]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
Merge pull request #16344 from keszybz/update-utmp-erofs
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <poll.h>
6 #include <sys/eventfd.h>
7 #include <sys/ioctl.h>
8 #include <sys/mman.h>
9 #include <sys/personality.h>
10 #include <sys/prctl.h>
11 #include <sys/shm.h>
12 #include <sys/types.h>
13 #include <sys/un.h>
14 #include <unistd.h>
15 #include <utmpx.h>
16
17 #if HAVE_PAM
18 #include <security/pam_appl.h>
19 #endif
20
21 #if HAVE_SELINUX
22 #include <selinux/selinux.h>
23 #endif
24
25 #if HAVE_SECCOMP
26 #include <seccomp.h>
27 #endif
28
29 #if HAVE_APPARMOR
30 #include <sys/apparmor.h>
31 #endif
32
33 #include "sd-messages.h"
34
35 #include "af-list.h"
36 #include "alloc-util.h"
37 #if HAVE_APPARMOR
38 #include "apparmor-util.h"
39 #endif
40 #include "async.h"
41 #include "barrier.h"
42 #include "cap-list.h"
43 #include "capability-util.h"
44 #include "chown-recursive.h"
45 #include "cgroup-setup.h"
46 #include "cpu-set-util.h"
47 #include "def.h"
48 #include "env-file.h"
49 #include "env-util.h"
50 #include "errno-list.h"
51 #include "execute.h"
52 #include "exit-status.h"
53 #include "fd-util.h"
54 #include "format-util.h"
55 #include "fs-util.h"
56 #include "glob-util.h"
57 #include "hexdecoct.h"
58 #include "io-util.h"
59 #include "ioprio.h"
60 #include "label.h"
61 #include "log.h"
62 #include "macro.h"
63 #include "manager.h"
64 #include "memory-util.h"
65 #include "missing_fs.h"
66 #include "mkdir.h"
67 #include "namespace.h"
68 #include "parse-util.h"
69 #include "path-util.h"
70 #include "process-util.h"
71 #include "rlimit-util.h"
72 #include "rm-rf.h"
73 #if HAVE_SECCOMP
74 #include "seccomp-util.h"
75 #endif
76 #include "securebits-util.h"
77 #include "selinux-util.h"
78 #include "signal-util.h"
79 #include "smack-util.h"
80 #include "socket-util.h"
81 #include "special.h"
82 #include "stat-util.h"
83 #include "string-table.h"
84 #include "string-util.h"
85 #include "strv.h"
86 #include "syslog-util.h"
87 #include "terminal-util.h"
88 #include "umask-util.h"
89 #include "unit.h"
90 #include "user-util.h"
91 #include "utmp-wtmp.h"
92
93 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
94 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
95
96 #define SNDBUF_SIZE (8*1024*1024)
97
98 static int shift_fds(int fds[], size_t n_fds) {
99 int start, restart_from;
100
101 if (n_fds <= 0)
102 return 0;
103
104 /* Modifies the fds array! (sorts it) */
105
106 assert(fds);
107
108 start = 0;
109 for (;;) {
110 int i;
111
112 restart_from = -1;
113
114 for (i = start; i < (int) n_fds; i++) {
115 int nfd;
116
117 /* Already at right index? */
118 if (fds[i] == i+3)
119 continue;
120
121 nfd = fcntl(fds[i], F_DUPFD, i + 3);
122 if (nfd < 0)
123 return -errno;
124
125 safe_close(fds[i]);
126 fds[i] = nfd;
127
128 /* Hmm, the fd we wanted isn't free? Then
129 * let's remember that and try again from here */
130 if (nfd != i+3 && restart_from < 0)
131 restart_from = i;
132 }
133
134 if (restart_from < 0)
135 break;
136
137 start = restart_from;
138 }
139
140 return 0;
141 }
142
143 static int flags_fds(const int fds[], size_t n_socket_fds, size_t n_storage_fds, bool nonblock) {
144 size_t i, n_fds;
145 int r;
146
147 n_fds = n_socket_fds + n_storage_fds;
148 if (n_fds <= 0)
149 return 0;
150
151 assert(fds);
152
153 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
154 * O_NONBLOCK only applies to socket activation though. */
155
156 for (i = 0; i < n_fds; i++) {
157
158 if (i < n_socket_fds) {
159 r = fd_nonblock(fds[i], nonblock);
160 if (r < 0)
161 return r;
162 }
163
164 /* We unconditionally drop FD_CLOEXEC from the fds,
165 * since after all we want to pass these fds to our
166 * children */
167
168 r = fd_cloexec(fds[i], false);
169 if (r < 0)
170 return r;
171 }
172
173 return 0;
174 }
175
176 static const char *exec_context_tty_path(const ExecContext *context) {
177 assert(context);
178
179 if (context->stdio_as_fds)
180 return NULL;
181
182 if (context->tty_path)
183 return context->tty_path;
184
185 return "/dev/console";
186 }
187
188 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
189 const char *path;
190
191 assert(context);
192
193 path = exec_context_tty_path(context);
194
195 if (context->tty_vhangup) {
196 if (p && p->stdin_fd >= 0)
197 (void) terminal_vhangup_fd(p->stdin_fd);
198 else if (path)
199 (void) terminal_vhangup(path);
200 }
201
202 if (context->tty_reset) {
203 if (p && p->stdin_fd >= 0)
204 (void) reset_terminal_fd(p->stdin_fd, true);
205 else if (path)
206 (void) reset_terminal(path);
207 }
208
209 if (context->tty_vt_disallocate && path)
210 (void) vt_disallocate(path);
211 }
212
213 static bool is_terminal_input(ExecInput i) {
214 return IN_SET(i,
215 EXEC_INPUT_TTY,
216 EXEC_INPUT_TTY_FORCE,
217 EXEC_INPUT_TTY_FAIL);
218 }
219
220 static bool is_terminal_output(ExecOutput o) {
221 return IN_SET(o,
222 EXEC_OUTPUT_TTY,
223 EXEC_OUTPUT_KMSG_AND_CONSOLE,
224 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
225 }
226
227 static bool is_kmsg_output(ExecOutput o) {
228 return IN_SET(o,
229 EXEC_OUTPUT_KMSG,
230 EXEC_OUTPUT_KMSG_AND_CONSOLE);
231 }
232
233 static bool exec_context_needs_term(const ExecContext *c) {
234 assert(c);
235
236 /* Return true if the execution context suggests we should set $TERM to something useful. */
237
238 if (is_terminal_input(c->std_input))
239 return true;
240
241 if (is_terminal_output(c->std_output))
242 return true;
243
244 if (is_terminal_output(c->std_error))
245 return true;
246
247 return !!c->tty_path;
248 }
249
250 static int open_null_as(int flags, int nfd) {
251 int fd;
252
253 assert(nfd >= 0);
254
255 fd = open("/dev/null", flags|O_NOCTTY);
256 if (fd < 0)
257 return -errno;
258
259 return move_fd(fd, nfd, false);
260 }
261
262 static int connect_journal_socket(
263 int fd,
264 const char *log_namespace,
265 uid_t uid,
266 gid_t gid) {
267
268 union sockaddr_union sa;
269 socklen_t sa_len;
270 uid_t olduid = UID_INVALID;
271 gid_t oldgid = GID_INVALID;
272 const char *j;
273 int r;
274
275 j = log_namespace ?
276 strjoina("/run/systemd/journal.", log_namespace, "/stdout") :
277 "/run/systemd/journal/stdout";
278 r = sockaddr_un_set_path(&sa.un, j);
279 if (r < 0)
280 return r;
281 sa_len = r;
282
283 if (gid_is_valid(gid)) {
284 oldgid = getgid();
285
286 if (setegid(gid) < 0)
287 return -errno;
288 }
289
290 if (uid_is_valid(uid)) {
291 olduid = getuid();
292
293 if (seteuid(uid) < 0) {
294 r = -errno;
295 goto restore_gid;
296 }
297 }
298
299 r = connect(fd, &sa.sa, sa_len) < 0 ? -errno : 0;
300
301 /* If we fail to restore the uid or gid, things will likely
302 fail later on. This should only happen if an LSM interferes. */
303
304 if (uid_is_valid(uid))
305 (void) seteuid(olduid);
306
307 restore_gid:
308 if (gid_is_valid(gid))
309 (void) setegid(oldgid);
310
311 return r;
312 }
313
314 static int connect_logger_as(
315 const Unit *unit,
316 const ExecContext *context,
317 const ExecParameters *params,
318 ExecOutput output,
319 const char *ident,
320 int nfd,
321 uid_t uid,
322 gid_t gid) {
323
324 _cleanup_close_ int fd = -1;
325 int r;
326
327 assert(context);
328 assert(params);
329 assert(output < _EXEC_OUTPUT_MAX);
330 assert(ident);
331 assert(nfd >= 0);
332
333 fd = socket(AF_UNIX, SOCK_STREAM, 0);
334 if (fd < 0)
335 return -errno;
336
337 r = connect_journal_socket(fd, context->log_namespace, uid, gid);
338 if (r < 0)
339 return r;
340
341 if (shutdown(fd, SHUT_RD) < 0)
342 return -errno;
343
344 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
345
346 if (dprintf(fd,
347 "%s\n"
348 "%s\n"
349 "%i\n"
350 "%i\n"
351 "%i\n"
352 "%i\n"
353 "%i\n",
354 context->syslog_identifier ?: ident,
355 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
356 context->syslog_priority,
357 !!context->syslog_level_prefix,
358 false,
359 is_kmsg_output(output),
360 is_terminal_output(output)) < 0)
361 return -errno;
362
363 return move_fd(TAKE_FD(fd), nfd, false);
364 }
365
366 static int open_terminal_as(const char *path, int flags, int nfd) {
367 int fd;
368
369 assert(path);
370 assert(nfd >= 0);
371
372 fd = open_terminal(path, flags | O_NOCTTY);
373 if (fd < 0)
374 return fd;
375
376 return move_fd(fd, nfd, false);
377 }
378
379 static int acquire_path(const char *path, int flags, mode_t mode) {
380 union sockaddr_union sa;
381 socklen_t sa_len;
382 _cleanup_close_ int fd = -1;
383 int r;
384
385 assert(path);
386
387 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
388 flags |= O_CREAT;
389
390 fd = open(path, flags|O_NOCTTY, mode);
391 if (fd >= 0)
392 return TAKE_FD(fd);
393
394 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
395 return -errno;
396
397 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
398
399 r = sockaddr_un_set_path(&sa.un, path);
400 if (r < 0)
401 return r == -EINVAL ? -ENXIO : r;
402 sa_len = r;
403
404 fd = socket(AF_UNIX, SOCK_STREAM, 0);
405 if (fd < 0)
406 return -errno;
407
408 if (connect(fd, &sa.sa, sa_len) < 0)
409 return errno == EINVAL ? -ENXIO : -errno; /* Propagate initial error if we get EINVAL, i.e. we have
410 * indication that his wasn't an AF_UNIX socket after all */
411
412 if ((flags & O_ACCMODE) == O_RDONLY)
413 r = shutdown(fd, SHUT_WR);
414 else if ((flags & O_ACCMODE) == O_WRONLY)
415 r = shutdown(fd, SHUT_RD);
416 else
417 r = 0;
418 if (r < 0)
419 return -errno;
420
421 return TAKE_FD(fd);
422 }
423
424 static int fixup_input(
425 const ExecContext *context,
426 int socket_fd,
427 bool apply_tty_stdin) {
428
429 ExecInput std_input;
430
431 assert(context);
432
433 std_input = context->std_input;
434
435 if (is_terminal_input(std_input) && !apply_tty_stdin)
436 return EXEC_INPUT_NULL;
437
438 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
439 return EXEC_INPUT_NULL;
440
441 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
442 return EXEC_INPUT_NULL;
443
444 return std_input;
445 }
446
447 static int fixup_output(ExecOutput std_output, int socket_fd) {
448
449 if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
450 return EXEC_OUTPUT_INHERIT;
451
452 return std_output;
453 }
454
455 static int setup_input(
456 const ExecContext *context,
457 const ExecParameters *params,
458 int socket_fd,
459 const int named_iofds[static 3]) {
460
461 ExecInput i;
462
463 assert(context);
464 assert(params);
465 assert(named_iofds);
466
467 if (params->stdin_fd >= 0) {
468 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
469 return -errno;
470
471 /* Try to make this the controlling tty, if it is a tty, and reset it */
472 if (isatty(STDIN_FILENO)) {
473 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
474 (void) reset_terminal_fd(STDIN_FILENO, true);
475 }
476
477 return STDIN_FILENO;
478 }
479
480 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
481
482 switch (i) {
483
484 case EXEC_INPUT_NULL:
485 return open_null_as(O_RDONLY, STDIN_FILENO);
486
487 case EXEC_INPUT_TTY:
488 case EXEC_INPUT_TTY_FORCE:
489 case EXEC_INPUT_TTY_FAIL: {
490 int fd;
491
492 fd = acquire_terminal(exec_context_tty_path(context),
493 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
494 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
495 ACQUIRE_TERMINAL_WAIT,
496 USEC_INFINITY);
497 if (fd < 0)
498 return fd;
499
500 return move_fd(fd, STDIN_FILENO, false);
501 }
502
503 case EXEC_INPUT_SOCKET:
504 assert(socket_fd >= 0);
505
506 return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
507
508 case EXEC_INPUT_NAMED_FD:
509 assert(named_iofds[STDIN_FILENO] >= 0);
510
511 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
512 return dup2(named_iofds[STDIN_FILENO], STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
513
514 case EXEC_INPUT_DATA: {
515 int fd;
516
517 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
518 if (fd < 0)
519 return fd;
520
521 return move_fd(fd, STDIN_FILENO, false);
522 }
523
524 case EXEC_INPUT_FILE: {
525 bool rw;
526 int fd;
527
528 assert(context->stdio_file[STDIN_FILENO]);
529
530 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
531 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
532
533 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
534 if (fd < 0)
535 return fd;
536
537 return move_fd(fd, STDIN_FILENO, false);
538 }
539
540 default:
541 assert_not_reached("Unknown input type");
542 }
543 }
544
545 static bool can_inherit_stderr_from_stdout(
546 const ExecContext *context,
547 ExecOutput o,
548 ExecOutput e) {
549
550 assert(context);
551
552 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
553 * stderr fd */
554
555 if (e == EXEC_OUTPUT_INHERIT)
556 return true;
557 if (e != o)
558 return false;
559
560 if (e == EXEC_OUTPUT_NAMED_FD)
561 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
562
563 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND))
564 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
565
566 return true;
567 }
568
569 static int setup_output(
570 const Unit *unit,
571 const ExecContext *context,
572 const ExecParameters *params,
573 int fileno,
574 int socket_fd,
575 const int named_iofds[static 3],
576 const char *ident,
577 uid_t uid,
578 gid_t gid,
579 dev_t *journal_stream_dev,
580 ino_t *journal_stream_ino) {
581
582 ExecOutput o;
583 ExecInput i;
584 int r;
585
586 assert(unit);
587 assert(context);
588 assert(params);
589 assert(ident);
590 assert(journal_stream_dev);
591 assert(journal_stream_ino);
592
593 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
594
595 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
596 return -errno;
597
598 return STDOUT_FILENO;
599 }
600
601 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
602 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
603 return -errno;
604
605 return STDERR_FILENO;
606 }
607
608 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
609 o = fixup_output(context->std_output, socket_fd);
610
611 if (fileno == STDERR_FILENO) {
612 ExecOutput e;
613 e = fixup_output(context->std_error, socket_fd);
614
615 /* This expects the input and output are already set up */
616
617 /* Don't change the stderr file descriptor if we inherit all
618 * the way and are not on a tty */
619 if (e == EXEC_OUTPUT_INHERIT &&
620 o == EXEC_OUTPUT_INHERIT &&
621 i == EXEC_INPUT_NULL &&
622 !is_terminal_input(context->std_input) &&
623 getppid () != 1)
624 return fileno;
625
626 /* Duplicate from stdout if possible */
627 if (can_inherit_stderr_from_stdout(context, o, e))
628 return dup2(STDOUT_FILENO, fileno) < 0 ? -errno : fileno;
629
630 o = e;
631
632 } else if (o == EXEC_OUTPUT_INHERIT) {
633 /* If input got downgraded, inherit the original value */
634 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
635 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
636
637 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
638 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
639 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
640
641 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
642 if (getppid() != 1)
643 return fileno;
644
645 /* We need to open /dev/null here anew, to get the right access mode. */
646 return open_null_as(O_WRONLY, fileno);
647 }
648
649 switch (o) {
650
651 case EXEC_OUTPUT_NULL:
652 return open_null_as(O_WRONLY, fileno);
653
654 case EXEC_OUTPUT_TTY:
655 if (is_terminal_input(i))
656 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
657
658 /* We don't reset the terminal if this is just about output */
659 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
660
661 case EXEC_OUTPUT_KMSG:
662 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
663 case EXEC_OUTPUT_JOURNAL:
664 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
665 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
666 if (r < 0) {
667 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m", fileno == STDOUT_FILENO ? "stdout" : "stderr");
668 r = open_null_as(O_WRONLY, fileno);
669 } else {
670 struct stat st;
671
672 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
673 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
674 * services to detect whether they are connected to the journal or not.
