tie
2089 * this to memory accounting, in a way watching for OOM kills is a form of memory accounting after
2090 * all. */
2091 if (!c->memory_accounting)
2092 return 0;
2093
2094 /* Don't watch inner nodes, as the kernel doesn't report oom_kill events recursively currently, and
2095 * we also don't want to generate a log message for each parent cgroup of a process. */
2096 if (u->type == UNIT_SLICE)
2097 return 0;
2098
2099 if (u->cgroup_memory_inotify_wd >= 0)
2100 return 0;
2101
2102 /* Only applies to the unified hierarchy */
2103 r = cg_all_unified();
2104 if (r < 0)
2105 return log_error_errno(r, "Failed to determine whether the memory controller is unified: %m");
2106 if (r == 0)
2107 return 0;
2108
2109 r = hashmap_ensure_allocated(&u->manager->cgroup_memory_inotify_wd_unit, &trivial_hash_ops);
2110 if (r < 0)
2111 return log_oom();
2112
2113 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "memory.events", &events);
2114 if (r < 0)
2115 return log_oom();
2116
2117 u->cgroup_memory_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
2118 if (u->cgroup_memory_inotify_wd < 0) {
2119
2120 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
2121 * is not an error */
2122 return 0;
2123
2124 return log_unit_error_errno(u, errno, "Failed to add memory inotify watch descriptor for control group %s: %m", empty_to_root(u->cgroup_path));
2125 }
2126
2127 r = hashmap_put(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd), u);
2128 if (r < 0)
2129 return log_unit_error_errno(u, r, "Failed to add memory inotify watch descriptor for control group %s to hash map: %m", empty_to_root(u->cgroup_path));
2130
2131 return 0;
2132 }
2133
2134 int unit_pick_cgroup_path(Unit *u) {
2135 _cleanup_free_ char *path = NULL;
2136 int r;
2137
2138 assert(u);
2139
2140 if (u->cgroup_path)
2141 return 0;
2142
2143 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2144 return -EINVAL;
2145
2146 path = unit_default_cgroup_path(u);
2147 if (!path)
2148 return log_oom();
2149
2150 r = unit_set_cgroup_path(u, path);
2151 if (r == -EEXIST)
2152 return log_unit_error_errno(u, r, "Control group %s exists already.", empty_to_root(path));
2153 if (r < 0)
2154 return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", empty_to_root(path));
2155
2156 return 0;
2157 }
2158
2159 static int unit_update_cgroup(
2160 Unit *u,
2161 CGroupMask target_mask,
2162 CGroupMask enable_mask,
2163 ManagerState state) {
2164
2165 bool created, is_root_slice;
2166 CGroupMask migrate_mask = 0;
2167 _cleanup_free_ char *cgroup_full_path = NULL;
2168 int r;
2169
2170 assert(u);
2171
2172 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2173 return 0;
2174
2175 /* Figure out our cgroup path */
2176 r = unit_pick_cgroup_path(u);
2177 if (r < 0)
2178 return r;
2179
2180 /* First, create our own group */
2181 r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
2182 if (r < 0)
2183 return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", empty_to_root(u->cgroup_path));
2184 created = r;
2185
2186 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
2187 uint64_t cgroup_id = 0;
2188
2189 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, NULL, &cgroup_full_path);
2190 if (r == 0) {
2191 r = cg_path_get_cgroupid(cgroup_full_path, &cgroup_id);
2192 if (r < 0)
2193 log_unit_full_errno(u, ERRNO_IS_NOT_SUPPORTED(r) ? LOG_DEBUG : LOG_WARNING, r,
2194 "Failed to get cgroup ID of cgroup %s, ignoring: %m", cgroup_full_path);
2195 } else
2196 log_unit_warning_errno(u, r, "Failed to get full cgroup path on cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
2197
2198 u->cgroup_id = cgroup_id;
2199 }
2200
2201 /* Start watching it */
2202 (void) unit_watch_cgroup(u);
2203 (void) unit_watch_cgroup_memory(u);
2204
2205 /* For v2 we preserve enabled controllers in delegated units, adjust others,
2206 * for v1 we figure out which controller hierarchies need migration. */
2207 if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) {
2208 CGroupMask result_mask = 0;
2209
2210 /* Enable all controllers we need */
2211 r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask);
2212 if (r < 0)
2213 log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
2214
2215 /* Remember what's actually enabled now */
2216 u->cgroup_enabled_mask = result_mask;
2217
2218 migrate_mask = u->cgroup_realized_mask ^ target_mask;
2219 }
2220
2221 /* Keep track that this is now realized */
2222 u->cgroup_realized = true;
2223 u->cgroup_realized_mask = target_mask;
2224
2225 /* Migrate processes in controller hierarchies both downwards (enabling) and upwards (disabling).
2226 *
2227 * Unnecessary controller cgroups are trimmed (after emptied by upward migration).
2228 * We perform migration also with whole slices for cases when users don't care about leave
2229 * granularity. Since delegated_mask is subset of target mask, we won't trim slice subtree containing
2230 * delegated units.
2231 */
2232 if (cg_all_unified() == 0) {
2233 r = cg_migrate_v1_controllers(u->manager->cgroup_supported, migrate_mask, u->cgroup_path, migrate_callback, u);
2234 if (r < 0)
2235 log_unit_warning_errno(u, r, "Failed to migrate controller cgroups from %s, ignoring: %m", empty_to_root(u->cgroup_path));
2236
2237 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2238 r = cg_trim_v1_controllers(u->manager->cgroup_supported, ~target_mask, u->cgroup_path, !is_root_slice);
2239 if (r < 0)
2240 log_unit_warning_errno(u, r, "Failed to delete controller cgroups %s, ignoring: %m", empty_to_root(u->cgroup_path));
2241 }
2242
2243 /* Set attributes */
2244 cgroup_context_apply(u, target_mask, state);
2245 cgroup_xattr_apply(u);
2246
2247 return 0;
2248 }
2249
2250 static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
2251 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2252 char *pp;
2253 int r;
2254
2255 assert(u);
2256
2257 if (MANAGER_IS_SYSTEM(u->manager))
2258 return -EINVAL;
2259
2260 if (!u->manager->system_bus)
2261 return -EIO;
2262
2263 if (!u->cgroup_path)
2264 return -EINVAL;
2265
2266 /* Determine this unit's cgroup path relative to our cgroup root */
2267 pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
2268 if (!pp)
2269 return -EINVAL;
2270
2271 pp = strjoina("/", pp, suffix_path);
2272 path_simplify(pp);
2273
2274 r = sd_bus_call_method(u->manager->system_bus,
2275 "org.freedesktop.systemd1",
2276 "/org/freedesktop/systemd1",
2277 "org.freedesktop.systemd1.Manager",
2278 "AttachProcessesToUnit",
2279 &error, NULL,
2280 "ssau",
2281 NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
2282 if (r < 0)
2283 return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
2284
2285 return 0;
2286 }
2287
2288 int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
2289 CGroupMask delegated_mask;
2290 const char *p;
2291 void *pidp;
2292 int ret, r;
2293
2294 assert(u);
2295
2296 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2297 return -EINVAL;
2298
2299 if (set_isempty(pids))
2300 return 0;
2301
2302 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
2303 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
2304 r = bpf_firewall_load_custom(u);
2305 if (r < 0)
2306 return r;
2307
2308 r = unit_realize_cgroup(u);
2309 if (r < 0)
2310 return r;
2311
2312 if (isempty(suffix_path))
2313 p = u->cgroup_path;
2314 else
2315 p = prefix_roota(u->cgroup_path, suffix_path);
2316
2317 delegated_mask = unit_get_delegate_mask(u);
2318
2319 ret = 0;
2320 SET_FOREACH(pidp, pids) {
2321 pid_t pid = PTR_TO_PID(pidp);
2322
2323 /* First, attach the PID to the main cgroup hierarchy */
2324 r = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid);
2325 if (r < 0) {
2326 bool again = MANAGER_IS_USER(u->manager) && ERRNO_IS_PRIVILEGE(r);
2327
2328 log_unit_full_errno(u, again ? LOG_DEBUG : LOG_INFO, r,
2329 "Couldn't move process "PID_FMT" to%s requested cgroup '%s': %m",
2330 pid, again ? " directly" : "", empty_to_root(p));
2331
2332 if (again) {
2333 int z;
2334
2335 /* If we are in a user instance, and we can't move the process ourselves due
2336 * to permission problems, let's ask the system instance about it instead.
