]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/execute.c
Merge pull request #17703 from poettering/event-ratelimit
[thirdparty/systemd.git] / src / core / execute.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <poll.h>
6 #include <sys/eventfd.h>
7 #include <sys/ioctl.h>
8 #include <sys/mman.h>
9 #include <sys/mount.h>
10 #include <sys/personality.h>
11 #include <sys/prctl.h>
12 #include <sys/shm.h>
13 #include <sys/types.h>
14 #include <sys/un.h>
15 #include <unistd.h>
16 #include <utmpx.h>
17
18 #if HAVE_PAM
19 #include <security/pam_appl.h>
20 #endif
21
22 #if HAVE_SELINUX
23 #include <selinux/selinux.h>
24 #endif
25
26 #if HAVE_SECCOMP
27 #include <seccomp.h>
28 #endif
29
30 #if HAVE_APPARMOR
31 #include <sys/apparmor.h>
32 #endif
33
34 #include "sd-messages.h"
35
36 #include "acl-util.h"
37 #include "af-list.h"
38 #include "alloc-util.h"
39 #if HAVE_APPARMOR
40 #include "apparmor-util.h"
41 #endif
42 #include "async.h"
43 #include "barrier.h"
44 #include "cap-list.h"
45 #include "capability-util.h"
46 #include "cgroup-setup.h"
47 #include "chown-recursive.h"
48 #include "cpu-set-util.h"
49 #include "def.h"
50 #include "env-file.h"
51 #include "env-util.h"
52 #include "errno-list.h"
53 #include "execute.h"
54 #include "exit-status.h"
55 #include "fd-util.h"
56 #include "fileio.h"
57 #include "format-util.h"
58 #include "fs-util.h"
59 #include "glob-util.h"
60 #include "hexdecoct.h"
61 #include "io-util.h"
62 #include "ioprio.h"
63 #include "label.h"
64 #include "log.h"
65 #include "macro.h"
66 #include "manager.h"
67 #include "memory-util.h"
68 #include "missing_fs.h"
69 #include "mkdir.h"
70 #include "mount-util.h"
71 #include "mountpoint-util.h"
72 #include "namespace.h"
73 #include "parse-util.h"
74 #include "path-util.h"
75 #include "process-util.h"
76 #include "random-util.h"
77 #include "rlimit-util.h"
78 #include "rm-rf.h"
79 #if HAVE_SECCOMP
80 #include "seccomp-util.h"
81 #endif
82 #include "securebits-util.h"
83 #include "selinux-util.h"
84 #include "signal-util.h"
85 #include "smack-util.h"
86 #include "socket-util.h"
87 #include "special.h"
88 #include "stat-util.h"
89 #include "string-table.h"
90 #include "string-util.h"
91 #include "strv.h"
92 #include "syslog-util.h"
93 #include "terminal-util.h"
94 #include "tmpfile-util.h"
95 #include "umask-util.h"
96 #include "unit.h"
97 #include "user-util.h"
98 #include "utmp-wtmp.h"
99
100 #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
101 #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
102
103 #define SNDBUF_SIZE (8*1024*1024)
104
105 static int shift_fds(int fds[], size_t n_fds) {
106 if (n_fds <= 0)
107 return 0;
108
109 /* Modifies the fds array! (sorts it) */
110
111 assert(fds);
112
113 for (int start = 0;;) {
114 int restart_from = -1;
115
116 for (int i = start; i < (int) n_fds; i++) {
117 int nfd;
118
119 /* Already at right index? */
120 if (fds[i] == i+3)
121 continue;
122
123 nfd = fcntl(fds[i], F_DUPFD, i + 3);
124 if (nfd < 0)
125 return -errno;
126
127 safe_close(fds[i]);
128 fds[i] = nfd;
129
130 /* Hmm, the fd we wanted isn't free? Then
131 * let's remember that and try again from here */
132 if (nfd != i+3 && restart_from < 0)
133 restart_from = i;
134 }
135
136 if (restart_from < 0)
137 break;
138
139 start = restart_from;
140 }
141
142 return 0;
143 }
144
145 static int flags_fds(const int fds[], size_t n_socket_fds, size_t n_storage_fds, bool nonblock) {
146 size_t n_fds;
147 int r;
148
149 n_fds = n_socket_fds + n_storage_fds;
150 if (n_fds <= 0)
151 return 0;
152
153 assert(fds);
154
155 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
156 * O_NONBLOCK only applies to socket activation though. */
157
158 for (size_t i = 0; i < n_fds; i++) {
159
160 if (i < n_socket_fds) {
161 r = fd_nonblock(fds[i], nonblock);
162 if (r < 0)
163 return r;
164 }
165
166 /* We unconditionally drop FD_CLOEXEC from the fds,
167 * since after all we want to pass these fds to our
168 * children */
169
170 r = fd_cloexec(fds[i], false);
171 if (r < 0)
172 return r;
173 }
174
175 return 0;
176 }
177
178 static const char *exec_context_tty_path(const ExecContext *context) {
179 assert(context);
180
181 if (context->stdio_as_fds)
182 return NULL;
183
184 if (context->tty_path)
185 return context->tty_path;
186
187 return "/dev/console";
188 }
189
190 static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
191 const char *path;
192
193 assert(context);
194
195 path = exec_context_tty_path(context);
196
197 if (context->tty_vhangup) {
198 if (p && p->stdin_fd >= 0)
199 (void) terminal_vhangup_fd(p->stdin_fd);
200 else if (path)
201 (void) terminal_vhangup(path);
202 }
203
204 if (context->tty_reset) {
205 if (p && p->stdin_fd >= 0)
206 (void) reset_terminal_fd(p->stdin_fd, true);
207 else if (path)
208 (void) reset_terminal(path);
209 }
210
211 if (context->tty_vt_disallocate && path)
212 (void) vt_disallocate(path);
213 }
214
215 static bool is_terminal_input(ExecInput i) {
216 return IN_SET(i,
217 EXEC_INPUT_TTY,
218 EXEC_INPUT_TTY_FORCE,
219 EXEC_INPUT_TTY_FAIL);
220 }
221
222 static bool is_terminal_output(ExecOutput o) {
223 return IN_SET(o,
224 EXEC_OUTPUT_TTY,
225 EXEC_OUTPUT_KMSG_AND_CONSOLE,
226 EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
227 }
228
229 static bool is_kmsg_output(ExecOutput o) {
230 return IN_SET(o,
231 EXEC_OUTPUT_KMSG,
232 EXEC_OUTPUT_KMSG_AND_CONSOLE);
233 }
234
235 static bool exec_context_needs_term(const ExecContext *c) {
236 assert(c);
237
238 /* Return true if the execution context suggests we should set $TERM to something useful. */
239
240 if (is_terminal_input(c->std_input))
241 return true;
242
243 if (is_terminal_output(c->std_output))
244 return true;
245
246 if (is_terminal_output(c->std_error))
247 return true;
248
249 return !!c->tty_path;
250 }
251
252 static int open_null_as(int flags, int nfd) {
253 int fd;
254
255 assert(nfd >= 0);
256
257 fd = open("/dev/null", flags|O_NOCTTY);
258 if (fd < 0)
259 return -errno;
260
261 return move_fd(fd, nfd, false);
262 }
263
264 static int connect_journal_socket(
265 int fd,
266 const char *log_namespace,
267 uid_t uid,
268 gid_t gid) {
269
270 union sockaddr_union sa;
271 socklen_t sa_len;
272 uid_t olduid = UID_INVALID;
273 gid_t oldgid = GID_INVALID;
274 const char *j;
275 int r;
276
277 j = log_namespace ?
278 strjoina("/run/systemd/journal.", log_namespace, "/stdout") :
279 "/run/systemd/journal/stdout";
280 r = sockaddr_un_set_path(&sa.un, j);
281 if (r < 0)
282 return r;
283 sa_len = r;
284
285 if (gid_is_valid(gid)) {
286 oldgid = getgid();
287
288 if (setegid(gid) < 0)
289 return -errno;
290 }
291
292 if (uid_is_valid(uid)) {
293 olduid = getuid();
294
295 if (seteuid(uid) < 0) {
296 r = -errno;
297 goto restore_gid;
298 }
299 }
300
301 r = connect(fd, &sa.sa, sa_len) < 0 ? -errno : 0;
302
303 /* If we fail to restore the uid or gid, things will likely
304 fail later on. This should only happen if an LSM interferes. */
305
306 if (uid_is_valid(uid))
307 (void) seteuid(olduid);
308
309 restore_gid:
310 if (gid_is_valid(gid))
311 (void) setegid(oldgid);
312
313 return r;
314 }
315
316 static int connect_logger_as(
317 const Unit *unit,
318 const ExecContext *context,
319 const ExecParameters *params,
320 ExecOutput output,
321 const char *ident,
322 int nfd,
323 uid_t uid,
324 gid_t gid) {
325
326 _cleanup_close_ int fd = -1;
327 int r;
328
329 assert(context);
330 assert(params);
331 assert(output < _EXEC_OUTPUT_MAX);
332 assert(ident);
333 assert(nfd >= 0);
334
335 fd = socket(AF_UNIX, SOCK_STREAM, 0);
336 if (fd < 0)
337 return -errno;
338
339 r = connect_journal_socket(fd, context->log_namespace, uid, gid);
340 if (r < 0)
341 return r;
342
343 if (shutdown(fd, SHUT_RD) < 0)
344 return -errno;
345
346 (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
347
348 if (dprintf(fd,
349 "%s\n"
350 "%s\n"
351 "%i\n"
352 "%i\n"
353 "%i\n"
354 "%i\n"
355 "%i\n",
356 context->syslog_identifier ?: ident,
357 params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
358 context->syslog_priority,
359 !!context->syslog_level_prefix,
360 false,
361 is_kmsg_output(output),
362 is_terminal_output(output)) < 0)
363 return -errno;
364
365 return move_fd(TAKE_FD(fd), nfd, false);
366 }
367
368 static int open_terminal_as(const char *path, int flags, int nfd) {
369 int fd;
370
371 assert(path);
372 assert(nfd >= 0);
373
374 fd = open_terminal(path, flags | O_NOCTTY);
375 if (fd < 0)
376 return fd;
377
378 return move_fd(fd, nfd, false);
379 }
380
381 static int acquire_path(const char *path, int flags, mode_t mode) {
382 union sockaddr_union sa;
383 socklen_t sa_len;
384 _cleanup_close_ int fd = -1;
385 int r;
386
387 assert(path);
388
389 if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
390 flags |= O_CREAT;
391
392 fd = open(path, flags|O_NOCTTY, mode);
393 if (fd >= 0)
394 return TAKE_FD(fd);
395
396 if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
397 return -errno;
398
399 /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
400
401 r = sockaddr_un_set_path(&sa.un, path);
402 if (r < 0)
403 return r == -EINVAL ? -ENXIO : r;
404 sa_len = r;
405
406 fd = socket(AF_UNIX, SOCK_STREAM, 0);
407 if (fd < 0)
408 return -errno;
409
410 if (connect(fd, &sa.sa, sa_len) < 0)
411 return errno == EINVAL ? -ENXIO : -errno; /* Propagate initial error if we get EINVAL, i.e. we have
412 * indication that this wasn't an AF_UNIX socket after all */
413
414 if ((flags & O_ACCMODE) == O_RDONLY)
415 r = shutdown(fd, SHUT_WR);
416 else if ((flags & O_ACCMODE) == O_WRONLY)
417 r = shutdown(fd, SHUT_RD);
418 else
419 r = 0;
420 if (r < 0)
421 return -errno;
422
423 return TAKE_FD(fd);
424 }
425
426 static int fixup_input(
427 const ExecContext *context,
428 int socket_fd,
429 bool apply_tty_stdin) {
430
431 ExecInput std_input;
432
433 assert(context);
434
435 std_input = context->std_input;
436
437 if (is_terminal_input(std_input) && !apply_tty_stdin)
438 return EXEC_INPUT_NULL;
439
440 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
441 return EXEC_INPUT_NULL;
442
443 if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
444 return EXEC_INPUT_NULL;
445
446 return std_input;
447 }
448
449 static int fixup_output(ExecOutput std_output, int socket_fd) {
450
451 if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
452 return EXEC_OUTPUT_INHERIT;
453
454 return std_output;
455 }
456
457 static int setup_input(
458 const ExecContext *context,
459 const ExecParameters *params,
460 int socket_fd,
461 const int named_iofds[static 3]) {
462
463 ExecInput i;
464
465 assert(context);
466 assert(params);
467 assert(named_iofds);
468
469 if (params->stdin_fd >= 0) {
470 if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
471 return -errno;
472
473 /* Try to make this the controlling tty, if it is a tty, and reset it */
474 if (isatty(STDIN_FILENO)) {
475 (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
476 (void) reset_terminal_fd(STDIN_FILENO, true);
477 }
478
479 return STDIN_FILENO;
480 }
481
482 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
483
484 switch (i) {
485
486 case EXEC_INPUT_NULL:
487 return open_null_as(O_RDONLY, STDIN_FILENO);
488
489 case EXEC_INPUT_TTY:
490 case EXEC_INPUT_TTY_FORCE:
491 case EXEC_INPUT_TTY_FAIL: {
492 int fd;
493
494 fd = acquire_terminal(exec_context_tty_path(context),
495 i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
496 i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
497 ACQUIRE_TERMINAL_WAIT,
498 USEC_INFINITY);
499 if (fd < 0)
500 return fd;
501
502 return move_fd(fd, STDIN_FILENO, false);
503 }
504
505 case EXEC_INPUT_SOCKET:
506 assert(socket_fd >= 0);
507
508 return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
509
510 case EXEC_INPUT_NAMED_FD:
511 assert(named_iofds[STDIN_FILENO] >= 0);
512
513 (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
514 return dup2(named_iofds[STDIN_FILENO], STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
515
516 case EXEC_INPUT_DATA: {
517 int fd;
518
519 fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
520 if (fd < 0)
521 return fd;
522
523 return move_fd(fd, STDIN_FILENO, false);
524 }
525
526 case EXEC_INPUT_FILE: {
527 bool rw;
528 int fd;
529
530 assert(context->stdio_file[STDIN_FILENO]);
531
532 rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
533 (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
534
535 fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
536 if (fd < 0)
537 return fd;
538
539 return move_fd(fd, STDIN_FILENO, false);
540 }
541
542 default:
543 assert_not_reached("Unknown input type");
544 }
545 }
546
547 static bool can_inherit_stderr_from_stdout(
548 const ExecContext *context,
549 ExecOutput o,
550 ExecOutput e) {
551
552 assert(context);
553
554 /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
555 * stderr fd */
556
557 if (e == EXEC_OUTPUT_INHERIT)
558 return true;
559 if (e != o)
560 return false;
561
562 if (e == EXEC_OUTPUT_NAMED_FD)
563 return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
564
565 if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND))
566 return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
567
568 return true;
569 }
570
571 static int setup_output(
572 const Unit *unit,
573 const ExecContext *context,
574 const ExecParameters *params,
575 int fileno,
576 int socket_fd,
577 const int named_iofds[static 3],
578 const char *ident,
579 uid_t uid,
580 gid_t gid,
581 dev_t *journal_stream_dev,
582 ino_t *journal_stream_ino) {
583
584 ExecOutput o;
585 ExecInput i;
586 int r;
587
588 assert(unit);
589 assert(context);
590 assert(params);
591 assert(ident);
592 assert(journal_stream_dev);
593 assert(journal_stream_ino);
594
595 if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
596
597 if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
598 return -errno;
599
600 return STDOUT_FILENO;
601 }
602
603 if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
604 if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
605 return -errno;
606
607 return STDERR_FILENO;
608 }
609
610 i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
611 o = fixup_output(context->std_output, socket_fd);
612
613 if (fileno == STDERR_FILENO) {
614 ExecOutput e;
615 e = fixup_output(context->std_error, socket_fd);
616
617 /* This expects the input and output are already set up */
618
619 /* Don't change the stderr file descriptor if we inherit all
620 * the way and are not on a tty */
621 if (e == EXEC_OUTPUT_INHERIT &&
622 o == EXEC_OUTPUT_INHERIT &&
623 i == EXEC_INPUT_NULL &&
624 !is_terminal_input(context->std_input) &&
625 getppid () != 1)
626 return fileno;
627
628 /* Duplicate from stdout if possible */
629 if (can_inherit_stderr_from_stdout(context, o, e))
630 return dup2(STDOUT_FILENO, fileno) < 0 ? -errno : fileno;
631
632 o = e;
633
634 } else if (o == EXEC_OUTPUT_INHERIT) {
635 /* If input got downgraded, inherit the original value */
636 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
637 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
638
639 /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
640 if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
641 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
642
643 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
644 if (getppid() != 1)
645 return fileno;
646
647 /* We need to open /dev/null here anew, to get the right access mode. */
648 return open_null_as(O_WRONLY, fileno);
649 }
650
651 switch (o) {
652
653 case EXEC_OUTPUT_NULL:
654 return open_null_as(O_WRONLY, fileno);
655
656 case EXEC_OUTPUT_TTY:
657 if (is_terminal_input(i))
658 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
659
660 /* We don't reset the terminal if this is just about output */
661 return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
662
663 case EXEC_OUTPUT_KMSG:
664 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
665 case EXEC_OUTPUT_JOURNAL:
666 case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
667 r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
668 if (r < 0) {
669 log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m", fileno == STDOUT_FILENO ? "stdout" : "stderr");
670 r = open_null_as(O_WRONLY, fileno);
671 } else {
672 struct stat st;
673
674 /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
675 * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
676 * services to detect whether they are connected to the journal or not.