675 *
676 * If both stdout and stderr are connected to a stream then let's make sure to store the data
677 * about STDERR as that's usually the best way to do logging. */
678
679 if (fstat(fileno, &st) >= 0 &&
680 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
681 *journal_stream_dev = st.st_dev;
682 *journal_stream_ino = st.st_ino;
683 }
684 }
685 return r;
686
687 case EXEC_OUTPUT_SOCKET:
688 assert(socket_fd >= 0);
689
690 return dup2(socket_fd, fileno) < 0 ? -errno : fileno;
691
692 case EXEC_OUTPUT_NAMED_FD:
693 assert(named_iofds[fileno] >= 0);
694
695 (void) fd_nonblock(named_iofds[fileno], false);
696 return dup2(named_iofds[fileno], fileno) < 0 ? -errno : fileno;
697
698 case EXEC_OUTPUT_FILE:
699 case EXEC_OUTPUT_FILE_APPEND: {
700 bool rw;
701 int fd, flags;
702
703 assert(context->stdio_file[fileno]);
704
705 rw = context->std_input == EXEC_INPUT_FILE &&
706 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
707
708 if (rw)
709 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
710
711 flags = O_WRONLY;
712 if (o == EXEC_OUTPUT_FILE_APPEND)
713 flags |= O_APPEND;
714
715 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
716 if (fd < 0)
717 return fd;
718
719 return move_fd(fd, fileno, 0);
720 }
721
722 default:
723 assert_not_reached("Unknown error type");
724 }
725 }
726
727 static int chown_terminal(int fd, uid_t uid) {
728 int r;
729
730 assert(fd >= 0);
731
732 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
733 if (isatty(fd) < 1) {
734 if (IN_SET(errno, EINVAL, ENOTTY))
735 return 0; /* not a tty */
736
737 return -errno;
738 }
739
740 /* This might fail. What matters are the results. */
741 r = fchmod_and_chown(fd, TTY_MODE, uid, -1);
742 if (r < 0)
743 return r;
744
745 return 1;
746 }
747
748 static int setup_confirm_stdio(const char *vc, int *_saved_stdin, int *_saved_stdout) {
749 _cleanup_close_ int fd = -1, saved_stdin = -1, saved_stdout = -1;
750 int r;
751
752 assert(_saved_stdin);
753 assert(_saved_stdout);
754
755 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
756 if (saved_stdin < 0)
757 return -errno;
758
759 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
760 if (saved_stdout < 0)
761 return -errno;
762
763 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
764 if (fd < 0)
765 return fd;
766
767 r = chown_terminal(fd, getuid());
768 if (r < 0)
769 return r;
770
771 r = reset_terminal_fd(fd, true);
772 if (r < 0)
773 return r;
774
775 r = rearrange_stdio(fd, fd, STDERR_FILENO);
776 fd = -1;
777 if (r < 0)
778 return r;
779
780 *_saved_stdin = saved_stdin;
781 *_saved_stdout = saved_stdout;
782
783 saved_stdin = saved_stdout = -1;
784
785 return 0;
786 }
787
788 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
789 assert(err < 0);
790
791 if (err == -ETIMEDOUT)
792 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
793 else {
794 errno = -err;
795 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
796 }
797 }
798
799 static void write_confirm_error(int err, const char *vc, const Unit *u) {
800 _cleanup_close_ int fd = -1;
801
802 assert(vc);
803
804 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
805 if (fd < 0)
806 return;
807
808 write_confirm_error_fd(err, fd, u);
809 }
810
811 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
812 int r = 0;
813
814 assert(saved_stdin);
815 assert(saved_stdout);
816
817 release_terminal();
818
819 if (*saved_stdin >= 0)
820 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
821 r = -errno;
822
823 if (*saved_stdout >= 0)
824 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
825 r = -errno;
826
827 *saved_stdin = safe_close(*saved_stdin);
828 *saved_stdout = safe_close(*saved_stdout);
829
830 return r;
831 }
832
833 enum {
834 CONFIRM_PRETEND_FAILURE = -1,
835 CONFIRM_PRETEND_SUCCESS = 0,
836 CONFIRM_EXECUTE = 1,
837 };
838
839 static int ask_for_confirmation(const char *vc, Unit *u, const char *cmdline) {
840 int saved_stdout = -1, saved_stdin = -1, r;
841 _cleanup_free_ char *e = NULL;
842 char c;
843
844 /* For any internal errors, assume a positive response. */
845 r = setup_confirm_stdio(vc, &saved_stdin, &saved_stdout);
846 if (r < 0) {
847 write_confirm_error(r, vc, u);
848 return CONFIRM_EXECUTE;
849 }
850
851 /* confirm_spawn might have been disabled while we were sleeping. */
852 if (manager_is_confirm_spawn_disabled(u->manager)) {
853 r = 1;
854 goto restore_stdio;
855 }
856
857 e = ellipsize(cmdline, 60, 100);
858 if (!e) {
859 log_oom();
860 r = CONFIRM_EXECUTE;
861 goto restore_stdio;
862 }
863
864 for (;;) {
865 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
866 if (r < 0) {
867 write_confirm_error_fd(r, STDOUT_FILENO, u);
868 r = CONFIRM_EXECUTE;
869 goto restore_stdio;
870 }
871
872 switch (c) {
873 case 'c':
874 printf("Resuming normal execution.\n");
875 manager_disable_confirm_spawn();
876 r = 1;
877 break;
878 case 'D':
879 unit_dump(u, stdout, " ");
880 continue; /* ask again */
881 case 'f':
882 printf("Failing execution.\n");
883 r = CONFIRM_PRETEND_FAILURE;
884 break;
885 case 'h':
886 printf(" c - continue, proceed without asking anymore\n"
887 " D - dump, show the state of the unit\n"
888 " f - fail, don't execute the command and pretend it failed\n"
889 " h - help\n"
890 " i - info, show a short summary of the unit\n"
891 " j - jobs, show jobs that are in progress\n"
892 " s - skip, don't execute the command and pretend it succeeded\n"
893 " y - yes, execute the command\n");
894 continue; /* ask again */
895 case 'i':
896 printf(" Description: %s\n"
897 " Unit: %s\n"
898 " Command: %s\n",
899 u->id, u->description, cmdline);
900 continue; /* ask again */
901 case 'j':
902 manager_dump_jobs(u->manager, stdout, " ");
903 continue; /* ask again */
904 case 'n':
905 /* 'n' was removed in favor of 'f'. */
906 printf("Didn't understand 'n', did you mean 'f'?\n");
907 continue; /* ask again */
908 case 's':
909 printf("Skipping execution.\n");
910 r = CONFIRM_PRETEND_SUCCESS;
911 break;
912 case 'y':
913 r = CONFIRM_EXECUTE;
914 break;
915 default:
916 assert_not_reached("Unhandled choice");
917 }
918 break;
919 }
920
921 restore_stdio:
922 restore_confirm_stdio(&saved_stdin, &saved_stdout);
923 return r;
924 }
925
926 static int get_fixed_user(const ExecContext *c, const char **user,
927 uid_t *uid, gid_t *gid,
928 const char **home, const char **shell) {
929 int r;
930 const char *name;
931
932 assert(c);
933
934 if (!c->user)
935 return 0;
936
937 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
938 * (i.e. are "/" or "/bin/nologin"). */
939
940 name = c->user;
941 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
942 if (r < 0)
943 return r;
944
945 *user = name;
946 return 0;
947 }
948
949 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
950 int r;
951 const char *name;
952
953 assert(c);
954
955 if (!c->group)
956 return 0;
957
958 name = c->group;
959 r = get_group_creds(&name, gid, 0);
960 if (r < 0)
961 return r;
962
963 *group = name;
964 return 0;
965 }
966
967 static int get_supplementary_groups(const ExecContext *c, const char *user,
968 const char *group, gid_t gid,
969 gid_t **supplementary_gids, int *ngids) {
970 char **i;
971 int r, k = 0;
972 int ngroups_max;
973 bool keep_groups = false;
974 gid_t *groups = NULL;
975 _cleanup_free_ gid_t *l_gids = NULL;
976
977 assert(c);
978
979 /*
980 * If user is given, then lookup GID and supplementary groups list.
981 * We avoid NSS lookups for gid=0. Also we have to initialize groups
982 * here and as early as possible so we keep the list of supplementary
983 * groups of the caller.
984 */
985 if (user && gid_is_valid(gid) && gid != 0) {
986 /* First step, initialize groups from /etc/groups */
987 if (initgroups(user, gid) < 0)
988 return -errno;
989
990 keep_groups = true;
991 }
992
993 if (strv_isempty(c->supplementary_groups))
994 return 0;
995
996 /*
997 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
998 * be positive, otherwise fail.
999 */
1000 errno = 0;
1001 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1002 if (ngroups_max <= 0)
1003 return errno_or_else(EOPNOTSUPP);
1004
1005 l_gids = new(gid_t, ngroups_max);
1006 if (!l_gids)
1007 return -ENOMEM;
1008
1009 if (keep_groups) {
1010 /*
1011 * Lookup the list of groups that the user belongs to, we
1012 * avoid NSS lookups here too for gid=0.
1013 */
1014 k = ngroups_max;
1015 if (getgrouplist(user, gid, l_gids, &k) < 0)
1016 return -EINVAL;
1017 } else
1018 k = 0;
1019
1020 STRV_FOREACH(i, c->supplementary_groups) {
1021 const char *g;
1022
1023 if (k >= ngroups_max)
1024 return -E2BIG;
1025
1026 g = *i;
1027 r = get_group_creds(&g, l_gids+k, 0);
1028 if (r < 0)
1029 return r;
1030
1031 k++;
1032 }
1033
1034 /*
1035 * Sets ngids to zero to drop all supplementary groups, happens
1036 * when we are under root and SupplementaryGroups= is empty.
1037 */
1038 if (k == 0) {
1039 *ngids = 0;
1040 return 0;
1041 }
1042
1043 /* Otherwise get the final list of supplementary groups */
1044 groups = memdup(l_gids, sizeof(gid_t) * k);
1045 if (!groups)
1046 return -ENOMEM;
1047
1048 *supplementary_gids = groups;
1049 *ngids = k;
1050
1051 groups = NULL;
1052
1053 return 0;
1054 }
1055
1056 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1057 int r;
1058
1059 /* Handle SupplementaryGroups= if it is not empty */
1060 if (ngids > 0) {
1061 r = maybe_setgroups(ngids, supplementary_gids);
1062 if (r < 0)
1063 return r;
1064 }
1065
1066 if (gid_is_valid(gid)) {
1067 /* Then set our gids */
1068 if (setresgid(gid, gid, gid) < 0)
1069 return -errno;
1070 }
1071
1072 return 0;
1073 }
1074
1075 static int enforce_user(const ExecContext *context, uid_t uid) {
1076 assert(context);
1077
1078 if (!uid_is_valid(uid))
1079 return 0;
1080
1081 /* Sets (but doesn't look up) the uid and make sure we keep the
1082 * capabilities while doing so. */
1083
1084 if (context->capability_ambient_set != 0) {
1085
1086 /* First step: If we need to keep capabilities but
1087 * drop privileges we need to make sure we keep our
1088 * caps, while we drop privileges. */
1089 if (uid != 0) {
1090 int sb = context->secure_bits | 1<<SECURE_KEEP_CAPS;
1091
1092 if (prctl(PR_GET_SECUREBITS) != sb)
1093 if (prctl(PR_SET_SECUREBITS, sb) < 0)
1094 return -errno;
1095 }
1096 }
1097
1098 /* Second step: actually set the uids */
1099 if (setresuid(uid, uid, uid) < 0)
1100 return -errno;
1101
1102 /* At this point we should have all necessary capabilities but
1103 are otherwise a normal user. However, the caps might got
1104 corrupted due to the setresuid() so we need clean them up
1105 later. This is done outside of this call. */
1106
1107 return 0;
1108 }
1109
1110 #if HAVE_PAM
1111
1112 static int null_conv(
1113 int num_msg,
1114 const struct pam_message **msg,
1115 struct pam_response **resp,
1116 void *appdata_ptr) {
1117
1118 /* We don't support conversations */
1119
1120 return PAM_CONV_ERR;
1121 }
1122
1123 #endif
1124
1125 static int setup_pam(
1126 const char *name,
1127 const char *user,
1128 uid_t uid,
1129 gid_t gid,
1130 const char *tty,
1131 char ***env,
1132 const int fds[], size_t n_fds) {
1133
1134 #if HAVE_PAM
1135
1136 static const struct pam_conv conv = {
1137 .conv = null_conv,
1138 .appdata_ptr = NULL
1139 };
1140
1141 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1142 pam_handle_t *handle = NULL;
1143 sigset_t old_ss;
1144 int pam_code = PAM_SUCCESS, r;
1145 char **nv, **e = NULL;
1146 bool close_session = false;
1147 pid_t pam_pid = 0, parent_pid;
1148 int flags = 0;
1149
1150 assert(name);
1151 assert(user);
1152 assert(env);
1153
1154 /* We set up PAM in the parent process, then fork. The child
1155 * will then stay around until killed via PR_GET_PDEATHSIG or
1156 * systemd via the cgroup logic. It will then remove the PAM
1157 * session again. The parent process will exec() the actual
1158 * daemon. We do things this way to ensure that the main PID
1159 * of the daemon is the one we initially fork()ed. */
1160
1161 r = barrier_create(&barrier);
1162 if (r < 0)
1163 goto fail;
1164
1165 if (log_get_max_level() < LOG_DEBUG)
1166 flags |= PAM_SILENT;
1167
1168 pam_code = pam_start(name, user, &conv, &handle);
1169 if (pam_code != PAM_SUCCESS) {
1170 handle = NULL;
1171 goto fail;
1172 }
1173
1174 if (!tty) {
1175 _cleanup_free_ char *q = NULL;
1176
1177 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1178 * out if that's the case, and read the TTY off it. */
1179
1180 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1181 tty = strjoina("/dev/", q);
1182 }
1183
1184 if (tty) {
1185 pam_code = pam_set_item(handle, PAM_TTY, tty);
1186 if (pam_code != PAM_SUCCESS)
1187 goto fail;
1188 }
1189
1190 STRV_FOREACH(nv, *env) {
1191 pam_code = pam_putenv(handle, *nv);
1192 if (pam_code != PAM_SUCCESS)
1193 goto fail;
1194 }
1195
1196 pam_code = pam_acct_mgmt(handle, flags);
1197 if (pam_code != PAM_SUCCESS)
1198 goto fail;
1199
1200 pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags);
1201 if (pam_code != PAM_SUCCESS)
1202 log_debug("pam_setcred() failed, ignoring: %s", pam_strerror(handle, pam_code));
1203
1204 pam_code = pam_open_session(handle, flags);
1205 if (pam_code != PAM_SUCCESS)
1206 goto fail;
1207
1208 close_session = true;
1209
1210 e = pam_getenvlist(handle);
1211 if (!e) {
1212 pam_code = PAM_BUF_ERR;
1213 goto fail;
1214 }
1215
1216 /* Block SIGTERM, so that we know that it won't get lost in
1217 * the child */
1218
1219 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1220
1221 parent_pid = getpid_cached();
1222
1223 r = safe_fork("(sd-pam)", 0, &pam_pid);
1224 if (r < 0)
1225 goto fail;
1226 if (r == 0) {
1227 int sig, ret = EXIT_PAM;
1228
1229 /* The child's job is to reset the PAM session on
1230 * termination */
1231 barrier_set_role(&barrier, BARRIER_CHILD);
1232
1233 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only those fds
1234 * are open here that have been opened by PAM. */
1235 (void) close_many(fds, n_fds);
1236
1237 /* Drop privileges - we don't need any to pam_close_session
1238 * and this will make PR_SET_PDEATHSIG work in most cases.
1239 * If this fails, ignore the error - but expect sd-pam threads
1240 * to fail to exit normally */
1241
1242 r = maybe_setgroups(0, NULL);
1243 if (r < 0)
1244 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1245 if (setresgid(gid, gid, gid) < 0)
1246 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1247 if (setresuid(uid, uid, uid) < 0)
1248 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1249
1250 (void) ignore_signals(SIGPIPE, -1);
1251
1252 /* Wait until our parent died. This will only work if
1253 * the above setresuid() succeeds, otherwise the kernel
1254 * will not allow unprivileged parents kill their privileged
1255 * children this way. We rely on the control groups kill logic
1256 * to do the rest for us. */
1257 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1258 goto child_finish;
1259
1260 /* Tell the parent that our setup is done. This is especially
1261 * important regarding dropping privileges. Otherwise, unit
1262 * setup might race against our setresuid(2) call.
1263 *
1264 * If the parent aborted, we'll detect this below, hence ignore
1265 * return failure here. */
1266 (void) barrier_place(&barrier);
1267
1268 /* Check if our parent process might already have died? */
1269 if (getppid() == parent_pid) {
1270 sigset_t ss;
1271
1272 assert_se(sigemptyset(&ss) >= 0);
1273 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1274
1275 for (;;) {
1276 if (sigwait(&ss, &sig) < 0) {
1277 if (errno == EINTR)
1278 continue;
1279
1280 goto child_finish;
1281 }
1282
1283 assert(sig == SIGTERM);
1284 break;
1285 }
1286 }
1287
1288 pam_code = pam_setcred(handle, PAM_DELETE_CRED | flags);
1289 if (pam_code != PAM_SUCCESS)
1290 goto child_finish;
1291
1292 /* If our parent died we'll end the session */
1293 if (getppid() != parent_pid) {
1294 pam_code = pam_close_session(handle, flags);
1295 if (pam_code != PAM_SUCCESS)
1296 goto child_finish;
1297 }
1298
1299 ret = 0;
1300
1301 child_finish:
1302 pam_end(handle, pam_code | flags);
1303 _exit(ret);
1304 }
1305
1306 barrier_set_role(&barrier, BARRIER_PARENT);
1307
1308 /* If the child was forked off successfully it will do all the
1309 * cleanups, so forget about the handle here. */
1310 handle = NULL;
1311
1312 /* Unblock SIGTERM again in the parent */
1313 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1314
1315 /* We close the log explicitly here, since the PAM modules
1316 * might have opened it, but we don't want this fd around. */
1317 closelog();
1318
1319 /* Synchronously wait for the child to initialize. We don't care for
1320 * errors as we cannot recover. However, warn loudly if it happens. */
1321 if (!barrier_place_and_sync(&barrier))
1322 log_error("PAM initialization failed");
1323
1324 return strv_free_and_replace(*env, e);
1325
1326 fail:
1327 if (pam_code != PAM_SUCCESS) {
1328 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1329 r = -EPERM; /* PAM errors do not map to errno */
1330 } else
1331 log_error_errno(r, "PAM failed: %m");
1332
1333 if (handle) {
1334 if (close_session)
1335 pam_code = pam_close_session(handle, flags);
1336
1337 pam_end(handle, pam_code | flags);
1338 }
1339
1340 strv_free(e);
1341 closelog();
1342
1343 return r;
1344 #else
1345 return 0;
1346 #endif
1347 }
1348
1349 static void rename_process_from_path(const char *path) {
1350 char process_name[11];
1351 const char *p;
1352 size_t l;
1353
1354 /* This resulting string must fit in 10 chars (i.e. the length
1355 * of "/sbin/init") to look pretty in /bin/ps */
1356
1357 p = basename(path);
1358 if (isempty(p)) {
1359 rename_process("(...)");
1360 return;
1361 }
1362
1363 l = strlen(p);
1364 if (l > 8) {
1365 /* The end of the process name is usually more
1366 * interesting, since the first bit might just be
1367 * "systemd-" */
1368 p = p + l - 8;
1369 l = 8;
1370 }
1371
1372 process_name[0] = '(';
1373 memcpy(process_name+1, p, l);
1374 process_name[1+l] = ')';
1375 process_name[1+l+1] = 0;
1376
1377 rename_process(process_name);
1378 }
1379
1380 static bool context_has_address_families(const ExecContext *c) {
1381 assert(c);
1382
1383 return c->address_families_allow_list ||
1384 !set_isempty(c->address_families);
1385 }
1386
1387 static bool context_has_syscall_filters(const ExecContext *c) {
1388 assert(c);
1389
1390 return c->syscall_allow_list ||
1391 !hashmap_isempty(c->syscall_filter);
1392 }
1393
1394 static bool context_has_no_new_privileges(const ExecContext *c) {
1395 assert(c);
1396
1397 if (c->no_new_privileges)
1398 return true;
1399
1400 if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
1401 return false;
1402
1403 /* We need NNP if we have any form of seccomp and are unprivileged */
1404 return context_has_address_families(c) ||
1405 c->memory_deny_write_execute ||
1406 c->restrict_realtime ||
1407 c->restrict_suid_sgid ||
1408 exec_context_restrict_namespaces_set(c) ||
1409 c->protect_clock ||
1410 c->protect_kernel_tunables ||
1411 c->protect_kernel_modules ||
1412 c->protect_kernel_logs ||
1413 c->private_devices ||
1414 context_has_syscall_filters(c) ||
1415 !set_isempty(c->syscall_archs) ||
1416 c->lock_personality ||
1417 c->protect_hostname;
1418 }
1419
1420 #if HAVE_SECCOMP
1421
1422 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1423
1424 if (is_seccomp_available())
1425 return false;
1426
1427 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1428 return true;
1429 }
1430
1431 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1432 uint32_t negative_action, default_action, action;
1433 int r;
1434
1435 assert(u);
1436 assert(c);
1437
1438 if (!context_has_syscall_filters(c))
1439 return 0;
1440
1441 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1442 return 0;
1443
1444 negative_action = c->syscall_errno == 0 ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1445
1446 if (c->syscall_allow_list) {
1447 default_action = negative_action;
1448 action = SCMP_ACT_ALLOW;
1449 } else {
1450 default_action = SCMP_ACT_ALLOW;
1451 action = negative_action;
1452 }
1453
1454 if (needs_ambient_hack) {
1455 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1456 if (r < 0)
1457 return r;
1458 }
1459
1460 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1461 }
1462
1463 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1464 assert(u);
1465 assert(c);
1466
1467 if (set_isempty(c->syscall_archs))
1468 return 0;
1469
1470 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1471 return 0;
1472
1473 return seccomp_restrict_archs(c->syscall_archs);
1474 }
1475
1476 static int apply_address_families(const Unit* u, const ExecContext *c) {
1477 assert(u);
1478 assert(c);
1479
1480 if (!context_has_address_families(c))
1481 return 0;
1482
1483 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1484 return 0;
1485
1486 return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list);
1487 }
1488
1489 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1490 assert(u);
1491 assert(c);
1492
1493 if (!c->memory_deny_write_execute)
1494 return 0;
1495
1496 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1497 return 0;
1498
1499 return seccomp_memory_deny_write_execute();
1500 }
1501
1502 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1503 assert(u);
1504 assert(c);
1505
1506 if (!c->restrict_realtime)
1507 return 0;
1508
1509 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1510 return 0;