2337 * Since it's more privileged it might be able to move the process across the
2338 * leaves of a subtree whose top node is not owned by us. */
2339
2340 z = unit_attach_pid_to_cgroup_via_bus(u, pid, suffix_path);
2341 if (z < 0)
2342 log_unit_info_errno(u, z, "Couldn't move process "PID_FMT" to requested cgroup '%s' (directly or via the system bus): %m", pid, empty_to_root(p));
2343 else {
2344 if (ret >= 0)
2345 ret++; /* Count successful additions */
2346 continue; /* When the bus thing worked via the bus we are fully done for this PID. */
2347 }
2348 }
2349
2350 if (ret >= 0)
2351 ret = r; /* Remember first error */
2352
2353 continue;
2354 } else if (ret >= 0)
2355 ret++; /* Count successful additions */
2356
2357 r = cg_all_unified();
2358 if (r < 0)
2359 return r;
2360 if (r > 0)
2361 continue;
2362
2363 /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
2364 * innermost realized one */
2365
2366 for (CGroupController c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
2367 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
2368 const char *realized;
2369
2370 if (!(u->manager->cgroup_supported & bit))
2371 continue;
2372
2373 /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
2374 if (delegated_mask & u->cgroup_realized_mask & bit) {
2375 r = cg_attach(cgroup_controller_to_string(c), p, pid);
2376 if (r >= 0)
2377 continue; /* Success! */
2378
2379 log_unit_debug_errno(u, r, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
2380 pid, empty_to_root(p), cgroup_controller_to_string(c));
2381 }
2382
2383 /* So this controller is either not delegate or realized, or something else weird happened. In
2384 * that case let's attach the PID at least to the closest cgroup up the tree that is
2385 * realized. */
2386 realized = unit_get_realized_cgroup_path(u, bit);
2387 if (!realized)
2388 continue; /* Not even realized in the root slice? Then let's not bother */
2389
2390 r = cg_attach(cgroup_controller_to_string(c), realized, pid);
2391 if (r < 0)
2392 log_unit_debug_errno(u, r, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
2393 pid, realized, cgroup_controller_to_string(c));
2394 }
2395 }
2396
2397 return ret;
2398 }
2399
2400 static bool unit_has_mask_realized(
2401 Unit *u,
2402 CGroupMask target_mask,
2403 CGroupMask enable_mask) {
2404
2405 assert(u);
2406
2407 /* Returns true if this unit is fully realized. We check four things:
2408 *
2409 * 1. Whether the cgroup was created at all
2410 * 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroup v1)
2411 * 3. Whether the cgroup has all the right controllers enabled (in case of cgroup v2)
2412 * 4. Whether the invalidation mask is currently zero
2413 *
2414 * If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
2415 * that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroup v1 controllers), CGROUP_MASK_V2 (for
2416 * real cgroup v2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
2417 * is only matters for cgroup v1 controllers, and cgroup_enabled_mask only used for cgroup v2, and if they
2418 * differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
2419 * enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
2420 * simply don't matter. */
2421
2422 return u->cgroup_realized &&
2423 ((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
2424 ((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
2425 u->cgroup_invalidated_mask == 0;
2426 }
2427
2428 static bool unit_has_mask_disables_realized(
2429 Unit *u,
2430 CGroupMask target_mask,
2431 CGroupMask enable_mask) {
2432
2433 assert(u);
2434
2435 /* Returns true if all controllers which should be disabled are indeed disabled.
2436 *
2437 * Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
2438 * already removed. */
2439
2440 return !u->cgroup_realized ||
2441 (FLAGS_SET(u->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
2442 FLAGS_SET(u->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
2443 }
2444
2445 static bool unit_has_mask_enables_realized(
2446 Unit *u,
2447 CGroupMask target_mask,
2448 CGroupMask enable_mask) {
2449
2450 assert(u);
2451
2452 /* Returns true if all controllers which should be enabled are indeed enabled.
2453 *
2454 * Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
2455 * we want to add is already added. */
2456
2457 return u->cgroup_realized &&
2458 ((u->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (u->cgroup_realized_mask & CGROUP_MASK_V1) &&
2459 ((u->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (u->cgroup_enabled_mask & CGROUP_MASK_V2);
2460 }
2461
2462 static void unit_add_to_cgroup_realize_queue(Unit *u) {
2463 assert(u);
2464
2465 if (u->in_cgroup_realize_queue)
2466 return;
2467
2468 LIST_APPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
2469 u->in_cgroup_realize_queue = true;
2470 }
2471
2472 static void unit_remove_from_cgroup_realize_queue(Unit *u) {
2473 assert(u);
2474
2475 if (!u->in_cgroup_realize_queue)
2476 return;
2477
2478 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
2479 u->in_cgroup_realize_queue = false;
2480 }
2481
2482 /* Controllers can only be enabled breadth-first, from the root of the
2483 * hierarchy downwards to the unit in question. */
2484 static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
2485 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
2486 Unit *slice;
2487 int r;
2488
2489 assert(u);
2490
2491 /* First go deal with this unit's parent, or we won't be able to enable
2492 * any new controllers at this layer. */
2493 slice = UNIT_GET_SLICE(u);
2494 if (slice) {
2495 r = unit_realize_cgroup_now_enable(slice, state);
2496 if (r < 0)
2497 return r;
2498 }
2499
2500 target_mask = unit_get_target_mask(u);
2501 enable_mask = unit_get_enable_mask(u);
2502
2503 /* We can only enable in this direction, don't try to disable anything.
2504 */
2505 if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
2506 return 0;
2507
2508 new_target_mask = u->cgroup_realized_mask | target_mask;
2509 new_enable_mask = u->cgroup_enabled_mask | enable_mask;
2510
2511 return unit_update_cgroup(u, new_target_mask, new_enable_mask, state);
2512 }
2513
2514 /* Controllers can only be disabled depth-first, from the leaves of the
2515 * hierarchy upwards to the unit in question. */
2516 static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
2517 Unit *m;
2518
2519 assert(u);
2520
2521 if (u->type != UNIT_SLICE)
2522 return 0;
2523
2524 UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
2525 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
2526 int r;
2527
2528 /* The cgroup for this unit might not actually be fully realised yet, in which case it isn't
2529 * holding any controllers open anyway. */
2530 if (!m->cgroup_realized)
2531 continue;
2532
2533 /* We must disable those below us first in order to release the controller. */
2534 if (m->type == UNIT_SLICE)
2535 (void) unit_realize_cgroup_now_disable(m, state);
2536
2537 target_mask = unit_get_target_mask(m);
2538 enable_mask = unit_get_enable_mask(m);
2539
2540 /* We can only disable in this direction, don't try to enable anything. */
2541 if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
2542 continue;
2543
2544 new_target_mask = m->cgroup_realized_mask & target_mask;
2545 new_enable_mask = m->cgroup_enabled_mask & enable_mask;
2546
2547 r = unit_update_cgroup(m, new_target_mask, new_enable_mask, state);
2548 if (r < 0)
2549 return r;
2550 }
2551
2552 return 0;
2553 }
2554
2555 /* Check if necessary controllers and attributes for a unit are in place.
2556 *
2557 * - If so, do nothing.
2558 * - If not, create paths, move processes over, and set attributes.
2559 *
2560 * Controllers can only be *enabled* in a breadth-first way, and *disabled* in
2561 * a depth-first way. As such the process looks like this:
2562 *
2563 * Suppose we have a cgroup hierarchy which looks like this:
2564 *
2565 * root
2566 * / \
2567 * / \
2568 * / \
2569 * a b
2570 * / \ / \
2571 * / \ / \
2572 * c d e f
2573 * / \ / \ / \ / \
2574 * h i j k l m n o
2575 *
2576 * 1. We want to realise cgroup "d" now.
2577 * 2. cgroup "a" has DisableControllers=cpu in the associated unit.
2578 * 3. cgroup "k" just started requesting the memory controller.
2579 *
2580 * To make this work we must do the following in order:
2581 *
2582 * 1. Disable CPU controller in k, j
2583 * 2. Disable CPU controller in d
2584 * 3. Enable memory controller in root
2585 * 4. Enable memory controller in a
2586 * 5. Enable memory controller in d
2587 * 6. Enable memory controller in k
2588 *
2589 * Notice that we need to touch j in one direction, but not the other. We also
2590 * don't go beyond d when disabling -- it's up to "a" to get realized if it
2591 * wants to disable further. The basic rules are therefore:
2592 *
2593 * - If you're disabling something, you need to realise all of the cgroups from
2594 * your recursive descendants to the root. This starts from the leaves.
2595 * - If you're enabling something, you need to realise from the root cgroup
2596 * downwards, but you don't need to iterate your recursive descendants.