677 *
678 * If both stdout and stderr are connected to a stream then let's make sure to store the data
679 * about STDERR as that's usually the best way to do logging. */
680
681 if (fstat(fileno, &st) >= 0 &&
682 (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
683 *journal_stream_dev = st.st_dev;
684 *journal_stream_ino = st.st_ino;
685 }
686 }
687 return r;
688
689 case EXEC_OUTPUT_SOCKET:
690 assert(socket_fd >= 0);
691
692 return dup2(socket_fd, fileno) < 0 ? -errno : fileno;
693
694 case EXEC_OUTPUT_NAMED_FD:
695 assert(named_iofds[fileno] >= 0);
696
697 (void) fd_nonblock(named_iofds[fileno], false);
698 return dup2(named_iofds[fileno], fileno) < 0 ? -errno : fileno;
699
700 case EXEC_OUTPUT_FILE:
701 case EXEC_OUTPUT_FILE_APPEND: {
702 bool rw;
703 int fd, flags;
704
705 assert(context->stdio_file[fileno]);
706
707 rw = context->std_input == EXEC_INPUT_FILE &&
708 streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
709
710 if (rw)
711 return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
712
713 flags = O_WRONLY;
714 if (o == EXEC_OUTPUT_FILE_APPEND)
715 flags |= O_APPEND;
716
717 fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
718 if (fd < 0)
719 return fd;
720
721 return move_fd(fd, fileno, 0);
722 }
723
724 default:
725 assert_not_reached("Unknown error type");
726 }
727 }
728
729 static int chown_terminal(int fd, uid_t uid) {
730 int r;
731
732 assert(fd >= 0);
733
734 /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
735 if (isatty(fd) < 1) {
736 if (IN_SET(errno, EINVAL, ENOTTY))
737 return 0; /* not a tty */
738
739 return -errno;
740 }
741
742 /* This might fail. What matters are the results. */
743 r = fchmod_and_chown(fd, TTY_MODE, uid, -1);
744 if (r < 0)
745 return r;
746
747 return 1;
748 }
749
750 static int setup_confirm_stdio(const char *vc, int *_saved_stdin, int *_saved_stdout) {
751 _cleanup_close_ int fd = -1, saved_stdin = -1, saved_stdout = -1;
752 int r;
753
754 assert(_saved_stdin);
755 assert(_saved_stdout);
756
757 saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
758 if (saved_stdin < 0)
759 return -errno;
760
761 saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
762 if (saved_stdout < 0)
763 return -errno;
764
765 fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
766 if (fd < 0)
767 return fd;
768
769 r = chown_terminal(fd, getuid());
770 if (r < 0)
771 return r;
772
773 r = reset_terminal_fd(fd, true);
774 if (r < 0)
775 return r;
776
777 r = rearrange_stdio(fd, fd, STDERR_FILENO);
778 fd = -1;
779 if (r < 0)
780 return r;
781
782 *_saved_stdin = saved_stdin;
783 *_saved_stdout = saved_stdout;
784
785 saved_stdin = saved_stdout = -1;
786
787 return 0;
788 }
789
790 static void write_confirm_error_fd(int err, int fd, const Unit *u) {
791 assert(err < 0);
792
793 if (err == -ETIMEDOUT)
794 dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
795 else {
796 errno = -err;
797 dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
798 }
799 }
800
801 static void write_confirm_error(int err, const char *vc, const Unit *u) {
802 _cleanup_close_ int fd = -1;
803
804 assert(vc);
805
806 fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
807 if (fd < 0)
808 return;
809
810 write_confirm_error_fd(err, fd, u);
811 }
812
813 static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
814 int r = 0;
815
816 assert(saved_stdin);
817 assert(saved_stdout);
818
819 release_terminal();
820
821 if (*saved_stdin >= 0)
822 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
823 r = -errno;
824
825 if (*saved_stdout >= 0)
826 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
827 r = -errno;
828
829 *saved_stdin = safe_close(*saved_stdin);
830 *saved_stdout = safe_close(*saved_stdout);
831
832 return r;
833 }
834
835 enum {
836 CONFIRM_PRETEND_FAILURE = -1,
837 CONFIRM_PRETEND_SUCCESS = 0,
838 CONFIRM_EXECUTE = 1,
839 };
840
841 static int ask_for_confirmation(const char *vc, Unit *u, const char *cmdline) {
842 int saved_stdout = -1, saved_stdin = -1, r;
843 _cleanup_free_ char *e = NULL;
844 char c;
845
846 /* For any internal errors, assume a positive response. */
847 r = setup_confirm_stdio(vc, &saved_stdin, &saved_stdout);
848 if (r < 0) {
849 write_confirm_error(r, vc, u);
850 return CONFIRM_EXECUTE;
851 }
852
853 /* confirm_spawn might have been disabled while we were sleeping. */
854 if (manager_is_confirm_spawn_disabled(u->manager)) {
855 r = 1;
856 goto restore_stdio;
857 }
858
859 e = ellipsize(cmdline, 60, 100);
860 if (!e) {
861 log_oom();
862 r = CONFIRM_EXECUTE;
863 goto restore_stdio;
864 }
865
866 for (;;) {
867 r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
868 if (r < 0) {
869 write_confirm_error_fd(r, STDOUT_FILENO, u);
870 r = CONFIRM_EXECUTE;
871 goto restore_stdio;
872 }
873
874 switch (c) {
875 case 'c':
876 printf("Resuming normal execution.\n");
877 manager_disable_confirm_spawn();
878 r = 1;
879 break;
880 case 'D':
881 unit_dump(u, stdout, " ");
882 continue; /* ask again */
883 case 'f':
884 printf("Failing execution.\n");
885 r = CONFIRM_PRETEND_FAILURE;
886 break;
887 case 'h':
888 printf(" c - continue, proceed without asking anymore\n"
889 " D - dump, show the state of the unit\n"
890 " f - fail, don't execute the command and pretend it failed\n"
891 " h - help\n"
892 " i - info, show a short summary of the unit\n"
893 " j - jobs, show jobs that are in progress\n"
894 " s - skip, don't execute the command and pretend it succeeded\n"
895 " y - yes, execute the command\n");
896 continue; /* ask again */
897 case 'i':
898 printf(" Description: %s\n"
899 " Unit: %s\n"
900 " Command: %s\n",
901 u->id, u->description, cmdline);
902 continue; /* ask again */
903 case 'j':
904 manager_dump_jobs(u->manager, stdout, " ");
905 continue; /* ask again */
906 case 'n':
907 /* 'n' was removed in favor of 'f'. */
908 printf("Didn't understand 'n', did you mean 'f'?\n");
909 continue; /* ask again */
910 case 's':
911 printf("Skipping execution.\n");
912 r = CONFIRM_PRETEND_SUCCESS;
913 break;
914 case 'y':
915 r = CONFIRM_EXECUTE;
916 break;
917 default:
918 assert_not_reached("Unhandled choice");
919 }
920 break;
921 }
922
923 restore_stdio:
924 restore_confirm_stdio(&saved_stdin, &saved_stdout);
925 return r;
926 }
927
928 static int get_fixed_user(const ExecContext *c, const char **user,
929 uid_t *uid, gid_t *gid,
930 const char **home, const char **shell) {
931 int r;
932 const char *name;
933
934 assert(c);
935
936 if (!c->user)
937 return 0;
938
939 /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
940 * (i.e. are "/" or "/bin/nologin"). */
941
942 name = c->user;
943 r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
944 if (r < 0)
945 return r;
946
947 *user = name;
948 return 0;
949 }
950
951 static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
952 int r;
953 const char *name;
954
955 assert(c);
956
957 if (!c->group)
958 return 0;
959
960 name = c->group;
961 r = get_group_creds(&name, gid, 0);
962 if (r < 0)
963 return r;
964
965 *group = name;
966 return 0;
967 }
968
969 static int get_supplementary_groups(const ExecContext *c, const char *user,
970 const char *group, gid_t gid,
971 gid_t **supplementary_gids, int *ngids) {
972 char **i;
973 int r, k = 0;
974 int ngroups_max;
975 bool keep_groups = false;
976 gid_t *groups = NULL;
977 _cleanup_free_ gid_t *l_gids = NULL;
978
979 assert(c);
980
981 /*
982 * If user is given, then lookup GID and supplementary groups list.
983 * We avoid NSS lookups for gid=0. Also we have to initialize groups
984 * here and as early as possible so we keep the list of supplementary
985 * groups of the caller.
986 */
987 if (user && gid_is_valid(gid) && gid != 0) {
988 /* First step, initialize groups from /etc/groups */
989 if (initgroups(user, gid) < 0)
990 return -errno;
991
992 keep_groups = true;
993 }
994
995 if (strv_isempty(c->supplementary_groups))
996 return 0;
997
998 /*
999 * If SupplementaryGroups= was passed then NGROUPS_MAX has to
1000 * be positive, otherwise fail.
1001 */
1002 errno = 0;
1003 ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1004 if (ngroups_max <= 0)
1005 return errno_or_else(EOPNOTSUPP);
1006
1007 l_gids = new(gid_t, ngroups_max);
1008 if (!l_gids)
1009 return -ENOMEM;
1010
1011 if (keep_groups) {
1012 /*
1013 * Lookup the list of groups that the user belongs to, we
1014 * avoid NSS lookups here too for gid=0.
1015 */
1016 k = ngroups_max;
1017 if (getgrouplist(user, gid, l_gids, &k) < 0)
1018 return -EINVAL;
1019 } else
1020 k = 0;
1021
1022 STRV_FOREACH(i, c->supplementary_groups) {
1023 const char *g;
1024
1025 if (k >= ngroups_max)
1026 return -E2BIG;
1027
1028 g = *i;
1029 r = get_group_creds(&g, l_gids+k, 0);
1030 if (r < 0)
1031 return r;
1032
1033 k++;
1034 }
1035
1036 /*
1037 * Sets ngids to zero to drop all supplementary groups, happens
1038 * when we are under root and SupplementaryGroups= is empty.
1039 */
1040 if (k == 0) {
1041 *ngids = 0;
1042 return 0;
1043 }
1044
1045 /* Otherwise get the final list of supplementary groups */
1046 groups = memdup(l_gids, sizeof(gid_t) * k);
1047 if (!groups)
1048 return -ENOMEM;
1049
1050 *supplementary_gids = groups;
1051 *ngids = k;
1052
1053 groups = NULL;
1054
1055 return 0;
1056 }
1057
1058 static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1059 int r;
1060
1061 /* Handle SupplementaryGroups= if it is not empty */
1062 if (ngids > 0) {
1063 r = maybe_setgroups(ngids, supplementary_gids);
1064 if (r < 0)
1065 return r;
1066 }
1067
1068 if (gid_is_valid(gid)) {
1069 /* Then set our gids */
1070 if (setresgid(gid, gid, gid) < 0)
1071 return -errno;
1072 }
1073
1074 return 0;
1075 }
1076
1077 static int set_securebits(int bits, int mask) {
1078 int current, applied;
1079 current = prctl(PR_GET_SECUREBITS);
1080 if (current < 0)
1081 return -errno;
1082 /* Clear all securebits defined in mask and set bits */
1083 applied = (current & ~mask) | bits;
1084 if (current == applied)
1085 return 0;
1086 if (prctl(PR_SET_SECUREBITS, applied) < 0)
1087 return -errno;
1088 return 1;
1089 }
1090
1091 static int enforce_user(const ExecContext *context, uid_t uid) {
1092 assert(context);
1093 int r;
1094
1095 if (!uid_is_valid(uid))
1096 return 0;
1097
1098 /* Sets (but doesn't look up) the uid and make sure we keep the
1099 * capabilities while doing so. For setting secure bits the capability CAP_SETPCAP is
1100 * required, so we also need keep-caps in this case.
1101 */
1102
1103 if (context->capability_ambient_set != 0 || context->secure_bits != 0) {
1104
1105 /* First step: If we need to keep capabilities but
1106 * drop privileges we need to make sure we keep our
1107 * caps, while we drop privileges. */
1108 if (uid != 0) {
1109 /* Add KEEP_CAPS to the securebits */
1110 r = set_securebits(1<<SECURE_KEEP_CAPS, 0);
1111 if (r < 0)
1112 return r;
1113 }
1114 }
1115
1116 /* Second step: actually set the uids */
1117 if (setresuid(uid, uid, uid) < 0)
1118 return -errno;
1119
1120 /* At this point we should have all necessary capabilities but
1121 are otherwise a normal user. However, the caps might got
1122 corrupted due to the setresuid() so we need clean them up
1123 later. This is done outside of this call. */
1124
1125 return 0;
1126 }
1127
1128 #if HAVE_PAM
1129
1130 static int null_conv(
1131 int num_msg,
1132 const struct pam_message **msg,
1133 struct pam_response **resp,
1134 void *appdata_ptr) {
1135
1136 /* We don't support conversations */
1137
1138 return PAM_CONV_ERR;
1139 }
1140
1141 #endif
1142
1143 static int setup_pam(
1144 const char *name,
1145 const char *user,
1146 uid_t uid,
1147 gid_t gid,
1148 const char *tty,
1149 char ***env,
1150 const int fds[], size_t n_fds) {
1151
1152 #if HAVE_PAM
1153
1154 static const struct pam_conv conv = {
1155 .conv = null_conv,
1156 .appdata_ptr = NULL
1157 };
1158
1159 _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1160 pam_handle_t *handle = NULL;
1161 sigset_t old_ss;
1162 int pam_code = PAM_SUCCESS, r;
1163 char **nv, **e = NULL;
1164 bool close_session = false;
1165 pid_t pam_pid = 0, parent_pid;
1166 int flags = 0;
1167
1168 assert(name);
1169 assert(user);
1170 assert(env);
1171
1172 /* We set up PAM in the parent process, then fork. The child
1173 * will then stay around until killed via PR_GET_PDEATHSIG or
1174 * systemd via the cgroup logic. It will then remove the PAM
1175 * session again. The parent process will exec() the actual
1176 * daemon. We do things this way to ensure that the main PID
1177 * of the daemon is the one we initially fork()ed. */
1178
1179 r = barrier_create(&barrier);
1180 if (r < 0)
1181 goto fail;
1182
1183 if (log_get_max_level() < LOG_DEBUG)
1184 flags |= PAM_SILENT;
1185
1186 pam_code = pam_start(name, user, &conv, &handle);
1187 if (pam_code != PAM_SUCCESS) {
1188 handle = NULL;
1189 goto fail;
1190 }
1191
1192 if (!tty) {
1193 _cleanup_free_ char *q = NULL;
1194
1195 /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1196 * out if that's the case, and read the TTY off it. */
1197
1198 if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1199 tty = strjoina("/dev/", q);
1200 }
1201
1202 if (tty) {
1203 pam_code = pam_set_item(handle, PAM_TTY, tty);
1204 if (pam_code != PAM_SUCCESS)
1205 goto fail;
1206 }
1207
1208 STRV_FOREACH(nv, *env) {
1209 pam_code = pam_putenv(handle, *nv);
1210 if (pam_code != PAM_SUCCESS)
1211 goto fail;
1212 }
1213
1214 pam_code = pam_acct_mgmt(handle, flags);
1215 if (pam_code != PAM_SUCCESS)
1216 goto fail;
1217
1218 pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | flags);
1219 if (pam_code != PAM_SUCCESS)
1220 log_debug("pam_setcred() failed, ignoring: %s", pam_strerror(handle, pam_code));
1221
1222 pam_code = pam_open_session(handle, flags);
1223 if (pam_code != PAM_SUCCESS)
1224 goto fail;
1225
1226 close_session = true;
1227
1228 e = pam_getenvlist(handle);
1229 if (!e) {
1230 pam_code = PAM_BUF_ERR;
1231 goto fail;
1232 }
1233
1234 /* Block SIGTERM, so that we know that it won't get lost in
1235 * the child */
1236
1237 assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1238
1239 parent_pid = getpid_cached();
1240
1241 r = safe_fork("(sd-pam)", 0, &pam_pid);
1242 if (r < 0)
1243 goto fail;
1244 if (r == 0) {
1245 int sig, ret = EXIT_PAM;
1246
1247 /* The child's job is to reset the PAM session on
1248 * termination */
1249 barrier_set_role(&barrier, BARRIER_CHILD);
1250
1251 /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only those fds
1252 * are open here that have been opened by PAM. */
1253 (void) close_many(fds, n_fds);
1254
1255 /* Drop privileges - we don't need any to pam_close_session
1256 * and this will make PR_SET_PDEATHSIG work in most cases.
1257 * If this fails, ignore the error - but expect sd-pam threads
1258 * to fail to exit normally */
1259
1260 r = maybe_setgroups(0, NULL);
1261 if (r < 0)
1262 log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1263 if (setresgid(gid, gid, gid) < 0)
1264 log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1265 if (setresuid(uid, uid, uid) < 0)
1266 log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1267
1268 (void) ignore_signals(SIGPIPE, -1);
1269
1270 /* Wait until our parent died. This will only work if
1271 * the above setresuid() succeeds, otherwise the kernel
1272 * will not allow unprivileged parents kill their privileged
1273 * children this way. We rely on the control groups kill logic
1274 * to do the rest for us. */
1275 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1276 goto child_finish;
1277
1278 /* Tell the parent that our setup is done. This is especially
1279 * important regarding dropping privileges. Otherwise, unit
1280 * setup might race against our setresuid(2) call.