1511
1512 return seccomp_restrict_realtime();
1513 }
1514
1515 static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1516 assert(u);
1517 assert(c);
1518
1519 if (!c->restrict_suid_sgid)
1520 return 0;
1521
1522 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1523 return 0;
1524
1525 return seccomp_restrict_suid_sgid();
1526 }
1527
1528 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1529 assert(u);
1530 assert(c);
1531
1532 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1533 * let's protect even those systems where this is left on in the kernel. */
1534
1535 if (!c->protect_kernel_tunables)
1536 return 0;
1537
1538 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1539 return 0;
1540
1541 return seccomp_protect_sysctl();
1542 }
1543
1544 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1545 assert(u);
1546 assert(c);
1547
1548 /* Turn off module syscalls on ProtectKernelModules=yes */
1549
1550 if (!c->protect_kernel_modules)
1551 return 0;
1552
1553 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1554 return 0;
1555
1556 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1557 }
1558
1559 static int apply_protect_kernel_logs(const Unit *u, const ExecContext *c) {
1560 assert(u);
1561 assert(c);
1562
1563 if (!c->protect_kernel_logs)
1564 return 0;
1565
1566 if (skip_seccomp_unavailable(u, "ProtectKernelLogs="))
1567 return 0;
1568
1569 return seccomp_protect_syslog();
1570 }
1571
1572 static int apply_protect_clock(const Unit *u, const ExecContext *c) {
1573 assert(u);
1574 assert(c);
1575
1576 if (!c->protect_clock)
1577 return 0;
1578
1579 if (skip_seccomp_unavailable(u, "ProtectClock="))
1580 return 0;
1581
1582 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false);
1583 }
1584
1585 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1586 assert(u);
1587 assert(c);
1588
1589 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1590
1591 if (!c->private_devices)
1592 return 0;
1593
1594 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1595 return 0;
1596
1597 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1598 }
1599
1600 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1601 assert(u);
1602 assert(c);
1603
1604 if (!exec_context_restrict_namespaces_set(c))
1605 return 0;
1606
1607 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1608 return 0;
1609
1610 return seccomp_restrict_namespaces(c->restrict_namespaces);
1611 }
1612
1613 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1614 unsigned long personality;
1615 int r;
1616
1617 assert(u);
1618 assert(c);
1619
1620 if (!c->lock_personality)
1621 return 0;
1622
1623 if (skip_seccomp_unavailable(u, "LockPersonality="))
1624 return 0;
1625
1626 personality = c->personality;
1627
1628 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1629 if (personality == PERSONALITY_INVALID) {
1630
1631 r = opinionated_personality(&personality);
1632 if (r < 0)
1633 return r;
1634 }
1635
1636 return seccomp_lock_personality(personality);
1637 }
1638
1639 #endif
1640
1641 static int apply_protect_hostname(const Unit *u, const ExecContext *c, int *ret_exit_status) {
1642 assert(u);
1643 assert(c);
1644
1645 if (!c->protect_hostname)
1646 return 0;
1647
1648 if (ns_type_supported(NAMESPACE_UTS)) {
1649 if (unshare(CLONE_NEWUTS) < 0) {
1650 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) {
1651 *ret_exit_status = EXIT_NAMESPACE;
1652 return log_unit_error_errno(u, errno, "Failed to set up UTS namespacing: %m");
1653 }
1654
1655 log_unit_warning(u, "ProtectHostname=yes is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.");
1656 }
1657 } else
1658 log_unit_warning(u, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
1659
1660 #if HAVE_SECCOMP
1661 int r;
1662
1663 if (skip_seccomp_unavailable(u, "ProtectHostname="))
1664 return 0;
1665
1666 r = seccomp_protect_hostname();
1667 if (r < 0) {
1668 *ret_exit_status = EXIT_SECCOMP;
1669 return log_unit_error_errno(u, r, "Failed to apply hostname restrictions: %m");
1670 }
1671 #endif
1672
1673 return 0;
1674 }
1675
1676 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1677 assert(idle_pipe);
1678
1679 idle_pipe[1] = safe_close(idle_pipe[1]);
1680 idle_pipe[2] = safe_close(idle_pipe[2]);
1681
1682 if (idle_pipe[0] >= 0) {
1683 int r;
1684
1685 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1686
1687 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1688 ssize_t n;
1689
1690 /* Signal systemd that we are bored and want to continue. */
1691 n = write(idle_pipe[3], "x", 1);
1692 if (n > 0)
1693 /* Wait for systemd to react to the signal above. */
1694 (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1695 }
1696
1697 idle_pipe[0] = safe_close(idle_pipe[0]);
1698
1699 }
1700
1701 idle_pipe[3] = safe_close(idle_pipe[3]);
1702 }
1703
1704 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1705
1706 static int build_environment(
1707 const Unit *u,
1708 const ExecContext *c,
1709 const ExecParameters *p,
1710 size_t n_fds,
1711 const char *home,
1712 const char *username,
1713 const char *shell,
1714 dev_t journal_stream_dev,
1715 ino_t journal_stream_ino,
1716 char ***ret) {
1717
1718 _cleanup_strv_free_ char **our_env = NULL;
1719 ExecDirectoryType t;
1720 size_t n_env = 0;
1721 char *x;
1722
1723 assert(u);
1724 assert(c);
1725 assert(p);
1726 assert(ret);
1727
1728 our_env = new0(char*, 15 + _EXEC_DIRECTORY_TYPE_MAX);
1729 if (!our_env)
1730 return -ENOMEM;
1731
1732 if (n_fds > 0) {
1733 _cleanup_free_ char *joined = NULL;
1734
1735 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1736 return -ENOMEM;
1737 our_env[n_env++] = x;
1738
1739 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1740 return -ENOMEM;
1741 our_env[n_env++] = x;
1742
1743 joined = strv_join(p->fd_names, ":");
1744 if (!joined)
1745 return -ENOMEM;
1746
1747 x = strjoin("LISTEN_FDNAMES=", joined);
1748 if (!x)
1749 return -ENOMEM;
1750 our_env[n_env++] = x;
1751 }
1752
1753 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1754 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1755 return -ENOMEM;
1756 our_env[n_env++] = x;
1757
1758 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1759 return -ENOMEM;
1760 our_env[n_env++] = x;
1761 }
1762
1763 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use D-Bus look up dynamic
1764 * users via PID 1, possibly dead-locking the dbus daemon. This way it will not use D-Bus to resolve names, but
1765 * check the database directly. */
1766 if (p->flags & EXEC_NSS_BYPASS_BUS) {
1767 x = strdup("SYSTEMD_NSS_BYPASS_BUS=1");
1768 if (!x)
1769 return -ENOMEM;
1770 our_env[n_env++] = x;
1771 }
1772
1773 if (home) {
1774 x = strjoin("HOME=", home);
1775 if (!x)
1776 return -ENOMEM;
1777
1778 path_simplify(x + 5, true);
1779 our_env[n_env++] = x;
1780 }
1781
1782 if (username) {
1783 x = strjoin("LOGNAME=", username);
1784 if (!x)
1785 return -ENOMEM;
1786 our_env[n_env++] = x;
1787
1788 x = strjoin("USER=", username);
1789 if (!x)
1790 return -ENOMEM;
1791 our_env[n_env++] = x;
1792 }
1793
1794 if (shell) {
1795 x = strjoin("SHELL=", shell);
1796 if (!x)
1797 return -ENOMEM;
1798
1799 path_simplify(x + 6, true);
1800 our_env[n_env++] = x;
1801 }
1802
1803 if (!sd_id128_is_null(u->invocation_id)) {
1804 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
1805 return -ENOMEM;
1806
1807 our_env[n_env++] = x;
1808 }
1809
1810 if (exec_context_needs_term(c)) {
1811 const char *tty_path, *term = NULL;
1812
1813 tty_path = exec_context_tty_path(c);
1814
1815 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try
1816 * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the
1817 * container manager passes to PID 1 ends up all the way in the console login shown. */
1818
1819 if (path_equal_ptr(tty_path, "/dev/console") && getppid() == 1)
1820 term = getenv("TERM");
1821
1822 if (!term)
1823 term = default_term_for_tty(tty_path);
1824
1825 x = strjoin("TERM=", term);
1826 if (!x)
1827 return -ENOMEM;
1828 our_env[n_env++] = x;
1829 }
1830
1831 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1832 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1833 return -ENOMEM;
1834
1835 our_env[n_env++] = x;
1836 }
1837
1838 if (c->log_namespace) {
1839 x = strjoin("LOG_NAMESPACE=", c->log_namespace);
1840 if (!x)
1841 return -ENOMEM;
1842
1843 our_env[n_env++] = x;
1844 }
1845
1846 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1847 _cleanup_free_ char *pre = NULL, *joined = NULL;
1848 const char *n;
1849
1850 if (!p->prefix[t])
1851 continue;
1852
1853 if (strv_isempty(c->directories[t].paths))
1854 continue;
1855
1856 n = exec_directory_env_name_to_string(t);
1857 if (!n)
1858 continue;
1859
1860 pre = strjoin(p->prefix[t], "/");
1861 if (!pre)
1862 return -ENOMEM;
1863
1864 joined = strv_join_prefix(c->directories[t].paths, ":", pre);
1865 if (!joined)
1866 return -ENOMEM;
1867
1868 x = strjoin(n, "=", joined);
1869 if (!x)
1870 return -ENOMEM;
1871
1872 our_env[n_env++] = x;
1873 }
1874
1875 our_env[n_env++] = NULL;
1876 assert(n_env <= 14 + _EXEC_DIRECTORY_TYPE_MAX);
1877
1878 *ret = TAKE_PTR(our_env);
1879
1880 return 0;
1881 }
1882
1883 static int build_pass_environment(const ExecContext *c, char ***ret) {
1884 _cleanup_strv_free_ char **pass_env = NULL;
1885 size_t n_env = 0, n_bufsize = 0;
1886 char **i;
1887
1888 STRV_FOREACH(i, c->pass_environment) {
1889 _cleanup_free_ char *x = NULL;
1890 char *v;
1891
1892 v = getenv(*i);
1893 if (!v)
1894 continue;
1895 x = strjoin(*i, "=", v);
1896 if (!x)
1897 return -ENOMEM;
1898
1899 if (!GREEDY_REALLOC(pass_env, n_bufsize, n_env + 2))
1900 return -ENOMEM;
1901
1902 pass_env[n_env++] = TAKE_PTR(x);
1903 pass_env[n_env] = NULL;
1904 }
1905
1906 *ret = TAKE_PTR(pass_env);
1907
1908 return 0;
1909 }
1910
1911 static bool exec_needs_mount_namespace(
1912 const ExecContext *context,
1913 const ExecParameters *params,
1914 const ExecRuntime *runtime) {
1915
1916 assert(context);
1917 assert(params);
1918
1919 if (context->root_image)
1920 return true;
1921
1922 if (!strv_isempty(context->read_write_paths) ||
1923 !strv_isempty(context->read_only_paths) ||
1924 !strv_isempty(context->inaccessible_paths))
1925 return true;
1926
1927 if (context->n_bind_mounts > 0)
1928 return true;
1929
1930 if (context->n_temporary_filesystems > 0)
1931 return true;
1932
1933 if (!IN_SET(context->mount_flags, 0, MS_SHARED))
1934 return true;
1935
1936 if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
1937 return true;
1938
1939 if (context->private_devices ||
1940 context->private_mounts ||
1941 context->protect_system != PROTECT_SYSTEM_NO ||
1942 context->protect_home != PROTECT_HOME_NO ||
1943 context->protect_kernel_tunables ||
1944 context->protect_kernel_modules ||
1945 context->protect_kernel_logs ||
1946 context->protect_control_groups)
1947 return true;
1948
1949 if (context->root_directory) {
1950 ExecDirectoryType t;
1951
1952 if (context->mount_apivfs)
1953 return true;
1954
1955 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1956 if (!params->prefix[t])
1957 continue;
1958
1959 if (!strv_isempty(context->directories[t].paths))
1960 return true;
1961 }
1962 }
1963
1964 if (context->dynamic_user &&
1965 (!strv_isempty(context->directories[EXEC_DIRECTORY_STATE].paths) ||
1966 !strv_isempty(context->directories[EXEC_DIRECTORY_CACHE].paths) ||
1967 !strv_isempty(context->directories[EXEC_DIRECTORY_LOGS].paths)))
1968 return true;
1969
1970 if (context->log_namespace)
1971 return true;
1972
1973 return false;
1974 }
1975
1976 static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) {
1977 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
1978 _cleanup_close_pair_ int errno_pipe[2] = { -1, -1 };
1979 _cleanup_close_ int unshare_ready_fd = -1;
1980 _cleanup_(sigkill_waitp) pid_t pid = 0;
1981 uint64_t c = 1;
1982 ssize_t n;
1983 int r;
1984
1985 /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e.
1986 * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to
1987 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
1988 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
1989 * which waits for the parent to create the new user namespace while staying in the original namespace. The
1990 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
1991 * continues execution normally.
1992 * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it
1993 * does not need CAP_SETUID to write the single line mapping to itself. */
1994
1995 /* Can only set up multiple mappings with CAP_SETUID. */
1996 if (have_effective_cap(CAP_SETUID) && uid != ouid && uid_is_valid(uid))
1997 r = asprintf(&uid_map,
1998 UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */
1999 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
2000 ouid, ouid, uid, uid);
2001 else
2002 r = asprintf(&uid_map,
2003 UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */
2004 ouid, ouid);
2005
2006 if (r < 0)
2007 return -ENOMEM;
2008
2009 /* Can only set up multiple mappings with CAP_SETGID. */
2010 if (have_effective_cap(CAP_SETGID) && gid != ogid && gid_is_valid(gid))
2011 r = asprintf(&gid_map,
2012 GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */
2013 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
2014 ogid, ogid, gid, gid);
2015 else
2016 r = asprintf(&gid_map,
2017 GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */
2018 ogid, ogid);
2019
2020 if (r < 0)
2021 return -ENOMEM;
2022
2023 /* Create a communication channel so that the parent can tell the child when it finished creating the user
2024 * namespace. */
2025 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
2026 if (unshare_ready_fd < 0)
2027 return -errno;
2028
2029 /* Create a communication channel so that the child can tell the parent a proper error code in case it
2030 * failed. */
2031 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
2032 return -errno;
2033
2034 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
2035 if (r < 0)
2036 return r;
2037 if (r == 0) {
2038 _cleanup_close_ int fd = -1;
2039 const char *a;
2040 pid_t ppid;
2041
2042 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
2043 * here, after the parent opened its own user namespace. */
2044
2045 ppid = getppid();
2046 errno_pipe[0] = safe_close(errno_pipe[0]);
2047
2048 /* Wait until the parent unshared the user namespace */
2049 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
2050 r = -errno;
2051 goto child_fail;
2052 }
2053
2054 /* Disable the setgroups() system call in the child user namespace, for good. */
2055 a = procfs_file_alloca(ppid, "setgroups");
2056 fd = open(a, O_WRONLY|O_CLOEXEC);
2057 if (fd < 0) {
2058 if (errno != ENOENT) {
2059 r = -errno;
2060 goto child_fail;
2061 }
2062
2063 /* If the file is missing the kernel is too old, let's continue anyway. */
2064 } else {
2065 if (write(fd, "deny\n", 5) < 0) {
2066 r = -errno;
2067 goto child_fail;
2068 }
2069
2070 fd = safe_close(fd);
2071 }
2072
2073 /* First write the GID map */
2074 a = procfs_file_alloca(ppid, "gid_map");
2075 fd = open(a, O_WRONLY|O_CLOEXEC);
2076 if (fd < 0) {
2077 r = -errno;
2078 goto child_fail;
2079 }
2080 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2081 r = -errno;
2082 goto child_fail;
2083 }
2084 fd = safe_close(fd);
2085
2086 /* The write the UID map */
2087 a = procfs_file_alloca(ppid, "uid_map");
2088 fd = open(a, O_WRONLY|O_CLOEXEC);
2089 if (fd < 0) {
2090 r = -errno;
2091 goto child_fail;
2092 }
2093 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2094 r = -errno;
2095 goto child_fail;
2096 }
2097
2098 _exit(EXIT_SUCCESS);
2099
2100 child_fail:
2101 (void) write(errno_pipe[1], &r, sizeof(r));
2102 _exit(EXIT_FAILURE);
2103 }
2104
2105 errno_pipe[1] = safe_close(errno_pipe[1]);
2106
2107 if (unshare(CLONE_NEWUSER) < 0)
2108 return -errno;
2109
2110 /* Let the child know that the namespace is ready now */
2111 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2112 return -errno;
2113
2114 /* Try to read an error code from the child */
2115 n = read(errno_pipe[0], &r, sizeof(r));
2116 if (n < 0)
2117 return -errno;
2118 if (n == sizeof(r)) { /* an error code was sent to us */
2119 if (r < 0)
2120 return r;
2121 return -EIO;
2122 }
2123 if (n != 0) /* on success we should have read 0 bytes */
2124 return -EIO;
2125
2126 r = wait_for_terminate_and_check("(sd-userns)", pid, 0);
2127 pid = 0;
2128 if (r < 0)
2129 return r;
2130 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2131 return -EIO;
2132
2133 return 0;
2134 }
2135
2136 static bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) {
2137 if (!context->dynamic_user)
2138 return false;
2139
2140 if (type == EXEC_DIRECTORY_CONFIGURATION)
2141 return false;
2142
2143 if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
2144 return false;
2145
2146 return true;
2147 }
2148
2149 static int setup_exec_directory(
2150 const ExecContext *context,
2151 const ExecParameters *params,
2152 uid_t uid,
2153 gid_t gid,
2154 ExecDirectoryType type,
2155 int *exit_status) {
2156
2157 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2158 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2159 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2160 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2161 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2162 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2163 };
2164 char **rt;
2165 int r;
2166
2167 assert(context);
2168 assert(params);
2169 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2170 assert(exit_status);
2171
2172 if (!params->prefix[type])
2173 return 0;
2174
2175 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2176 if (!uid_is_valid(uid))
2177 uid = 0;
2178 if (!gid_is_valid(gid))
2179 gid = 0;
2180 }
2181
2182 STRV_FOREACH(rt, context->directories[type].paths) {
2183 _cleanup_free_ char *p = NULL, *pp = NULL;
2184
2185 p = path_join(params->prefix[type], *rt);
2186 if (!p) {
2187 r = -ENOMEM;
2188 goto fail;
2189 }
2190
2191 r = mkdir_parents_label(p, 0755);
2192 if (r < 0)
2193 goto fail;
2194
2195 if (exec_directory_is_private(context, type)) {
2196 _cleanup_free_ char *private_root = NULL;
2197
2198 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2199 * case we want to avoid leaving a directory around fully accessible that is owned by
2200 * a dynamic user whose UID is later on reused. To lock this down we use the same
2201 * trick used by container managers to prohibit host users to get access to files of
2202 * the same UID in containers: we place everything inside a directory that has an
2203 * access mode of 0700 and is owned root:root, so that it acts as security boundary
2204 * for unprivileged host code. We then use fs namespacing to make this directory
2205 * permeable for the service itself.
2206 *
2207 * Specifically: for a service which wants a special directory "foo/" we first create
2208 * a directory "private/" with access mode 0700 owned by root:root. Then we place
2209 * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2210 * "private/foo". This way, privileged host users can access "foo/" as usual, but
2211 * unprivileged host users can't look into it. Inside of the namespace of the unit
2212 * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2213 * "private/foo/" is mounted under the same name, thus disabling the access boundary
2214 * for the service and making sure it only gets access to the dirs it needs but no
2215 * others. Tricky? Yes, absolutely, but it works!
2216 *
2217 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2218 * to be owned by the service itself.
2219 *
2220 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2221 * for sharing files or sockets with other services. */
2222
2223 private_root = path_join(params->prefix[type], "private");
2224 if (!private_root) {
2225 r = -ENOMEM;
2226 goto fail;
2227 }
2228
2229 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2230 r = mkdir_safe_label(private_root, 0700, 0, 0, MKDIR_WARN_MODE);
2231 if (r < 0)
2232 goto fail;
2233
2234 pp = path_join(private_root, *rt);
2235 if (!pp) {
2236 r = -ENOMEM;
2237 goto fail;
2238 }
2239
2240 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2241 r = mkdir_parents_label(pp, 0755);
2242 if (r < 0)
2243 goto fail;
2244
2245 if (is_dir(p, false) > 0 &&
2246 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2247
2248 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2249 * it over. Most likely the service has been upgraded from one that didn't use
2250 * DynamicUser=1, to one that does. */
2251
2252 log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2253 "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2254 exec_directory_type_to_string(type), p, pp);
2255
2256 if (rename(p, pp) < 0) {
2257 r = -errno;
2258 goto fail;
2259 }
2260 } else {
2261 /* Otherwise, create the actual directory for the service */
2262
2263 r = mkdir_label(pp, context->directories[type].mode);
2264 if (r < 0 && r != -EEXIST)
2265 goto fail;
2266 }
2267
2268 /* And link it up from the original place */
2269 r = symlink_idempotent(pp, p, true);
2270 if (r < 0)
2271 goto fail;
2272
2273 } else {
2274 _cleanup_free_ char *target = NULL;
2275
2276 if (type != EXEC_DIRECTORY_CONFIGURATION &&
2277 readlink_and_make_absolute(p, &target) >= 0) {
2278 _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL;
2279
2280 /* This already exists and is a symlink? Interesting. Maybe it's one created
2281 * by DynamicUser=1 (see above)?