2597 *
2598 * Returns 0 on success and < 0 on failure. */
2599 static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
2600 CGroupMask target_mask, enable_mask;
2601 Unit *slice;
2602 int r;
2603
2604 assert(u);
2605
2606 unit_remove_from_cgroup_realize_queue(u);
2607
2608 target_mask = unit_get_target_mask(u);
2609 enable_mask = unit_get_enable_mask(u);
2610
2611 if (unit_has_mask_realized(u, target_mask, enable_mask))
2612 return 0;
2613
2614 /* Disable controllers below us, if there are any */
2615 r = unit_realize_cgroup_now_disable(u, state);
2616 if (r < 0)
2617 return r;
2618
2619 /* Enable controllers above us, if there are any */
2620 slice = UNIT_GET_SLICE(u);
2621 if (slice) {
2622 r = unit_realize_cgroup_now_enable(slice, state);
2623 if (r < 0)
2624 return r;
2625 }
2626
2627 /* Now actually deal with the cgroup we were trying to realise and set attributes */
2628 r = unit_update_cgroup(u, target_mask, enable_mask, state);
2629 if (r < 0)
2630 return r;
2631
2632 /* Now, reset the invalidation mask */
2633 u->cgroup_invalidated_mask = 0;
2634 return 0;
2635 }
2636
2637 unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
2638 ManagerState state;
2639 unsigned n = 0;
2640 Unit *i;
2641 int r;
2642
2643 assert(m);
2644
2645 state = manager_state(m);
2646
2647 while ((i = m->cgroup_realize_queue)) {
2648 assert(i->in_cgroup_realize_queue);
2649
2650 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
2651 /* Maybe things changed, and the unit is not actually active anymore? */
2652 unit_remove_from_cgroup_realize_queue(i);
2653 continue;
2654 }
2655
2656 r = unit_realize_cgroup_now(i, state);
2657 if (r < 0)
2658 log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
2659
2660 n++;
2661 }
2662
2663 return n;
2664 }
2665
2666 void unit_add_family_to_cgroup_realize_queue(Unit *u) {
2667 assert(u);
2668 assert(u->type == UNIT_SLICE);
2669
2670 /* Family of a unit for is defined as (immediate) children of the unit and immediate children of all
2671 * its ancestors.
2672 *
2673 * Ideally we would enqueue ancestor path only (bottom up). However, on cgroup-v1 scheduling becomes
2674 * very weird if two units that own processes reside in the same slice, but one is realized in the
2675 * "cpu" hierarchy and one is not (for example because one has CPUWeight= set and the other does
2676 * not), because that means individual processes need to be scheduled against whole cgroups. Let's
2677 * avoid this asymmetry by always ensuring that siblings of a unit are always realized in their v1
2678 * controller hierarchies too (if unit requires the controller to be realized).
2679 *
2680 * The function must invalidate cgroup_members_mask of all ancestors in order to calculate up to date
2681 * masks. */
2682
2683 do {
2684 Unit *m;
2685
2686 /* Children of u likely changed when we're called */
2687 u->cgroup_members_mask_valid = false;
2688
2689 UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
2690
2691 /* No point in doing cgroup application for units without active processes. */
2692 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
2693 continue;
2694
2695 /* We only enqueue siblings if they were realized once at least, in the main
2696 * hierarchy. */
2697 if (!m->cgroup_realized)
2698 continue;
2699
2700 /* If the unit doesn't need any new controllers and has current ones
2701 * realized, it doesn't need any changes. */
2702 if (unit_has_mask_realized(m,
2703 unit_get_target_mask(m),
2704 unit_get_enable_mask(m)))
2705 continue;
2706
2707 unit_add_to_cgroup_realize_queue(m);
2708 }
2709
2710 /* Parent comes after children */
2711 unit_add_to_cgroup_realize_queue(u);
2712
2713 u = UNIT_GET_SLICE(u);
2714 } while (u);
2715 }
2716
2717 int unit_realize_cgroup(Unit *u) {
2718 Unit *slice;
2719
2720 assert(u);
2721
2722 if (!UNIT_HAS_CGROUP_CONTEXT(u))
2723 return 0;
2724
2725 /* So, here's the deal: when realizing the cgroups for this unit, we need to first create all
2726 * parents, but there's more actually: for the weight-based controllers we also need to make sure
2727 * that all our siblings (i.e. units that are in the same slice as we are) have cgroups, too. On the
2728 * other hand, when a controller is removed from realized set, it may become unnecessary in siblings
2729 * and ancestors and they should be (de)realized too.
2730 *
2731 * This call will defer work on the siblings and derealized ancestors to the next event loop
2732 * iteration and synchronously creates the parent cgroups (unit_realize_cgroup_now). */
2733
2734 slice = UNIT_GET_SLICE(u);
2735 if (slice)
2736 unit_add_family_to_cgroup_realize_queue(slice);
2737
2738 /* And realize this one now (and apply the values) */
2739 return unit_realize_cgroup_now(u, manager_state(u->manager));
2740 }
2741
2742 void unit_release_cgroup(Unit *u) {
2743 assert(u);
2744
2745 /* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
2746 * when we close down everything for reexecution, where we really want to leave the cgroup in place. */
2747
2748 if (u->cgroup_path) {
2749 (void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
2750 u->cgroup_path = mfree(u->cgroup_path);
2751 }
2752
2753 if (u->cgroup_control_inotify_wd >= 0) {
2754 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_control_inotify_wd) < 0)
2755 log_unit_debug_errno(u, errno, "Failed to remove cgroup control inotify watch %i for %s, ignoring: %m", u->cgroup_control_inotify_wd, u->id);
2756
2757 (void) hashmap_remove(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd));
2758 u->cgroup_control_inotify_wd = -1;
2759 }
2760
2761 if (u->cgroup_memory_inotify_wd >= 0) {
2762 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_memory_inotify_wd) < 0)
2763 log_unit_debug_errno(u, errno, "Failed to remove cgroup memory inotify watch %i for %s, ignoring: %m", u->cgroup_memory_inotify_wd, u->id);
2764
2765 (void) hashmap_remove(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd));
2766 u->cgroup_memory_inotify_wd = -1;
2767 }
2768 }
2769
2770 bool unit_maybe_release_cgroup(Unit *u) {
2771 int r;
2772
2773 assert(u);
2774
2775 if (!u->cgroup_path)
2776 return true;
2777
2778 /* Don't release the cgroup if there are still processes under it. If we get notified later when all the
2779 * processes exit (e.g. the processes were in D-state and exited after the unit was marked as failed)
2780 * we need the cgroup paths to continue to be tracked by the manager so they can be looked up and cleaned
2781 * up later. */
2782 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
2783 if (r < 0)
2784 log_unit_debug_errno(u, r, "Error checking if the cgroup is recursively empty, ignoring: %m");
2785 else if (r == 1) {
2786 unit_release_cgroup(u);
2787 return true;
2788 }
2789
2790 return false;
2791 }
2792
2793 void unit_prune_cgroup(Unit *u) {
2794 int r;
2795 bool is_root_slice;
2796
2797 assert(u);
2798
2799 /* Removes the cgroup, if empty and possible, and stops watching it. */
2800
2801 if (!u->cgroup_path)
2802 return;
2803
2804 (void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */
2805
2806 #if BPF_FRAMEWORK
2807 (void) lsm_bpf_cleanup(u); /* Remove cgroup from the global LSM BPF map */
2808 #endif
2809
2810 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2811
2812 r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
2813 if (r < 0)
2814 /* One reason we could have failed here is, that the cgroup still contains a process.