1281 *
1282 * If the parent aborted, we'll detect this below, hence ignore
1283 * return failure here. */
1284 (void) barrier_place(&barrier);
1285
1286 /* Check if our parent process might already have died? */
1287 if (getppid() == parent_pid) {
1288 sigset_t ss;
1289
1290 assert_se(sigemptyset(&ss) >= 0);
1291 assert_se(sigaddset(&ss, SIGTERM) >= 0);
1292
1293 for (;;) {
1294 if (sigwait(&ss, &sig) < 0) {
1295 if (errno == EINTR)
1296 continue;
1297
1298 goto child_finish;
1299 }
1300
1301 assert(sig == SIGTERM);
1302 break;
1303 }
1304 }
1305
1306 pam_code = pam_setcred(handle, PAM_DELETE_CRED | flags);
1307 if (pam_code != PAM_SUCCESS)
1308 goto child_finish;
1309
1310 /* If our parent died we'll end the session */
1311 if (getppid() != parent_pid) {
1312 pam_code = pam_close_session(handle, flags);
1313 if (pam_code != PAM_SUCCESS)
1314 goto child_finish;
1315 }
1316
1317 ret = 0;
1318
1319 child_finish:
1320 pam_end(handle, pam_code | flags);
1321 _exit(ret);
1322 }
1323
1324 barrier_set_role(&barrier, BARRIER_PARENT);
1325
1326 /* If the child was forked off successfully it will do all the
1327 * cleanups, so forget about the handle here. */
1328 handle = NULL;
1329
1330 /* Unblock SIGTERM again in the parent */
1331 assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1332
1333 /* We close the log explicitly here, since the PAM modules
1334 * might have opened it, but we don't want this fd around. */
1335 closelog();
1336
1337 /* Synchronously wait for the child to initialize. We don't care for
1338 * errors as we cannot recover. However, warn loudly if it happens. */
1339 if (!barrier_place_and_sync(&barrier))
1340 log_error("PAM initialization failed");
1341
1342 return strv_free_and_replace(*env, e);
1343
1344 fail:
1345 if (pam_code != PAM_SUCCESS) {
1346 log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1347 r = -EPERM; /* PAM errors do not map to errno */
1348 } else
1349 log_error_errno(r, "PAM failed: %m");
1350
1351 if (handle) {
1352 if (close_session)
1353 pam_code = pam_close_session(handle, flags);
1354
1355 pam_end(handle, pam_code | flags);
1356 }
1357
1358 strv_free(e);
1359 closelog();
1360
1361 return r;
1362 #else
1363 return 0;
1364 #endif
1365 }
1366
1367 static void rename_process_from_path(const char *path) {
1368 char process_name[11];
1369 const char *p;
1370 size_t l;
1371
1372 /* This resulting string must fit in 10 chars (i.e. the length
1373 * of "/sbin/init") to look pretty in /bin/ps */
1374
1375 p = basename(path);
1376 if (isempty(p)) {
1377 rename_process("(...)");
1378 return;
1379 }
1380
1381 l = strlen(p);
1382 if (l > 8) {
1383 /* The end of the process name is usually more
1384 * interesting, since the first bit might just be
1385 * "systemd-" */
1386 p = p + l - 8;
1387 l = 8;
1388 }
1389
1390 process_name[0] = '(';
1391 memcpy(process_name+1, p, l);
1392 process_name[1+l] = ')';
1393 process_name[1+l+1] = 0;
1394
1395 rename_process(process_name);
1396 }
1397
1398 static bool context_has_address_families(const ExecContext *c) {
1399 assert(c);
1400
1401 return c->address_families_allow_list ||
1402 !set_isempty(c->address_families);
1403 }
1404
1405 static bool context_has_syscall_filters(const ExecContext *c) {
1406 assert(c);
1407
1408 return c->syscall_allow_list ||
1409 !hashmap_isempty(c->syscall_filter);
1410 }
1411
1412 static bool context_has_syscall_logs(const ExecContext *c) {
1413 assert(c);
1414
1415 return c->syscall_log_allow_list ||
1416 !hashmap_isempty(c->syscall_log);
1417 }
1418
1419 static bool context_has_no_new_privileges(const ExecContext *c) {
1420 assert(c);
1421
1422 if (c->no_new_privileges)
1423 return true;
1424
1425 if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
1426 return false;
1427
1428 /* We need NNP if we have any form of seccomp and are unprivileged */
1429 return context_has_address_families(c) ||
1430 c->memory_deny_write_execute ||
1431 c->restrict_realtime ||
1432 c->restrict_suid_sgid ||
1433 exec_context_restrict_namespaces_set(c) ||
1434 c->protect_clock ||
1435 c->protect_kernel_tunables ||
1436 c->protect_kernel_modules ||
1437 c->protect_kernel_logs ||
1438 c->private_devices ||
1439 context_has_syscall_filters(c) ||
1440 context_has_syscall_logs(c) ||
1441 !set_isempty(c->syscall_archs) ||
1442 c->lock_personality ||
1443 c->protect_hostname;
1444 }
1445
1446 static bool exec_context_has_credentials(const ExecContext *context) {
1447
1448 assert(context);
1449
1450 return !hashmap_isempty(context->set_credentials) ||
1451 context->load_credentials;
1452 }
1453
1454 #if HAVE_SECCOMP
1455
1456 static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1457
1458 if (is_seccomp_available())
1459 return false;
1460
1461 log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1462 return true;
1463 }
1464
1465 static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1466 uint32_t negative_action, default_action, action;
1467 int r;
1468
1469 assert(u);
1470 assert(c);
1471
1472 if (!context_has_syscall_filters(c))
1473 return 0;
1474
1475 if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1476 return 0;
1477
1478 negative_action = c->syscall_errno == SECCOMP_ERROR_NUMBER_KILL ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1479
1480 if (c->syscall_allow_list) {
1481 default_action = negative_action;
1482 action = SCMP_ACT_ALLOW;
1483 } else {
1484 default_action = SCMP_ACT_ALLOW;
1485 action = negative_action;
1486 }
1487
1488 if (needs_ambient_hack) {
1489 r = seccomp_filter_set_add(c->syscall_filter, c->syscall_allow_list, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1490 if (r < 0)
1491 return r;
1492 }
1493
1494 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1495 }
1496
1497 static int apply_syscall_log(const Unit* u, const ExecContext *c) {
1498 #ifdef SCMP_ACT_LOG
1499 uint32_t default_action, action;
1500 #endif
1501
1502 assert(u);
1503 assert(c);
1504
1505 if (!context_has_syscall_logs(c))
1506 return 0;
1507
1508 #ifdef SCMP_ACT_LOG
1509 if (skip_seccomp_unavailable(u, "SystemCallLog="))
1510 return 0;
1511
1512 if (c->syscall_log_allow_list) {
1513 /* Log nothing but the ones listed */
1514 default_action = SCMP_ACT_ALLOW;
1515 action = SCMP_ACT_LOG;
1516 } else {
1517 /* Log everything but the ones listed */
1518 default_action = SCMP_ACT_LOG;
1519 action = SCMP_ACT_ALLOW;
1520 }
1521
1522 return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_log, action, false);
1523 #else
1524 /* old libseccomp */
1525 log_unit_debug(u, "SECCOMP feature SCMP_ACT_LOG not available, skipping SystemCallLog=");
1526 return 0;
1527 #endif
1528 }
1529
1530 static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1531 assert(u);
1532 assert(c);
1533
1534 if (set_isempty(c->syscall_archs))
1535 return 0;
1536
1537 if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1538 return 0;
1539
1540 return seccomp_restrict_archs(c->syscall_archs);
1541 }
1542
1543 static int apply_address_families(const Unit* u, const ExecContext *c) {
1544 assert(u);
1545 assert(c);
1546
1547 if (!context_has_address_families(c))
1548 return 0;
1549
1550 if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1551 return 0;
1552
1553 return seccomp_restrict_address_families(c->address_families, c->address_families_allow_list);
1554 }
1555
1556 static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1557 assert(u);
1558 assert(c);
1559
1560 if (!c->memory_deny_write_execute)
1561 return 0;
1562
1563 if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1564 return 0;
1565
1566 return seccomp_memory_deny_write_execute();
1567 }
1568
1569 static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1570 assert(u);
1571 assert(c);
1572
1573 if (!c->restrict_realtime)
1574 return 0;
1575
1576 if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1577 return 0;
1578
1579 return seccomp_restrict_realtime();
1580 }
1581
1582 static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1583 assert(u);
1584 assert(c);
1585
1586 if (!c->restrict_suid_sgid)
1587 return 0;
1588
1589 if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1590 return 0;
1591
1592 return seccomp_restrict_suid_sgid();
1593 }
1594
1595 static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1596 assert(u);
1597 assert(c);
1598
1599 /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1600 * let's protect even those systems where this is left on in the kernel. */
1601
1602 if (!c->protect_kernel_tunables)
1603 return 0;
1604
1605 if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1606 return 0;
1607
1608 return seccomp_protect_sysctl();
1609 }
1610
1611 static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1612 assert(u);
1613 assert(c);
1614
1615 /* Turn off module syscalls on ProtectKernelModules=yes */
1616
1617 if (!c->protect_kernel_modules)
1618 return 0;
1619
1620 if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1621 return 0;
1622
1623 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1624 }
1625
1626 static int apply_protect_kernel_logs(const Unit *u, const ExecContext *c) {
1627 assert(u);
1628 assert(c);
1629
1630 if (!c->protect_kernel_logs)
1631 return 0;
1632
1633 if (skip_seccomp_unavailable(u, "ProtectKernelLogs="))
1634 return 0;
1635
1636 return seccomp_protect_syslog();
1637 }
1638
1639 static int apply_protect_clock(const Unit *u, const ExecContext *c) {
1640 assert(u);
1641 assert(c);
1642
1643 if (!c->protect_clock)
1644 return 0;
1645
1646 if (skip_seccomp_unavailable(u, "ProtectClock="))
1647 return 0;
1648
1649 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_CLOCK, SCMP_ACT_ERRNO(EPERM), false);
1650 }
1651
1652 static int apply_private_devices(const Unit *u, const ExecContext *c) {
1653 assert(u);
1654 assert(c);
1655
1656 /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1657
1658 if (!c->private_devices)
1659 return 0;
1660
1661 if (skip_seccomp_unavailable(u, "PrivateDevices="))
1662 return 0;
1663
1664 return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1665 }
1666
1667 static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1668 assert(u);
1669 assert(c);
1670
1671 if (!exec_context_restrict_namespaces_set(c))
1672 return 0;
1673
1674 if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1675 return 0;
1676
1677 return seccomp_restrict_namespaces(c->restrict_namespaces);
1678 }
1679
1680 static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1681 unsigned long personality;
1682 int r;
1683
1684 assert(u);
1685 assert(c);
1686
1687 if (!c->lock_personality)
1688 return 0;
1689
1690 if (skip_seccomp_unavailable(u, "LockPersonality="))
1691 return 0;
1692
1693 personality = c->personality;
1694
1695 /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1696 if (personality == PERSONALITY_INVALID) {
1697
1698 r = opinionated_personality(&personality);
1699 if (r < 0)
1700 return r;
1701 }
1702
1703 return seccomp_lock_personality(personality);
1704 }
1705
1706 #endif
1707
1708 static int apply_protect_hostname(const Unit *u, const ExecContext *c, int *ret_exit_status) {
1709 assert(u);
1710 assert(c);
1711
1712 if (!c->protect_hostname)
1713 return 0;
1714
1715 if (ns_type_supported(NAMESPACE_UTS)) {
1716 if (unshare(CLONE_NEWUTS) < 0) {
1717 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno)) {
1718 *ret_exit_status = EXIT_NAMESPACE;
1719 return log_unit_error_errno(u, errno, "Failed to set up UTS namespacing: %m");
1720 }
1721
1722 log_unit_warning(u, "ProtectHostname=yes is configured, but UTS namespace setup is prohibited (container manager?), ignoring namespace setup.");
1723 }
1724 } else
1725 log_unit_warning(u, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
1726
1727 #if HAVE_SECCOMP
1728 int r;
1729
1730 if (skip_seccomp_unavailable(u, "ProtectHostname="))
1731 return 0;
1732
1733 r = seccomp_protect_hostname();
1734 if (r < 0) {
1735 *ret_exit_status = EXIT_SECCOMP;
1736 return log_unit_error_errno(u, r, "Failed to apply hostname restrictions: %m");
1737 }
1738 #endif
1739
1740 return 0;
1741 }
1742
1743 static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1744 assert(idle_pipe);
1745
1746 idle_pipe[1] = safe_close(idle_pipe[1]);
1747 idle_pipe[2] = safe_close(idle_pipe[2]);
1748
1749 if (idle_pipe[0] >= 0) {
1750 int r;
1751
1752 r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1753
1754 if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1755 ssize_t n;
1756
1757 /* Signal systemd that we are bored and want to continue. */
1758 n = write(idle_pipe[3], "x", 1);
1759 if (n > 0)
1760 /* Wait for systemd to react to the signal above. */
1761 (void) fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1762 }
1763
1764 idle_pipe[0] = safe_close(idle_pipe[0]);
1765
1766 }
1767
1768 idle_pipe[3] = safe_close(idle_pipe[3]);
1769 }
1770
1771 static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1772
1773 static int build_environment(
1774 const Unit *u,
1775 const ExecContext *c,
1776 const ExecParameters *p,
1777 size_t n_fds,
1778 const char *home,
1779 const char *username,
1780 const char *shell,
1781 dev_t journal_stream_dev,
1782 ino_t journal_stream_ino,
1783 char ***ret) {
1784
1785 _cleanup_strv_free_ char **our_env = NULL;
1786 size_t n_env = 0;
1787 char *x;
1788
1789 assert(u);
1790 assert(c);
1791 assert(p);
1792 assert(ret);
1793
1794 #define N_ENV_VARS 16
1795 our_env = new0(char*, N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1796 if (!our_env)
1797 return -ENOMEM;
1798
1799 if (n_fds > 0) {
1800 _cleanup_free_ char *joined = NULL;
1801
1802 if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1803 return -ENOMEM;
1804 our_env[n_env++] = x;
1805
1806 if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1807 return -ENOMEM;
1808 our_env[n_env++] = x;
1809
1810 joined = strv_join(p->fd_names, ":");
1811 if (!joined)
1812 return -ENOMEM;
1813
1814 x = strjoin("LISTEN_FDNAMES=", joined);
1815 if (!x)
1816 return -ENOMEM;
1817 our_env[n_env++] = x;
1818 }
1819
1820 if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1821 if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1822 return -ENOMEM;
1823 our_env[n_env++] = x;
1824
1825 if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1826 return -ENOMEM;
1827 our_env[n_env++] = x;
1828 }
1829
1830 /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use D-Bus look up dynamic
1831 * users via PID 1, possibly dead-locking the dbus daemon. This way it will not use D-Bus to resolve names, but
1832 * check the database directly. */
1833 if (p->flags & EXEC_NSS_BYPASS_BUS) {
1834 x = strdup("SYSTEMD_NSS_BYPASS_BUS=1");
1835 if (!x)
1836 return -ENOMEM;
1837 our_env[n_env++] = x;
1838 }
1839
1840 if (home) {
1841 x = strjoin("HOME=", home);
1842 if (!x)
1843 return -ENOMEM;
1844
1845 path_simplify(x + 5, true);
1846 our_env[n_env++] = x;
1847 }
1848
1849 if (username) {
1850 x = strjoin("LOGNAME=", username);
1851 if (!x)
1852 return -ENOMEM;
1853 our_env[n_env++] = x;
1854
1855 x = strjoin("USER=", username);
1856 if (!x)
1857 return -ENOMEM;
1858 our_env[n_env++] = x;
1859 }
1860
1861 if (shell) {
1862 x = strjoin("SHELL=", shell);
1863 if (!x)
1864 return -ENOMEM;
1865
1866 path_simplify(x + 6, true);
1867 our_env[n_env++] = x;
1868 }
1869
1870 if (!sd_id128_is_null(u->invocation_id)) {
1871 if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
1872 return -ENOMEM;
1873
1874 our_env[n_env++] = x;
1875 }
1876
1877 if (exec_context_needs_term(c)) {
1878 const char *tty_path, *term = NULL;
1879
1880 tty_path = exec_context_tty_path(c);
1881
1882 /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try
1883 * to inherit the $TERM set for PID 1. This is useful for containers so that the $TERM the
1884 * container manager passes to PID 1 ends up all the way in the console login shown. */
1885
1886 if (path_equal_ptr(tty_path, "/dev/console") && getppid() == 1)
1887 term = getenv("TERM");
1888
1889 if (!term)
1890 term = default_term_for_tty(tty_path);
1891
1892 x = strjoin("TERM=", term);
1893 if (!x)
1894 return -ENOMEM;
1895 our_env[n_env++] = x;
1896 }
1897
1898 if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1899 if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1900 return -ENOMEM;
1901
1902 our_env[n_env++] = x;
1903 }
1904
1905 if (c->log_namespace) {
1906 x = strjoin("LOG_NAMESPACE=", c->log_namespace);
1907 if (!x)
1908 return -ENOMEM;
1909
1910 our_env[n_env++] = x;
1911 }
1912
1913 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1914 _cleanup_free_ char *pre = NULL, *joined = NULL;
1915 const char *n;
1916
1917 if (!p->prefix[t])
1918 continue;
1919
1920 if (strv_isempty(c->directories[t].paths))
1921 continue;
1922
1923 n = exec_directory_env_name_to_string(t);
1924 if (!n)
1925 continue;
1926
1927 pre = strjoin(p->prefix[t], "/");
1928 if (!pre)
1929 return -ENOMEM;
1930
1931 joined = strv_join_full(c->directories[t].paths, ":", pre, true);
1932 if (!joined)
1933 return -ENOMEM;
1934
1935 x = strjoin(n, "=", joined);
1936 if (!x)
1937 return -ENOMEM;
1938
1939 our_env[n_env++] = x;
1940 }
1941
1942 if (exec_context_has_credentials(c) && p->prefix[EXEC_DIRECTORY_RUNTIME]) {
1943 x = strjoin("CREDENTIALS_DIRECTORY=", p->prefix[EXEC_DIRECTORY_RUNTIME], "/credentials/", u->id);
1944 if (!x)
1945 return -ENOMEM;
1946
1947 our_env[n_env++] = x;
1948 }
1949
1950 our_env[n_env++] = NULL;
1951 assert(n_env <= N_ENV_VARS + _EXEC_DIRECTORY_TYPE_MAX);
1952 #undef N_ENV_VARS
1953
1954 *ret = TAKE_PTR(our_env);
1955
1956 return 0;
1957 }
1958
1959 static int build_pass_environment(const ExecContext *c, char ***ret) {
1960 _cleanup_strv_free_ char **pass_env = NULL;
1961 size_t n_env = 0, n_bufsize = 0;
1962 char **i;
1963
1964 STRV_FOREACH(i, c->pass_environment) {
1965 _cleanup_free_ char *x = NULL;
1966 char *v;
1967
1968 v = getenv(*i);
1969 if (!v)
1970 continue;
1971 x = strjoin(*i, "=", v);
1972 if (!x)
1973 return -ENOMEM;
1974
1975 if (!GREEDY_REALLOC(pass_env, n_bufsize, n_env + 2))
1976 return -ENOMEM;
1977
1978 pass_env[n_env++] = TAKE_PTR(x);
1979 pass_env[n_env] = NULL;
1980 }
1981
1982 *ret = TAKE_PTR(pass_env);
1983
1984 return 0;
1985 }
1986
1987 static bool exec_needs_mount_namespace(
1988 const ExecContext *context,
1989 const ExecParameters *params,
1990 const ExecRuntime *runtime) {
1991
1992 assert(context);
1993 assert(params);
1994
1995 if (context->root_image)
1996 return true;
1997
1998 if (!strv_isempty(context->read_write_paths) ||
1999 !strv_isempty(context->read_only_paths) ||
2000 !strv_isempty(context->inaccessible_paths))
2001 return true;
2002
2003 if (context->n_bind_mounts > 0)
2004 return true;
2005
2006 if (context->n_temporary_filesystems > 0)
2007 return true;
2008
2009 if (context->n_mount_images > 0)
2010 return true;
2011
2012 if (!IN_SET(context->mount_flags, 0, MS_SHARED))
2013 return true;
2014
2015 if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
2016 return true;
2017
2018 if (context->private_devices ||
2019 context->private_mounts ||
2020 context->protect_system != PROTECT_SYSTEM_NO ||
2021 context->protect_home != PROTECT_HOME_NO ||
2022 context->protect_kernel_tunables ||
2023 context->protect_kernel_modules ||
2024 context->protect_kernel_logs ||
2025 context->protect_control_groups ||
2026 context->protect_proc != PROTECT_PROC_DEFAULT ||
2027 context->proc_subset != PROC_SUBSET_ALL)
2028 return true;
2029
2030 if (context->root_directory) {
2031 if (exec_context_get_effective_mount_apivfs(context))
2032 return true;
2033
2034 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2035 if (!params->prefix[t])
2036 continue;
2037
2038 if (!strv_isempty(context->directories[t].paths))
2039 return true;
2040 }
2041 }
2042
2043 if (context->dynamic_user &&
2044 (!strv_isempty(context->directories[EXEC_DIRECTORY_STATE].paths) ||
2045 !strv_isempty(context->directories[EXEC_DIRECTORY_CACHE].paths) ||
2046 !strv_isempty(context->directories[EXEC_DIRECTORY_LOGS].paths)))
2047 return true;
2048
2049 if (context->log_namespace)
2050 return true;
2051
2052 return false;
2053 }
2054
2055 static int setup_private_users(uid_t ouid, gid_t ogid, uid_t uid, gid_t gid) {
2056 _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
2057 _cleanup_close_pair_ int errno_pipe[2] = { -1, -1 };
2058 _cleanup_close_ int unshare_ready_fd = -1;
2059 _cleanup_(sigkill_waitp) pid_t pid = 0;
2060 uint64_t c = 1;
2061 ssize_t n;
2062 int r;
2063
2064 /* Set up a user namespace and map the original UID/GID (IDs from before any user or group changes, i.e.