2282 *
2283 * We do this for all directory types except for ConfigurationDirectory=,
2284 * since they all support the private/ symlink logic at least in some
2285 * configurations, see above. */
2286
2287 r = chase_symlinks(target, NULL, 0, &target_resolved, NULL);
2288 if (r < 0)
2289 goto fail;
2290
2291 q = path_join(params->prefix[type], "private", *rt);
2292 if (!q) {
2293 r = -ENOMEM;
2294 goto fail;
2295 }
2296
2297 /* /var/lib or friends may be symlinks. So, let's chase them also. */
2298 r = chase_symlinks(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL);
2299 if (r < 0)
2300 goto fail;
2301
2302 if (path_equal(q_resolved, target_resolved)) {
2303
2304 /* Hmm, apparently DynamicUser= was once turned on for this service,
2305 * but is no longer. Let's move the directory back up. */
2306
2307 log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2308 "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2309 exec_directory_type_to_string(type), q, p);
2310
2311 if (unlink(p) < 0) {
2312 r = -errno;
2313 goto fail;
2314 }
2315
2316 if (rename(q, p) < 0) {
2317 r = -errno;
2318 goto fail;
2319 }
2320 }
2321 }
2322
2323 r = mkdir_label(p, context->directories[type].mode);
2324 if (r < 0) {
2325 if (r != -EEXIST)
2326 goto fail;
2327
2328 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2329 struct stat st;
2330
2331 /* Don't change the owner/access mode of the configuration directory,
2332 * as in the common case it is not written to by a service, and shall
2333 * not be writable. */
2334
2335 if (stat(p, &st) < 0) {
2336 r = -errno;
2337 goto fail;
2338 }
2339
2340 /* Still complain if the access mode doesn't match */
2341 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2342 log_warning("%s \'%s\' already exists but the mode is different. "
2343 "(File system: %o %sMode: %o)",
2344 exec_directory_type_to_string(type), *rt,
2345 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2346
2347 continue;
2348 }
2349 }
2350 }
2351
2352 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2353 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2354 * current UID/GID ownership.) */
2355 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2356 if (r < 0)
2357 goto fail;
2358
2359 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2360 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2361 * assignments to exist.*/
2362 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2363 if (r < 0)
2364 goto fail;
2365 }
2366
2367 return 0;
2368
2369 fail:
2370 *exit_status = exit_status_table[type];
2371 return r;
2372 }
2373
2374 #if ENABLE_SMACK
2375 static int setup_smack(
2376 const ExecContext *context,
2377 const ExecCommand *command) {
2378
2379 int r;
2380
2381 assert(context);
2382 assert(command);
2383
2384 if (context->smack_process_label) {
2385 r = mac_smack_apply_pid(0, context->smack_process_label);
2386 if (r < 0)
2387 return r;
2388 }
2389 #ifdef SMACK_DEFAULT_PROCESS_LABEL
2390 else {
2391 _cleanup_free_ char *exec_label = NULL;
2392
2393 r = mac_smack_read(command->path, SMACK_ATTR_EXEC, &exec_label);
2394 if (r < 0 && !IN_SET(r, -ENODATA, -EOPNOTSUPP))
2395 return r;
2396
2397 r = mac_smack_apply_pid(0, exec_label ? : SMACK_DEFAULT_PROCESS_LABEL);
2398 if (r < 0)
2399 return r;
2400 }
2401 #endif
2402
2403 return 0;
2404 }
2405 #endif
2406
2407 static int compile_bind_mounts(
2408 const ExecContext *context,
2409 const ExecParameters *params,
2410 BindMount **ret_bind_mounts,
2411 size_t *ret_n_bind_mounts,
2412 char ***ret_empty_directories) {
2413
2414 _cleanup_strv_free_ char **empty_directories = NULL;
2415 BindMount *bind_mounts;
2416 size_t n, h = 0, i;
2417 ExecDirectoryType t;
2418 int r;
2419
2420 assert(context);
2421 assert(params);
2422 assert(ret_bind_mounts);
2423 assert(ret_n_bind_mounts);
2424 assert(ret_empty_directories);
2425
2426 n = context->n_bind_mounts;
2427 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2428 if (!params->prefix[t])
2429 continue;
2430
2431 n += strv_length(context->directories[t].paths);
2432 }
2433
2434 if (n <= 0) {
2435 *ret_bind_mounts = NULL;
2436 *ret_n_bind_mounts = 0;
2437 *ret_empty_directories = NULL;
2438 return 0;
2439 }
2440
2441 bind_mounts = new(BindMount, n);
2442 if (!bind_mounts)
2443 return -ENOMEM;
2444
2445 for (i = 0; i < context->n_bind_mounts; i++) {
2446 BindMount *item = context->bind_mounts + i;
2447 char *s, *d;
2448
2449 s = strdup(item->source);
2450 if (!s) {
2451 r = -ENOMEM;
2452 goto finish;
2453 }
2454
2455 d = strdup(item->destination);
2456 if (!d) {
2457 free(s);
2458 r = -ENOMEM;
2459 goto finish;
2460 }
2461
2462 bind_mounts[h++] = (BindMount) {
2463 .source = s,
2464 .destination = d,
2465 .read_only = item->read_only,
2466 .recursive = item->recursive,
2467 .ignore_enoent = item->ignore_enoent,
2468 };
2469 }
2470
2471 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2472 char **suffix;
2473
2474 if (!params->prefix[t])
2475 continue;
2476
2477 if (strv_isempty(context->directories[t].paths))
2478 continue;
2479
2480 if (exec_directory_is_private(context, t) &&
2481 !(context->root_directory || context->root_image)) {
2482 char *private_root;
2483
2484 /* So this is for a dynamic user, and we need to make sure the process can access its own
2485 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
2486 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
2487
2488 private_root = path_join(params->prefix[t], "private");
2489 if (!private_root) {
2490 r = -ENOMEM;
2491 goto finish;
2492 }
2493
2494 r = strv_consume(&empty_directories, private_root);
2495 if (r < 0)
2496 goto finish;
2497 }
2498
2499 STRV_FOREACH(suffix, context->directories[t].paths) {
2500 char *s, *d;
2501
2502 if (exec_directory_is_private(context, t))
2503 s = path_join(params->prefix[t], "private", *suffix);
2504 else
2505 s = path_join(params->prefix[t], *suffix);
2506 if (!s) {
2507 r = -ENOMEM;
2508 goto finish;
2509 }
2510
2511 if (exec_directory_is_private(context, t) &&
2512 (context->root_directory || context->root_image))
2513 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
2514 * directory is not created on the root directory. So, let's bind-mount the directory
2515 * on the 'non-private' place. */
2516 d = path_join(params->prefix[t], *suffix);
2517 else
2518 d = strdup(s);
2519 if (!d) {
2520 free(s);
2521 r = -ENOMEM;
2522 goto finish;
2523 }
2524
2525 bind_mounts[h++] = (BindMount) {
2526 .source = s,
2527 .destination = d,
2528 .read_only = false,
2529 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
2530 .recursive = true,
2531 .ignore_enoent = false,
2532 };
2533 }
2534 }
2535
2536 assert(h == n);
2537
2538 *ret_bind_mounts = bind_mounts;
2539 *ret_n_bind_mounts = n;
2540 *ret_empty_directories = TAKE_PTR(empty_directories);
2541
2542 return (int) n;
2543
2544 finish:
2545 bind_mount_free_many(bind_mounts, h);
2546 return r;
2547 }
2548
2549 static bool insist_on_sandboxing(
2550 const ExecContext *context,
2551 const char *root_dir,
2552 const char *root_image,
2553 const BindMount *bind_mounts,
2554 size_t n_bind_mounts) {
2555
2556 size_t i;
2557
2558 assert(context);
2559 assert(n_bind_mounts == 0 || bind_mounts);
2560
2561 /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that
2562 * would alter the view on the file system beyond making things read-only or invisible, i.e. would
2563 * rearrange stuff in a way we cannot ignore gracefully. */
2564
2565 if (context->n_temporary_filesystems > 0)
2566 return true;
2567
2568 if (root_dir || root_image)
2569 return true;
2570
2571 if (context->dynamic_user)
2572 return true;
2573
2574 /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes
2575 * essential. */
2576 for (i = 0; i < n_bind_mounts; i++)
2577 if (!path_equal(bind_mounts[i].source, bind_mounts[i].destination))
2578 return true;
2579
2580 if (context->log_namespace)
2581 return true;
2582
2583 return false;
2584 }
2585
2586 static int apply_mount_namespace(
2587 const Unit *u,
2588 const ExecCommand *command,
2589 const ExecContext *context,
2590 const ExecParameters *params,
2591 const ExecRuntime *runtime,
2592 char **error_path) {
2593
2594 _cleanup_strv_free_ char **empty_directories = NULL;
2595 char *tmp = NULL, *var = NULL;
2596 const char *root_dir = NULL, *root_image = NULL;
2597 NamespaceInfo ns_info;
2598 bool needs_sandboxing;
2599 BindMount *bind_mounts = NULL;
2600 size_t n_bind_mounts = 0;
2601 int r;
2602
2603 assert(context);
2604
2605 if (params->flags & EXEC_APPLY_CHROOT) {
2606 root_image = context->root_image;
2607
2608 if (!root_image)
2609 root_dir = context->root_directory;
2610 }
2611
2612 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
2613 if (r < 0)
2614 return r;
2615
2616 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
2617 if (needs_sandboxing) {
2618 /* The runtime struct only contains the parent of the private /tmp,
2619 * which is non-accessible to world users. Inside of it there's a /tmp
2620 * that is sticky, and that's the one we want to use here. */
2621
2622 if (context->private_tmp && runtime) {
2623 if (runtime->tmp_dir)
2624 tmp = strjoina(runtime->tmp_dir, "/tmp");
2625 if (runtime->var_tmp_dir)
2626 var = strjoina(runtime->var_tmp_dir, "/tmp");
2627 }
2628
2629 ns_info = (NamespaceInfo) {
2630 .ignore_protect_paths = false,
2631 .private_dev = context->private_devices,
2632 .protect_control_groups = context->protect_control_groups,
2633 .protect_kernel_tunables = context->protect_kernel_tunables,
2634 .protect_kernel_modules = context->protect_kernel_modules,
2635 .protect_kernel_logs = context->protect_kernel_logs,
2636 .protect_hostname = context->protect_hostname,
2637 .mount_apivfs = context->mount_apivfs,
2638 .private_mounts = context->private_mounts,
2639 };
2640 } else if (!context->dynamic_user && root_dir)
2641 /*
2642 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
2643 * sandbox info, otherwise enforce it, don't ignore protected paths and
2644 * fail if we are enable to apply the sandbox inside the mount namespace.
2645 */
2646 ns_info = (NamespaceInfo) {
2647 .ignore_protect_paths = true,
2648 };
2649 else
2650 ns_info = (NamespaceInfo) {};
2651
2652 if (context->mount_flags == MS_SHARED)
2653 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
2654
2655 r = setup_namespace(root_dir, root_image,
2656 &ns_info, context->read_write_paths,
2657 needs_sandboxing ? context->read_only_paths : NULL,
2658 needs_sandboxing ? context->inaccessible_paths : NULL,
2659 empty_directories,
2660 bind_mounts,
2661 n_bind_mounts,
2662 context->temporary_filesystems,
2663 context->n_temporary_filesystems,
2664 tmp,
2665 var,
2666 context->log_namespace,
2667 needs_sandboxing ? context->protect_home : PROTECT_HOME_NO,
2668 needs_sandboxing ? context->protect_system : PROTECT_SYSTEM_NO,
2669 context->mount_flags,
2670 context->root_hash, context->root_hash_size, context->root_hash_path,
2671 context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path,
2672 context->root_verity,
2673 DISSECT_IMAGE_DISCARD_ON_LOOP|DISSECT_IMAGE_RELAX_VAR_CHECK|DISSECT_IMAGE_FSCK,
2674 error_path);
2675
2676 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
2677 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
2678 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
2679 * completely different execution environment. */
2680 if (r == -ENOANO) {
2681 if (insist_on_sandboxing(
2682 context,
2683 root_dir, root_image,
2684 bind_mounts,
2685 n_bind_mounts)) {
2686 log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
2687 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
2688 n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
2689
2690 r = -EOPNOTSUPP;
2691 } else {
2692 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
2693 r = 0;
2694 }
2695 }
2696
2697 bind_mount_free_many(bind_mounts, n_bind_mounts);
2698 return r;
2699 }
2700
2701 static int apply_working_directory(
2702 const ExecContext *context,
2703 const ExecParameters *params,
2704 const char *home,
2705 int *exit_status) {
2706
2707 const char *d, *wd;
2708
2709 assert(context);
2710 assert(exit_status);
2711
2712 if (context->working_directory_home) {
2713
2714 if (!home) {
2715 *exit_status = EXIT_CHDIR;
2716 return -ENXIO;
2717 }
2718
2719 wd = home;
2720
2721 } else if (context->working_directory)
2722 wd = context->working_directory;
2723 else
2724 wd = "/";
2725
2726 if (params->flags & EXEC_APPLY_CHROOT)
2727 d = wd;
2728 else
2729 d = prefix_roota(context->root_directory, wd);
2730
2731 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
2732 *exit_status = EXIT_CHDIR;
2733 return -errno;
2734 }
2735
2736 return 0;
2737 }
2738
2739 static int apply_root_directory(
2740 const ExecContext *context,
2741 const ExecParameters *params,
2742 const bool needs_mount_ns,
2743 int *exit_status) {
2744
2745 assert(context);
2746 assert(exit_status);
2747
2748 if (params->flags & EXEC_APPLY_CHROOT) {
2749 if (!needs_mount_ns && context->root_directory)
2750 if (chroot(context->root_directory) < 0) {
2751 *exit_status = EXIT_CHROOT;
2752 return -errno;
2753 }
2754 }
2755
2756 return 0;
2757 }
2758
2759 static int setup_keyring(
2760 const Unit *u,
2761 const ExecContext *context,
2762 const ExecParameters *p,
2763 uid_t uid, gid_t gid) {
2764
2765 key_serial_t keyring;
2766 int r = 0;
2767 uid_t saved_uid;
2768 gid_t saved_gid;
2769
2770 assert(u);
2771 assert(context);
2772 assert(p);
2773
2774 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
2775 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
2776 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
2777 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
2778 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
2779 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
2780
2781 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
2782 return 0;
2783
2784 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
2785 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
2786 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
2787 * & group is just as nasty as acquiring a reference to the user keyring. */
2788
2789 saved_uid = getuid();
2790 saved_gid = getgid();
2791
2792 if (gid_is_valid(gid) && gid != saved_gid) {
2793 if (setregid(gid, -1) < 0)
2794 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
2795 }
2796
2797 if (uid_is_valid(uid) && uid != saved_uid) {
2798 if (setreuid(uid, -1) < 0) {
2799 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
2800 goto out;
2801 }
2802 }
2803
2804 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
2805 if (keyring == -1) {
2806 if (errno == ENOSYS)
2807 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
2808 else if (IN_SET(errno, EACCES, EPERM))
2809 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
2810 else if (errno == EDQUOT)
2811 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
2812 else
2813 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
2814
2815 goto out;
2816 }
2817
2818 /* When requested link the user keyring into the session keyring. */
2819 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
2820
2821 if (keyctl(KEYCTL_LINK,
2822 KEY_SPEC_USER_KEYRING,
2823 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
2824 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
2825 goto out;
2826 }
2827 }
2828
2829 /* Restore uid/gid back */
2830 if (uid_is_valid(uid) && uid != saved_uid) {
2831 if (setreuid(saved_uid, -1) < 0) {
2832 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
2833 goto out;
2834 }
2835 }
2836
2837 if (gid_is_valid(gid) && gid != saved_gid) {
2838 if (setregid(saved_gid, -1) < 0)
2839 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
2840 }
2841
2842 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
2843 if (!sd_id128_is_null(u->invocation_id)) {
2844 key_serial_t key;
2845
2846 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
2847 if (key == -1)
2848 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
2849 else {
2850 if (keyctl(KEYCTL_SETPERM, key,
2851 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
2852 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
2853 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
2854 }
2855 }
2856
2857 out:
2858 /* Revert back uid & gid for the last time, and exit */
2859 /* no extra logging, as only the first already reported error matters */
2860 if (getuid() != saved_uid)
2861 (void) setreuid(saved_uid, -1);
2862
2863 if (getgid() != saved_gid)
2864 (void) setregid(saved_gid, -1);
2865
2866 return r;
2867 }
2868
2869 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
2870 assert(array);
2871 assert(n);
2872 assert(pair);
2873
2874 if (pair[0] >= 0)
2875 array[(*n)++] = pair[0];
2876 if (pair[1] >= 0)
2877 array[(*n)++] = pair[1];
2878 }
2879
2880 static int close_remaining_fds(
2881 const ExecParameters *params,
2882 const ExecRuntime *runtime,
2883 const DynamicCreds *dcreds,
2884 int user_lookup_fd,
2885 int socket_fd,
2886 int exec_fd,
2887 const int *fds, size_t n_fds) {
2888
2889 size_t n_dont_close = 0;
2890 int dont_close[n_fds + 12];
2891
2892 assert(params);
2893
2894 if (params->stdin_fd >= 0)
2895 dont_close[n_dont_close++] = params->stdin_fd;
2896 if (params->stdout_fd >= 0)
2897 dont_close[n_dont_close++] = params->stdout_fd;
2898 if (params->stderr_fd >= 0)
2899 dont_close[n_dont_close++] = params->stderr_fd;
2900
2901 if (socket_fd >= 0)
2902 dont_close[n_dont_close++] = socket_fd;
2903 if (exec_fd >= 0)
2904 dont_close[n_dont_close++] = exec_fd;
2905 if (n_fds > 0) {
2906 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
2907 n_dont_close += n_fds;
2908 }
2909
2910 if (runtime)
2911 append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
2912
2913 if (dcreds) {
2914 if (dcreds->user)
2915 append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
2916 if (dcreds->group)
2917 append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
2918 }
2919
2920 if (user_lookup_fd >= 0)
2921 dont_close[n_dont_close++] = user_lookup_fd;
2922
2923 return close_all_fds(dont_close, n_dont_close);
2924 }
2925
2926 static int send_user_lookup(
2927 Unit *unit,
2928 int user_lookup_fd,
2929 uid_t uid,
2930 gid_t gid) {
2931
2932 assert(unit);
2933
2934 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
2935 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
2936 * specified. */
2937
2938 if (user_lookup_fd < 0)
2939 return 0;
2940
2941 if (!uid_is_valid(uid) && !gid_is_valid(gid))
2942 return 0;
2943
2944 if (writev(user_lookup_fd,
2945 (struct iovec[]) {
2946 IOVEC_INIT(&uid, sizeof(uid)),
2947 IOVEC_INIT(&gid, sizeof(gid)),
2948 IOVEC_INIT_STRING(unit->id) }, 3) < 0)
2949 return -errno;
2950
2951 return 0;
2952 }
2953
2954 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
2955 int r;
2956
2957 assert(c);
2958 assert(home);
2959 assert(buf);
2960
2961 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
2962
2963 if (*home)
2964 return 0;
2965
2966 if (!c->working_directory_home)
2967 return 0;
2968
2969 r = get_home_dir(buf);
2970 if (r < 0)
2971 return r;
2972
2973 *home = *buf;
2974 return 1;
2975 }
2976
2977 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
2978 _cleanup_strv_free_ char ** list = NULL;
2979 ExecDirectoryType t;
2980 int r;
2981
2982 assert(c);
2983 assert(p);
2984 assert(ret);
2985
2986 assert(c->dynamic_user);
2987
2988 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
2989 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
2990 * directories. */
2991
2992 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2993 char **i;
2994
2995 if (t == EXEC_DIRECTORY_CONFIGURATION)
2996 continue;
2997
2998 if (!p->prefix[t])
2999 continue;
3000
3001 STRV_FOREACH(i, c->directories[t].paths) {
3002 char *e;
3003
3004 if (exec_directory_is_private(c, t))
3005 e = path_join(p->prefix[t], "private", *i);
3006 else
3007 e = path_join(p->prefix[t], *i);
3008 if (!e)
3009 return -ENOMEM;
3010
3011 r = strv_consume(&list, e);
3012 if (r < 0)
3013 return r;
3014 }
3015 }
3016
3017 *ret = TAKE_PTR(list);
3018
3019 return 0;
3020 }
3021
3022 static char *exec_command_line(char **argv);
3023
3024 static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
3025 bool using_subcgroup;
3026 char *p;
3027
3028 assert(params);
3029 assert(ret);
3030
3031 if (!params->cgroup_path)