2815 * However, if the cgroup becomes removable at a later time, it might be removed when
2816 * the containing slice is stopped. So even if we failed now, this unit shouldn't assume
2817 * that the cgroup is still realized the next time it is started. Do not return early
2818 * on error, continue cleanup. */
2819 log_unit_full_errno(u, r == -EBUSY ? LOG_DEBUG : LOG_WARNING, r, "Failed to destroy cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
2820
2821 if (is_root_slice)
2822 return;
2823
2824 if (!unit_maybe_release_cgroup(u)) /* Returns true if the cgroup was released */
2825 return;
2826
2827 u->cgroup_realized = false;
2828 u->cgroup_realized_mask = 0;
2829 u->cgroup_enabled_mask = 0;
2830
2831 u->bpf_device_control_installed = bpf_program_free(u->bpf_device_control_installed);
2832 }
2833
2834 int unit_search_main_pid(Unit *u, pid_t *ret) {
2835 _cleanup_fclose_ FILE *f = NULL;
2836 pid_t pid = 0, npid;
2837 int r;
2838
2839 assert(u);
2840 assert(ret);
2841
2842 if (!u->cgroup_path)
2843 return -ENXIO;
2844
2845 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
2846 if (r < 0)
2847 return r;
2848
2849 while (cg_read_pid(f, &npid) > 0) {
2850
2851 if (npid == pid)
2852 continue;
2853
2854 if (pid_is_my_child(npid) == 0)
2855 continue;
2856
2857 if (pid != 0)
2858 /* Dang, there's more than one daemonized PID
2859 in this group, so we don't know what process
2860 is the main process. */
2861
2862 return -ENODATA;
2863
2864 pid = npid;
2865 }
2866
2867 *ret = pid;
2868 return 0;
2869 }
2870
2871 static int unit_watch_pids_in_path(Unit *u, const char *path) {
2872 _cleanup_closedir_ DIR *d = NULL;
2873 _cleanup_fclose_ FILE *f = NULL;
2874 int ret = 0, r;
2875
2876 assert(u);
2877 assert(path);
2878
2879 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
2880 if (r < 0)
2881 ret = r;
2882 else {
2883 pid_t pid;
2884
2885 while ((r = cg_read_pid(f, &pid)) > 0) {
2886 r = unit_watch_pid(u, pid, false);
2887 if (r < 0 && ret >= 0)
2888 ret = r;
2889 }
2890
2891 if (r < 0 && ret >= 0)
2892 ret = r;
2893 }
2894
2895 r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
2896 if (r < 0) {
2897 if (ret >= 0)
2898 ret = r;
2899 } else {
2900 char *fn;
2901
2902 while ((r = cg_read_subgroup(d, &fn)) > 0) {
2903 _cleanup_free_ char *p = NULL;
2904
2905 p = path_join(empty_to_root(path), fn);
2906 free(fn);
2907
2908 if (!p)
2909 return -ENOMEM;
2910
2911 r = unit_watch_pids_in_path(u, p);
2912 if (r < 0 && ret >= 0)
2913 ret = r;
2914 }
2915
2916 if (r < 0 && ret >= 0)
2917 ret = r;
2918 }
2919
2920 return ret;
2921 }
2922
2923 int unit_synthesize_cgroup_empty_event(Unit *u) {
2924 int r;
2925
2926 assert(u);
2927
2928 /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
2929 * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
2930 * get as notification source as soon as we stopped having any useful PIDs to watch for. */
2931
2932 if (!u->cgroup_path)
2933 return -ENOENT;
2934
2935 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2936 if (r < 0)
2937 return r;
2938 if (r > 0) /* On unified we have reliable notifications, and don't need this */
2939 return 0;
2940
2941 if (!set_isempty(u->pids))
2942 return 0;
2943
2944 unit_add_to_cgroup_empty_queue(u);
2945 return 0;
2946 }
2947
2948 int unit_watch_all_pids(Unit *u) {
2949 int r;
2950
2951 assert(u);
2952
2953 /* Adds all PIDs from our cgroup to the set of PIDs we
2954 * watch. This is a fallback logic for cases where we do not
2955 * get reliable cgroup empty notifications: we try to use
2956 * SIGCHLD as replacement. */
2957
2958 if (!u->cgroup_path)
2959 return -ENOENT;
2960
2961 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2962 if (r < 0)
2963 return r;
2964 if (r > 0) /* On unified we can use proper notifications */
2965 return 0;
2966
2967 return unit_watch_pids_in_path(u, u->cgroup_path);
2968 }
2969
2970 static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
2971 Manager *m = userdata;
2972 Unit *u;
2973 int r;
2974
2975 assert(s);
2976 assert(m);
2977
2978 u = m->cgroup_empty_queue;
2979 if (!u)
2980 return 0;
2981
2982 assert(u->in_cgroup_empty_queue);
2983 u->in_cgroup_empty_queue = false;
2984 LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
2985
2986 if (m->cgroup_empty_queue) {
2987 /* More stuff queued, let's make sure we remain enabled */
2988 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
2989 if (r < 0)
2990 log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
2991 }
2992
2993 /* Update state based on OOM kills before we notify about cgroup empty event */
2994 (void) unit_check_oom(u);
2995 (void) unit_check_oomd_kill(u);
2996
2997 unit_add_to_gc_queue(u);
2998
2999 if (UNIT_VTABLE(u)->notify_cgroup_empty)
3000 UNIT_VTABLE(u)->notify_cgroup_empty(u);
3001
3002 return 0;
3003 }
3004
3005 void unit_add_to_cgroup_empty_queue(Unit *u) {
3006 int r;
3007
3008 assert(u);
3009
3010 /* Note that there are four different ways how cgroup empty events reach us:
3011 *
3012 * 1. On the unified hierarchy we get an inotify event on the cgroup
3013 *
3014 * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
3015 *
3016 * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
3017 *
3018 * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
3019 * soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
3020 *
3021 * Regardless which way we got the notification, we'll verify it here, and then add it to a separate
3022 * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
3023 * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
3024 * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
3025 * case for scope units). */
3026
3027 if (u->in_cgroup_empty_queue)
3028 return;
3029
3030 /* Let's verify that the cgroup is really empty */
3031 if (!u->cgroup_path)
3032 return;
3033
3034 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
3035 if (r < 0) {
3036 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", empty_to_root(u->cgroup_path));
3037 return;
3038 }
3039 if (r == 0)
3040 return;
3041
3042 LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
3043 u->in_cgroup_empty_queue = true;
3044
3045 /* Trigger the defer event */
3046 r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
3047 if (r < 0)
3048 log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
3049 }
3050
3051 static void unit_remove_from_cgroup_empty_queue(Unit *u) {
3052 assert(u);
3053
3054 if (!u->in_cgroup_empty_queue)
3055 return;
3056
3057 LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
3058 u->in_cgroup_empty_queue = false;
3059 }
3060
3061 int unit_check_oomd_kill(Unit *u) {
3062 _cleanup_free_ char *value = NULL;
3063 bool increased;
3064 uint64_t n = 0;
3065 int r;
3066
3067 if (!u->cgroup_path)
3068 return 0;
3069
3070 r = cg_all_unified();
3071 if (r < 0)
3072 return log_unit_debug_errno(u, r, "Couldn't determine whether we are in all unified mode: %m");
3073 else if (r == 0)
3074 return 0;
3075
3076 r = cg_get_xattr_malloc(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "user.oomd_ooms", &value);
3077 if (r < 0 && r != -ENODATA)
3078 return r;
3079
3080 if (!isempty(value)) {
3081 r = safe_atou64(value, &n);
3082 if (r < 0)
3083 return r;
3084 }
3085
3086 increased = n > u->managed_oom_kill_last;
3087 u->managed_oom_kill_last = n;
3088
3089 if (!increased)
3090 return 0;
3091
3092 n = 0;
3093 value = mfree(value);
3094 r = cg_get_xattr_malloc(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "user.oomd_kill", &value);
3095 if (r >= 0 && !isempty(value))
3096 (void) safe_atou64(value, &n);
3097
3098 if (n > 0)
3099 log_unit_struct(u, LOG_NOTICE,
3100 "MESSAGE_ID=" SD_MESSAGE_UNIT_OOMD_KILL_STR,
3101 LOG_UNIT_INVOCATION_ID(u),
3102 LOG_UNIT_MESSAGE(u, "systemd-oomd killed %"PRIu64" process(es) in this unit.", n),
3103 "N_PROCESSES=%" PRIu64, n);
3104 else
3105 log_unit_struct(u, LOG_NOTICE,
3106 "MESSAGE_ID=" SD_MESSAGE_UNIT_OOMD_KILL_STR,
3107 LOG_UNIT_INVOCATION_ID(u),
3108 LOG_UNIT_MESSAGE(u, "systemd-oomd killed some process(es) in this unit."));
3109