2065 * the IDs from the user or system manager(s)) to itself, the selected UID/GID to itself, and everything else to
2066 * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
2067 * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
2068 * which waits for the parent to create the new user namespace while staying in the original namespace. The
2069 * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
2070 * continues execution normally.
2071 * For unprivileged users (i.e. without capabilities), the root to root mapping is excluded. As such, it
2072 * does not need CAP_SETUID to write the single line mapping to itself. */
2073
2074 /* Can only set up multiple mappings with CAP_SETUID. */
2075 if (have_effective_cap(CAP_SETUID) && uid != ouid && uid_is_valid(uid))
2076 r = asprintf(&uid_map,
2077 UID_FMT " " UID_FMT " 1\n" /* Map $OUID → $OUID */
2078 UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
2079 ouid, ouid, uid, uid);
2080 else
2081 r = asprintf(&uid_map,
2082 UID_FMT " " UID_FMT " 1\n", /* Map $OUID → $OUID */
2083 ouid, ouid);
2084
2085 if (r < 0)
2086 return -ENOMEM;
2087
2088 /* Can only set up multiple mappings with CAP_SETGID. */
2089 if (have_effective_cap(CAP_SETGID) && gid != ogid && gid_is_valid(gid))
2090 r = asprintf(&gid_map,
2091 GID_FMT " " GID_FMT " 1\n" /* Map $OGID → $OGID */
2092 GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
2093 ogid, ogid, gid, gid);
2094 else
2095 r = asprintf(&gid_map,
2096 GID_FMT " " GID_FMT " 1\n", /* Map $OGID -> $OGID */
2097 ogid, ogid);
2098
2099 if (r < 0)
2100 return -ENOMEM;
2101
2102 /* Create a communication channel so that the parent can tell the child when it finished creating the user
2103 * namespace. */
2104 unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
2105 if (unshare_ready_fd < 0)
2106 return -errno;
2107
2108 /* Create a communication channel so that the child can tell the parent a proper error code in case it
2109 * failed. */
2110 if (pipe2(errno_pipe, O_CLOEXEC) < 0)
2111 return -errno;
2112
2113 r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
2114 if (r < 0)
2115 return r;
2116 if (r == 0) {
2117 _cleanup_close_ int fd = -1;
2118 const char *a;
2119 pid_t ppid;
2120
2121 /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
2122 * here, after the parent opened its own user namespace. */
2123
2124 ppid = getppid();
2125 errno_pipe[0] = safe_close(errno_pipe[0]);
2126
2127 /* Wait until the parent unshared the user namespace */
2128 if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
2129 r = -errno;
2130 goto child_fail;
2131 }
2132
2133 /* Disable the setgroups() system call in the child user namespace, for good. */
2134 a = procfs_file_alloca(ppid, "setgroups");
2135 fd = open(a, O_WRONLY|O_CLOEXEC);
2136 if (fd < 0) {
2137 if (errno != ENOENT) {
2138 r = -errno;
2139 goto child_fail;
2140 }
2141
2142 /* If the file is missing the kernel is too old, let's continue anyway. */
2143 } else {
2144 if (write(fd, "deny\n", 5) < 0) {
2145 r = -errno;
2146 goto child_fail;
2147 }
2148
2149 fd = safe_close(fd);
2150 }
2151
2152 /* First write the GID map */
2153 a = procfs_file_alloca(ppid, "gid_map");
2154 fd = open(a, O_WRONLY|O_CLOEXEC);
2155 if (fd < 0) {
2156 r = -errno;
2157 goto child_fail;
2158 }
2159 if (write(fd, gid_map, strlen(gid_map)) < 0) {
2160 r = -errno;
2161 goto child_fail;
2162 }
2163 fd = safe_close(fd);
2164
2165 /* The write the UID map */
2166 a = procfs_file_alloca(ppid, "uid_map");
2167 fd = open(a, O_WRONLY|O_CLOEXEC);
2168 if (fd < 0) {
2169 r = -errno;
2170 goto child_fail;
2171 }
2172 if (write(fd, uid_map, strlen(uid_map)) < 0) {
2173 r = -errno;
2174 goto child_fail;
2175 }
2176
2177 _exit(EXIT_SUCCESS);
2178
2179 child_fail:
2180 (void) write(errno_pipe[1], &r, sizeof(r));
2181 _exit(EXIT_FAILURE);
2182 }
2183
2184 errno_pipe[1] = safe_close(errno_pipe[1]);
2185
2186 if (unshare(CLONE_NEWUSER) < 0)
2187 return -errno;
2188
2189 /* Let the child know that the namespace is ready now */
2190 if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2191 return -errno;
2192
2193 /* Try to read an error code from the child */
2194 n = read(errno_pipe[0], &r, sizeof(r));
2195 if (n < 0)
2196 return -errno;
2197 if (n == sizeof(r)) { /* an error code was sent to us */
2198 if (r < 0)
2199 return r;
2200 return -EIO;
2201 }
2202 if (n != 0) /* on success we should have read 0 bytes */
2203 return -EIO;
2204
2205 r = wait_for_terminate_and_check("(sd-userns)", pid, 0);
2206 pid = 0;
2207 if (r < 0)
2208 return r;
2209 if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2210 return -EIO;
2211
2212 return 0;
2213 }
2214
2215 static bool exec_directory_is_private(const ExecContext *context, ExecDirectoryType type) {
2216 if (!context->dynamic_user)
2217 return false;
2218
2219 if (type == EXEC_DIRECTORY_CONFIGURATION)
2220 return false;
2221
2222 if (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO)
2223 return false;
2224
2225 return true;
2226 }
2227
2228 static int setup_exec_directory(
2229 const ExecContext *context,
2230 const ExecParameters *params,
2231 uid_t uid,
2232 gid_t gid,
2233 ExecDirectoryType type,
2234 int *exit_status) {
2235
2236 static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2237 [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2238 [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2239 [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2240 [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2241 [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2242 };
2243 char **rt;
2244 int r;
2245
2246 assert(context);
2247 assert(params);
2248 assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2249 assert(exit_status);
2250
2251 if (!params->prefix[type])
2252 return 0;
2253
2254 if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2255 if (!uid_is_valid(uid))
2256 uid = 0;
2257 if (!gid_is_valid(gid))
2258 gid = 0;
2259 }
2260
2261 STRV_FOREACH(rt, context->directories[type].paths) {
2262 _cleanup_free_ char *p = NULL, *pp = NULL;
2263
2264 p = path_join(params->prefix[type], *rt);
2265 if (!p) {
2266 r = -ENOMEM;
2267 goto fail;
2268 }
2269
2270 r = mkdir_parents_label(p, 0755);
2271 if (r < 0)
2272 goto fail;
2273
2274 if (exec_directory_is_private(context, type)) {
2275 _cleanup_free_ char *private_root = NULL;
2276
2277 /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2278 * case we want to avoid leaving a directory around fully accessible that is owned by
2279 * a dynamic user whose UID is later on reused. To lock this down we use the same
2280 * trick used by container managers to prohibit host users to get access to files of
2281 * the same UID in containers: we place everything inside a directory that has an
2282 * access mode of 0700 and is owned root:root, so that it acts as security boundary
2283 * for unprivileged host code. We then use fs namespacing to make this directory
2284 * permeable for the service itself.
2285 *
2286 * Specifically: for a service which wants a special directory "foo/" we first create
2287 * a directory "private/" with access mode 0700 owned by root:root. Then we place
2288 * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2289 * "private/foo". This way, privileged host users can access "foo/" as usual, but
2290 * unprivileged host users can't look into it. Inside of the namespace of the unit
2291 * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2292 * "private/foo/" is mounted under the same name, thus disabling the access boundary
2293 * for the service and making sure it only gets access to the dirs it needs but no
2294 * others. Tricky? Yes, absolutely, but it works!
2295 *
2296 * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2297 * to be owned by the service itself.
2298 *
2299 * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2300 * for sharing files or sockets with other services. */
2301
2302 private_root = path_join(params->prefix[type], "private");
2303 if (!private_root) {
2304 r = -ENOMEM;
2305 goto fail;
2306 }
2307
2308 /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2309 r = mkdir_safe_label(private_root, 0700, 0, 0, MKDIR_WARN_MODE);
2310 if (r < 0)
2311 goto fail;
2312
2313 pp = path_join(private_root, *rt);
2314 if (!pp) {
2315 r = -ENOMEM;
2316 goto fail;
2317 }
2318
2319 /* Create all directories between the configured directory and this private root, and mark them 0755 */
2320 r = mkdir_parents_label(pp, 0755);
2321 if (r < 0)
2322 goto fail;
2323
2324 if (is_dir(p, false) > 0 &&
2325 (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2326
2327 /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2328 * it over. Most likely the service has been upgraded from one that didn't use
2329 * DynamicUser=1, to one that does. */
2330
2331 log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2332 "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2333 exec_directory_type_to_string(type), p, pp);
2334
2335 if (rename(p, pp) < 0) {
2336 r = -errno;
2337 goto fail;
2338 }
2339 } else {
2340 /* Otherwise, create the actual directory for the service */
2341
2342 r = mkdir_label(pp, context->directories[type].mode);
2343 if (r < 0 && r != -EEXIST)
2344 goto fail;
2345 }
2346
2347 /* And link it up from the original place */
2348 r = symlink_idempotent(pp, p, true);
2349 if (r < 0)
2350 goto fail;
2351
2352 } else {
2353 _cleanup_free_ char *target = NULL;
2354
2355 if (type != EXEC_DIRECTORY_CONFIGURATION &&
2356 readlink_and_make_absolute(p, &target) >= 0) {
2357 _cleanup_free_ char *q = NULL, *q_resolved = NULL, *target_resolved = NULL;
2358
2359 /* This already exists and is a symlink? Interesting. Maybe it's one created
2360 * by DynamicUser=1 (see above)?