3032 return -EINVAL;
3033
3034 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
3035 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
3036 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
3037 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
3038 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
3039 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
3040 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
3041 * flag, which is only passed for the former statements, not for the latter. */
3042
3043 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
3044 if (using_subcgroup)
3045 p = path_join(params->cgroup_path, ".control");
3046 else
3047 p = strdup(params->cgroup_path);
3048 if (!p)
3049 return -ENOMEM;
3050
3051 *ret = p;
3052 return using_subcgroup;
3053 }
3054
3055 static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) {
3056 _cleanup_(cpu_set_reset) CPUSet s = {};
3057 int r;
3058
3059 assert(c);
3060 assert(ret);
3061
3062 if (!c->numa_policy.nodes.set) {
3063 log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring");
3064 return 0;
3065 }
3066
3067 r = numa_to_cpu_set(&c->numa_policy, &s);
3068 if (r < 0)
3069 return r;
3070
3071 cpu_set_reset(ret);
3072
3073 return cpu_set_add_all(ret, &s);
3074 }
3075
3076 bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) {
3077 assert(c);
3078
3079 return c->cpu_affinity_from_numa;
3080 }
3081
3082 static int exec_child(
3083 Unit *unit,
3084 const ExecCommand *command,
3085 const ExecContext *context,
3086 const ExecParameters *params,
3087 ExecRuntime *runtime,
3088 DynamicCreds *dcreds,
3089 int socket_fd,
3090 const int named_iofds[static 3],
3091 int *fds,
3092 size_t n_socket_fds,
3093 size_t n_storage_fds,
3094 char **files_env,
3095 int user_lookup_fd,
3096 int *exit_status) {
3097
3098 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **accum_env = NULL, **replaced_argv = NULL;
3099 int *fds_with_exec_fd, n_fds_with_exec_fd, r, ngids = 0, exec_fd = -1;
3100 _cleanup_free_ gid_t *supplementary_gids = NULL;
3101 const char *username = NULL, *groupname = NULL;
3102 _cleanup_free_ char *home_buffer = NULL;
3103 const char *home = NULL, *shell = NULL;
3104 char **final_argv = NULL;
3105 dev_t journal_stream_dev = 0;
3106 ino_t journal_stream_ino = 0;
3107 bool userns_set_up = false;
3108 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
3109 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
3110 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
3111 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
3112 #if HAVE_SELINUX
3113 _cleanup_free_ char *mac_selinux_context_net = NULL;
3114 bool use_selinux = false;
3115 #endif
3116 #if ENABLE_SMACK
3117 bool use_smack = false;
3118 #endif
3119 #if HAVE_APPARMOR
3120 bool use_apparmor = false;
3121 #endif
3122 uid_t saved_uid = getuid();
3123 gid_t saved_gid = getgid();
3124 uid_t uid = UID_INVALID;
3125 gid_t gid = GID_INVALID;
3126 size_t n_fds;
3127 ExecDirectoryType dt;
3128 int secure_bits;
3129 _cleanup_free_ gid_t *gids_after_pam = NULL;
3130 int ngids_after_pam = 0;
3131
3132 assert(unit);
3133 assert(command);
3134 assert(context);
3135 assert(params);
3136 assert(exit_status);
3137
3138 rename_process_from_path(command->path);
3139
3140 /* We reset exactly these signals, since they are the
3141 * only ones we set to SIG_IGN in the main daemon. All
3142 * others we leave untouched because we set them to
3143 * SIG_DFL or a valid handler initially, both of which
3144 * will be demoted to SIG_DFL. */
3145 (void) default_signals(SIGNALS_CRASH_HANDLER,
3146 SIGNALS_IGNORE, -1);
3147
3148 if (context->ignore_sigpipe)
3149 (void) ignore_signals(SIGPIPE, -1);
3150
3151 r = reset_signal_mask();
3152 if (r < 0) {
3153 *exit_status = EXIT_SIGNAL_MASK;
3154 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
3155 }
3156
3157 if (params->idle_pipe)
3158 do_idle_pipe_dance(params->idle_pipe);
3159
3160 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
3161 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
3162 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
3163 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
3164
3165 log_forget_fds();
3166 log_set_open_when_needed(true);
3167
3168 /* In case anything used libc syslog(), close this here, too */
3169 closelog();
3170
3171 n_fds = n_socket_fds + n_storage_fds;
3172 r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, params->exec_fd, fds, n_fds);
3173 if (r < 0) {
3174 *exit_status = EXIT_FDS;
3175 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
3176 }
3177
3178 if (!context->same_pgrp)
3179 if (setsid() < 0) {
3180 *exit_status = EXIT_SETSID;
3181 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
3182 }
3183
3184 exec_context_tty_reset(context, params);
3185
3186 if (unit_shall_confirm_spawn(unit)) {
3187 const char *vc = params->confirm_spawn;
3188 _cleanup_free_ char *cmdline = NULL;
3189
3190 cmdline = exec_command_line(command->argv);
3191 if (!cmdline) {
3192 *exit_status = EXIT_MEMORY;
3193 return log_oom();
3194 }
3195
3196 r = ask_for_confirmation(vc, unit, cmdline);
3197 if (r != CONFIRM_EXECUTE) {
3198 if (r == CONFIRM_PRETEND_SUCCESS) {
3199 *exit_status = EXIT_SUCCESS;
3200 return 0;
3201 }
3202 *exit_status = EXIT_CONFIRM;
3203 log_unit_error(unit, "Execution cancelled by the user");
3204 return -ECANCELED;
3205 }
3206 }
3207
3208 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
3209 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
3210 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
3211 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
3212 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
3213 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
3214 setenv("SYSTEMD_ACTIVATION_SCOPE", MANAGER_IS_SYSTEM(unit->manager) ? "system" : "user", true) != 0) {
3215 *exit_status = EXIT_MEMORY;
3216 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3217 }
3218
3219 if (context->dynamic_user && dcreds) {
3220 _cleanup_strv_free_ char **suggested_paths = NULL;
3221
3222 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
3223 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here.*/
3224 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
3225 *exit_status = EXIT_USER;
3226 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3227 }
3228
3229 r = compile_suggested_paths(context, params, &suggested_paths);
3230 if (r < 0) {
3231 *exit_status = EXIT_MEMORY;
3232 return log_oom();
3233 }
3234
3235 r = dynamic_creds_realize(dcreds, suggested_paths, &uid, &gid);
3236 if (r < 0) {
3237 *exit_status = EXIT_USER;
3238 if (r == -EILSEQ) {
3239 log_unit_error(unit, "Failed to update dynamic user credentials: User or group with specified name already exists.");
3240 return -EOPNOTSUPP;
3241 }
3242 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
3243 }
3244
3245 if (!uid_is_valid(uid)) {
3246 *exit_status = EXIT_USER;
3247 log_unit_error(unit, "UID validation failed for \""UID_FMT"\"", uid);
3248 return -ESRCH;
3249 }
3250
3251 if (!gid_is_valid(gid)) {
3252 *exit_status = EXIT_USER;
3253 log_unit_error(unit, "GID validation failed for \""GID_FMT"\"", gid);
3254 return -ESRCH;
3255 }
3256
3257 if (dcreds->user)
3258 username = dcreds->user->name;
3259
3260 } else {
3261 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
3262 if (r < 0) {
3263 *exit_status = EXIT_USER;
3264 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
3265 }
3266
3267 r = get_fixed_group(context, &groupname, &gid);
3268 if (r < 0) {
3269 *exit_status = EXIT_GROUP;
3270 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
3271 }
3272 }
3273
3274 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
3275 r = get_supplementary_groups(context, username, groupname, gid,
3276 &supplementary_gids, &ngids);
3277 if (r < 0) {
3278 *exit_status = EXIT_GROUP;
3279 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
3280 }
3281
3282 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
3283 if (r < 0) {
3284 *exit_status = EXIT_USER;
3285 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
3286 }
3287
3288 user_lookup_fd = safe_close(user_lookup_fd);
3289
3290 r = acquire_home(context, uid, &home, &home_buffer);
3291 if (r < 0) {
3292 *exit_status = EXIT_CHDIR;
3293 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
3294 }
3295
3296 /* If a socket is connected to STDIN/STDOUT/STDERR, we
3297 * must sure to drop O_NONBLOCK */
3298 if (socket_fd >= 0)
3299 (void) fd_nonblock(socket_fd, false);
3300
3301 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
3302 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
3303 if (params->cgroup_path) {
3304 _cleanup_free_ char *p = NULL;
3305
3306 r = exec_parameters_get_cgroup_path(params, &p);
3307 if (r < 0) {
3308 *exit_status = EXIT_CGROUP;
3309 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
3310 }
3311
3312 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
3313 if (r < 0) {
3314 *exit_status = EXIT_CGROUP;
3315 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
3316 }
3317 }
3318
3319 if (context->network_namespace_path && runtime && runtime->netns_storage_socket[0] >= 0) {
3320 r = open_netns_path(runtime->netns_storage_socket, context->network_namespace_path);
3321 if (r < 0) {
3322 *exit_status = EXIT_NETWORK;
3323 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
3324 }
3325 }
3326
3327 r = setup_input(context, params, socket_fd, named_iofds);
3328 if (r < 0) {
3329 *exit_status = EXIT_STDIN;
3330 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
3331 }
3332
3333 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3334 if (r < 0) {
3335 *exit_status = EXIT_STDOUT;
3336 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
3337 }
3338
3339 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3340 if (r < 0) {
3341 *exit_status = EXIT_STDERR;
3342 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
3343 }
3344
3345 if (context->oom_score_adjust_set) {
3346 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
3347 * prohibit write access to this file, and we shouldn't trip up over that. */
3348 r = set_oom_score_adjust(context->oom_score_adjust);
3349 if (IN_SET(r, -EPERM, -EACCES))
3350 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
3351 else if (r < 0) {
3352 *exit_status = EXIT_OOM_ADJUST;
3353 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
3354 }
3355 }
3356
3357 if (context->coredump_filter_set) {
3358 r = set_coredump_filter(context->coredump_filter);
3359 if (ERRNO_IS_PRIVILEGE(r))
3360 log_unit_debug_errno(unit, r, "Failed to adjust coredump_filter, ignoring: %m");
3361 else if (r < 0)
3362 return log_unit_error_errno(unit, r, "Failed to adjust coredump_filter: %m");
3363 }
3364
3365 if (context->nice_set) {
3366 r = setpriority_closest(context->nice);
3367 if (r < 0)
3368 return log_unit_error_errno(unit, r, "Failed to set up process scheduling priority (nice level): %m");
3369 }
3370
3371 if (context->cpu_sched_set) {
3372 struct sched_param param = {
3373 .sched_priority = context->cpu_sched_priority,
3374 };
3375
3376 r = sched_setscheduler(0,
3377 context->cpu_sched_policy |
3378 (context->cpu_sched_reset_on_fork ?
3379 SCHED_RESET_ON_FORK : 0),
3380 &param);
3381 if (r < 0) {
3382 *exit_status = EXIT_SETSCHEDULER;
3383 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
3384 }
3385 }
3386
3387 if (context->cpu_affinity_from_numa || context->cpu_set.set) {
3388 _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {};
3389 const CPUSet *cpu_set;
3390
3391 if (context->cpu_affinity_from_numa) {
3392 r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set);
3393 if (r < 0) {
3394 *exit_status = EXIT_CPUAFFINITY;
3395 return log_unit_error_errno(unit, r, "Failed to derive CPU affinity mask from NUMA mask: %m");
3396 }
3397
3398 cpu_set = &converted_cpu_set;
3399 } else
3400 cpu_set = &context->cpu_set;
3401
3402 if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) {
3403 *exit_status = EXIT_CPUAFFINITY;
3404 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
3405 }
3406 }
3407
3408 if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
3409 r = apply_numa_policy(&context->numa_policy);
3410 if (r == -EOPNOTSUPP)
3411 log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
3412 else if (r < 0) {
3413 *exit_status = EXIT_NUMA_POLICY;
3414 return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
3415 }
3416 }
3417
3418 if (context->ioprio_set)
3419 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
3420 *exit_status = EXIT_IOPRIO;
3421 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
3422 }
3423
3424 if (context->timer_slack_nsec != NSEC_INFINITY)
3425 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
3426 *exit_status = EXIT_TIMERSLACK;
3427 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
3428 }
3429
3430 if (context->personality != PERSONALITY_INVALID) {
3431 r = safe_personality(context->personality);
3432 if (r < 0) {
3433 *exit_status = EXIT_PERSONALITY;
3434 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
3435 }
3436 }
3437
3438 if (context->utmp_id)
3439 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
3440 context->tty_path,
3441 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
3442 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
3443 USER_PROCESS,
3444 username);
3445
3446 if (uid_is_valid(uid)) {
3447 r = chown_terminal(STDIN_FILENO, uid);
3448 if (r < 0) {
3449 *exit_status = EXIT_STDIN;
3450 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
3451 }
3452 }
3453
3454 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
3455 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
3456 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
3457 * touch a single hierarchy too. */
3458 if (params->cgroup_path && context->user && (params->flags & EXEC_CGROUP_DELEGATE)) {
3459 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
3460 if (r < 0) {
3461 *exit_status = EXIT_CGROUP;
3462 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
3463 }
3464 }
3465
3466 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3467 r = setup_exec_directory(context, params, uid, gid, dt, exit_status);
3468 if (r < 0)
3469 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
3470 }
3471
3472 r = build_environment(
3473 unit,
3474 context,
3475 params,
3476 n_fds,
3477 home,
3478 username,
3479 shell,
3480 journal_stream_dev,
3481 journal_stream_ino,
3482 &our_env);
3483 if (r < 0) {
3484 *exit_status = EXIT_MEMORY;
3485 return log_oom();
3486 }
3487
3488 r = build_pass_environment(context, &pass_env);
3489 if (r < 0) {
3490 *exit_status = EXIT_MEMORY;
3491 return log_oom();
3492 }
3493
3494 accum_env = strv_env_merge(5,
3495 params->environment,
3496 our_env,
3497 pass_env,
3498 context->environment,
3499 files_env);
3500 if (!accum_env) {
3501 *exit_status = EXIT_MEMORY;
3502 return log_oom();
3503 }
3504 accum_env = strv_env_clean(accum_env);
3505
3506 (void) umask(context->umask);
3507
3508 r = setup_keyring(unit, context, params, uid, gid);
3509 if (r < 0) {
3510 *exit_status = EXIT_KEYRING;
3511 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
3512 }
3513
3514 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted from it */
3515 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3516
3517 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked for it, and the kernel doesn't actually support ambient caps */
3518 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
3519
3520 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not desired */
3521 if (needs_ambient_hack)
3522 needs_setuid = false;
3523 else
3524 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
3525
3526 if (needs_sandboxing) {
3527 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on /sys being
3528 * present. The actual MAC context application will happen later, as late as possible, to avoid
3529 * impacting our own code paths. */
3530
3531 #if HAVE_SELINUX
3532 use_selinux = mac_selinux_use();
3533 #endif
3534 #if ENABLE_SMACK
3535 use_smack = mac_smack_use();
3536 #endif
3537 #if HAVE_APPARMOR
3538 use_apparmor = mac_apparmor_use();
3539 #endif
3540 }
3541
3542 if (needs_sandboxing) {
3543 int which_failed;
3544
3545 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
3546 * is set here. (See below.) */
3547
3548 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
3549 if (r < 0) {
3550 *exit_status = EXIT_LIMITS;
3551 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
3552 }
3553 }
3554
3555 if (needs_setuid) {
3556
3557 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
3558 * wins here. (See above.) */
3559
3560 if (context->pam_name && username) {
3561 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
3562 if (r < 0) {
3563 *exit_status = EXIT_PAM;
3564 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
3565 }
3566
3567 ngids_after_pam = getgroups_alloc(&gids_after_pam);
3568 if (ngids_after_pam < 0) {
3569 *exit_status = EXIT_MEMORY;
3570 return log_unit_error_errno(unit, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m");
3571 }
3572 }
3573 }
3574
3575 if (needs_sandboxing) {
3576 #if HAVE_SELINUX
3577 if (use_selinux && params->selinux_context_net && socket_fd >= 0) {
3578 r = mac_selinux_get_child_mls_label(socket_fd, command->path, context->selinux_context, &mac_selinux_context_net);
3579 if (r < 0) {
3580 *exit_status = EXIT_SELINUX_CONTEXT;
3581 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
3582 }
3583 }
3584 #endif
3585
3586 /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces.
3587 * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to
3588 * set up the all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */
3589 if (context->private_users && !have_effective_cap(CAP_SYS_ADMIN)) {
3590 userns_set_up = true;
3591 r = setup_private_users(saved_uid, saved_gid, uid, gid);
3592 if (r < 0) {
3593 *exit_status = EXIT_USER;
3594 return log_unit_error_errno(unit, r, "Failed to set up user namespacing for unprivileged user: %m");
3595 }
3596 }
3597 }
3598
3599 if ((context->private_network || context->network_namespace_path) && runtime && runtime->netns_storage_socket[0] >= 0) {
3600
3601 if (ns_type_supported(NAMESPACE_NET)) {
3602 r = setup_netns(runtime->netns_storage_socket);
3603 if (r == -EPERM)
3604 log_unit_warning_errno(unit, r,
3605 "PrivateNetwork=yes is configured, but network namespace setup failed, ignoring: %m");
3606 else if (r < 0) {
3607 *exit_status = EXIT_NETWORK;
3608 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
3609 }
3610 } else if (context->network_namespace_path) {
3611 *exit_status = EXIT_NETWORK;
3612 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
3613 "NetworkNamespacePath= is not supported, refusing.");
3614 } else
3615 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
3616 }
3617
3618 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
3619 if (needs_mount_namespace) {
3620 _cleanup_free_ char *error_path = NULL;
3621
3622 r = apply_mount_namespace(unit, command, context, params, runtime, &error_path);
3623 if (r < 0) {
3624 *exit_status = EXIT_NAMESPACE;
3625 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
3626 error_path ? ": " : "", strempty(error_path));
3627 }
3628 }
3629
3630 if (needs_sandboxing) {
3631 r = apply_protect_hostname(unit, context, exit_status);
3632 if (r < 0)
3633 return r;
3634 }
3635
3636 /* Drop groups as early as possible.
3637 * This needs to be done after PrivateDevices=y setup as device nodes should be owned by the host's root.
3638 * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */
3639 if (needs_setuid) {
3640 _cleanup_free_ gid_t *gids_to_enforce = NULL;
3641 int ngids_to_enforce = 0;
3642
3643 ngids_to_enforce = merge_gid_lists(supplementary_gids,
3644 ngids,
3645 gids_after_pam,
3646 ngids_after_pam,
3647 &gids_to_enforce);
3648 if (ngids_to_enforce < 0) {
3649 *exit_status = EXIT_MEMORY;
3650 return log_unit_error_errno(unit,
3651 ngids_to_enforce,
3652 "Failed to merge group lists. Group membership might be incorrect: %m");
3653 }
3654
3655 r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce);
3656 if (r < 0) {
3657 *exit_status = EXIT_GROUP;
3658 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
3659 }
3660 }
3661
3662 /* If the user namespace was not set up above, try to do it now.