3110 unit_notify_cgroup_oom(u, /* ManagedOOM= */ true);
3111
3112 return 1;
3113 }
3114
3115 int unit_check_oom(Unit *u) {
3116 _cleanup_free_ char *oom_kill = NULL;
3117 bool increased;
3118 uint64_t c;
3119 int r;
3120
3121 if (!u->cgroup_path)
3122 return 0;
3123
3124 r = cg_get_keyed_attribute("memory", u->cgroup_path, "memory.events", STRV_MAKE("oom_kill"), &oom_kill);
3125 if (IN_SET(r, -ENOENT, -ENXIO)) /* Handle gracefully if cgroup or oom_kill attribute don't exist */
3126 c = 0;
3127 else if (r < 0)
3128 return log_unit_debug_errno(u, r, "Failed to read oom_kill field of memory.events cgroup attribute: %m");
3129 else {
3130 r = safe_atou64(oom_kill, &c);
3131 if (r < 0)
3132 return log_unit_debug_errno(u, r, "Failed to parse oom_kill field: %m");
3133 }
3134
3135 increased = c > u->oom_kill_last;
3136 u->oom_kill_last = c;
3137
3138 if (!increased)
3139 return 0;
3140
3141 log_unit_struct(u, LOG_NOTICE,
3142 "MESSAGE_ID=" SD_MESSAGE_UNIT_OUT_OF_MEMORY_STR,
3143 LOG_UNIT_INVOCATION_ID(u),
3144 LOG_UNIT_MESSAGE(u, "A process of this unit has been killed by the OOM killer."));
3145
3146 unit_notify_cgroup_oom(u, /* ManagedOOM= */ false);
3147
3148 return 1;
3149 }
3150
3151 static int on_cgroup_oom_event(sd_event_source *s, void *userdata) {
3152 Manager *m = userdata;
3153 Unit *u;
3154 int r;
3155
3156 assert(s);
3157 assert(m);
3158
3159 u = m->cgroup_oom_queue;
3160 if (!u)
3161 return 0;
3162
3163 assert(u->in_cgroup_oom_queue);
3164 u->in_cgroup_oom_queue = false;
3165 LIST_REMOVE(cgroup_oom_queue, m->cgroup_oom_queue, u);
3166
3167 if (m->cgroup_oom_queue) {
3168 /* More stuff queued, let's make sure we remain enabled */
3169 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
3170 if (r < 0)
3171 log_debug_errno(r, "Failed to reenable cgroup oom event source, ignoring: %m");
3172 }
3173
3174 (void) unit_check_oom(u);
3175 return 0;
3176 }
3177
3178 static void unit_add_to_cgroup_oom_queue(Unit *u) {
3179 int r;
3180
3181 assert(u);
3182
3183 if (u->in_cgroup_oom_queue)
3184 return;
3185 if (!u->cgroup_path)
3186 return;
3187
3188 LIST_PREPEND(cgroup_oom_queue, u->manager->cgroup_oom_queue, u);
3189 u->in_cgroup_oom_queue = true;
3190
3191 /* Trigger the defer event */
3192 if (!u->manager->cgroup_oom_event_source) {
3193 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
3194
3195 r = sd_event_add_defer(u->manager->event, &s, on_cgroup_oom_event, u->manager);
3196 if (r < 0) {
3197 log_error_errno(r, "Failed to create cgroup oom event source: %m");
3198 return;
3199 }
3200
3201 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_NORMAL-8);
3202 if (r < 0) {
3203 log_error_errno(r, "Failed to set priority of cgroup oom event source: %m");
3204 return;
3205 }
3206
3207 (void) sd_event_source_set_description(s, "cgroup-oom");
3208 u->manager->cgroup_oom_event_source = TAKE_PTR(s);
3209 }
3210
3211 r = sd_event_source_set_enabled(u->manager->cgroup_oom_event_source, SD_EVENT_ONESHOT);
3212 if (r < 0)
3213 log_error_errno(r, "Failed to enable cgroup oom event source: %m");
3214 }
3215
3216 static int unit_check_cgroup_events(Unit *u) {
3217 char *values[2] = {};
3218 int r;
3219
3220 assert(u);
3221
3222 if (!u->cgroup_path)
3223 return 0;
3224
3225 r = cg_get_keyed_attribute_graceful(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events",
3226 STRV_MAKE("populated", "frozen"), values);
3227 if (r < 0)
3228 return r;
3229
3230 /* The cgroup.events notifications can be merged together so act as we saw the given state for the
3231 * first time. The functions we call to handle given state are idempotent, which makes them
3232 * effectively remember the previous state. */
3233 if (values[0]) {
3234 if (streq(values[0], "1"))
3235 unit_remove_from_cgroup_empty_queue(u);
3236 else
3237 unit_add_to_cgroup_empty_queue(u);
3238 }
3239
3240 /* Disregard freezer state changes due to operations not initiated by us */
3241 if (values[1] && IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_THAWING)) {
3242 if (streq(values[1], "0"))
3243 unit_thawed(u);
3244 else
3245 unit_frozen(u);
3246 }
3247
3248 free(values[0]);
3249 free(values[1]);
3250
3251 return 0;
3252 }
3253
3254 static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
3255 Manager *m = userdata;
3256
3257 assert(s);
3258 assert(fd >= 0);
3259 assert(m);
3260
3261 for (;;) {
3262 union inotify_event_buffer buffer;
3263 ssize_t l;
3264
3265 l = read(fd, &buffer, sizeof(buffer));
3266 if (l < 0) {
3267 if (ERRNO_IS_TRANSIENT(errno))
3268 return 0;
3269
3270 return log_error_errno(errno, "Failed to read control group inotify events: %m");
3271 }
3272
3273 FOREACH_INOTIFY_EVENT_WARN(e, buffer, l) {
3274 Unit *u;
3275
3276 if (e->wd < 0)
3277 /* Queue overflow has no watch descriptor */
3278 continue;
3279
3280 if (e->mask & IN_IGNORED)
3281 /* The watch was just removed */
3282 continue;
3283
3284 /* Note that inotify might deliver events for a watch even after it was removed,
3285 * because it was queued before the removal. Let's ignore this here safely. */
3286
3287 u = hashmap_get(m->cgroup_control_inotify_wd_unit, INT_TO_PTR(e->wd));
3288 if (u)
3289 unit_check_cgroup_events(u);
3290
3291 u = hashmap_get(m->cgroup_memory_inotify_wd_unit, INT_TO_PTR(e->wd));
3292 if (u)
3293 unit_add_to_cgroup_oom_queue(u);
3294 }
3295 }
3296 }
3297
3298 static int cg_bpf_mask_supported(CGroupMask *ret) {
3299 CGroupMask mask = 0;
3300 int r;
3301
3302 /* BPF-based firewall */
3303 r = bpf_firewall_supported();
3304 if (r < 0)
3305 return r;
3306 if (r > 0)
3307 mask |= CGROUP_MASK_BPF_FIREWALL;
3308
3309 /* BPF-based device access control */
3310 r = bpf_devices_supported();
3311 if (r < 0)
3312 return r;
3313 if (r > 0)
3314 mask |= CGROUP_MASK_BPF_DEVICES;
3315
3316 /* BPF pinned prog */
3317 r = bpf_foreign_supported();
3318 if (r < 0)
3319 return r;
3320 if (r > 0)
3321 mask |= CGROUP_MASK_BPF_FOREIGN;
3322
3323 /* BPF-based bind{4|6} hooks */
3324 r = bpf_socket_bind_supported();
3325 if (r < 0)
3326 return r;
3327 if (r > 0)
3328 mask |= CGROUP_MASK_BPF_SOCKET_BIND;
3329
3330 /* BPF-based cgroup_skb/{egress|ingress} hooks */
3331 r = restrict_network_interfaces_supported();
3332 if (r < 0)
3333 return r;
3334 if (r > 0)
3335 mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
3336
3337 *ret = mask;
3338 return 0;
3339 }
3340
3341 int manager_setup_cgroup(Manager *m) {
3342 _cleanup_free_ char *path = NULL;
3343 const char *scope_path;
3344 int r, all_unified;
3345 CGroupMask mask;
3346 char *e;
3347
3348 assert(m);
3349
3350 /* 1. Determine hierarchy */
3351 m->cgroup_root = mfree(m->cgroup_root);
3352 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
3353 if (r < 0)
3354 return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
3355
3356 /* Chop off the init scope, if we are already located in it */
3357 e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
3358
3359 /* LEGACY: Also chop off the system slice if we are in
3360 * it. This is to support live upgrades from older systemd
3361 * versions where PID 1 was moved there. Also see
3362 * cg_get_root_path(). */
3363 if (!e && MANAGER_IS_SYSTEM(m)) {
3364 e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
3365 if (!e)
3366 e = endswith(m->cgroup_root, "/system"); /* even more legacy */
3367 }
3368 if (e)
3369 *e = 0;
3370
3371 /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
3372 * easily prepend it everywhere. */
3373 delete_trailing_chars(m->cgroup_root, "/");
3374
3375 /* 2. Show data */
3376 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
3377 if (r < 0)
3378 return log_error_errno(r, "Cannot find cgroup mount point: %m");
3379
3380 r = cg_unified();
3381 if (r < 0)
3382 return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
3383
3384 all_unified = cg_all_unified();
3385 if (all_unified < 0)
3386 return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
3387 if (all_unified > 0)
3388 log_debug("Unified cgroup hierarchy is located at %s.", path);
3389 else {
3390 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
3391 if (r < 0)