2361 *
2362 * We do this for all directory types except for ConfigurationDirectory=,
2363 * since they all support the private/ symlink logic at least in some
2364 * configurations, see above. */
2365
2366 r = chase_symlinks(target, NULL, 0, &target_resolved, NULL);
2367 if (r < 0)
2368 goto fail;
2369
2370 q = path_join(params->prefix[type], "private", *rt);
2371 if (!q) {
2372 r = -ENOMEM;
2373 goto fail;
2374 }
2375
2376 /* /var/lib or friends may be symlinks. So, let's chase them also. */
2377 r = chase_symlinks(q, NULL, CHASE_NONEXISTENT, &q_resolved, NULL);
2378 if (r < 0)
2379 goto fail;
2380
2381 if (path_equal(q_resolved, target_resolved)) {
2382
2383 /* Hmm, apparently DynamicUser= was once turned on for this service,
2384 * but is no longer. Let's move the directory back up. */
2385
2386 log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2387 "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2388 exec_directory_type_to_string(type), q, p);
2389
2390 if (unlink(p) < 0) {
2391 r = -errno;
2392 goto fail;
2393 }
2394
2395 if (rename(q, p) < 0) {
2396 r = -errno;
2397 goto fail;
2398 }
2399 }
2400 }
2401
2402 r = mkdir_label(p, context->directories[type].mode);
2403 if (r < 0) {
2404 if (r != -EEXIST)
2405 goto fail;
2406
2407 if (type == EXEC_DIRECTORY_CONFIGURATION) {
2408 struct stat st;
2409
2410 /* Don't change the owner/access mode of the configuration directory,
2411 * as in the common case it is not written to by a service, and shall
2412 * not be writable. */
2413
2414 if (stat(p, &st) < 0) {
2415 r = -errno;
2416 goto fail;
2417 }
2418
2419 /* Still complain if the access mode doesn't match */
2420 if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2421 log_warning("%s \'%s\' already exists but the mode is different. "
2422 "(File system: %o %sMode: %o)",
2423 exec_directory_type_to_string(type), *rt,
2424 st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2425
2426 continue;
2427 }
2428 }
2429 }
2430
2431 /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2432 * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2433 * current UID/GID ownership.) */
2434 r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2435 if (r < 0)
2436 goto fail;
2437
2438 /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2439 * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2440 * assignments to exist.*/
2441 r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2442 if (r < 0)
2443 goto fail;
2444 }
2445
2446 return 0;
2447
2448 fail:
2449 *exit_status = exit_status_table[type];
2450 return r;
2451 }
2452
2453 static int write_credential(
2454 int dfd,
2455 const char *id,
2456 const void *data,
2457 size_t size,
2458 uid_t uid,
2459 bool ownership_ok) {
2460
2461 _cleanup_(unlink_and_freep) char *tmp = NULL;
2462 _cleanup_close_ int fd = -1;
2463 int r;
2464
2465 r = tempfn_random_child("", "cred", &tmp);
2466 if (r < 0)
2467 return r;
2468
2469 fd = openat(dfd, tmp, O_CREAT|O_RDWR|O_CLOEXEC|O_EXCL|O_NOFOLLOW|O_NOCTTY, 0600);
2470 if (fd < 0) {
2471 tmp = mfree(tmp);
2472 return -errno;
2473 }
2474
2475 r = loop_write(fd, data, size, /* do_pool = */ false);
2476 if (r < 0)
2477 return r;
2478
2479 if (fchmod(fd, 0400) < 0) /* Take away "w" bit */
2480 return -errno;
2481
2482 if (uid_is_valid(uid) && uid != getuid()) {
2483 r = fd_add_uid_acl_permission(fd, uid, ACL_READ);
2484 if (r < 0) {
2485 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2486 return r;
2487
2488 if (!ownership_ok) /* Ideally we use ACLs, since we can neatly express what we want
2489 * to express: that the user gets read access and nothing
2490 * else. But if the backing fs can't support that (e.g. ramfs)
2491 * then we can use file ownership instead. But that's only safe if
2492 * we can then re-mount the whole thing read-only, so that the
2493 * user can no longer chmod() the file to gain write access. */
2494 return r;
2495
2496 if (fchown(fd, uid, (gid_t) -1) < 0)
2497 return -errno;
2498 }
2499 }
2500
2501 if (renameat(dfd, tmp, dfd, id) < 0)
2502 return -errno;
2503
2504 tmp = mfree(tmp);
2505 return 0;
2506 }
2507
2508 #define CREDENTIALS_BYTES_MAX (1024LU * 1024LU) /* Refuse to pass more than 1M, after all this is unswappable memory */
2509
2510 static int acquire_credentials(
2511 const ExecContext *context,
2512 const ExecParameters *params,
2513 const char *unit,
2514 const char *p,
2515 uid_t uid,
2516 bool ownership_ok) {
2517
2518 uint64_t left = CREDENTIALS_BYTES_MAX;
2519 _cleanup_close_ int dfd = -1;
2520 ExecSetCredential *sc;
2521 char **id, **fn;
2522 int r;
2523
2524 assert(context);
2525 assert(p);
2526
2527 dfd = open(p, O_DIRECTORY|O_CLOEXEC);
2528 if (dfd < 0)
2529 return -errno;
2530
2531 /* First we use the literally specified credentials. Note that they might be overridden again below,
2532 * and thus act as a "default" if the same credential is specified multiple times */
2533 HASHMAP_FOREACH(sc, context->set_credentials) {
2534 size_t add;
2535
2536 add = strlen(sc->id) + sc->size;
2537 if (add > left)
2538 return -E2BIG;
2539
2540 r = write_credential(dfd, sc->id, sc->data, sc->size, uid, ownership_ok);
2541 if (r < 0)
2542 return r;
2543
2544 left -= add;
2545 }
2546
2547 /* Then, load credential off disk (or acquire via AF_UNIX socket) */
2548 STRV_FOREACH_PAIR(id, fn, context->load_credentials) {
2549 ReadFullFileFlags flags = READ_FULL_FILE_SECURE;
2550 _cleanup_(erase_and_freep) char *data = NULL;
2551 _cleanup_free_ char *j = NULL, *bindname = NULL;
2552 const char *source;
2553 size_t size, add;
2554
2555 if (path_is_absolute(*fn)) {
2556 /* If this is an absolute path, read the data directly from it, and support AF_UNIX sockets */
2557 source = *fn;
2558 flags |= READ_FULL_FILE_CONNECT_SOCKET;
2559
2560 /* Pass some minimal info about the unit and the credential name we are looking to acquire
2561 * via the source socket address in case we read off an AF_UNIX socket. */
2562 if (asprintf(&bindname, "@%" PRIx64"/unit/%s/%s", random_u64(), unit, *id) < 0)
2563 return -ENOMEM;
2564
2565 } else if (params->received_credentials) {
2566 /* If this is a relative path, take it relative to the credentials we received
2567 * ourselves. We don't support the AF_UNIX stuff in this mode, since we are operating
2568 * on a credential store, i.e. this is guaranteed to be regular files. */
2569 j = path_join(params->received_credentials, *fn);
2570 if (!j)
2571 return -ENOMEM;
2572
2573 source = j;
2574 } else
2575 source = NULL;
2576
2577
2578 if (source)
2579 r = read_full_file_full(AT_FDCWD, source, UINT64_MAX, SIZE_MAX, flags, bindname, &data, &size);
2580 else
2581 r = -ENOENT;
2582 if (r == -ENOENT &&
2583 faccessat(dfd, *id, F_OK, AT_SYMLINK_NOFOLLOW) >= 0) /* If the source file doesn't exist, but we already acquired the key otherwise, then don't fail */
2584 continue;
2585 if (r < 0)
2586 return r;
2587
2588 add = strlen(*id) + size;
2589 if (add > left)
2590 return -E2BIG;
2591
2592 r = write_credential(dfd, *id, data, size, uid, ownership_ok);
2593 if (r < 0)
2594 return r;
2595
2596 left -= add;
2597 }
2598
2599 if (fchmod(dfd, 0500) < 0) /* Now take away the "w" bit */
2600 return -errno;
2601
2602 /* After we created all keys with the right perms, also make sure the credential store as a whole is
2603 * accessible */
2604
2605 if (uid_is_valid(uid) && uid != getuid()) {
2606 r = fd_add_uid_acl_permission(dfd, uid, ACL_READ | ACL_EXECUTE);
2607 if (r < 0) {
2608 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2609 return r;
2610
2611 if (!ownership_ok)
2612 return r;
2613
2614 if (fchown(dfd, uid, (gid_t) -1) < 0)
2615 return -errno;
2616 }
2617 }
2618
2619 return 0;
2620 }
2621
2622 static int setup_credentials_internal(
2623 const ExecContext *context,
2624 const ExecParameters *params,
2625 const char *unit,
2626 const char *final, /* This is where the credential store shall eventually end up at */
2627 const char *workspace, /* This is where we can prepare it before moving it to the final place */
2628 bool reuse_workspace, /* Whether to reuse any existing workspace mount if it already is a mount */
2629 bool must_mount, /* Whether to require that we mount something, it's not OK to use the plain directory fall back */
2630 uid_t uid) {
2631
2632 int r, workspace_mounted; /* negative if we don't know yet whether we have/can mount something; true
2633 * if we mounted something; false if we definitely can't mount anything */
2634 bool final_mounted;
2635 const char *where;
2636
2637 assert(context);
2638 assert(final);
2639 assert(workspace);
2640
2641 if (reuse_workspace) {
2642 r = path_is_mount_point(workspace, NULL, 0);
2643 if (r < 0)
2644 return r;
2645 if (r > 0)
2646 workspace_mounted = true; /* If this is already a mount, and we are supposed to reuse it, let's keep this in mind */
2647 else
2648 workspace_mounted = -1; /* We need to figure out if we can mount something to the workspace */
2649 } else
2650 workspace_mounted = -1; /* ditto */
2651
2652 r = path_is_mount_point(final, NULL, 0);
2653 if (r < 0)
2654 return r;
2655 if (r > 0) {
2656 /* If the final place already has something mounted, we use that. If the workspace also has
2657 * something mounted we assume it's actually the same mount (but with MS_RDONLY
2658 * different). */
2659 final_mounted = true;
2660
2661 if (workspace_mounted < 0) {
2662 /* If the final place is mounted, but the workspace we isn't, then let's bind mount
2663 * the final version to the workspace, and make it writable, so that we can make
2664 * changes */
2665
2666 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
2667 if (r < 0)
2668 return r;
2669
2670 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2671 if (r < 0)
2672 return r;
2673
2674 workspace_mounted = true;
2675 }
2676 } else
2677 final_mounted = false;
2678
2679 if (workspace_mounted < 0) {
2680 /* Nothing is mounted on the workspace yet, let's try to mount something now */
2681 for (int try = 0;; try++) {
2682
2683 if (try == 0) {
2684 /* Try "ramfs" first, since it's not swap backed */
2685 r = mount_nofollow_verbose(LOG_DEBUG, "ramfs", workspace, "ramfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, "mode=0700");
2686 if (r >= 0) {
2687 workspace_mounted = true;
2688 break;
2689 }
2690
2691 } else if (try == 1) {
2692 _cleanup_free_ char *opts = NULL;
2693
2694 if (asprintf(&opts, "mode=0700,nr_inodes=1024,size=%lu", CREDENTIALS_BYTES_MAX) < 0)
2695 return -ENOMEM;
2696
2697 /* Fall back to "tmpfs" otherwise */
2698 r = mount_nofollow_verbose(LOG_DEBUG, "tmpfs", workspace, "tmpfs", MS_NODEV|MS_NOEXEC|MS_NOSUID, opts);
2699 if (r >= 0) {
2700 workspace_mounted = true;
2701 break;
2702 }
2703
2704 } else {
2705 /* If that didn't work, try to make a bind mount from the final to the workspace, so that we can make it writable there. */
2706 r = mount_nofollow_verbose(LOG_DEBUG, final, workspace, NULL, MS_BIND|MS_REC, NULL);
2707 if (r < 0) {
2708 if (!ERRNO_IS_PRIVILEGE(r)) /* Propagate anything that isn't a permission problem */
2709 return r;
2710
2711 if (must_mount) /* If we it's not OK to use the plain directory
2712 * fallback, propagate all errors too */
2713 return r;
2714
2715 /* If we lack privileges to bind mount stuff, then let's gracefully
2716 * proceed for compat with container envs, and just use the final dir
2717 * as is. */
2718
2719 workspace_mounted = false;
2720 break;
2721 }
2722
2723 /* Make the new bind mount writable (i.e. drop MS_RDONLY) */
2724 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2725 if (r < 0)
2726 return r;
2727
2728 workspace_mounted = true;
2729 break;
2730 }
2731 }
2732 }
2733
2734 assert(!must_mount || workspace_mounted > 0);
2735 where = workspace_mounted ? workspace : final;
2736
2737 r = acquire_credentials(context, params, unit, where, uid, workspace_mounted);
2738 if (r < 0)
2739 return r;
2740
2741 if (workspace_mounted) {
2742 /* Make workspace read-only now, so that any bind mount we make from it defaults to read-only too */
2743 r = mount_nofollow_verbose(LOG_DEBUG, NULL, workspace, NULL, MS_BIND|MS_REMOUNT|MS_RDONLY|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL);
2744 if (r < 0)
2745 return r;
2746
2747 /* And mount it to the final place, read-only */
2748 if (final_mounted)
2749 r = umount_verbose(LOG_DEBUG, workspace, MNT_DETACH|UMOUNT_NOFOLLOW);
2750 else
2751 r = mount_nofollow_verbose(LOG_DEBUG, workspace, final, NULL, MS_MOVE, NULL);
2752 if (r < 0)
2753 return r;
2754 } else {
2755 _cleanup_free_ char *parent = NULL;
2756
2757 /* If we do not have our own mount put used the plain directory fallback, then we need to
2758 * open access to the top-level credential directory and the per-service directory now */
2759
2760 parent = dirname_malloc(final);
2761 if (!parent)
2762 return -ENOMEM;
2763 if (chmod(parent, 0755) < 0)
2764 return -errno;
2765 }
2766
2767 return 0;
2768 }
2769
2770 static int setup_credentials(
2771 const ExecContext *context,
2772 const ExecParameters *params,
2773 const char *unit,
2774 uid_t uid) {
2775
2776 _cleanup_free_ char *p = NULL, *q = NULL;
2777 const char *i;
2778 int r;
2779
2780 assert(context);
2781 assert(params);
2782
2783 if (!exec_context_has_credentials(context))
2784 return 0;
2785
2786 if (!params->prefix[EXEC_DIRECTORY_RUNTIME])
2787 return -EINVAL;
2788
2789 /* This where we'll place stuff when we are done; this main credentials directory is world-readable,
2790 * and the subdir we mount over with a read-only file system readable by the service's user */
2791 q = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials");
2792 if (!q)
2793 return -ENOMEM;
2794
2795 r = mkdir_label(q, 0755); /* top-level dir: world readable/searchable */
2796 if (r < 0 && r != -EEXIST)
2797 return r;
2798
2799 p = path_join(q, unit);
2800 if (!p)
2801 return -ENOMEM;
2802
2803 r = mkdir_label(p, 0700); /* per-unit dir: private to user */
2804 if (r < 0 && r != -EEXIST)
2805 return r;
2806
2807 r = safe_fork("(sd-mkdcreds)", FORK_DEATHSIG|FORK_WAIT|FORK_NEW_MOUNTNS, NULL);
2808 if (r < 0) {
2809 _cleanup_free_ char *t = NULL, *u = NULL;
2810
2811 /* If this is not a privilege or support issue then propagate the error */
2812 if (!ERRNO_IS_NOT_SUPPORTED(r) && !ERRNO_IS_PRIVILEGE(r))
2813 return r;
2814
2815 /* Temporary workspace, that remains inaccessible all the time. We prepare stuff there before moving
2816 * it into place, so that users can't access half-initialized credential stores. */
2817 t = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/temporary-credentials");
2818 if (!t)
2819 return -ENOMEM;
2820
2821 /* We can't set up a mount namespace. In that case operate on a fixed, inaccessible per-unit
2822 * directory outside of /run/credentials/ first, and then move it over to /run/credentials/
2823 * after it is fully set up */
2824 u = path_join(t, unit);
2825 if (!u)
2826 return -ENOMEM;
2827
2828 FOREACH_STRING(i, t, u) {
2829 r = mkdir_label(i, 0700);
2830 if (r < 0 && r != -EEXIST)
2831 return r;
2832 }
2833
2834 r = setup_credentials_internal(
2835 context,
2836 params,
2837 unit,
2838 p, /* final mount point */
2839 u, /* temporary workspace to overmount */
2840 true, /* reuse the workspace if it is already a mount */
2841 false, /* it's OK to fall back to a plain directory if we can't mount anything */
2842 uid);
2843
2844 (void) rmdir(u); /* remove the workspace again if we can. */
2845
2846 if (r < 0)
2847 return r;
2848
2849 } else if (r == 0) {
2850
2851 /* We managed to set up a mount namespace, and are now in a child. That's great. In this case
2852 * we can use the same directory for all cases, after turning off propagation. Question
2853 * though is: where do we turn off propagation exactly, and where do we place the workspace
2854 * directory? We need some place that is guaranteed to be a mount point in the host, and
2855 * which is guaranteed to have a subdir we can mount over. /run/ is not suitable for this,
2856 * since we ultimately want to move the resulting file system there, i.e. we need propagation
2857 * for /run/ eventually. We could use our own /run/systemd/bind mount on itself, but that
2858 * would be visible in the host mount table all the time, which we want to avoid. Hence, what
2859 * we do here instead we use /dev/ and /dev/shm/ for our purposes. We know for sure that
2860 * /dev/ is a mount point and we now for sure that /dev/shm/ exists. Hence we can turn off
2861 * propagation on the former, and then overmount the latter.