3663 * It's preferred to set up the user namespace later (after all other namespaces) so as not to be
3664 * restricted by rules pertaining to combining user namspaces with other namespaces (e.g. in the
3665 * case of mount namespaces being less privileged when the mount point list is copied from a
3666 * different user namespace). */
3667
3668 if (needs_sandboxing && context->private_users && !userns_set_up) {
3669 r = setup_private_users(saved_uid, saved_gid, uid, gid);
3670 if (r < 0) {
3671 *exit_status = EXIT_USER;
3672 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
3673 }
3674 }
3675
3676 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that we are
3677 * more aggressive this time since socket_fd and the netns fds we don't need anymore. We do keep the exec_fd
3678 * however if we have it as we want to keep it open until the final execve(). */
3679
3680 if (params->exec_fd >= 0) {
3681 exec_fd = params->exec_fd;
3682
3683 if (exec_fd < 3 + (int) n_fds) {
3684 int moved_fd;
3685
3686 /* Let's move the exec fd far up, so that it's outside of the fd range we want to pass to the
3687 * process we are about to execute. */
3688
3689 moved_fd = fcntl(exec_fd, F_DUPFD_CLOEXEC, 3 + (int) n_fds);
3690 if (moved_fd < 0) {
3691 *exit_status = EXIT_FDS;
3692 return log_unit_error_errno(unit, errno, "Couldn't move exec fd up: %m");
3693 }
3694
3695 safe_close(exec_fd);
3696 exec_fd = moved_fd;
3697 } else {
3698 /* This fd should be FD_CLOEXEC already, but let's make sure. */
3699 r = fd_cloexec(exec_fd, true);
3700 if (r < 0) {
3701 *exit_status = EXIT_FDS;
3702 return log_unit_error_errno(unit, r, "Failed to make exec fd FD_CLOEXEC: %m");
3703 }
3704 }
3705
3706 fds_with_exec_fd = newa(int, n_fds + 1);
3707 memcpy_safe(fds_with_exec_fd, fds, n_fds * sizeof(int));
3708 fds_with_exec_fd[n_fds] = exec_fd;
3709 n_fds_with_exec_fd = n_fds + 1;
3710 } else {
3711 fds_with_exec_fd = fds;
3712 n_fds_with_exec_fd = n_fds;
3713 }
3714
3715 r = close_all_fds(fds_with_exec_fd, n_fds_with_exec_fd);
3716 if (r >= 0)
3717 r = shift_fds(fds, n_fds);
3718 if (r >= 0)
3719 r = flags_fds(fds, n_socket_fds, n_storage_fds, context->non_blocking);
3720 if (r < 0) {
3721 *exit_status = EXIT_FDS;
3722 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
3723 }
3724
3725 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
3726 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
3727 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
3728 * came this far. */
3729
3730 secure_bits = context->secure_bits;
3731
3732 if (needs_sandboxing) {
3733 uint64_t bset;
3734
3735 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly
3736 * requested. (Note this is placed after the general resource limit initialization, see
3737 * above, in order to take precedence.) */
3738 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
3739 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
3740 *exit_status = EXIT_LIMITS;
3741 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
3742 }
3743 }
3744
3745 #if ENABLE_SMACK
3746 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
3747 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
3748 if (use_smack) {
3749 r = setup_smack(context, command);
3750 if (r < 0) {
3751 *exit_status = EXIT_SMACK_PROCESS_LABEL;
3752 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
3753 }
3754 }
3755 #endif
3756
3757 bset = context->capability_bounding_set;
3758 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
3759 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
3760 * instead of us doing that */
3761 if (needs_ambient_hack)
3762 bset |= (UINT64_C(1) << CAP_SETPCAP) |
3763 (UINT64_C(1) << CAP_SETUID) |
3764 (UINT64_C(1) << CAP_SETGID);
3765
3766 if (!cap_test_all(bset)) {
3767 r = capability_bounding_set_drop(bset, false);
3768 if (r < 0) {
3769 *exit_status = EXIT_CAPABILITIES;
3770 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
3771 }
3772 }
3773
3774 /* This is done before enforce_user, but ambient set
3775 * does not survive over setresuid() if keep_caps is not set. */
3776 if (!needs_ambient_hack) {
3777 r = capability_ambient_set_apply(context->capability_ambient_set, true);
3778 if (r < 0) {
3779 *exit_status = EXIT_CAPABILITIES;
3780 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
3781 }
3782 }
3783 }
3784
3785 /* chroot to root directory first, before we lose the ability to chroot */
3786 r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
3787 if (r < 0)
3788 return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
3789
3790 if (needs_setuid) {
3791 if (uid_is_valid(uid)) {
3792 r = enforce_user(context, uid);
3793 if (r < 0) {
3794 *exit_status = EXIT_USER;
3795 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
3796 }
3797
3798 if (!needs_ambient_hack &&
3799 context->capability_ambient_set != 0) {
3800
3801 /* Fix the ambient capabilities after user change. */
3802 r = capability_ambient_set_apply(context->capability_ambient_set, false);
3803 if (r < 0) {
3804 *exit_status = EXIT_CAPABILITIES;
3805 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
3806 }
3807
3808 /* If we were asked to change user and ambient capabilities
3809 * were requested, we had to add keep-caps to the securebits
3810 * so that we would maintain the inherited capability set
3811 * through the setresuid(). Make sure that the bit is added
3812 * also to the context secure_bits so that we don't try to
3813 * drop the bit away next. */
3814
3815 secure_bits |= 1<<SECURE_KEEP_CAPS;
3816 }
3817 }
3818 }
3819
3820 /* Apply working directory here, because the working directory might be on NFS and only the user running
3821 * this service might have the correct privilege to change to the working directory */
3822 r = apply_working_directory(context, params, home, exit_status);
3823 if (r < 0)
3824 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
3825
3826 if (needs_sandboxing) {
3827 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
3828 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
3829 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
3830 * are restricted. */
3831
3832 #if HAVE_SELINUX
3833 if (use_selinux) {
3834 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
3835
3836 if (exec_context) {
3837 r = setexeccon(exec_context);
3838 if (r < 0) {
3839 *exit_status = EXIT_SELINUX_CONTEXT;
3840 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
3841 }
3842 }
3843 }
3844 #endif
3845
3846 #if HAVE_APPARMOR
3847 if (use_apparmor && context->apparmor_profile) {
3848 r = aa_change_onexec(context->apparmor_profile);
3849 if (r < 0 && !context->apparmor_profile_ignore) {
3850 *exit_status = EXIT_APPARMOR_PROFILE;
3851 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
3852 }
3853 }
3854 #endif
3855
3856 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential EPERMs
3857 * we'll try not to call PR_SET_SECUREBITS unless necessary. */
3858 if (prctl(PR_GET_SECUREBITS) != secure_bits)
3859 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
3860 *exit_status = EXIT_SECUREBITS;
3861 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
3862 }
3863
3864 if (context_has_no_new_privileges(context))
3865 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
3866 *exit_status = EXIT_NO_NEW_PRIVILEGES;
3867 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
3868 }
3869
3870 #if HAVE_SECCOMP
3871 r = apply_address_families(unit, context);
3872 if (r < 0) {
3873 *exit_status = EXIT_ADDRESS_FAMILIES;
3874 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
3875 }
3876
3877 r = apply_memory_deny_write_execute(unit, context);
3878 if (r < 0) {
3879 *exit_status = EXIT_SECCOMP;
3880 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
3881 }
3882
3883 r = apply_restrict_realtime(unit, context);
3884 if (r < 0) {
3885 *exit_status = EXIT_SECCOMP;
3886 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
3887 }
3888
3889 r = apply_restrict_suid_sgid(unit, context);
3890 if (r < 0) {
3891 *exit_status = EXIT_SECCOMP;
3892 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
3893 }
3894
3895 r = apply_restrict_namespaces(unit, context);
3896 if (r < 0) {
3897 *exit_status = EXIT_SECCOMP;
3898 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
3899 }
3900
3901 r = apply_protect_sysctl(unit, context);
3902 if (r < 0) {
3903 *exit_status = EXIT_SECCOMP;
3904 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
3905 }
3906
3907 r = apply_protect_kernel_modules(unit, context);
3908 if (r < 0) {
3909 *exit_status = EXIT_SECCOMP;
3910 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
3911 }
3912
3913 r = apply_protect_kernel_logs(unit, context);
3914 if (r < 0) {
3915 *exit_status = EXIT_SECCOMP;
3916 return log_unit_error_errno(unit, r, "Failed to apply kernel log restrictions: %m");
3917 }
3918
3919 r = apply_protect_clock(unit, context);
3920 if (r < 0) {
3921 *exit_status = EXIT_SECCOMP;
3922 return log_unit_error_errno(unit, r, "Failed to apply clock restrictions: %m");
3923 }
3924
3925 r = apply_private_devices(unit, context);
3926 if (r < 0) {
3927 *exit_status = EXIT_SECCOMP;
3928 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
3929 }
3930
3931 r = apply_syscall_archs(unit, context);
3932 if (r < 0) {
3933 *exit_status = EXIT_SECCOMP;
3934 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
3935 }
3936
3937 r = apply_lock_personality(unit, context);
3938 if (r < 0) {
3939 *exit_status = EXIT_SECCOMP;
3940 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
3941 }
3942
3943 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
3944 * by the filter as little as possible. */
3945 r = apply_syscall_filter(unit, context, needs_ambient_hack);
3946 if (r < 0) {
3947 *exit_status = EXIT_SECCOMP;
3948 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
3949 }
3950 #endif
3951 }
3952
3953 if (!strv_isempty(context->unset_environment)) {
3954 char **ee = NULL;
3955
3956 ee = strv_env_delete(accum_env, 1, context->unset_environment);
3957 if (!ee) {
3958 *exit_status = EXIT_MEMORY;
3959 return log_oom();
3960 }
3961
3962 strv_free_and_replace(accum_env, ee);
3963 }
3964
3965 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
3966 replaced_argv = replace_env_argv(command->argv, accum_env);
3967 if (!replaced_argv) {
3968 *exit_status = EXIT_MEMORY;
3969 return log_oom();
3970 }
3971 final_argv = replaced_argv;
3972 } else
3973 final_argv = command->argv;
3974
3975 if (DEBUG_LOGGING) {
3976 _cleanup_free_ char *line;
3977
3978 line = exec_command_line(final_argv);
3979 if (line)
3980 log_struct(LOG_DEBUG,
3981 "EXECUTABLE=%s", command->path,
3982 LOG_UNIT_MESSAGE(unit, "Executing: %s", line),
3983 LOG_UNIT_ID(unit),
3984 LOG_UNIT_INVOCATION_ID(unit));
3985 }
3986
3987 if (exec_fd >= 0) {
3988 uint8_t hot = 1;
3989
3990 /* We have finished with all our initializations. Let's now let the manager know that. From this point
3991 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
3992
3993 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
3994 *exit_status = EXIT_EXEC;
3995 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
3996 }
3997 }
3998
3999 execve(command->path, final_argv, accum_env);
4000 r = -errno;
4001
4002 if (exec_fd >= 0) {
4003 uint8_t hot = 0;
4004
4005 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
4006 * that POLLHUP on it no longer means execve() succeeded. */
4007
4008 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
4009 *exit_status = EXIT_EXEC;
4010 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
4011 }
4012 }
4013
4014 if (r == -ENOENT && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
4015 log_struct_errno(LOG_INFO, r,
4016 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4017 LOG_UNIT_ID(unit),
4018 LOG_UNIT_INVOCATION_ID(unit),
4019 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
4020 command->path),
4021 "EXECUTABLE=%s", command->path);
4022 return 0;
4023 }
4024
4025 *exit_status = EXIT_EXEC;
4026 return log_unit_error_errno(unit, r, "Failed to execute command: %m");
4027 }
4028
4029 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
4030 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
4031
4032 int exec_spawn(Unit *unit,
4033 ExecCommand *command,
4034 const ExecContext *context,
4035 const ExecParameters *params,
4036 ExecRuntime *runtime,
4037 DynamicCreds *dcreds,
4038 pid_t *ret) {
4039
4040 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
4041 _cleanup_free_ char *subcgroup_path = NULL;
4042 _cleanup_strv_free_ char **files_env = NULL;
4043 size_t n_storage_fds = 0, n_socket_fds = 0;
4044 _cleanup_free_ char *line = NULL;
4045 pid_t pid;
4046
4047 assert(unit);
4048 assert(command);
4049 assert(context);
4050 assert(ret);
4051 assert(params);
4052 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
4053
4054 if (context->std_input == EXEC_INPUT_SOCKET ||
4055 context->std_output == EXEC_OUTPUT_SOCKET ||
4056 context->std_error == EXEC_OUTPUT_SOCKET) {
4057
4058 if (params->n_socket_fds > 1) {
4059 log_unit_error(unit, "Got more than one socket.");
4060 return -EINVAL;
4061 }
4062
4063 if (params->n_socket_fds == 0) {
4064 log_unit_error(unit, "Got no socket.");
4065 return -EINVAL;
4066 }
4067
4068 socket_fd = params->fds[0];
4069 } else {
4070 socket_fd = -1;
4071 fds = params->fds;
4072 n_socket_fds = params->n_socket_fds;
4073 n_storage_fds = params->n_storage_fds;
4074 }
4075
4076 r = exec_context_named_iofds(context, params, named_iofds);
4077 if (r < 0)
4078 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
4079
4080 r = exec_context_load_environment(unit, context, &files_env);
4081 if (r < 0)
4082 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
4083
4084 line = exec_command_line(command->argv);
4085 if (!line)
4086 return log_oom();
4087
4088 log_struct(LOG_DEBUG,
4089 LOG_UNIT_MESSAGE(unit, "About to execute: %s", line),
4090 "EXECUTABLE=%s", command->path,
4091 LOG_UNIT_ID(unit),
4092 LOG_UNIT_INVOCATION_ID(unit));
4093
4094 if (params->cgroup_path) {
4095 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
4096 if (r < 0)
4097 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
4098 if (r > 0) { /* We are using a child cgroup */
4099 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
4100 if (r < 0)
4101 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
4102 }
4103 }
4104
4105 pid = fork();
4106 if (pid < 0)
4107 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
4108
4109 if (pid == 0) {
4110 int exit_status = EXIT_SUCCESS;
4111
4112 r = exec_child(unit,
4113 command,
4114 context,
4115 params,
4116 runtime,
4117 dcreds,
4118 socket_fd,
4119 named_iofds,
4120 fds,
4121 n_socket_fds,
4122 n_storage_fds,
4123 files_env,
4124 unit->manager->user_lookup_fds[1],
4125 &exit_status);
4126
4127 if (r < 0) {
4128 const char *status =
4129 exit_status_to_string(exit_status,
4130 EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
4131
4132 log_struct_errno(LOG_ERR, r,
4133 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4134 LOG_UNIT_ID(unit),
4135 LOG_UNIT_INVOCATION_ID(unit),
4136 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
4137 status, command->path),
4138 "EXECUTABLE=%s", command->path);
4139 }
4140
4141 _exit(exit_status);
4142 }
4143
4144 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
4145
4146 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
4147 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
4148 * process will be killed too). */
4149 if (subcgroup_path)
4150 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
4151
4152 exec_status_start(&command->exec_status, pid);
4153
4154 *ret = pid;
4155 return 0;
4156 }
4157
4158 void exec_context_init(ExecContext *c) {
4159 ExecDirectoryType i;
4160
4161 assert(c);
4162
4163 c->umask = 0022;
4164 c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
4165 c->cpu_sched_policy = SCHED_OTHER;
4166 c->syslog_priority = LOG_DAEMON|LOG_INFO;
4167 c->syslog_level_prefix = true;
4168 c->ignore_sigpipe = true;
4169 c->timer_slack_nsec = NSEC_INFINITY;
4170 c->personality = PERSONALITY_INVALID;
4171 for (i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++)
4172 c->directories[i].mode = 0755;
4173 c->timeout_clean_usec = USEC_INFINITY;
4174 c->capability_bounding_set = CAP_ALL;
4175 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
4176 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
4177 c->log_level_max = -1;
4178 numa_policy_reset(&c->numa_policy);
4179 }
4180
4181 void exec_context_done(ExecContext *c) {
4182 ExecDirectoryType i;
4183 size_t l;
4184
4185 assert(c);
4186
4187 c->environment = strv_free(c->environment);
4188 c->environment_files = strv_free(c->environment_files);
4189 c->pass_environment = strv_free(c->pass_environment);
4190 c->unset_environment = strv_free(c->unset_environment);
4191
4192 rlimit_free_all(c->rlimit);
4193
4194 for (l = 0; l < 3; l++) {
4195 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
4196 c->stdio_file[l] = mfree(c->stdio_file[l]);
4197 }
4198
4199 c->working_directory = mfree(c->working_directory);
4200 c->root_directory = mfree(c->root_directory);
4201 c->root_image = mfree(c->root_image);
4202 c->root_hash = mfree(c->root_hash);
4203 c->root_hash_size = 0;
4204 c->root_hash_path = mfree(c->root_hash_path);
4205 c->root_hash_sig = mfree(c->root_hash_sig);
4206 c->root_hash_sig_size = 0;
4207 c->root_hash_sig_path = mfree(c->root_hash_sig_path);
4208 c->root_verity = mfree(c->root_verity);
4209 c->tty_path = mfree(c->tty_path);
4210 c->syslog_identifier = mfree(c->syslog_identifier);
4211 c->user = mfree(c->user);
4212 c->group = mfree(c->group);
4213
4214 c->supplementary_groups = strv_free(c->supplementary_groups);
4215
4216 c->pam_name = mfree(c->pam_name);
4217
4218 c->read_only_paths = strv_free(c->read_only_paths);
4219 c->read_write_paths = strv_free(c->read_write_paths);
4220 c->inaccessible_paths = strv_free(c->inaccessible_paths);
4221
4222 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
4223 c->bind_mounts = NULL;
4224 c->n_bind_mounts = 0;
4225 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
4226 c->temporary_filesystems = NULL;
4227 c->n_temporary_filesystems = 0;
4228
4229 cpu_set_reset(&c->cpu_set);
4230 numa_policy_reset(&c->numa_policy);
4231
4232 c->utmp_id = mfree(c->utmp_id);
4233 c->selinux_context = mfree(c->selinux_context);
4234 c->apparmor_profile = mfree(c->apparmor_profile);
4235 c->smack_process_label = mfree(c->smack_process_label);
4236
4237 c->syscall_filter = hashmap_free(c->syscall_filter);
4238 c->syscall_archs = set_free(c->syscall_archs);
4239 c->address_families = set_free(c->address_families);
4240
4241 for (i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++)
4242 c->directories[i].paths = strv_free(c->directories[i].paths);
4243
4244 c->log_level_max = -1;
4245
4246 exec_context_free_log_extra_fields(c);
4247
4248 c->log_ratelimit_interval_usec = 0;
4249 c->log_ratelimit_burst = 0;
4250
4251 c->stdin_data = mfree(c->stdin_data);
4252 c->stdin_data_size = 0;
4253
4254 c->network_namespace_path = mfree(c->network_namespace_path);
4255
4256 c->log_namespace = mfree(c->log_namespace);
4257 }
4258
4259 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
4260 char **i;
4261
4262 assert(c);
4263
4264 if (!runtime_prefix)
4265 return 0;
4266
4267 STRV_FOREACH(i, c->directories[EXEC_DIRECTORY_RUNTIME].paths) {
4268 _cleanup_free_ char *p;
4269
4270 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
4271 p = path_join(runtime_prefix, "private", *i);
4272 else
4273 p = path_join(runtime_prefix, *i);
4274 if (!p)
4275 return -ENOMEM;
4276
4277 /* We execute this synchronously, since we need to be sure this is gone when we start the
4278 * service next. */
4279 (void) rm_rf(p, REMOVE_ROOT);
4280 }
4281
4282 return 0;
4283 }
4284
4285 static void exec_command_done(ExecCommand *c) {
4286 assert(c);
4287
4288 c->path = mfree(c->path);
4289 c->argv = strv_free(c->argv);
4290 }
4291
4292 void exec_command_done_array(ExecCommand *c, size_t n) {
4293 size_t i;
4294
4295 for (i = 0; i < n; i++)
4296 exec_command_done(c+i);
4297 }
4298
4299 ExecCommand* exec_command_free_list(ExecCommand *c) {
4300 ExecCommand *i;
4301
4302 while ((i = c)) {
4303 LIST_REMOVE(command, c, i);
4304 exec_command_done(i);
4305 free(i);
4306 }
4307
4308 return NULL;
4309 }
4310
4311 void exec_command_free_array(ExecCommand **c, size_t n) {
4312 size_t i;
4313
4314 for (i = 0; i < n; i++)