3392 return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
3393 if (r > 0)
3394 log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
3395 else
3396 log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
3397 }
3398
3399 /* 3. Allocate cgroup empty defer event source */
3400 m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
3401 r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
3402 if (r < 0)
3403 return log_error_errno(r, "Failed to create cgroup empty event source: %m");
3404
3405 /* Schedule cgroup empty checks early, but after having processed service notification messages or
3406 * SIGCHLD signals, so that a cgroup running empty is always just the last safety net of
3407 * notification, and we collected the metadata the notification and SIGCHLD stuff offers first. */
3408 r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
3409 if (r < 0)
3410 return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
3411
3412 r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
3413 if (r < 0)
3414 return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
3415
3416 (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
3417
3418 /* 4. Install notifier inotify object, or agent */
3419 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
3420
3421 /* In the unified hierarchy we can get cgroup empty notifications via inotify. */
3422
3423 m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
3424 safe_close(m->cgroup_inotify_fd);
3425
3426 m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
3427 if (m->cgroup_inotify_fd < 0)
3428 return log_error_errno(errno, "Failed to create control group inotify object: %m");
3429
3430 r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
3431 if (r < 0)
3432 return log_error_errno(r, "Failed to watch control group inotify object: %m");
3433
3434 /* Process cgroup empty notifications early. Note that when this event is dispatched it'll
3435 * just add the unit to a cgroup empty queue, hence let's run earlier than that. Also see
3436 * handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
3437 r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-9);
3438 if (r < 0)
3439 return log_error_errno(r, "Failed to set priority of inotify event source: %m");
3440
3441 (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
3442
3443 } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
3444
3445 /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
3446 * since it does not generate events when control groups with children run empty. */
3447
3448 r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUPS_AGENT_PATH);
3449 if (r < 0)
3450 log_warning_errno(r, "Failed to install release agent, ignoring: %m");
3451 else if (r > 0)
3452 log_debug("Installed release agent.");
3453 else if (r == 0)
3454 log_debug("Release agent already installed.");
3455 }
3456
3457 /* 5. Make sure we are in the special "init.scope" unit in the root slice. */
3458 scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
3459 r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
3460 if (r >= 0) {
3461 /* Also, move all other userspace processes remaining in the root cgroup into that scope. */
3462 r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
3463 if (r < 0)
3464 log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
3465
3466 /* 6. And pin it, so that it cannot be unmounted */
3467 safe_close(m->pin_cgroupfs_fd);
3468 m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
3469 if (m->pin_cgroupfs_fd < 0)
3470 return log_error_errno(errno, "Failed to open pin file: %m");
3471
3472 } else if (!MANAGER_IS_TEST_RUN(m))
3473 return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
3474
3475 /* 7. Always enable hierarchical support if it exists... */
3476 if (!all_unified && !MANAGER_IS_TEST_RUN(m))
3477 (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
3478
3479 /* 8. Figure out which controllers are supported */
3480 r = cg_mask_supported_subtree(m->cgroup_root, &m->cgroup_supported);
3481 if (r < 0)
3482 return log_error_errno(r, "Failed to determine supported controllers: %m");
3483
3484 /* 9. Figure out which bpf-based pseudo-controllers are supported */
3485 r = cg_bpf_mask_supported(&mask);
3486 if (r < 0)
3487 return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
3488 m->cgroup_supported |= mask;
3489
3490 /* 10. Log which controllers are supported */
3491 for (CGroupController c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
3492 log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c),
3493 yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
3494
3495 return 0;
3496 }
3497
3498 void manager_shutdown_cgroup(Manager *m, bool delete) {
3499 assert(m);
3500
3501 /* We can't really delete the group, since we are in it. But
3502 * let's trim it. */
3503 if (delete && m->cgroup_root && !FLAGS_SET(m->test_run_flags, MANAGER_TEST_RUN_MINIMAL))
3504 (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
3505
3506 m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
3507
3508 m->cgroup_control_inotify_wd_unit = hashmap_free(m->cgroup_control_inotify_wd_unit);
3509 m->cgroup_memory_inotify_wd_unit = hashmap_free(m->cgroup_memory_inotify_wd_unit);
3510
3511 m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
3512 m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
3513
3514 m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
3515
3516 m->cgroup_root = mfree(m->cgroup_root);
3517 }
3518
3519 Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
3520 char *p;
3521 Unit *u;
3522
3523 assert(m);
3524 assert(cgroup);
3525
3526 u = hashmap_get(m->cgroup_unit, cgroup);
3527 if (u)
3528 return u;
3529
3530 p = strdupa_safe(cgroup);
3531 for (;;) {
3532 char *e;
3533
3534 e = strrchr(p, '/');
3535 if (!e || e == p)
3536 return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
3537
3538 *e = 0;
3539
3540 u = hashmap_get(m->cgroup_unit, p);
3541 if (u)
3542 return u;
3543 }
3544 }
3545
3546 Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) {
3547 _cleanup_free_ char *cgroup = NULL;
3548
3549 assert(m);
3550
3551 if (!pid_is_valid(pid))
3552 return NULL;
3553
3554 if (cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
3555 return NULL;
3556
3557 return manager_get_unit_by_cgroup(m, cgroup);
3558 }
3559
3560 Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
3561 Unit *u, **array;
3562
3563 assert(m);
3564
3565 /* Note that a process might be owned by multiple units, we return only one here, which is good enough for most
3566 * cases, though not strictly correct. We prefer the one reported by cgroup membership, as that's the most
3567 * relevant one as children of the process will be assigned to that one, too, before all else. */
3568
3569 if (!pid_is_valid(pid))
3570 return NULL;
3571
3572 if (pid == getpid_cached())
3573 return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
3574
3575 u = manager_get_unit_by_pid_cgroup(m, pid);
3576 if (u)
3577 return u;
3578
3579 u = hashmap_get(m->watch_pids, PID_TO_PTR(pid));
3580 if (u)
3581 return u;
3582
3583 array = hashmap_get(m->watch_pids, PID_TO_PTR(-pid));
3584 if (array)
3585 return array[0];
3586
3587 return NULL;
3588 }
3589
3590 int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
3591 Unit *u;
3592
3593 assert(m);
3594 assert(cgroup);
3595
3596 /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
3597 * or from the --system instance */
3598
3599 log_debug("Got cgroup empty notification for: %s", cgroup);
3600
3601 u = manager_get_unit_by_cgroup(m, cgroup);
3602 if (!u)
3603 return 0;
3604
3605 unit_add_to_cgroup_empty_queue(u);
3606 return 1;
3607 }
3608
3609 int unit_get_memory_available(Unit *u, uint64_t *ret) {
3610 uint64_t unit_current, available = UINT64_MAX;
3611 CGroupContext *unit_context;
3612 const char *memory_file;
3613 int r;
3614
3615 assert(u);
3616 assert(ret);
3617
3618 /* If data from cgroups can be accessed, try to find out how much more memory a unit can
3619 * claim before hitting the configured cgroup limits (if any). Consider both MemoryHigh