2862 *
2863 * Yes it's nasty playing games with /dev/ and /dev/shm/ like this, since it does not exist
2864 * for this purpose, but there are few other candidates that work equally well for us, and
2865 * given that the we do this in a privately namespaced short-lived single-threaded process
2866 * that no one else sees this should be OK to do.*/
2867
2868 r = mount_nofollow_verbose(LOG_DEBUG, NULL, "/dev", NULL, MS_SLAVE|MS_REC, NULL); /* Turn off propagation from our namespace to host */
2869 if (r < 0)
2870 goto child_fail;
2871
2872 r = setup_credentials_internal(
2873 context,
2874 params,
2875 unit,
2876 p, /* final mount point */
2877 "/dev/shm", /* temporary workspace to overmount */
2878 false, /* do not reuse /dev/shm if it is already a mount, under no circumstances */
2879 true, /* insist that something is mounted, do not allow fallback to plain directory */
2880 uid);
2881 if (r < 0)
2882 goto child_fail;
2883
2884 _exit(EXIT_SUCCESS);
2885
2886 child_fail:
2887 _exit(EXIT_FAILURE);
2888 }
2889
2890 return 0;
2891 }
2892
2893 #if ENABLE_SMACK
2894 static int setup_smack(
2895 const ExecContext *context,
2896 const char *executable) {
2897 int r;
2898
2899 assert(context);
2900 assert(executable);
2901
2902 if (context->smack_process_label) {
2903 r = mac_smack_apply_pid(0, context->smack_process_label);
2904 if (r < 0)
2905 return r;
2906 }
2907 #ifdef SMACK_DEFAULT_PROCESS_LABEL
2908 else {
2909 _cleanup_free_ char *exec_label = NULL;
2910
2911 r = mac_smack_read(executable, SMACK_ATTR_EXEC, &exec_label);
2912 if (r < 0 && !IN_SET(r, -ENODATA, -EOPNOTSUPP))
2913 return r;
2914
2915 r = mac_smack_apply_pid(0, exec_label ? : SMACK_DEFAULT_PROCESS_LABEL);
2916 if (r < 0)
2917 return r;
2918 }
2919 #endif
2920
2921 return 0;
2922 }
2923 #endif
2924
2925 static int compile_bind_mounts(
2926 const ExecContext *context,
2927 const ExecParameters *params,
2928 BindMount **ret_bind_mounts,
2929 size_t *ret_n_bind_mounts,
2930 char ***ret_empty_directories) {
2931
2932 _cleanup_strv_free_ char **empty_directories = NULL;
2933 BindMount *bind_mounts;
2934 size_t n, h = 0;
2935 int r;
2936
2937 assert(context);
2938 assert(params);
2939 assert(ret_bind_mounts);
2940 assert(ret_n_bind_mounts);
2941 assert(ret_empty_directories);
2942
2943 n = context->n_bind_mounts;
2944 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2945 if (!params->prefix[t])
2946 continue;
2947
2948 n += strv_length(context->directories[t].paths);
2949 }
2950
2951 if (n <= 0) {
2952 *ret_bind_mounts = NULL;
2953 *ret_n_bind_mounts = 0;
2954 *ret_empty_directories = NULL;
2955 return 0;
2956 }
2957
2958 bind_mounts = new(BindMount, n);
2959 if (!bind_mounts)
2960 return -ENOMEM;
2961
2962 for (size_t i = 0; i < context->n_bind_mounts; i++) {
2963 BindMount *item = context->bind_mounts + i;
2964 char *s, *d;
2965
2966 s = strdup(item->source);
2967 if (!s) {
2968 r = -ENOMEM;
2969 goto finish;
2970 }
2971
2972 d = strdup(item->destination);
2973 if (!d) {
2974 free(s);
2975 r = -ENOMEM;
2976 goto finish;
2977 }
2978
2979 bind_mounts[h++] = (BindMount) {
2980 .source = s,
2981 .destination = d,
2982 .read_only = item->read_only,
2983 .recursive = item->recursive,
2984 .ignore_enoent = item->ignore_enoent,
2985 };
2986 }
2987
2988 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2989 char **suffix;
2990
2991 if (!params->prefix[t])
2992 continue;
2993
2994 if (strv_isempty(context->directories[t].paths))
2995 continue;
2996
2997 if (exec_directory_is_private(context, t) &&
2998 !exec_context_with_rootfs(context)) {
2999 char *private_root;
3000
3001 /* So this is for a dynamic user, and we need to make sure the process can access its own
3002 * directory. For that we overmount the usually inaccessible "private" subdirectory with a
3003 * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
3004
3005 private_root = path_join(params->prefix[t], "private");
3006 if (!private_root) {
3007 r = -ENOMEM;
3008 goto finish;
3009 }
3010
3011 r = strv_consume(&empty_directories, private_root);
3012 if (r < 0)
3013 goto finish;
3014 }
3015
3016 STRV_FOREACH(suffix, context->directories[t].paths) {
3017 char *s, *d;
3018
3019 if (exec_directory_is_private(context, t))
3020 s = path_join(params->prefix[t], "private", *suffix);
3021 else
3022 s = path_join(params->prefix[t], *suffix);
3023 if (!s) {
3024 r = -ENOMEM;
3025 goto finish;
3026 }
3027
3028 if (exec_directory_is_private(context, t) &&
3029 exec_context_with_rootfs(context))
3030 /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
3031 * directory is not created on the root directory. So, let's bind-mount the directory
3032 * on the 'non-private' place. */
3033 d = path_join(params->prefix[t], *suffix);
3034 else
3035 d = strdup(s);
3036 if (!d) {
3037 free(s);
3038 r = -ENOMEM;
3039 goto finish;
3040 }
3041
3042 bind_mounts[h++] = (BindMount) {
3043 .source = s,
3044 .destination = d,
3045 .read_only = false,
3046 .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
3047 .recursive = true,
3048 .ignore_enoent = false,
3049 };
3050 }
3051 }
3052
3053 assert(h == n);
3054
3055 *ret_bind_mounts = bind_mounts;
3056 *ret_n_bind_mounts = n;
3057 *ret_empty_directories = TAKE_PTR(empty_directories);
3058
3059 return (int) n;
3060
3061 finish:
3062 bind_mount_free_many(bind_mounts, h);
3063 return r;
3064 }
3065
3066 static bool insist_on_sandboxing(
3067 const ExecContext *context,
3068 const char *root_dir,
3069 const char *root_image,
3070 const BindMount *bind_mounts,
3071 size_t n_bind_mounts) {
3072
3073 assert(context);
3074 assert(n_bind_mounts == 0 || bind_mounts);
3075
3076 /* Checks whether we need to insist on fs namespacing. i.e. whether we have settings configured that
3077 * would alter the view on the file system beyond making things read-only or invisible, i.e. would
3078 * rearrange stuff in a way we cannot ignore gracefully. */
3079
3080 if (context->n_temporary_filesystems > 0)
3081 return true;
3082
3083 if (root_dir || root_image)
3084 return true;
3085
3086 if (context->n_mount_images > 0)
3087 return true;
3088
3089 if (context->dynamic_user)
3090 return true;
3091
3092 /* If there are any bind mounts set that don't map back onto themselves, fs namespacing becomes
3093 * essential. */
3094 for (size_t i = 0; i < n_bind_mounts; i++)
3095 if (!path_equal(bind_mounts[i].source, bind_mounts[i].destination))
3096 return true;
3097
3098 if (context->log_namespace)
3099 return true;
3100
3101 return false;
3102 }
3103
3104 static int apply_mount_namespace(
3105 const Unit *u,
3106 ExecCommandFlags command_flags,
3107 const ExecContext *context,
3108 const ExecParameters *params,
3109 const ExecRuntime *runtime,
3110 char **error_path) {
3111
3112 _cleanup_strv_free_ char **empty_directories = NULL;
3113 const char *tmp_dir = NULL, *var_tmp_dir = NULL;
3114 const char *root_dir = NULL, *root_image = NULL;
3115 _cleanup_free_ char *creds_path = NULL;
3116 NamespaceInfo ns_info;
3117 bool needs_sandboxing;
3118 BindMount *bind_mounts = NULL;
3119 size_t n_bind_mounts = 0;
3120 int r;
3121
3122 assert(context);
3123
3124 if (params->flags & EXEC_APPLY_CHROOT) {
3125 root_image = context->root_image;
3126
3127 if (!root_image)
3128 root_dir = context->root_directory;
3129 }
3130
3131 r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
3132 if (r < 0)
3133 return r;
3134
3135 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command_flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3136 if (needs_sandboxing) {
3137 /* The runtime struct only contains the parent of the private /tmp,
3138 * which is non-accessible to world users. Inside of it there's a /tmp
3139 * that is sticky, and that's the one we want to use here.
3140 * This does not apply when we are using /run/systemd/empty as fallback. */
3141
3142 if (context->private_tmp && runtime) {
3143 if (streq_ptr(runtime->tmp_dir, RUN_SYSTEMD_EMPTY))
3144 tmp_dir = runtime->tmp_dir;
3145 else if (runtime->tmp_dir)
3146 tmp_dir = strjoina(runtime->tmp_dir, "/tmp");
3147
3148 if (streq_ptr(runtime->var_tmp_dir, RUN_SYSTEMD_EMPTY))
3149 var_tmp_dir = runtime->var_tmp_dir;
3150 else if (runtime->var_tmp_dir)
3151 var_tmp_dir = strjoina(runtime->var_tmp_dir, "/tmp");
3152 }
3153
3154 ns_info = (NamespaceInfo) {
3155 .ignore_protect_paths = false,
3156 .private_dev = context->private_devices,
3157 .protect_control_groups = context->protect_control_groups,
3158 .protect_kernel_tunables = context->protect_kernel_tunables,
3159 .protect_kernel_modules = context->protect_kernel_modules,
3160 .protect_kernel_logs = context->protect_kernel_logs,
3161 .protect_hostname = context->protect_hostname,
3162 .mount_apivfs = exec_context_get_effective_mount_apivfs(context),
3163 .private_mounts = context->private_mounts,
3164 .protect_home = context->protect_home,
3165 .protect_system = context->protect_system,
3166 .protect_proc = context->protect_proc,
3167 .proc_subset = context->proc_subset,
3168 };
3169 } else if (!context->dynamic_user && root_dir)
3170 /*
3171 * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
3172 * sandbox info, otherwise enforce it, don't ignore protected paths and
3173 * fail if we are enable to apply the sandbox inside the mount namespace.
3174 */
3175 ns_info = (NamespaceInfo) {
3176 .ignore_protect_paths = true,
3177 };
3178 else
3179 ns_info = (NamespaceInfo) {};
3180
3181 if (context->mount_flags == MS_SHARED)
3182 log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
3183
3184 if (exec_context_has_credentials(context) && params->prefix[EXEC_DIRECTORY_RUNTIME]) {
3185 creds_path = path_join(params->prefix[EXEC_DIRECTORY_RUNTIME], "credentials", u->id);
3186 if (!creds_path) {
3187 r = -ENOMEM;
3188 goto finalize;
3189 }
3190 }
3191
3192 r = setup_namespace(root_dir, root_image, context->root_image_options,
3193 &ns_info, context->read_write_paths,
3194 needs_sandboxing ? context->read_only_paths : NULL,
3195 needs_sandboxing ? context->inaccessible_paths : NULL,
3196 empty_directories,
3197 bind_mounts,
3198 n_bind_mounts,
3199 context->temporary_filesystems,
3200 context->n_temporary_filesystems,
3201 context->mount_images,
3202 context->n_mount_images,
3203 tmp_dir,
3204 var_tmp_dir,
3205 creds_path,
3206 context->log_namespace,
3207 context->mount_flags,
3208 context->root_hash, context->root_hash_size, context->root_hash_path,
3209 context->root_hash_sig, context->root_hash_sig_size, context->root_hash_sig_path,
3210 context->root_verity,
3211 DISSECT_IMAGE_DISCARD_ON_LOOP|DISSECT_IMAGE_RELAX_VAR_CHECK|DISSECT_IMAGE_FSCK,
3212 error_path);
3213
3214 /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
3215 * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
3216 * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
3217 * completely different execution environment. */
3218 if (r == -ENOANO) {
3219 if (insist_on_sandboxing(
3220 context,
3221 root_dir, root_image,
3222 bind_mounts,
3223 n_bind_mounts)) {
3224 log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
3225 "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
3226 n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
3227
3228 r = -EOPNOTSUPP;
3229 } else {
3230 log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
3231 r = 0;
3232 }
3233 }
3234
3235 finalize:
3236 bind_mount_free_many(bind_mounts, n_bind_mounts);
3237 return r;
3238 }
3239
3240 static int apply_working_directory(
3241 const ExecContext *context,
3242 const ExecParameters *params,
3243 const char *home,
3244 int *exit_status) {
3245
3246 const char *d, *wd;
3247
3248 assert(context);
3249 assert(exit_status);
3250
3251 if (context->working_directory_home) {
3252
3253 if (!home) {
3254 *exit_status = EXIT_CHDIR;
3255 return -ENXIO;
3256 }
3257
3258 wd = home;
3259
3260 } else
3261 wd = empty_to_root(context->working_directory);
3262
3263 if (params->flags & EXEC_APPLY_CHROOT)
3264 d = wd;
3265 else
3266 d = prefix_roota(context->root_directory, wd);
3267
3268 if (chdir(d) < 0 && !context->working_directory_missing_ok) {
3269 *exit_status = EXIT_CHDIR;
3270 return -errno;
3271 }
3272
3273 return 0;
3274 }
3275
3276 static int apply_root_directory(
3277 const ExecContext *context,
3278 const ExecParameters *params,
3279 const bool needs_mount_ns,
3280 int *exit_status) {
3281
3282 assert(context);
3283 assert(exit_status);
3284
3285 if (params->flags & EXEC_APPLY_CHROOT)
3286 if (!needs_mount_ns && context->root_directory)
3287 if (chroot(context->root_directory) < 0) {
3288 *exit_status = EXIT_CHROOT;
3289 return -errno;
3290 }
3291
3292 return 0;
3293 }
3294
3295 static int setup_keyring(
3296 const Unit *u,
3297 const ExecContext *context,
3298 const ExecParameters *p,
3299 uid_t uid, gid_t gid) {
3300
3301 key_serial_t keyring;
3302 int r = 0;
3303 uid_t saved_uid;
3304 gid_t saved_gid;
3305
3306 assert(u);
3307 assert(context);
3308 assert(p);
3309
3310 /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
3311 * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
3312 * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
3313 * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
3314 * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
3315 * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
3316
3317 if (context->keyring_mode == EXEC_KEYRING_INHERIT)
3318 return 0;
3319
3320 /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
3321 * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
3322 * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
3323 * & group is just as nasty as acquiring a reference to the user keyring. */
3324
3325 saved_uid = getuid();
3326 saved_gid = getgid();
3327
3328 if (gid_is_valid(gid) && gid != saved_gid) {
3329 if (setregid(gid, -1) < 0)
3330 return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
3331 }
3332
3333 if (uid_is_valid(uid) && uid != saved_uid) {
3334 if (setreuid(uid, -1) < 0) {
3335 r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
3336 goto out;
3337 }
3338 }
3339
3340 keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
3341 if (keyring == -1) {
3342 if (errno == ENOSYS)
3343 log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
3344 else if (ERRNO_IS_PRIVILEGE(errno))
3345 log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
3346 else if (errno == EDQUOT)
3347 log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
3348 else
3349 r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
3350
3351 goto out;
3352 }
3353
3354 /* When requested link the user keyring into the session keyring. */
3355 if (context->keyring_mode == EXEC_KEYRING_SHARED) {
3356
3357 if (keyctl(KEYCTL_LINK,
3358 KEY_SPEC_USER_KEYRING,
3359 KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
3360 r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
3361 goto out;
3362 }
3363 }
3364
3365 /* Restore uid/gid back */
3366 if (uid_is_valid(uid) && uid != saved_uid) {
3367 if (setreuid(saved_uid, -1) < 0) {
3368 r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
3369 goto out;
3370 }
3371 }
3372
3373 if (gid_is_valid(gid) && gid != saved_gid) {
3374 if (setregid(saved_gid, -1) < 0)
3375 return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
3376 }
3377
3378 /* Populate they keyring with the invocation ID by default, as original saved_uid. */
3379 if (!sd_id128_is_null(u->invocation_id)) {
3380 key_serial_t key;
3381
3382 key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
3383 if (key == -1)
3384 log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
3385 else {
3386 if (keyctl(KEYCTL_SETPERM, key,
3387 KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
3388 KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
3389 r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
3390 }
3391 }
3392
3393 out:
3394 /* Revert back uid & gid for the last time, and exit */
3395 /* no extra logging, as only the first already reported error matters */
3396 if (getuid() != saved_uid)
3397 (void) setreuid(saved_uid, -1);
3398
3399 if (getgid() != saved_gid)
3400 (void) setregid(saved_gid, -1);
3401
3402 return r;
3403 }
3404
3405 static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
3406 assert(array);
3407 assert(n);
3408 assert(pair);
3409
3410 if (pair[0] >= 0)
3411 array[(*n)++] = pair[0];
3412 if (pair[1] >= 0)
3413 array[(*n)++] = pair[1];
3414 }
3415
3416 static int close_remaining_fds(
3417 const ExecParameters *params,
3418 const ExecRuntime *runtime,
3419 const DynamicCreds *dcreds,
3420 int user_lookup_fd,
3421 int socket_fd,
3422 int exec_fd,
3423 const int *fds, size_t n_fds) {
3424
3425 size_t n_dont_close = 0;
3426 int dont_close[n_fds + 12];
3427
3428 assert(params);
3429
3430 if (params->stdin_fd >= 0)
3431 dont_close[n_dont_close++] = params->stdin_fd;
3432 if (params->stdout_fd >= 0)
3433 dont_close[n_dont_close++] = params->stdout_fd;
3434 if (params->stderr_fd >= 0)
3435 dont_close[n_dont_close++] = params->stderr_fd;
3436
3437 if (socket_fd >= 0)
3438 dont_close[n_dont_close++] = socket_fd;
3439 if (exec_fd >= 0)
3440 dont_close[n_dont_close++] = exec_fd;
3441 if (n_fds > 0) {
3442 memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
3443 n_dont_close += n_fds;
3444 }
3445
3446 if (runtime)
3447 append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
3448
3449 if (dcreds) {
3450 if (dcreds->user)
3451 append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
3452 if (dcreds->group)
3453 append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
3454 }
3455
3456 if (user_lookup_fd >= 0)
3457 dont_close[n_dont_close++] = user_lookup_fd;
3458
3459 return close_all_fds(dont_close, n_dont_close);
3460 }
3461
3462 static int send_user_lookup(
3463 Unit *unit,
3464 int user_lookup_fd,
3465 uid_t uid,
3466 gid_t gid) {
3467
3468 assert(unit);
3469
3470 /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
3471 * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
3472 * specified. */
3473
3474 if (user_lookup_fd < 0)
3475 return 0;
3476
3477 if (!uid_is_valid(uid) && !gid_is_valid(gid))
3478 return 0;
3479
3480 if (writev(user_lookup_fd,
3481 (struct iovec[]) {
3482 IOVEC_INIT(&uid, sizeof(uid)),
3483 IOVEC_INIT(&gid, sizeof(gid)),
3484 IOVEC_INIT_STRING(unit->id) }, 3) < 0)
3485 return -errno;
3486
3487 return 0;
3488 }
3489
3490 static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
3491 int r;
3492
3493 assert(c);
3494 assert(home);
3495 assert(buf);
3496
3497 /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
3498
3499 if (*home)
3500 return 0;
3501
3502 if (!c->working_directory_home)
3503 return 0;
3504
3505 r = get_home_dir(buf);
3506 if (r < 0)
3507 return r;
3508
3509 *home = *buf;
3510 return 1;
3511 }
3512
3513 static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
3514 _cleanup_strv_free_ char ** list = NULL;
3515 int r;
3516
3517 assert(c);
3518 assert(p);
3519 assert(ret);
3520
3521 assert(c->dynamic_user);
3522
3523 /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