4315 c[i] = exec_command_free_list(c[i]);
4316 }
4317
4318 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
4319 size_t i;
4320
4321 for (i = 0; i < n; i++)
4322 exec_status_reset(&c[i].exec_status);
4323 }
4324
4325 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
4326 size_t i;
4327
4328 for (i = 0; i < n; i++) {
4329 ExecCommand *z;
4330
4331 LIST_FOREACH(command, z, c[i])
4332 exec_status_reset(&z->exec_status);
4333 }
4334 }
4335
4336 typedef struct InvalidEnvInfo {
4337 const Unit *unit;
4338 const char *path;
4339 } InvalidEnvInfo;
4340
4341 static void invalid_env(const char *p, void *userdata) {
4342 InvalidEnvInfo *info = userdata;
4343
4344 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
4345 }
4346
4347 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
4348 assert(c);
4349
4350 switch (fd_index) {
4351
4352 case STDIN_FILENO:
4353 if (c->std_input != EXEC_INPUT_NAMED_FD)
4354 return NULL;
4355
4356 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
4357
4358 case STDOUT_FILENO:
4359 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
4360 return NULL;
4361
4362 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
4363
4364 case STDERR_FILENO:
4365 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
4366 return NULL;
4367
4368 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
4369
4370 default:
4371 return NULL;
4372 }
4373 }
4374
4375 static int exec_context_named_iofds(
4376 const ExecContext *c,
4377 const ExecParameters *p,
4378 int named_iofds[static 3]) {
4379
4380 size_t i, targets;
4381 const char* stdio_fdname[3];
4382 size_t n_fds;
4383
4384 assert(c);
4385 assert(p);
4386 assert(named_iofds);
4387
4388 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
4389 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
4390 (c->std_error == EXEC_OUTPUT_NAMED_FD);
4391
4392 for (i = 0; i < 3; i++)
4393 stdio_fdname[i] = exec_context_fdname(c, i);
4394
4395 n_fds = p->n_storage_fds + p->n_socket_fds;
4396
4397 for (i = 0; i < n_fds && targets > 0; i++)
4398 if (named_iofds[STDIN_FILENO] < 0 &&
4399 c->std_input == EXEC_INPUT_NAMED_FD &&
4400 stdio_fdname[STDIN_FILENO] &&
4401 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
4402
4403 named_iofds[STDIN_FILENO] = p->fds[i];
4404 targets--;
4405
4406 } else if (named_iofds[STDOUT_FILENO] < 0 &&
4407 c->std_output == EXEC_OUTPUT_NAMED_FD &&
4408 stdio_fdname[STDOUT_FILENO] &&
4409 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
4410
4411 named_iofds[STDOUT_FILENO] = p->fds[i];
4412 targets--;
4413
4414 } else if (named_iofds[STDERR_FILENO] < 0 &&
4415 c->std_error == EXEC_OUTPUT_NAMED_FD &&
4416 stdio_fdname[STDERR_FILENO] &&
4417 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
4418
4419 named_iofds[STDERR_FILENO] = p->fds[i];
4420 targets--;
4421 }
4422
4423 return targets == 0 ? 0 : -ENOENT;
4424 }
4425
4426 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l) {
4427 char **i, **r = NULL;
4428
4429 assert(c);
4430 assert(l);
4431
4432 STRV_FOREACH(i, c->environment_files) {
4433 char *fn;
4434 int k;
4435 unsigned n;
4436 bool ignore = false;
4437 char **p;
4438 _cleanup_globfree_ glob_t pglob = {};
4439
4440 fn = *i;
4441
4442 if (fn[0] == '-') {
4443 ignore = true;
4444 fn++;
4445 }
4446
4447 if (!path_is_absolute(fn)) {
4448 if (ignore)
4449 continue;
4450
4451 strv_free(r);
4452 return -EINVAL;
4453 }
4454
4455 /* Filename supports globbing, take all matching files */
4456 k = safe_glob(fn, 0, &pglob);
4457 if (k < 0) {
4458 if (ignore)
4459 continue;
4460
4461 strv_free(r);
4462 return k;
4463 }
4464
4465 /* When we don't match anything, -ENOENT should be returned */
4466 assert(pglob.gl_pathc > 0);
4467
4468 for (n = 0; n < pglob.gl_pathc; n++) {
4469 k = load_env_file(NULL, pglob.gl_pathv[n], &p);
4470 if (k < 0) {
4471 if (ignore)
4472 continue;
4473
4474 strv_free(r);
4475 return k;
4476 }
4477 /* Log invalid environment variables with filename */
4478 if (p) {
4479 InvalidEnvInfo info = {
4480 .unit = unit,
4481 .path = pglob.gl_pathv[n]
4482 };
4483
4484 p = strv_env_clean_with_callback(p, invalid_env, &info);
4485 }
4486
4487 if (!r)
4488 r = p;
4489 else {
4490 char **m;
4491
4492 m = strv_env_merge(2, r, p);
4493 strv_free(r);
4494 strv_free(p);
4495 if (!m)
4496 return -ENOMEM;
4497
4498 r = m;
4499 }
4500 }
4501 }
4502
4503 *l = r;
4504
4505 return 0;
4506 }
4507
4508 static bool tty_may_match_dev_console(const char *tty) {
4509 _cleanup_free_ char *resolved = NULL;
4510
4511 if (!tty)
4512 return true;
4513
4514 tty = skip_dev_prefix(tty);
4515
4516 /* trivial identity? */
4517 if (streq(tty, "console"))
4518 return true;
4519
4520 if (resolve_dev_console(&resolved) < 0)
4521 return true; /* if we could not resolve, assume it may */
4522
4523 /* "tty0" means the active VC, so it may be the same sometimes */
4524 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
4525 }
4526
4527 static bool exec_context_may_touch_tty(const ExecContext *ec) {
4528 assert(ec);
4529
4530 return ec->tty_reset ||
4531 ec->tty_vhangup ||
4532 ec->tty_vt_disallocate ||
4533 is_terminal_input(ec->std_input) ||
4534 is_terminal_output(ec->std_output) ||
4535 is_terminal_output(ec->std_error);
4536 }
4537
4538 bool exec_context_may_touch_console(const ExecContext *ec) {
4539
4540 return exec_context_may_touch_tty(ec) &&
4541 tty_may_match_dev_console(exec_context_tty_path(ec));
4542 }
4543
4544 static void strv_fprintf(FILE *f, char **l) {
4545 char **g;
4546
4547 assert(f);
4548
4549 STRV_FOREACH(g, l)
4550 fprintf(f, " %s", *g);
4551 }
4552
4553 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
4554 char **e, **d, buf_clean[FORMAT_TIMESPAN_MAX];
4555 ExecDirectoryType dt;
4556 unsigned i;
4557 int r;
4558
4559 assert(c);
4560 assert(f);
4561
4562 prefix = strempty(prefix);
4563
4564 fprintf(f,
4565 "%sUMask: %04o\n"
4566 "%sWorkingDirectory: %s\n"
4567 "%sRootDirectory: %s\n"
4568 "%sNonBlocking: %s\n"
4569 "%sPrivateTmp: %s\n"
4570 "%sPrivateDevices: %s\n"
4571 "%sProtectKernelTunables: %s\n"
4572 "%sProtectKernelModules: %s\n"
4573 "%sProtectKernelLogs: %s\n"
4574 "%sProtectClock: %s\n"
4575 "%sProtectControlGroups: %s\n"
4576 "%sPrivateNetwork: %s\n"
4577 "%sPrivateUsers: %s\n"
4578 "%sProtectHome: %s\n"
4579 "%sProtectSystem: %s\n"
4580 "%sMountAPIVFS: %s\n"
4581 "%sIgnoreSIGPIPE: %s\n"
4582 "%sMemoryDenyWriteExecute: %s\n"
4583 "%sRestrictRealtime: %s\n"
4584 "%sRestrictSUIDSGID: %s\n"
4585 "%sKeyringMode: %s\n"
4586 "%sProtectHostname: %s\n",
4587 prefix, c->umask,
4588 prefix, c->working_directory ? c->working_directory : "/",
4589 prefix, c->root_directory ? c->root_directory : "/",
4590 prefix, yes_no(c->non_blocking),
4591 prefix, yes_no(c->private_tmp),
4592 prefix, yes_no(c->private_devices),
4593 prefix, yes_no(c->protect_kernel_tunables),
4594 prefix, yes_no(c->protect_kernel_modules),
4595 prefix, yes_no(c->protect_kernel_logs),
4596 prefix, yes_no(c->protect_clock),
4597 prefix, yes_no(c->protect_control_groups),
4598 prefix, yes_no(c->private_network),
4599 prefix, yes_no(c->private_users),
4600 prefix, protect_home_to_string(c->protect_home),
4601 prefix, protect_system_to_string(c->protect_system),
4602 prefix, yes_no(c->mount_apivfs),
4603 prefix, yes_no(c->ignore_sigpipe),
4604 prefix, yes_no(c->memory_deny_write_execute),
4605 prefix, yes_no(c->restrict_realtime),
4606 prefix, yes_no(c->restrict_suid_sgid),
4607 prefix, exec_keyring_mode_to_string(c->keyring_mode),
4608 prefix, yes_no(c->protect_hostname));
4609
4610 if (c->root_image)
4611 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
4612
4613 if (c->root_hash) {
4614 _cleanup_free_ char *encoded = NULL;
4615 encoded = hexmem(c->root_hash, c->root_hash_size);
4616 if (encoded)
4617 fprintf(f, "%sRootHash: %s\n", prefix, encoded);
4618 }
4619
4620 if (c->root_hash_path)
4621 fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path);
4622
4623 if (c->root_hash_sig) {
4624 _cleanup_free_ char *encoded = NULL;
4625 ssize_t len;
4626 len = base64mem(c->root_hash_sig, c->root_hash_sig_size, &encoded);
4627 if (len)
4628 fprintf(f, "%sRootHashSignature: base64:%s\n", prefix, encoded);
4629 }
4630
4631 if (c->root_hash_sig_path)
4632 fprintf(f, "%sRootHashSignature: %s\n", prefix, c->root_hash_sig_path);
4633
4634 if (c->root_verity)
4635 fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity);
4636
4637 STRV_FOREACH(e, c->environment)
4638 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
4639
4640 STRV_FOREACH(e, c->environment_files)
4641 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
4642
4643 STRV_FOREACH(e, c->pass_environment)
4644 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
4645
4646 STRV_FOREACH(e, c->unset_environment)
4647 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
4648
4649 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
4650
4651 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4652 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
4653
4654 STRV_FOREACH(d, c->directories[dt].paths)
4655 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), *d);
4656 }
4657
4658 fprintf(f,
4659 "%sTimeoutCleanSec: %s\n",
4660 prefix, format_timespan(buf_clean, sizeof(buf_clean), c->timeout_clean_usec, USEC_PER_SEC));
4661
4662 if (c->nice_set)
4663 fprintf(f,
4664 "%sNice: %i\n",
4665 prefix, c->nice);
4666
4667 if (c->oom_score_adjust_set)
4668 fprintf(f,
4669 "%sOOMScoreAdjust: %i\n",
4670 prefix, c->oom_score_adjust);
4671
4672 if (c->coredump_filter_set)
4673 fprintf(f,
4674 "%sCoredumpFilter: 0x%"PRIx64"\n",
4675 prefix, c->coredump_filter);
4676
4677 for (i = 0; i < RLIM_NLIMITS; i++)
4678 if (c->rlimit[i]) {
4679 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
4680 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
4681 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
4682 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
4683 }
4684
4685 if (c->ioprio_set) {
4686 _cleanup_free_ char *class_str = NULL;
4687
4688 r = ioprio_class_to_string_alloc(IOPRIO_PRIO_CLASS(c->ioprio), &class_str);
4689 if (r >= 0)
4690 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
4691
4692 fprintf(f, "%sIOPriority: %lu\n", prefix, IOPRIO_PRIO_DATA(c->ioprio));
4693 }
4694
4695 if (c->cpu_sched_set) {
4696 _cleanup_free_ char *policy_str = NULL;
4697
4698 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
4699 if (r >= 0)
4700 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
4701
4702 fprintf(f,
4703 "%sCPUSchedulingPriority: %i\n"
4704 "%sCPUSchedulingResetOnFork: %s\n",
4705 prefix, c->cpu_sched_priority,
4706 prefix, yes_no(c->cpu_sched_reset_on_fork));
4707 }
4708
4709 if (c->cpu_set.set) {
4710 _cleanup_free_ char *affinity = NULL;
4711
4712 affinity = cpu_set_to_range_string(&c->cpu_set);
4713 fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
4714 }
4715
4716 if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
4717 _cleanup_free_ char *nodes = NULL;
4718
4719 nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
4720 fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
4721 fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
4722 }
4723
4724 if (c->timer_slack_nsec != NSEC_INFINITY)
4725 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
4726
4727 fprintf(f,
4728 "%sStandardInput: %s\n"
4729 "%sStandardOutput: %s\n"
4730 "%sStandardError: %s\n",
4731 prefix, exec_input_to_string(c->std_input),
4732 prefix, exec_output_to_string(c->std_output),
4733 prefix, exec_output_to_string(c->std_error));
4734
4735 if (c->std_input == EXEC_INPUT_NAMED_FD)
4736 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
4737 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
4738 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
4739 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
4740 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
4741
4742 if (c->std_input == EXEC_INPUT_FILE)
4743 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
4744 if (c->std_output == EXEC_OUTPUT_FILE)
4745 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
4746 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
4747 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
4748 if (c->std_error == EXEC_OUTPUT_FILE)
4749 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
4750 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
4751 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
4752
4753 if (c->tty_path)
4754 fprintf(f,
4755 "%sTTYPath: %s\n"
4756 "%sTTYReset: %s\n"
4757 "%sTTYVHangup: %s\n"
4758 "%sTTYVTDisallocate: %s\n",
4759 prefix, c->tty_path,
4760 prefix, yes_no(c->tty_reset),
4761 prefix, yes_no(c->tty_vhangup),
4762 prefix, yes_no(c->tty_vt_disallocate));
4763
4764 if (IN_SET(c->std_output,
4765 EXEC_OUTPUT_KMSG,
4766 EXEC_OUTPUT_JOURNAL,
4767 EXEC_OUTPUT_KMSG_AND_CONSOLE,
4768 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
4769 IN_SET(c->std_error,
4770 EXEC_OUTPUT_KMSG,
4771 EXEC_OUTPUT_JOURNAL,
4772 EXEC_OUTPUT_KMSG_AND_CONSOLE,
4773 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
4774
4775 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
4776
4777 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
4778 if (r >= 0)
4779 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
4780
4781 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
4782 if (r >= 0)
4783 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
4784 }
4785
4786 if (c->log_level_max >= 0) {
4787 _cleanup_free_ char *t = NULL;
4788
4789 (void) log_level_to_string_alloc(c->log_level_max, &t);
4790
4791 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
4792 }
4793
4794 if (c->log_ratelimit_interval_usec > 0) {
4795 char buf_timespan[FORMAT_TIMESPAN_MAX];
4796
4797 fprintf(f,
4798 "%sLogRateLimitIntervalSec: %s\n",
4799 prefix, format_timespan(buf_timespan, sizeof(buf_timespan), c->log_ratelimit_interval_usec, USEC_PER_SEC));
4800 }
4801
4802 if (c->log_ratelimit_burst > 0)
4803 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit_burst);
4804
4805 if (c->n_log_extra_fields > 0) {
4806 size_t j;
4807
4808 for (j = 0; j < c->n_log_extra_fields; j++) {
4809 fprintf(f, "%sLogExtraFields: ", prefix);
4810 fwrite(c->log_extra_fields[j].iov_base,
4811 1, c->log_extra_fields[j].iov_len,
4812 f);
4813 fputc('\n', f);
4814 }
4815 }
4816
4817 if (c->log_namespace)
4818 fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace);
4819
4820 if (c->secure_bits) {
4821 _cleanup_free_ char *str = NULL;
4822
4823 r = secure_bits_to_string_alloc(c->secure_bits, &str);
4824 if (r >= 0)
4825 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
4826 }
4827
4828 if (c->capability_bounding_set != CAP_ALL) {
4829 _cleanup_free_ char *str = NULL;
4830
4831 r = capability_set_to_string_alloc(c->capability_bounding_set, &str);
4832 if (r >= 0)
4833 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
4834 }
4835
4836 if (c->capability_ambient_set != 0) {
4837 _cleanup_free_ char *str = NULL;
4838
4839 r = capability_set_to_string_alloc(c->capability_ambient_set, &str);
4840 if (r >= 0)
4841 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
4842 }
4843
4844 if (c->user)
4845 fprintf(f, "%sUser: %s\n", prefix, c->user);
4846 if (c->group)
4847 fprintf(f, "%sGroup: %s\n", prefix, c->group);
4848
4849 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
4850
4851 if (!strv_isempty(c->supplementary_groups)) {
4852 fprintf(f, "%sSupplementaryGroups:", prefix);
4853 strv_fprintf(f, c->supplementary_groups);
4854 fputs("\n", f);
4855 }
4856
4857 if (c->pam_name)
4858 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
4859
4860 if (!strv_isempty(c->read_write_paths)) {
4861 fprintf(f, "%sReadWritePaths:", prefix);
4862 strv_fprintf(f, c->read_write_paths);
4863 fputs("\n", f);
4864 }
4865
4866 if (!strv_isempty(c->read_only_paths)) {
4867 fprintf(f, "%sReadOnlyPaths:", prefix);
4868 strv_fprintf(f, c->read_only_paths);
4869 fputs("\n", f);
4870 }
4871
4872 if (!strv_isempty(c->inaccessible_paths)) {
4873 fprintf(f, "%sInaccessiblePaths:", prefix);
4874 strv_fprintf(f, c->inaccessible_paths);
4875 fputs("\n", f);
4876 }
4877
4878 if (c->n_bind_mounts > 0)
4879 for (i = 0; i < c->n_bind_mounts; i++)
4880 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
4881 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
4882 c->bind_mounts[i].ignore_enoent ? "-": "",
4883 c->bind_mounts[i].source,
4884 c->bind_mounts[i].destination,
4885 c->bind_mounts[i].recursive ? "rbind" : "norbind");
4886
4887 if (c->n_temporary_filesystems > 0)
4888 for (i = 0; i < c->n_temporary_filesystems; i++) {
4889 TemporaryFileSystem *t = c->temporary_filesystems + i;
4890
4891 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
4892 t->path,
4893 isempty(t->options) ? "" : ":",
4894 strempty(t->options));
4895 }
4896
4897 if (c->utmp_id)
4898 fprintf(f,
4899 "%sUtmpIdentifier: %s\n",
4900 prefix, c->utmp_id);
4901
4902 if (c->selinux_context)
4903 fprintf(f,
4904 "%sSELinuxContext: %s%s\n",
4905 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
4906
4907 if (c->apparmor_profile)
4908 fprintf(f,
4909 "%sAppArmorProfile: %s%s\n",
4910 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
4911
4912 if (c->smack_process_label)
4913 fprintf(f,
4914 "%sSmackProcessLabel: %s%s\n",
4915 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
4916
4917 if (c->personality != PERSONALITY_INVALID)
4918 fprintf(f,
4919 "%sPersonality: %s\n",
4920 prefix, strna(personality_to_string(c->personality)));
4921
4922 fprintf(f,
4923 "%sLockPersonality: %s\n",
4924 prefix, yes_no(c->lock_personality));
4925
4926 if (c->syscall_filter) {
4927 #if HAVE_SECCOMP
4928 Iterator j;
4929 void *id, *val;
4930 bool first = true;
4931 #endif
4932
4933 fprintf(f,
4934 "%sSystemCallFilter: ",
4935 prefix);
4936
4937 if (!c->syscall_allow_list)
4938 fputc('~', f);
4939
4940 #if HAVE_SECCOMP
4941 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter, j) {
4942 _cleanup_free_ char *name = NULL;
4943 const char *errno_name = NULL;
4944 int num = PTR_TO_INT(val);
4945
4946 if (first)
4947 first = false;
4948 else
4949 fputc(' ', f);
4950
4951 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
4952 fputs(strna(name), f);
4953
4954 if (num >= 0) {
4955 errno_name = errno_to_name(num);
4956 if (errno_name)
4957 fprintf(f, ":%s", errno_name);
4958 else
4959 fprintf(f, ":%d", num);
4960 }
4961 }
4962 #endif
4963
4964 fputc('\n', f);
4965 }
4966
4967 if (c->syscall_archs) {
4968 #if HAVE_SECCOMP
4969 Iterator j;
4970 void *id;
4971 #endif
4972
4973 fprintf(f,
4974 "%sSystemCallArchitectures:",
4975 prefix);
4976
4977 #if HAVE_SECCOMP
4978 SET_FOREACH(id, c->syscall_archs, j)
4979 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
4980 #endif
4981 fputc('\n', f);
4982 }
4983
4984 if (exec_context_restrict_namespaces_set(c)) {
4985 _cleanup_free_ char *s = NULL;
4986
4987 r = namespace_flags_to_string(c->restrict_namespaces, &s);
4988 if (r >= 0)
4989 fprintf(f, "%sRestrictNamespaces: %s\n",
4990 prefix, strna(s));
4991 }
4992
4993 if (c->network_namespace_path)
4994 fprintf(f,
4995 "%sNetworkNamespacePath: %s\n",
4996 prefix, c->network_namespace_path);
4997
4998 if (c->syscall_errno > 0) {
4999 const char *errno_name;
5000
5001 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
5002
5003 errno_name = errno_to_name(c->syscall_errno);
5004 if (errno_name)
5005 fprintf(f, "%s\n", errno_name);
5006 else
5007 fprintf(f, "%d\n", c->syscall_errno);
5008 }
5009 }
5010
5011 bool exec_context_maintains_privileges(const ExecContext *c) {
5012 assert(c);
5013
5014 /* Returns true if the process forked off would run under
5015 * an unchanged UID or as root. */
5016
5017 if (!c->user)
5018 return true;
5019
5020 if (streq(c->user, "root") || streq(c->user, "0"))
5021 return true;
5022
5023 return false;
5024 }
5025
5026 int exec_context_get_effective_ioprio(const ExecContext *c) {
5027 int p;
5028
5029 assert(c);
5030
5031 if (c->ioprio_set)
5032 return c->ioprio;
5033
5034 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
5035 if (p < 0)
5036 return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 4);
5037
5038 return p;
5039 }
5040
5041 void exec_context_free_log_extra_fields(ExecContext *c) {
5042 size_t l;
5043
5044 assert(c);
5045
5046 for (l = 0; l < c->n_log_extra_fields; l++)
5047 free(c->log_extra_fields[l].iov_base);
5048 c->log_extra_fields = mfree(c->log_extra_fields);
5049 c->n_log_extra_fields = 0;
5050 }
5051