3620 * and MemoryMax, and also any slice the unit might be nested below. */
3621
3622 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
3623 return -ENODATA;
3624
3625 if (!u->cgroup_path)
3626 return -ENODATA;
3627
3628 /* The root cgroup doesn't expose this information */
3629 if (unit_has_host_root_cgroup(u))
3630 return -ENODATA;
3631
3632 if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
3633 return -ENODATA;
3634
3635 r = cg_all_unified();
3636 if (r < 0)
3637 return r;
3638 memory_file = r > 0 ? "memory.current" : "memory.usage_in_bytes";
3639
3640 r = cg_get_attribute_as_uint64("memory", u->cgroup_path, memory_file, &unit_current);
3641 if (r < 0)
3642 return r;
3643
3644 assert_se(unit_context = unit_get_cgroup_context(u));
3645
3646 if (unit_context->memory_max != UINT64_MAX || unit_context->memory_high != UINT64_MAX)
3647 available = LESS_BY(MIN(unit_context->memory_max, unit_context->memory_high), unit_current);
3648
3649 for (Unit *slice = UNIT_GET_SLICE(u); slice; slice = UNIT_GET_SLICE(slice)) {
3650 uint64_t slice_current, slice_available = UINT64_MAX;
3651 CGroupContext *slice_context;
3652
3653 /* No point in continuing if we can't go any lower */
3654 if (available == 0)
3655 break;
3656
3657 if (!slice->cgroup_path)
3658 continue;
3659
3660 slice_context = unit_get_cgroup_context(slice);
3661 if (!slice_context)
3662 continue;
3663
3664 if (slice_context->memory_max == UINT64_MAX && slice_context->memory_high == UINT64_MAX)
3665 continue;
3666
3667 r = cg_get_attribute_as_uint64("memory", slice->cgroup_path, memory_file, &slice_current);
3668 if (r < 0)
3669 continue;
3670
3671 slice_available = LESS_BY(MIN(slice_context->memory_max, slice_context->memory_high), slice_current);
3672 available = MIN(slice_available, available);
3673 }
3674
3675 *ret = available;
3676
3677 return 0;
3678 }
3679
3680 int unit_get_memory_current(Unit *u, uint64_t *ret) {
3681 int r;
3682
3683 assert(u);
3684 assert(ret);
3685
3686 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
3687 return -ENODATA;
3688
3689 if (!u->cgroup_path)
3690 return -ENODATA;
3691
3692 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
3693 if (unit_has_host_root_cgroup(u))
3694 return procfs_memory_get_used(ret);
3695
3696 if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
3697 return -ENODATA;
3698
3699 r = cg_all_unified();
3700 if (r < 0)
3701 return r;
3702
3703 return cg_get_attribute_as_uint64("memory", u->cgroup_path, r > 0 ? "memory.current" : "memory.usage_in_bytes", ret);
3704 }
3705
3706 int unit_get_tasks_current(Unit *u, uint64_t *ret) {
3707 assert(u);
3708 assert(ret);
3709
3710 if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
3711 return -ENODATA;
3712
3713 if (!u->cgroup_path)
3714 return -ENODATA;
3715
3716 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
3717 if (unit_has_host_root_cgroup(u))
3718 return procfs_tasks_get_current(ret);
3719
3720 if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
3721 return -ENODATA;
3722
3723 return cg_get_attribute_as_uint64("pids", u->cgroup_path, "pids.current", ret);
3724 }
3725
3726 static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
3727 uint64_t ns;
3728 int r;
3729
3730 assert(u);
3731 assert(ret);
3732
3733 if (!u->cgroup_path)
3734 return -ENODATA;
3735
3736 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
3737 if (unit_has_host_root_cgroup(u))
3738 return procfs_cpu_get_usage(ret);
3739
3740 /* Requisite controllers for CPU accounting are not enabled */
3741 if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
3742 return -ENODATA;
3743
3744 r = cg_all_unified();
3745 if (r < 0)
3746 return r;
3747 if (r > 0) {
3748 _cleanup_free_ char *val = NULL;
3749 uint64_t us;
3750
3751 r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
3752 if (IN_SET(r, -ENOENT, -ENXIO))
3753 return -ENODATA;
3754 if (r < 0)
3755 return r;
3756
3757 r = safe_atou64(val, &us);
3758 if (r < 0)
3759 return r;
3760
3761 ns = us * NSEC_PER_USEC;
3762 } else
3763 return cg_get_attribute_as_uint64("cpuacct", u->cgroup_path, "cpuacct.usage", ret);
3764
3765 *ret = ns;
3766 return 0;
3767 }
3768
3769 int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
3770 nsec_t ns;
3771 int r;
3772
3773 assert(u);
3774
3775 /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
3776 * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
3777 * call this function with a NULL return value. */
3778
3779 if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
3780 return -ENODATA;
3781
3782 r = unit_get_cpu_usage_raw(u, &ns);
3783 if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
3784 /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
3785 * cached value. */
3786
3787 if (ret)
3788 *ret = u->cpu_usage_last;
3789 return 0;
3790 }
3791 if (r < 0)
3792 return r;
3793
3794 if (ns > u->cpu_usage_base)
3795 ns -= u->cpu_usage_base;
3796 else
3797 ns = 0;
3798
3799 u->cpu_usage_last = ns;
3800 if (ret)
3801 *ret = ns;
3802
3803 return 0;
3804 }
3805
3806 int unit_get_ip_accounting(
3807 Unit *u,
3808 CGroupIPAccountingMetric metric,
3809 uint64_t *ret) {
3810
3811 uint64_t value;
3812 int fd, r;
3813
3814 assert(u);
3815 assert(metric >= 0);
3816 assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
3817 assert(ret);
3818
3819 if (!UNIT_CGROUP_BOOL(u, ip_accounting))
3820 return -ENODATA;
3821
3822 fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
3823 u->ip_accounting_ingress_map_fd :
3824 u->ip_accounting_egress_map_fd;
3825 if (fd < 0)
3826 return -ENODATA;
3827
3828 if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
3829 r = bpf_firewall_read_accounting(fd, &value, NULL);
3830 else
3831 r = bpf_firewall_read_accounting(fd, NULL, &value);
3832 if (r < 0)
3833 return r;
3834
3835 /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
3836 * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
3837 * ip_accounting_extra[] field, and add them in here transparently. */
3838
3839 *ret = value + u->ip_accounting_extra[metric];
3840
3841 return r;
3842 }
3843
3844 static int unit_get_io_accounting_raw(Unit *u, uint64_t ret[static _CGROUP_IO_ACCOUNTING_METRIC_MAX]) {
3845 static const char *const field_names[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3846 [CGROUP_IO_READ_BYTES] = "rbytes=",
3847 [CGROUP_IO_WRITE_BYTES] = "wbytes=",
3848 [CGROUP_IO_READ_OPERATIONS] = "rios=",
3849 [CGROUP_IO_WRITE_OPERATIONS] = "wios=",
3850 };
3851 uint64_t acc[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {};
3852 _cleanup_free_ char *path = NULL;
3853 _cleanup_fclose_ FILE *f = NULL;
3854 int r;
3855
3856 assert(u);
3857
3858 if (!u->cgroup_path)
3859 return -ENODATA;
3860
3861 if (unit_has_host_root_cgroup(u))
3862 return -ENODATA; /* TODO: return useful data for the top-level cgroup */
3863
3864 r = cg_all_unified();
3865 if (r < 0)
3866 return r;
3867 if (r == 0) /* TODO: support cgroupv1 */
3868 return -ENODATA;
3869
3870 if (!FLAGS_SET(u->cgroup_realized_mask, CGROUP_MASK_IO))
3871 return -ENODATA;
3872
3873 r = cg_get_path("io", u->cgroup_path, "io.stat", &path);
3874 if (r < 0)
3875 return r;
3876
3877 f = fopen(path, "re");
3878 if (!f)
3879 return -errno;
3880
3881 for (;;) {
3882 _cleanup_free_ char *line = NULL;
3883 const char *p;
3884
3885 r = read_line(f, LONG_LINE_MAX, &line);
3886 if (r < 0)
3887 return r;
3888 if (r == 0)
3889 break;
3890
3891 p = line;
3892 p += strcspn(p, WHITESPACE); /* Skip over device major/minor */
3893 p += strspn(p, WHITESPACE); /* Skip over following whitespace */
3894
3895 for (;;) {
3896 _cleanup_free_ char *word = NULL;
3897
3898 r = extract_first_word(&p, &word, NULL, EXTRACT_RETAIN_ESCAPE);
3899 if (r < 0)
3900 return r;
3901 if (r == 0)
3902 break;
3903
3904 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
3905 const char *x;
3906
3907 x = startswith(word, field_names[i]);
3908 if (x) {
3909 uint64_t w;
3910
3911 r = safe_atou64(x, &w);
3912 if (r < 0)
3913 return r;
3914
3915 /* Sum up the stats of all devices */
3916 acc[i] += w;
3917 break;
3918 }