3524 * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
3525 * directories. */
3526
3527 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
3528 char **i;
3529
3530 if (t == EXEC_DIRECTORY_CONFIGURATION)
3531 continue;
3532
3533 if (!p->prefix[t])
3534 continue;
3535
3536 STRV_FOREACH(i, c->directories[t].paths) {
3537 char *e;
3538
3539 if (exec_directory_is_private(c, t))
3540 e = path_join(p->prefix[t], "private", *i);
3541 else
3542 e = path_join(p->prefix[t], *i);
3543 if (!e)
3544 return -ENOMEM;
3545
3546 r = strv_consume(&list, e);
3547 if (r < 0)
3548 return r;
3549 }
3550 }
3551
3552 *ret = TAKE_PTR(list);
3553
3554 return 0;
3555 }
3556
3557 static char *exec_command_line(char **argv);
3558
3559 static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
3560 bool using_subcgroup;
3561 char *p;
3562
3563 assert(params);
3564 assert(ret);
3565
3566 if (!params->cgroup_path)
3567 return -EINVAL;
3568
3569 /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
3570 * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
3571 * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
3572 * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
3573 * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
3574 * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
3575 * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
3576 * flag, which is only passed for the former statements, not for the latter. */
3577
3578 using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
3579 if (using_subcgroup)
3580 p = path_join(params->cgroup_path, ".control");
3581 else
3582 p = strdup(params->cgroup_path);
3583 if (!p)
3584 return -ENOMEM;
3585
3586 *ret = p;
3587 return using_subcgroup;
3588 }
3589
3590 static int exec_context_cpu_affinity_from_numa(const ExecContext *c, CPUSet *ret) {
3591 _cleanup_(cpu_set_reset) CPUSet s = {};
3592 int r;
3593
3594 assert(c);
3595 assert(ret);
3596
3597 if (!c->numa_policy.nodes.set) {
3598 log_debug("Can't derive CPU affinity mask from NUMA mask because NUMA mask is not set, ignoring");
3599 return 0;
3600 }
3601
3602 r = numa_to_cpu_set(&c->numa_policy, &s);
3603 if (r < 0)
3604 return r;
3605
3606 cpu_set_reset(ret);
3607
3608 return cpu_set_add_all(ret, &s);
3609 }
3610
3611 bool exec_context_get_cpu_affinity_from_numa(const ExecContext *c) {
3612 assert(c);
3613
3614 return c->cpu_affinity_from_numa;
3615 }
3616
3617 static int exec_child(
3618 Unit *unit,
3619 const ExecCommand *command,
3620 const ExecContext *context,
3621 const ExecParameters *params,
3622 ExecRuntime *runtime,
3623 DynamicCreds *dcreds,
3624 int socket_fd,
3625 const int named_iofds[static 3],
3626 int *fds,
3627 size_t n_socket_fds,
3628 size_t n_storage_fds,
3629 char **files_env,
3630 int user_lookup_fd,
3631 int *exit_status) {
3632
3633 _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **accum_env = NULL, **replaced_argv = NULL;
3634 int *fds_with_exec_fd, n_fds_with_exec_fd, r, ngids = 0, exec_fd = -1;
3635 _cleanup_free_ gid_t *supplementary_gids = NULL;
3636 const char *username = NULL, *groupname = NULL;
3637 _cleanup_free_ char *home_buffer = NULL;
3638 const char *home = NULL, *shell = NULL;
3639 char **final_argv = NULL;
3640 dev_t journal_stream_dev = 0;
3641 ino_t journal_stream_ino = 0;
3642 bool userns_set_up = false;
3643 bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
3644 needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
3645 needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
3646 needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
3647 #if HAVE_SELINUX
3648 _cleanup_free_ char *mac_selinux_context_net = NULL;
3649 bool use_selinux = false;
3650 #endif
3651 #if ENABLE_SMACK
3652 bool use_smack = false;
3653 #endif
3654 #if HAVE_APPARMOR
3655 bool use_apparmor = false;
3656 #endif
3657 uid_t saved_uid = getuid();
3658 gid_t saved_gid = getgid();
3659 uid_t uid = UID_INVALID;
3660 gid_t gid = GID_INVALID;
3661 size_t n_fds;
3662 int secure_bits;
3663 _cleanup_free_ gid_t *gids_after_pam = NULL;
3664 int ngids_after_pam = 0;
3665
3666 assert(unit);
3667 assert(command);
3668 assert(context);
3669 assert(params);
3670 assert(exit_status);
3671
3672 rename_process_from_path(command->path);
3673
3674 /* We reset exactly these signals, since they are the
3675 * only ones we set to SIG_IGN in the main daemon. All
3676 * others we leave untouched because we set them to
3677 * SIG_DFL or a valid handler initially, both of which
3678 * will be demoted to SIG_DFL. */
3679 (void) default_signals(SIGNALS_CRASH_HANDLER,
3680 SIGNALS_IGNORE, -1);
3681
3682 if (context->ignore_sigpipe)
3683 (void) ignore_signals(SIGPIPE, -1);
3684
3685 r = reset_signal_mask();
3686 if (r < 0) {
3687 *exit_status = EXIT_SIGNAL_MASK;
3688 return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
3689 }
3690
3691 if (params->idle_pipe)
3692 do_idle_pipe_dance(params->idle_pipe);
3693
3694 /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
3695 * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
3696 * any fds open we don't really want open during the transition. In order to make logging work, we switch the
3697 * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
3698
3699 log_forget_fds();
3700 log_set_open_when_needed(true);
3701
3702 /* In case anything used libc syslog(), close this here, too */
3703 closelog();
3704
3705 n_fds = n_socket_fds + n_storage_fds;
3706 r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, params->exec_fd, fds, n_fds);
3707 if (r < 0) {
3708 *exit_status = EXIT_FDS;
3709 return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
3710 }
3711
3712 if (!context->same_pgrp &&
3713 setsid() < 0) {
3714 *exit_status = EXIT_SETSID;
3715 return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
3716 }
3717
3718 exec_context_tty_reset(context, params);
3719
3720 if (unit_shall_confirm_spawn(unit)) {
3721 const char *vc = params->confirm_spawn;
3722 _cleanup_free_ char *cmdline = NULL;
3723
3724 cmdline = exec_command_line(command->argv);
3725 if (!cmdline) {
3726 *exit_status = EXIT_MEMORY;
3727 return log_oom();
3728 }
3729
3730 r = ask_for_confirmation(vc, unit, cmdline);
3731 if (r != CONFIRM_EXECUTE) {
3732 if (r == CONFIRM_PRETEND_SUCCESS) {
3733 *exit_status = EXIT_SUCCESS;
3734 return 0;
3735 }
3736 *exit_status = EXIT_CONFIRM;
3737 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ECANCELED),
3738 "Execution cancelled by the user");
3739 }
3740 }
3741
3742 /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
3743 * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
3744 * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
3745 * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
3746 * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
3747 if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
3748 setenv("SYSTEMD_ACTIVATION_SCOPE", MANAGER_IS_SYSTEM(unit->manager) ? "system" : "user", true) != 0) {
3749 *exit_status = EXIT_MEMORY;
3750 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3751 }
3752
3753 if (context->dynamic_user && dcreds) {
3754 _cleanup_strv_free_ char **suggested_paths = NULL;
3755
3756 /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
3757 * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here.*/
3758 if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
3759 *exit_status = EXIT_USER;
3760 return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3761 }
3762
3763 r = compile_suggested_paths(context, params, &suggested_paths);
3764 if (r < 0) {
3765 *exit_status = EXIT_MEMORY;
3766 return log_oom();
3767 }
3768
3769 r = dynamic_creds_realize(dcreds, suggested_paths, &uid, &gid);
3770 if (r < 0) {
3771 *exit_status = EXIT_USER;
3772 if (r == -EILSEQ)
3773 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
3774 "Failed to update dynamic user credentials: User or group with specified name already exists.");
3775 return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
3776 }
3777
3778 if (!uid_is_valid(uid)) {
3779 *exit_status = EXIT_USER;
3780 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "UID validation failed for \""UID_FMT"\"", uid);
3781 }
3782
3783 if (!gid_is_valid(gid)) {
3784 *exit_status = EXIT_USER;
3785 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(ESRCH), "GID validation failed for \""GID_FMT"\"", gid);
3786 }
3787
3788 if (dcreds->user)
3789 username = dcreds->user->name;
3790
3791 } else {
3792 r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
3793 if (r < 0) {
3794 *exit_status = EXIT_USER;
3795 return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
3796 }
3797
3798 r = get_fixed_group(context, &groupname, &gid);
3799 if (r < 0) {
3800 *exit_status = EXIT_GROUP;
3801 return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
3802 }
3803 }
3804
3805 /* Initialize user supplementary groups and get SupplementaryGroups= ones */
3806 r = get_supplementary_groups(context, username, groupname, gid,
3807 &supplementary_gids, &ngids);
3808 if (r < 0) {
3809 *exit_status = EXIT_GROUP;
3810 return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
3811 }
3812
3813 r = send_user_lookup(unit, user_lookup_fd, uid, gid);
3814 if (r < 0) {
3815 *exit_status = EXIT_USER;
3816 return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
3817 }
3818
3819 user_lookup_fd = safe_close(user_lookup_fd);
3820
3821 r = acquire_home(context, uid, &home, &home_buffer);
3822 if (r < 0) {
3823 *exit_status = EXIT_CHDIR;
3824 return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
3825 }
3826
3827 /* If a socket is connected to STDIN/STDOUT/STDERR, we
3828 * must sure to drop O_NONBLOCK */
3829 if (socket_fd >= 0)
3830 (void) fd_nonblock(socket_fd, false);
3831
3832 /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
3833 * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
3834 if (params->cgroup_path) {
3835 _cleanup_free_ char *p = NULL;
3836
3837 r = exec_parameters_get_cgroup_path(params, &p);
3838 if (r < 0) {
3839 *exit_status = EXIT_CGROUP;
3840 return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
3841 }
3842
3843 r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
3844 if (r < 0) {
3845 *exit_status = EXIT_CGROUP;
3846 return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
3847 }
3848 }
3849
3850 if (context->network_namespace_path && runtime && runtime->netns_storage_socket[0] >= 0) {
3851 r = open_netns_path(runtime->netns_storage_socket, context->network_namespace_path);
3852 if (r < 0) {
3853 *exit_status = EXIT_NETWORK;
3854 return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
3855 }
3856 }
3857
3858 r = setup_input(context, params, socket_fd, named_iofds);
3859 if (r < 0) {
3860 *exit_status = EXIT_STDIN;
3861 return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
3862 }
3863
3864 r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3865 if (r < 0) {
3866 *exit_status = EXIT_STDOUT;
3867 return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
3868 }
3869
3870 r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3871 if (r < 0) {
3872 *exit_status = EXIT_STDERR;
3873 return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
3874 }
3875
3876 if (context->oom_score_adjust_set) {
3877 /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
3878 * prohibit write access to this file, and we shouldn't trip up over that. */
3879 r = set_oom_score_adjust(context->oom_score_adjust);
3880 if (ERRNO_IS_PRIVILEGE(r))
3881 log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
3882 else if (r < 0) {
3883 *exit_status = EXIT_OOM_ADJUST;
3884 return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
3885 }
3886 }
3887
3888 if (context->coredump_filter_set) {
3889 r = set_coredump_filter(context->coredump_filter);
3890 if (ERRNO_IS_PRIVILEGE(r))
3891 log_unit_debug_errno(unit, r, "Failed to adjust coredump_filter, ignoring: %m");
3892 else if (r < 0)
3893 return log_unit_error_errno(unit, r, "Failed to adjust coredump_filter: %m");
3894 }
3895
3896 if (context->nice_set) {
3897 r = setpriority_closest(context->nice);
3898 if (r < 0)
3899 return log_unit_error_errno(unit, r, "Failed to set up process scheduling priority (nice level): %m");
3900 }
3901
3902 if (context->cpu_sched_set) {
3903 struct sched_param param = {
3904 .sched_priority = context->cpu_sched_priority,
3905 };
3906
3907 r = sched_setscheduler(0,
3908 context->cpu_sched_policy |
3909 (context->cpu_sched_reset_on_fork ?
3910 SCHED_RESET_ON_FORK : 0),
3911 &param);
3912 if (r < 0) {
3913 *exit_status = EXIT_SETSCHEDULER;
3914 return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
3915 }
3916 }
3917
3918 if (context->cpu_affinity_from_numa || context->cpu_set.set) {
3919 _cleanup_(cpu_set_reset) CPUSet converted_cpu_set = {};
3920 const CPUSet *cpu_set;
3921
3922 if (context->cpu_affinity_from_numa) {
3923 r = exec_context_cpu_affinity_from_numa(context, &converted_cpu_set);
3924 if (r < 0) {
3925 *exit_status = EXIT_CPUAFFINITY;
3926 return log_unit_error_errno(unit, r, "Failed to derive CPU affinity mask from NUMA mask: %m");
3927 }
3928
3929 cpu_set = &converted_cpu_set;
3930 } else
3931 cpu_set = &context->cpu_set;
3932
3933 if (sched_setaffinity(0, cpu_set->allocated, cpu_set->set) < 0) {
3934 *exit_status = EXIT_CPUAFFINITY;
3935 return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
3936 }
3937 }
3938
3939 if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
3940 r = apply_numa_policy(&context->numa_policy);
3941 if (r == -EOPNOTSUPP)
3942 log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
3943 else if (r < 0) {
3944 *exit_status = EXIT_NUMA_POLICY;
3945 return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
3946 }
3947 }
3948
3949 if (context->ioprio_set)
3950 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
3951 *exit_status = EXIT_IOPRIO;
3952 return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
3953 }
3954
3955 if (context->timer_slack_nsec != NSEC_INFINITY)
3956 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
3957 *exit_status = EXIT_TIMERSLACK;
3958 return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
3959 }
3960
3961 if (context->personality != PERSONALITY_INVALID) {
3962 r = safe_personality(context->personality);
3963 if (r < 0) {
3964 *exit_status = EXIT_PERSONALITY;
3965 return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
3966 }
3967 }
3968
3969 if (context->utmp_id)
3970 utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
3971 context->tty_path,
3972 context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
3973 context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
3974 USER_PROCESS,
3975 username);
3976
3977 if (uid_is_valid(uid)) {
3978 r = chown_terminal(STDIN_FILENO, uid);
3979 if (r < 0) {
3980 *exit_status = EXIT_STDIN;
3981 return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
3982 }
3983 }
3984
3985 /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
3986 * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
3987 * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
3988 * touch a single hierarchy too. */
3989 if (params->cgroup_path && context->user && (params->flags & EXEC_CGROUP_DELEGATE)) {
3990 r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
3991 if (r < 0) {
3992 *exit_status = EXIT_CGROUP;
3993 return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
3994 }
3995 }
3996
3997 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3998 r = setup_exec_directory(context, params, uid, gid, dt, exit_status);
3999 if (r < 0)
4000 return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
4001 }
4002
4003 if (FLAGS_SET(params->flags, EXEC_WRITE_CREDENTIALS)) {
4004 r = setup_credentials(context, params, unit->id, uid);
4005 if (r < 0) {
4006 *exit_status = EXIT_CREDENTIALS;
4007 return log_unit_error_errno(unit, r, "Failed to set up credentials: %m");
4008 }
4009 }
4010
4011 r = build_environment(
4012 unit,
4013 context,
4014 params,
4015 n_fds,
4016 home,
4017 username,
4018 shell,
4019 journal_stream_dev,
4020 journal_stream_ino,
4021 &our_env);
4022 if (r < 0) {
4023 *exit_status = EXIT_MEMORY;
4024 return log_oom();
4025 }
4026
4027 r = build_pass_environment(context, &pass_env);
4028 if (r < 0) {
4029 *exit_status = EXIT_MEMORY;
4030 return log_oom();
4031 }
4032
4033 accum_env = strv_env_merge(5,
4034 params->environment,
4035 our_env,
4036 pass_env,
4037 context->environment,
4038 files_env);
4039 if (!accum_env) {
4040 *exit_status = EXIT_MEMORY;
4041 return log_oom();
4042 }
4043 accum_env = strv_env_clean(accum_env);
4044
4045 (void) umask(context->umask);
4046
4047 r = setup_keyring(unit, context, params, uid, gid);
4048 if (r < 0) {
4049 *exit_status = EXIT_KEYRING;
4050 return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
4051 }
4052
4053 /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted from it */
4054 needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
4055
4056 /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked for it, and the kernel doesn't actually support ambient caps */
4057 needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
4058
4059 /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not desired */
4060 if (needs_ambient_hack)
4061 needs_setuid = false;
4062 else
4063 needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
4064
4065 if (needs_sandboxing) {
4066 /* MAC enablement checks need to be done before a new mount ns is created, as they rely on /sys being
4067 * present. The actual MAC context application will happen later, as late as possible, to avoid
4068 * impacting our own code paths. */
4069
4070 #if HAVE_SELINUX
4071 use_selinux = mac_selinux_use();
4072 #endif
4073 #if ENABLE_SMACK
4074 use_smack = mac_smack_use();
4075 #endif
4076 #if HAVE_APPARMOR
4077 use_apparmor = mac_apparmor_use();
4078 #endif
4079 }
4080
4081 if (needs_sandboxing) {
4082 int which_failed;
4083
4084 /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
4085 * is set here. (See below.) */
4086
4087 r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
4088 if (r < 0) {
4089 *exit_status = EXIT_LIMITS;
4090 return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
4091 }
4092 }
4093
4094 if (needs_setuid && context->pam_name && username) {
4095 /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
4096 * wins here. (See above.) */
4097
4098 r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
4099 if (r < 0) {
4100 *exit_status = EXIT_PAM;
4101 return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
4102 }
4103
4104 ngids_after_pam = getgroups_alloc(&gids_after_pam);
4105 if (ngids_after_pam < 0) {
4106 *exit_status = EXIT_MEMORY;
4107 return log_unit_error_errno(unit, ngids_after_pam, "Failed to obtain groups after setting up PAM: %m");
4108 }
4109 }
4110
4111 if (needs_sandboxing && context->private_users && !have_effective_cap(CAP_SYS_ADMIN)) {
4112 /* If we're unprivileged, set up the user namespace first to enable use of the other namespaces.