5052 void exec_context_revert_tty(ExecContext *c) {
5053 int r;
5054
5055 assert(c);
5056
5057 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
5058 exec_context_tty_reset(c, NULL);
5059
5060 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
5061 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
5062 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
5063
5064 if (exec_context_may_touch_tty(c)) {
5065 const char *path;
5066
5067 path = exec_context_tty_path(c);
5068 if (path) {
5069 r = chmod_and_chown(path, TTY_MODE, 0, TTY_GID);
5070 if (r < 0 && r != -ENOENT)
5071 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
5072 }
5073 }
5074 }
5075
5076 int exec_context_get_clean_directories(
5077 ExecContext *c,
5078 char **prefix,
5079 ExecCleanMask mask,
5080 char ***ret) {
5081
5082 _cleanup_strv_free_ char **l = NULL;
5083 ExecDirectoryType t;
5084 int r;
5085
5086 assert(c);
5087 assert(prefix);
5088 assert(ret);
5089
5090 for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
5091 char **i;
5092
5093 if (!FLAGS_SET(mask, 1U << t))
5094 continue;
5095
5096 if (!prefix[t])
5097 continue;
5098
5099 STRV_FOREACH(i, c->directories[t].paths) {
5100 char *j;
5101
5102 j = path_join(prefix[t], *i);
5103 if (!j)
5104 return -ENOMEM;
5105
5106 r = strv_consume(&l, j);
5107 if (r < 0)
5108 return r;
5109
5110 /* Also remove private directories unconditionally. */
5111 if (t != EXEC_DIRECTORY_CONFIGURATION) {
5112 j = path_join(prefix[t], "private", *i);
5113 if (!j)
5114 return -ENOMEM;
5115
5116 r = strv_consume(&l, j);
5117 if (r < 0)
5118 return r;
5119 }
5120 }
5121 }
5122
5123 *ret = TAKE_PTR(l);
5124 return 0;
5125 }
5126
5127 int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
5128 ExecCleanMask mask = 0;
5129
5130 assert(c);
5131 assert(ret);
5132
5133 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5134 if (!strv_isempty(c->directories[t].paths))
5135 mask |= 1U << t;
5136
5137 *ret = mask;
5138 return 0;
5139 }
5140
5141 void exec_status_start(ExecStatus *s, pid_t pid) {
5142 assert(s);
5143
5144 *s = (ExecStatus) {
5145 .pid = pid,
5146 };
5147
5148 dual_timestamp_get(&s->start_timestamp);
5149 }
5150
5151 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
5152 assert(s);
5153
5154 if (s->pid != pid) {
5155 *s = (ExecStatus) {
5156 .pid = pid,
5157 };
5158 }
5159
5160 dual_timestamp_get(&s->exit_timestamp);
5161
5162 s->code = code;
5163 s->status = status;
5164
5165 if (context && context->utmp_id)
5166 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
5167 }
5168
5169 void exec_status_reset(ExecStatus *s) {
5170 assert(s);
5171
5172 *s = (ExecStatus) {};
5173 }
5174
5175 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
5176 char buf[FORMAT_TIMESTAMP_MAX];
5177
5178 assert(s);
5179 assert(f);
5180
5181 if (s->pid <= 0)
5182 return;
5183
5184 prefix = strempty(prefix);
5185
5186 fprintf(f,
5187 "%sPID: "PID_FMT"\n",
5188 prefix, s->pid);
5189
5190 if (dual_timestamp_is_set(&s->start_timestamp))
5191 fprintf(f,
5192 "%sStart Timestamp: %s\n",
5193 prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
5194
5195 if (dual_timestamp_is_set(&s->exit_timestamp))
5196 fprintf(f,
5197 "%sExit Timestamp: %s\n"
5198 "%sExit Code: %s\n"
5199 "%sExit Status: %i\n",
5200 prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
5201 prefix, sigchld_code_to_string(s->code),
5202 prefix, s->status);
5203 }
5204
5205 static char *exec_command_line(char **argv) {
5206 size_t k;
5207 char *n, *p, **a;
5208 bool first = true;
5209
5210 assert(argv);
5211
5212 k = 1;
5213 STRV_FOREACH(a, argv)
5214 k += strlen(*a)+3;
5215
5216 n = new(char, k);
5217 if (!n)
5218 return NULL;
5219
5220 p = n;
5221 STRV_FOREACH(a, argv) {
5222
5223 if (!first)
5224 *(p++) = ' ';
5225 else
5226 first = false;
5227
5228 if (strpbrk(*a, WHITESPACE)) {
5229 *(p++) = '\'';
5230 p = stpcpy(p, *a);
5231 *(p++) = '\'';
5232 } else
5233 p = stpcpy(p, *a);
5234
5235 }
5236
5237 *p = 0;
5238
5239 /* FIXME: this doesn't really handle arguments that have
5240 * spaces and ticks in them */
5241
5242 return n;
5243 }
5244
5245 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
5246 _cleanup_free_ char *cmd = NULL;
5247 const char *prefix2;
5248
5249 assert(c);
5250 assert(f);
5251
5252 prefix = strempty(prefix);
5253 prefix2 = strjoina(prefix, "\t");
5254
5255 cmd = exec_command_line(c->argv);
5256 fprintf(f,
5257 "%sCommand Line: %s\n",
5258 prefix, cmd ? cmd : strerror_safe(ENOMEM));
5259
5260 exec_status_dump(&c->exec_status, f, prefix2);
5261 }
5262
5263 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
5264 assert(f);
5265
5266 prefix = strempty(prefix);
5267
5268 LIST_FOREACH(command, c, c)
5269 exec_command_dump(c, f, prefix);
5270 }
5271
5272 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
5273 ExecCommand *end;
5274
5275 assert(l);
5276 assert(e);
5277
5278 if (*l) {
5279 /* It's kind of important, that we keep the order here */
5280 LIST_FIND_TAIL(command, *l, end);
5281 LIST_INSERT_AFTER(command, *l, end, e);
5282 } else
5283 *l = e;
5284 }
5285
5286 int exec_command_set(ExecCommand *c, const char *path, ...) {
5287 va_list ap;
5288 char **l, *p;
5289
5290 assert(c);
5291 assert(path);
5292
5293 va_start(ap, path);
5294 l = strv_new_ap(path, ap);
5295 va_end(ap);
5296
5297 if (!l)
5298 return -ENOMEM;
5299
5300 p = strdup(path);
5301 if (!p) {
5302 strv_free(l);
5303 return -ENOMEM;
5304 }
5305
5306 free_and_replace(c->path, p);
5307
5308 return strv_free_and_replace(c->argv, l);
5309 }
5310
5311 int exec_command_append(ExecCommand *c, const char *path, ...) {
5312 _cleanup_strv_free_ char **l = NULL;
5313 va_list ap;
5314 int r;
5315
5316 assert(c);
5317 assert(path);
5318
5319 va_start(ap, path);
5320 l = strv_new_ap(path, ap);
5321 va_end(ap);
5322
5323 if (!l)
5324 return -ENOMEM;
5325
5326 r = strv_extend_strv(&c->argv, l, false);
5327 if (r < 0)
5328 return r;
5329
5330 return 0;
5331 }
5332
5333 static void *remove_tmpdir_thread(void *p) {
5334 _cleanup_free_ char *path = p;
5335
5336 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
5337 return NULL;
5338 }
5339
5340 static ExecRuntime* exec_runtime_free(ExecRuntime *rt, bool destroy) {
5341 int r;
5342
5343 if (!rt)
5344 return NULL;
5345
5346 if (rt->manager)
5347 (void) hashmap_remove(rt->manager->exec_runtime_by_id, rt->id);
5348
5349 /* When destroy is true, then rm_rf tmp_dir and var_tmp_dir. */
5350 if (destroy && rt->tmp_dir) {
5351 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
5352
5353 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
5354 if (r < 0) {
5355 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
5356 free(rt->tmp_dir);
5357 }
5358
5359 rt->tmp_dir = NULL;
5360 }
5361
5362 if (destroy && rt->var_tmp_dir) {
5363 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
5364
5365 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
5366 if (r < 0) {
5367 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
5368 free(rt->var_tmp_dir);
5369 }
5370
5371 rt->var_tmp_dir = NULL;
5372 }
5373
5374 rt->id = mfree(rt->id);
5375 rt->tmp_dir = mfree(rt->tmp_dir);
5376 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
5377 safe_close_pair(rt->netns_storage_socket);
5378 return mfree(rt);
5379 }
5380
5381 static void exec_runtime_freep(ExecRuntime **rt) {
5382 (void) exec_runtime_free(*rt, false);
5383 }
5384
5385 static int exec_runtime_allocate(ExecRuntime **ret) {
5386 ExecRuntime *n;
5387
5388 assert(ret);
5389
5390 n = new(ExecRuntime, 1);
5391 if (!n)
5392 return -ENOMEM;
5393
5394 *n = (ExecRuntime) {
5395 .netns_storage_socket = { -1, -1 },
5396 };
5397
5398 *ret = n;
5399 return 0;
5400 }
5401
5402 static int exec_runtime_add(
5403 Manager *m,
5404 const char *id,
5405 const char *tmp_dir,
5406 const char *var_tmp_dir,
5407 const int netns_storage_socket[2],
5408 ExecRuntime **ret) {
5409
5410 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
5411 int r;
5412
5413 assert(m);
5414 assert(id);
5415
5416 r = hashmap_ensure_allocated(&m->exec_runtime_by_id, &string_hash_ops);
5417 if (r < 0)
5418 return r;
5419
5420 r = exec_runtime_allocate(&rt);
5421 if (r < 0)
5422 return r;
5423
5424 rt->id = strdup(id);
5425 if (!rt->id)
5426 return -ENOMEM;
5427
5428 if (tmp_dir) {
5429 rt->tmp_dir = strdup(tmp_dir);
5430 if (!rt->tmp_dir)
5431 return -ENOMEM;
5432
5433 /* When tmp_dir is set, then we require var_tmp_dir is also set. */
5434 assert(var_tmp_dir);
5435 rt->var_tmp_dir = strdup(var_tmp_dir);
5436 if (!rt->var_tmp_dir)
5437 return -ENOMEM;
5438 }
5439
5440 if (netns_storage_socket) {
5441 rt->netns_storage_socket[0] = netns_storage_socket[0];
5442 rt->netns_storage_socket[1] = netns_storage_socket[1];
5443 }
5444
5445 r = hashmap_put(m->exec_runtime_by_id, rt->id, rt);
5446 if (r < 0)
5447 return r;
5448
5449 rt->manager = m;
5450
5451 if (ret)
5452 *ret = rt;
5453
5454 /* do not remove created ExecRuntime object when the operation succeeds. */
5455 rt = NULL;
5456 return 0;
5457 }
5458
5459 static int exec_runtime_make(Manager *m, const ExecContext *c, const char *id, ExecRuntime **ret) {
5460 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
5461 _cleanup_close_pair_ int netns_storage_socket[2] = { -1, -1 };
5462 int r;
5463
5464 assert(m);
5465 assert(c);
5466 assert(id);
5467
5468 /* It is not necessary to create ExecRuntime object. */
5469 if (!c->private_network && !c->private_tmp && !c->network_namespace_path)
5470 return 0;
5471
5472 if (c->private_tmp &&
5473 !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") &&
5474 (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") ||
5475 prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) {
5476 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
5477 if (r < 0)
5478 return r;
5479 }
5480
5481 if (c->private_network || c->network_namespace_path) {
5482 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
5483 return -errno;
5484 }
5485
5486 r = exec_runtime_add(m, id, tmp_dir, var_tmp_dir, netns_storage_socket, ret);
5487 if (r < 0)
5488 return r;
5489
5490 /* Avoid cleanup */
5491 netns_storage_socket[0] = netns_storage_socket[1] = -1;
5492 return 1;
5493 }
5494
5495 int exec_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecRuntime **ret) {
5496 ExecRuntime *rt;
5497 int r;
5498
5499 assert(m);
5500 assert(id);
5501 assert(ret);
5502
5503 rt = hashmap_get(m->exec_runtime_by_id, id);
5504 if (rt)
5505 /* We already have a ExecRuntime object, let's increase the ref count and reuse it */
5506 goto ref;
5507
5508 if (!create)
5509 return 0;
5510
5511 /* If not found, then create a new object. */
5512 r = exec_runtime_make(m, c, id, &rt);
5513 if (r <= 0)
5514 /* When r == 0, it is not necessary to create ExecRuntime object. */
5515 return r;
5516
5517 ref:
5518 /* increment reference counter. */
5519 rt->n_ref++;
5520 *ret = rt;
5521 return 1;
5522 }
5523
5524 ExecRuntime *exec_runtime_unref(ExecRuntime *rt, bool destroy) {
5525 if (!rt)
5526 return NULL;
5527
5528 assert(rt->n_ref > 0);
5529
5530 rt->n_ref--;
5531 if (rt->n_ref > 0)
5532 return NULL;
5533
5534 return exec_runtime_free(rt, destroy);
5535 }
5536
5537 int exec_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
5538 ExecRuntime *rt;
5539 Iterator i;
5540
5541 assert(m);
5542 assert(f);
5543 assert(fds);
5544
5545 HASHMAP_FOREACH(rt, m->exec_runtime_by_id, i) {
5546 fprintf(f, "exec-runtime=%s", rt->id);
5547
5548 if (rt->tmp_dir)
5549 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
5550
5551 if (rt->var_tmp_dir)
5552 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
5553
5554 if (rt->netns_storage_socket[0] >= 0) {
5555 int copy;
5556
5557 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
5558 if (copy < 0)
5559 return copy;
5560
5561 fprintf(f, " netns-socket-0=%i", copy);
5562 }
5563
5564 if (rt->netns_storage_socket[1] >= 0) {
5565 int copy;
5566
5567 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
5568 if (copy < 0)
5569 return copy;
5570
5571 fprintf(f, " netns-socket-1=%i", copy);
5572 }
5573
5574 fputc('\n', f);
5575 }
5576
5577 return 0;
5578 }
5579
5580 int exec_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
5581 _cleanup_(exec_runtime_freep) ExecRuntime *rt_create = NULL;
5582 ExecRuntime *rt;
5583 int r;
5584
5585 /* This is for the migration from old (v237 or earlier) deserialization text.
5586 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
5587 * Even if the ExecRuntime object originally created by the other unit, we cannot judge
5588 * so or not from the serialized text, then we always creates a new object owned by this. */
5589
5590 assert(u);
5591 assert(key);
5592 assert(value);
5593
5594 /* Manager manages ExecRuntime objects by the unit id.
5595 * So, we omit the serialized text when the unit does not have id (yet?)... */
5596 if (isempty(u->id)) {
5597 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
5598 return 0;
5599 }
5600
5601 r = hashmap_ensure_allocated(&u->manager->exec_runtime_by_id, &string_hash_ops);
5602 if (r < 0) {
5603 log_unit_debug_errno(u, r, "Failed to allocate storage for runtime parameter: %m");
5604 return 0;
5605 }
5606
5607 rt = hashmap_get(u->manager->exec_runtime_by_id, u->id);
5608 if (!rt) {
5609 r = exec_runtime_allocate(&rt_create);
5610 if (r < 0)
5611 return log_oom();
5612
5613 rt_create->id = strdup(u->id);
5614 if (!rt_create->id)
5615 return log_oom();
5616
5617 rt = rt_create;
5618 }
5619
5620 if (streq(key, "tmp-dir")) {
5621 char *copy;
5622
5623 copy = strdup(value);
5624 if (!copy)
5625 return log_oom();
5626
5627 free_and_replace(rt->tmp_dir, copy);
5628
5629 } else if (streq(key, "var-tmp-dir")) {
5630 char *copy;
5631
5632 copy = strdup(value);
5633 if (!copy)
5634 return log_oom();
5635
5636 free_and_replace(rt->var_tmp_dir, copy);
5637
5638 } else if (streq(key, "netns-socket-0")) {
5639 int fd;
5640
5641 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
5642 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
5643 return 0;
5644 }
5645
5646 safe_close(rt->netns_storage_socket[0]);
5647 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
5648
5649 } else if (streq(key, "netns-socket-1")) {
5650 int fd;
5651
5652 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
5653 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
5654 return 0;
5655 }
5656
5657 safe_close(rt->netns_storage_socket[1]);
5658 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
5659 } else
5660 return 0;
5661
5662 /* If the object is newly created, then put it to the hashmap which manages ExecRuntime objects. */
5663 if (rt_create) {
5664 r = hashmap_put(u->manager->exec_runtime_by_id, rt_create->id, rt_create);
5665 if (r < 0) {
5666 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
5667 return 0;
5668 }
5669
5670 rt_create->manager = u->manager;
5671
5672 /* Avoid cleanup */
5673 rt_create = NULL;
5674 }
5675
5676 return 1;
5677 }
5678
5679 void exec_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
5680 char *id = NULL, *tmp_dir = NULL, *var_tmp_dir = NULL;
5681 int r, fd0 = -1, fd1 = -1;
5682 const char *p, *v = value;
5683 size_t n;
5684
5685 assert(m);
5686 assert(value);
5687 assert(fds);
5688
5689 n = strcspn(v, " ");
5690 id = strndupa(v, n);
5691 if (v[n] != ' ')
5692 goto finalize;
5693 p = v + n + 1;
5694
5695 v = startswith(p, "tmp-dir=");
5696 if (v) {
5697 n = strcspn(v, " ");
5698 tmp_dir = strndupa(v, n);
5699 if (v[n] != ' ')
5700 goto finalize;
5701 p = v + n + 1;
5702 }
5703
5704 v = startswith(p, "var-tmp-dir=");
5705 if (v) {
5706 n = strcspn(v, " ");
5707 var_tmp_dir = strndupa(v, n);
5708 if (v[n] != ' ')
5709 goto finalize;
5710 p = v + n + 1;
5711 }
5712
5713 v = startswith(p, "netns-socket-0=");
5714 if (v) {
5715 char *buf;
5716
5717 n = strcspn(v, " ");
5718 buf = strndupa(v, n);
5719 if (safe_atoi(buf, &fd0) < 0 || !fdset_contains(fds, fd0)) {
5720 log_debug("Unable to process exec-runtime netns fd specification.");
5721 return;
5722 }
5723 fd0 = fdset_remove(fds, fd0);
5724 if (v[n] != ' ')
5725 goto finalize;
5726 p = v + n + 1;
5727 }
5728
5729 v = startswith(p, "netns-socket-1=");
5730 if (v) {
5731 char *buf;
5732
5733 n = strcspn(v, " ");
5734 buf = strndupa(v, n);
5735 if (safe_atoi(buf, &fd1) < 0 || !fdset_contains(fds, fd1)) {
5736 log_debug("Unable to process exec-runtime netns fd specification.");
5737 return;
5738 }
5739 fd1 = fdset_remove(fds, fd1);
5740 }
5741
5742 finalize:
5743
5744 r = exec_runtime_add(m, id, tmp_dir, var_tmp_dir, (int[]) { fd0, fd1 }, NULL);
5745 if (r < 0)
5746 log_debug_errno(r, "Failed to add exec-runtime: %m");
5747 }
5748
5749 void exec_runtime_vacuum(Manager *m) {
5750 ExecRuntime *rt;
5751 Iterator i;
5752
5753 assert(m);
5754
5755 /* Free unreferenced ExecRuntime objects. This is used after manager deserialization process. */
5756
5757 HASHMAP_FOREACH(rt, m->exec_runtime_by_id, i) {
5758 if (rt->n_ref > 0)
5759 continue;
5760
5761 (void) exec_runtime_free(rt, false);
5762 }
5763 }
5764
5765 void exec_params_clear(ExecParameters *p) {
5766 if (!p)
5767 return;
5768
5769 strv_free(p->environment);
5770 }
5771
5772 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
5773 [EXEC_INPUT_NULL] = "null",
5774 [EXEC_INPUT_TTY] = "tty",
5775 [EXEC_INPUT_TTY_FORCE] = "tty-force",
5776 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
5777 [EXEC_INPUT_SOCKET] = "socket",
5778 [EXEC_INPUT_NAMED_FD] = "fd",
5779 [EXEC_INPUT_DATA] = "data",
5780 [EXEC_INPUT_FILE] = "file",
5781 };
5782
5783 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
5784
5785 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
5786 [EXEC_OUTPUT_INHERIT] = "inherit",
5787 [EXEC_OUTPUT_NULL] = "null",
5788 [EXEC_OUTPUT_TTY] = "tty",
5789 [EXEC_OUTPUT_KMSG] = "kmsg",
5790 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
5791 [EXEC_OUTPUT_JOURNAL] = "journal",
5792 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
5793 [EXEC_OUTPUT_SOCKET] = "socket",
5794 [EXEC_OUTPUT_NAMED_FD] = "fd",
5795 [EXEC_OUTPUT_FILE] = "file",
5796 [EXEC_OUTPUT_FILE_APPEND] = "append",
5797 };
5798
5799 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
5800
5801 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
5802 [EXEC_UTMP_INIT] = "init",
5803 [EXEC_UTMP_LOGIN] = "login",
5804 [EXEC_UTMP_USER] = "user",
5805 };
5806
5807 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
5808
5809 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
5810 [EXEC_PRESERVE_NO] = "no",
5811 [EXEC_PRESERVE_YES] = "yes",
5812 [EXEC_PRESERVE_RESTART] = "restart",
5813 };
5814
5815 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
5816
5817 /* This table maps ExecDirectoryType to the setting it is configured with in the unit */
5818 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5819 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
5820 [EXEC_DIRECTORY_STATE] = "StateDirectory",
5821 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
5822 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
5823 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
5824 };
5825
5826 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
5827
5828 /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
5829 * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
5830 * directories, specifically .timer units with their timestamp touch file. */
5831 static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5832 [EXEC_DIRECTORY_RUNTIME] = "runtime",
5833 [EXEC_DIRECTORY_STATE] = "state",
5834 [EXEC_DIRECTORY_CACHE] = "cache",
5835 [EXEC_DIRECTORY_LOGS] = "logs",
5836 [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
5837 };
5838
5839 DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
5840
5841 /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
5842 * the service payload in. */
5843 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5844 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
5845 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
5846 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
5847 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
5848 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
5849 };
5850
5851 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
5852
5853 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
5854 [EXEC_KEYRING_INHERIT] = "inherit",
5855 [EXEC_KEYRING_PRIVATE] = "private",
5856 [EXEC_KEYRING_SHARED] = "shared",
5857 };
5858
5859 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);