3919 }
3920 }
3921 }
3922
3923 memcpy(ret, acc, sizeof(acc));
3924 return 0;
3925 }
3926
3927 int unit_get_io_accounting(
3928 Unit *u,
3929 CGroupIOAccountingMetric metric,
3930 bool allow_cache,
3931 uint64_t *ret) {
3932
3933 uint64_t raw[_CGROUP_IO_ACCOUNTING_METRIC_MAX];
3934 int r;
3935
3936 /* Retrieve an IO account parameter. This will subtract the counter when the unit was started. */
3937
3938 if (!UNIT_CGROUP_BOOL(u, io_accounting))
3939 return -ENODATA;
3940
3941 if (allow_cache && u->io_accounting_last[metric] != UINT64_MAX)
3942 goto done;
3943
3944 r = unit_get_io_accounting_raw(u, raw);
3945 if (r == -ENODATA && u->io_accounting_last[metric] != UINT64_MAX)
3946 goto done;
3947 if (r < 0)
3948 return r;
3949
3950 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
3951 /* Saturated subtraction */
3952 if (raw[i] > u->io_accounting_base[i])
3953 u->io_accounting_last[i] = raw[i] - u->io_accounting_base[i];
3954 else
3955 u->io_accounting_last[i] = 0;
3956 }
3957
3958 done:
3959 if (ret)
3960 *ret = u->io_accounting_last[metric];
3961
3962 return 0;
3963 }
3964
3965 int unit_reset_cpu_accounting(Unit *u) {
3966 int r;
3967
3968 assert(u);
3969
3970 u->cpu_usage_last = NSEC_INFINITY;
3971
3972 r = unit_get_cpu_usage_raw(u, &u->cpu_usage_base);
3973 if (r < 0) {
3974 u->cpu_usage_base = 0;
3975 return r;
3976 }
3977
3978 return 0;
3979 }
3980
3981 int unit_reset_ip_accounting(Unit *u) {
3982 int r = 0, q = 0;
3983
3984 assert(u);
3985
3986 if (u->ip_accounting_ingress_map_fd >= 0)
3987 r = bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd);
3988
3989 if (u->ip_accounting_egress_map_fd >= 0)
3990 q = bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd);
3991
3992 zero(u->ip_accounting_extra);
3993
3994 return r < 0 ? r : q;
3995 }
3996
3997 int unit_reset_io_accounting(Unit *u) {
3998 int r;
3999
4000 assert(u);
4001
4002 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
4003 u->io_accounting_last[i] = UINT64_MAX;
4004
4005 r = unit_get_io_accounting_raw(u, u->io_accounting_base);
4006 if (r < 0) {
4007 zero(u->io_accounting_base);
4008 return r;
4009 }
4010
4011 return 0;
4012 }
4013
4014 int unit_reset_accounting(Unit *u) {
4015 int r, q, v;
4016
4017 assert(u);
4018
4019 r = unit_reset_cpu_accounting(u);
4020 q = unit_reset_io_accounting(u);
4021 v = unit_reset_ip_accounting(u);
4022
4023 return r < 0 ? r : q < 0 ? q : v;
4024 }
4025
4026 void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
4027 assert(u);
4028
4029 if (!UNIT_HAS_CGROUP_CONTEXT(u))
4030 return;
4031
4032 if (m == 0)
4033 return;
4034
4035 /* always invalidate compat pairs together */
4036 if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
4037 m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
4038
4039 if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
4040 m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
4041
4042 if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */
4043 return;
4044
4045 u->cgroup_invalidated_mask |= m;
4046 unit_add_to_cgroup_realize_queue(u);
4047 }
4048
4049 void unit_invalidate_cgroup_bpf(Unit *u) {
4050 assert(u);
4051
4052 if (!UNIT_HAS_CGROUP_CONTEXT(u))
4053 return;
4054
4055 if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
4056 return;
4057
4058 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
4059 unit_add_to_cgroup_realize_queue(u);
4060
4061 /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
4062 * list of our children includes our own. */
4063 if (u->type == UNIT_SLICE) {
4064 Unit *member;
4065
4066 UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
4067 unit_invalidate_cgroup_bpf(member);
4068 }
4069 }
4070
4071 void unit_cgroup_catchup(Unit *u) {
4072 assert(u);
4073
4074 if (!UNIT_HAS_CGROUP_CONTEXT(u))
4075 return;
4076
4077 /* We dropped the inotify watch during reexec/reload, so we need to
4078 * check these as they may have changed.
4079 * Note that (currently) the kernel doesn't actually update cgroup
4080 * file modification times, so we can't just serialize and then check
4081 * the mtime for file(s) we are interested in. */
4082 (void) unit_check_cgroup_events(u);
4083 unit_add_to_cgroup_oom_queue(u);
4084 }
4085
4086 bool unit_cgroup_delegate(Unit *u) {
4087 CGroupContext *c;
4088
4089 assert(u);
4090
4091 if (!UNIT_VTABLE(u)->can_delegate)
4092 return false;
4093
4094 c = unit_get_cgroup_context(u);
4095 if (!c)
4096 return false;
4097
4098 return c->delegate;
4099 }
4100
4101 void manager_invalidate_startup_units(Manager *m) {
4102 Unit *u;
4103
4104 assert(m);
4105
4106 SET_FOREACH(u, m->startup_units)
4107 unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO|CGROUP_MASK_CPUSET);
4108 }
4109
4110 static int unit_get_nice(Unit *u) {
4111 ExecContext *ec;
4112
4113 ec = unit_get_exec_context(u);
4114 return ec ? ec->nice : 0;
4115 }
4116
4117 static uint64_t unit_get_cpu_weight(Unit *u) {
4118 ManagerState state = manager_state(u->manager);
4119 CGroupContext *cc;
4120
4121 cc = unit_get_cgroup_context(u);
4122 return cc ? cgroup_context_cpu_weight(cc, state) : CGROUP_WEIGHT_DEFAULT;
4123 }
4124
4125 int compare_job_priority(const void *a, const void *b) {
4126 const Job *x = a, *y = b;
4127 int nice_x, nice_y;
4128 uint64_t weight_x, weight_y;
4129 int ret;
4130
4131 if ((ret = CMP(x->unit->type, y->unit->type)) != 0)
4132 return -ret;
4133
4134 weight_x = unit_get_cpu_weight(x->unit);
4135 weight_y = unit_get_cpu_weight(y->unit);
4136
4137 if ((ret = CMP(weight_x, weight_y)) != 0)
4138 return -ret;
4139
4140 nice_x = unit_get_nice(x->unit);
4141 nice_y = unit_get_nice(y->unit);
4142
4143 if ((ret = CMP(nice_x, nice_y)) != 0)
4144 return ret;
4145
4146 return strcmp(x->unit->id, y->unit->id);
4147 }
4148
4149 int unit_cgroup_freezer_action(Unit *u, FreezerAction action) {
4150 _cleanup_free_ char *path = NULL;
4151 FreezerState target, kernel = _FREEZER_STATE_INVALID;
4152 int r;
4153
4154 assert(u);
4155 assert(IN_SET(action, FREEZER_FREEZE, FREEZER_THAW));
4156
4157 if (!cg_freezer_supported())
4158 return 0;
4159
4160 if (!u->cgroup_realized)
4161 return -EBUSY;
4162
4163 target = action == FREEZER_FREEZE ? FREEZER_FROZEN : FREEZER_RUNNING;
4164
4165 r = unit_freezer_state_kernel(u, &kernel);
4166 if (r < 0)
4167 log_unit_debug_errno(u, r, "Failed to obtain cgroup freezer state: %m");
4168
4169 if (target == kernel) {
4170 u->freezer_state = target;
4171 return 0;
4172 }
4173
4174 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.freeze", &path);
4175 if (r < 0)
4176 return r;
4177
4178 log_unit_debug(u, "%s unit.", action == FREEZER_FREEZE ? "Freezing" : "Thawing");
4179
4180 if (action == FREEZER_FREEZE)
4181 u->freezer_state = FREEZER_FREEZING;
4182 else
4183 u->freezer_state = FREEZER_THAWING;
4184
4185 r = write_string_file(path, one_zero(action == FREEZER_FREEZE), WRITE_STRING_FILE_DISABLE_BUFFER);
4186 if (r < 0)
4187 return r;
4188
4189 return 1;
4190 }
4191
4192 int unit_get_cpuset(Unit *u, CPUSet *cpus, const char *name) {
4193 _cleanup_free_ char *v = NULL;
4194 int r;
4195
4196 assert(u);
4197 assert(cpus);
4198
4199 if (!u->cgroup_path)
4200 return -ENODATA;
4201
4202 if ((u->cgroup_realized_mask & CGROUP_MASK_CPUSET) == 0)
4203 return -ENODATA;
4204
4205 r = cg_all_unified();
4206 if (r < 0)
4207 return r;
4208 if (r == 0)
4209 return -ENODATA;
4210
4211 r = cg_get_attribute("cpuset", u->cgroup_path, name, &v);
4212 if (r == -ENOENT)
4213 return -ENODATA;
4214 if (r < 0)
4215 return r;
4216
4217 return parse_cpu_set_full(v, cpus, false, NULL, NULL, 0, NULL);
4218 }
4219
4220 static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
4221 [CGROUP_DEVICE_POLICY_AUTO] = "auto",
4222 [CGROUP_DEVICE_POLICY_CLOSED] = "closed",
4223 [CGROUP_DEVICE_POLICY_STRICT] = "strict",
4224 };
4225
4226 DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);
4227
4228 static const char* const freezer_action_table[_FREEZER_ACTION_MAX] = {
4229 [FREEZER_FREEZE] = "freeze",
4230 [FREEZER_THAW] = "thaw",
4231 };
4232
4233 DEFINE_STRING_TABLE_LOOKUP(freezer_action, FreezerAction);