4113 * Users with CAP_SYS_ADMIN can set up user namespaces last because they will be able to
4114 * set up the all of the other namespaces (i.e. network, mount, UTS) without a user namespace. */
4115
4116 userns_set_up = true;
4117 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4118 if (r < 0) {
4119 *exit_status = EXIT_USER;
4120 return log_unit_error_errno(unit, r, "Failed to set up user namespacing for unprivileged user: %m");
4121 }
4122 }
4123
4124 if ((context->private_network || context->network_namespace_path) && runtime && runtime->netns_storage_socket[0] >= 0) {
4125
4126 if (ns_type_supported(NAMESPACE_NET)) {
4127 r = setup_netns(runtime->netns_storage_socket);
4128 if (r == -EPERM)
4129 log_unit_warning_errno(unit, r,
4130 "PrivateNetwork=yes is configured, but network namespace setup failed, ignoring: %m");
4131 else if (r < 0) {
4132 *exit_status = EXIT_NETWORK;
4133 return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
4134 }
4135 } else if (context->network_namespace_path) {
4136 *exit_status = EXIT_NETWORK;
4137 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP),
4138 "NetworkNamespacePath= is not supported, refusing.");
4139 } else
4140 log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
4141 }
4142
4143 needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
4144 if (needs_mount_namespace) {
4145 _cleanup_free_ char *error_path = NULL;
4146
4147 r = apply_mount_namespace(unit, command->flags, context, params, runtime, &error_path);
4148 if (r < 0) {
4149 *exit_status = EXIT_NAMESPACE;
4150 return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
4151 error_path ? ": " : "", strempty(error_path));
4152 }
4153 }
4154
4155 if (needs_sandboxing) {
4156 r = apply_protect_hostname(unit, context, exit_status);
4157 if (r < 0)
4158 return r;
4159 }
4160
4161 /* Drop groups as early as possible.
4162 * This needs to be done after PrivateDevices=y setup as device nodes should be owned by the host's root.
4163 * For non-root in a userns, devices will be owned by the user/group before the group change, and nobody. */
4164 if (needs_setuid) {
4165 _cleanup_free_ gid_t *gids_to_enforce = NULL;
4166 int ngids_to_enforce = 0;
4167
4168 ngids_to_enforce = merge_gid_lists(supplementary_gids,
4169 ngids,
4170 gids_after_pam,
4171 ngids_after_pam,
4172 &gids_to_enforce);
4173 if (ngids_to_enforce < 0) {
4174 *exit_status = EXIT_MEMORY;
4175 return log_unit_error_errno(unit,
4176 ngids_to_enforce,
4177 "Failed to merge group lists. Group membership might be incorrect: %m");
4178 }
4179
4180 r = enforce_groups(gid, gids_to_enforce, ngids_to_enforce);
4181 if (r < 0) {
4182 *exit_status = EXIT_GROUP;
4183 return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
4184 }
4185 }
4186
4187 /* If the user namespace was not set up above, try to do it now.
4188 * It's preferred to set up the user namespace later (after all other namespaces) so as not to be
4189 * restricted by rules pertaining to combining user namspaces with other namespaces (e.g. in the
4190 * case of mount namespaces being less privileged when the mount point list is copied from a
4191 * different user namespace). */
4192
4193 if (needs_sandboxing && context->private_users && !userns_set_up) {
4194 r = setup_private_users(saved_uid, saved_gid, uid, gid);
4195 if (r < 0) {
4196 *exit_status = EXIT_USER;
4197 return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
4198 }
4199 }
4200
4201 /* Now that the mount namespace has been set up and privileges adjusted, let's look for the thing we
4202 * shall execute. */
4203
4204 _cleanup_free_ char *executable = NULL;
4205 r = find_executable_full(command->path, false, &executable);
4206 if (r < 0) {
4207 if (r != -ENOMEM && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
4208 log_struct_errno(LOG_INFO, r,
4209 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4210 LOG_UNIT_ID(unit),
4211 LOG_UNIT_INVOCATION_ID(unit),
4212 LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
4213 command->path),
4214 "EXECUTABLE=%s", command->path);
4215 return 0;
4216 }
4217
4218 *exit_status = EXIT_EXEC;
4219 return log_struct_errno(LOG_INFO, r,
4220 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4221 LOG_UNIT_ID(unit),
4222 LOG_UNIT_INVOCATION_ID(unit),
4223 LOG_UNIT_MESSAGE(unit, "Failed to locate executable %s: %m",
4224 command->path),
4225 "EXECUTABLE=%s", command->path);
4226 }
4227
4228 #if HAVE_SELINUX
4229 if (needs_sandboxing && use_selinux && params->selinux_context_net && socket_fd >= 0) {
4230 r = mac_selinux_get_child_mls_label(socket_fd, executable, context->selinux_context, &mac_selinux_context_net);
4231 if (r < 0) {
4232 *exit_status = EXIT_SELINUX_CONTEXT;
4233 return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
4234 }
4235 }
4236 #endif
4237
4238 /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that we are
4239 * more aggressive this time since socket_fd and the netns fds we don't need anymore. We do keep the exec_fd
4240 * however if we have it as we want to keep it open until the final execve(). */
4241
4242 if (params->exec_fd >= 0) {
4243 exec_fd = params->exec_fd;
4244
4245 if (exec_fd < 3 + (int) n_fds) {
4246 int moved_fd;
4247
4248 /* Let's move the exec fd far up, so that it's outside of the fd range we want to pass to the
4249 * process we are about to execute. */
4250
4251 moved_fd = fcntl(exec_fd, F_DUPFD_CLOEXEC, 3 + (int) n_fds);
4252 if (moved_fd < 0) {
4253 *exit_status = EXIT_FDS;
4254 return log_unit_error_errno(unit, errno, "Couldn't move exec fd up: %m");
4255 }
4256
4257 CLOSE_AND_REPLACE(exec_fd, moved_fd);
4258 } else {
4259 /* This fd should be FD_CLOEXEC already, but let's make sure. */
4260 r = fd_cloexec(exec_fd, true);
4261 if (r < 0) {
4262 *exit_status = EXIT_FDS;
4263 return log_unit_error_errno(unit, r, "Failed to make exec fd FD_CLOEXEC: %m");
4264 }
4265 }
4266
4267 fds_with_exec_fd = newa(int, n_fds + 1);
4268 memcpy_safe(fds_with_exec_fd, fds, n_fds * sizeof(int));
4269 fds_with_exec_fd[n_fds] = exec_fd;
4270 n_fds_with_exec_fd = n_fds + 1;
4271 } else {
4272 fds_with_exec_fd = fds;
4273 n_fds_with_exec_fd = n_fds;
4274 }
4275
4276 r = close_all_fds(fds_with_exec_fd, n_fds_with_exec_fd);
4277 if (r >= 0)
4278 r = shift_fds(fds, n_fds);
4279 if (r >= 0)
4280 r = flags_fds(fds, n_socket_fds, n_storage_fds, context->non_blocking);
4281 if (r < 0) {
4282 *exit_status = EXIT_FDS;
4283 return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
4284 }
4285
4286 /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
4287 * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
4288 * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
4289 * came this far. */
4290
4291 secure_bits = context->secure_bits;
4292
4293 if (needs_sandboxing) {
4294 uint64_t bset;
4295
4296 /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly
4297 * requested. (Note this is placed after the general resource limit initialization, see
4298 * above, in order to take precedence.) */
4299 if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
4300 if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
4301 *exit_status = EXIT_LIMITS;
4302 return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
4303 }
4304 }
4305
4306 #if ENABLE_SMACK
4307 /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
4308 * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
4309 if (use_smack) {
4310 r = setup_smack(context, executable);
4311 if (r < 0) {
4312 *exit_status = EXIT_SMACK_PROCESS_LABEL;
4313 return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
4314 }
4315 }
4316 #endif
4317
4318 bset = context->capability_bounding_set;
4319 /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
4320 * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
4321 * instead of us doing that */
4322 if (needs_ambient_hack)
4323 bset |= (UINT64_C(1) << CAP_SETPCAP) |
4324 (UINT64_C(1) << CAP_SETUID) |
4325 (UINT64_C(1) << CAP_SETGID);
4326
4327 if (!cap_test_all(bset)) {
4328 r = capability_bounding_set_drop(bset, false);
4329 if (r < 0) {
4330 *exit_status = EXIT_CAPABILITIES;
4331 return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
4332 }
4333 }
4334
4335 /* Ambient capabilities are cleared during setresuid() (in enforce_user()) even with
4336 * keep-caps set.
4337 * To be able to raise the ambient capabilities after setresuid() they have to be
4338 * added to the inherited set and keep caps has to be set (done in enforce_user()).
4339 * After setresuid() the ambient capabilities can be raised as they are present in
4340 * the permitted and inhertiable set. However it is possible that someone wants to
4341 * set ambient capabilities without changing the user, so we also set the ambient
4342 * capabilities here.
4343 * The requested ambient capabilities are raised in the inheritable set if the
4344 * second argument is true. */
4345 if (!needs_ambient_hack) {
4346 r = capability_ambient_set_apply(context->capability_ambient_set, true);
4347 if (r < 0) {
4348 *exit_status = EXIT_CAPABILITIES;
4349 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
4350 }
4351 }
4352 }
4353
4354 /* chroot to root directory first, before we lose the ability to chroot */
4355 r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
4356 if (r < 0)
4357 return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
4358
4359 if (needs_setuid) {
4360 if (uid_is_valid(uid)) {
4361 r = enforce_user(context, uid);
4362 if (r < 0) {
4363 *exit_status = EXIT_USER;
4364 return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
4365 }
4366
4367 if (!needs_ambient_hack &&
4368 context->capability_ambient_set != 0) {
4369
4370 /* Raise the ambient capabilities after user change. */
4371 r = capability_ambient_set_apply(context->capability_ambient_set, false);
4372 if (r < 0) {
4373 *exit_status = EXIT_CAPABILITIES;
4374 return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
4375 }
4376 }
4377 }
4378 }
4379
4380 /* Apply working directory here, because the working directory might be on NFS and only the user running
4381 * this service might have the correct privilege to change to the working directory */
4382 r = apply_working_directory(context, params, home, exit_status);
4383 if (r < 0)
4384 return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
4385
4386 if (needs_sandboxing) {
4387 /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
4388 * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
4389 * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
4390 * are restricted. */
4391
4392 #if HAVE_SELINUX
4393 if (use_selinux) {
4394 char *exec_context = mac_selinux_context_net ?: context->selinux_context;
4395
4396 if (exec_context) {
4397 r = setexeccon(exec_context);
4398 if (r < 0) {
4399 *exit_status = EXIT_SELINUX_CONTEXT;
4400 return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
4401 }
4402 }
4403 }
4404 #endif
4405
4406 #if HAVE_APPARMOR
4407 if (use_apparmor && context->apparmor_profile) {
4408 r = aa_change_onexec(context->apparmor_profile);
4409 if (r < 0 && !context->apparmor_profile_ignore) {
4410 *exit_status = EXIT_APPARMOR_PROFILE;
4411 return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
4412 }
4413 }
4414 #endif
4415
4416 /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential EPERMs
4417 * we'll try not to call PR_SET_SECUREBITS unless necessary. Setting securebits requires
4418 * CAP_SETPCAP. */
4419 if (prctl(PR_GET_SECUREBITS) != secure_bits) {
4420 /* CAP_SETPCAP is required to set securebits. This capability is raised into the
4421 * effective set here.
4422 * The effective set is overwritten during execve with the following values:
4423 * - ambient set (for non-root processes)
4424 * - (inheritable | bounding) set for root processes)
4425 *
4426 * Hence there is no security impact to raise it in the effective set before execve
4427 */
4428 r = capability_gain_cap_setpcap(NULL);
4429 if (r < 0) {
4430 *exit_status = EXIT_CAPABILITIES;
4431 return log_unit_error_errno(unit, r, "Failed to gain CAP_SETPCAP for setting secure bits");
4432 }
4433 if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
4434 *exit_status = EXIT_SECUREBITS;
4435 return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
4436 }
4437 }
4438
4439 if (context_has_no_new_privileges(context))
4440 if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
4441 *exit_status = EXIT_NO_NEW_PRIVILEGES;
4442 return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
4443 }
4444
4445 #if HAVE_SECCOMP
4446 r = apply_address_families(unit, context);
4447 if (r < 0) {
4448 *exit_status = EXIT_ADDRESS_FAMILIES;
4449 return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
4450 }
4451
4452 r = apply_memory_deny_write_execute(unit, context);
4453 if (r < 0) {
4454 *exit_status = EXIT_SECCOMP;
4455 return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
4456 }
4457
4458 r = apply_restrict_realtime(unit, context);
4459 if (r < 0) {
4460 *exit_status = EXIT_SECCOMP;
4461 return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
4462 }
4463
4464 r = apply_restrict_suid_sgid(unit, context);
4465 if (r < 0) {
4466 *exit_status = EXIT_SECCOMP;
4467 return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
4468 }
4469
4470 r = apply_restrict_namespaces(unit, context);
4471 if (r < 0) {
4472 *exit_status = EXIT_SECCOMP;
4473 return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
4474 }
4475
4476 r = apply_protect_sysctl(unit, context);
4477 if (r < 0) {
4478 *exit_status = EXIT_SECCOMP;
4479 return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
4480 }
4481
4482 r = apply_protect_kernel_modules(unit, context);
4483 if (r < 0) {
4484 *exit_status = EXIT_SECCOMP;
4485 return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
4486 }
4487
4488 r = apply_protect_kernel_logs(unit, context);
4489 if (r < 0) {
4490 *exit_status = EXIT_SECCOMP;
4491 return log_unit_error_errno(unit, r, "Failed to apply kernel log restrictions: %m");
4492 }
4493
4494 r = apply_protect_clock(unit, context);
4495 if (r < 0) {
4496 *exit_status = EXIT_SECCOMP;
4497 return log_unit_error_errno(unit, r, "Failed to apply clock restrictions: %m");
4498 }
4499
4500 r = apply_private_devices(unit, context);
4501 if (r < 0) {
4502 *exit_status = EXIT_SECCOMP;
4503 return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
4504 }
4505
4506 r = apply_syscall_archs(unit, context);
4507 if (r < 0) {
4508 *exit_status = EXIT_SECCOMP;
4509 return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
4510 }
4511
4512 r = apply_lock_personality(unit, context);
4513 if (r < 0) {
4514 *exit_status = EXIT_SECCOMP;
4515 return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
4516 }
4517
4518 r = apply_syscall_log(unit, context);
4519 if (r < 0) {
4520 *exit_status = EXIT_SECCOMP;
4521 return log_unit_error_errno(unit, r, "Failed to apply system call log filters: %m");
4522 }
4523
4524 /* This really should remain the last step before the execve(), to make sure our own code is unaffected
4525 * by the filter as little as possible. */
4526 r = apply_syscall_filter(unit, context, needs_ambient_hack);
4527 if (r < 0) {
4528 *exit_status = EXIT_SECCOMP;
4529 return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
4530 }
4531 #endif
4532 }
4533
4534 if (!strv_isempty(context->unset_environment)) {
4535 char **ee = NULL;
4536
4537 ee = strv_env_delete(accum_env, 1, context->unset_environment);
4538 if (!ee) {
4539 *exit_status = EXIT_MEMORY;
4540 return log_oom();
4541 }
4542
4543 strv_free_and_replace(accum_env, ee);
4544 }
4545
4546 if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
4547 replaced_argv = replace_env_argv(command->argv, accum_env);
4548 if (!replaced_argv) {
4549 *exit_status = EXIT_MEMORY;
4550 return log_oom();
4551 }
4552 final_argv = replaced_argv;
4553 } else
4554 final_argv = command->argv;
4555
4556 if (DEBUG_LOGGING) {
4557 _cleanup_free_ char *line;
4558
4559 line = exec_command_line(final_argv);
4560 if (line)
4561 log_struct(LOG_DEBUG,
4562 "EXECUTABLE=%s", executable,
4563 LOG_UNIT_MESSAGE(unit, "Executing: %s", line),
4564 LOG_UNIT_ID(unit),
4565 LOG_UNIT_INVOCATION_ID(unit));
4566 }
4567
4568 if (exec_fd >= 0) {
4569 uint8_t hot = 1;
4570
4571 /* We have finished with all our initializations. Let's now let the manager know that. From this point
4572 * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
4573
4574 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
4575 *exit_status = EXIT_EXEC;
4576 return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
4577 }
4578 }
4579
4580 execve(executable, final_argv, accum_env);
4581 r = -errno;
4582
4583 if (exec_fd >= 0) {
4584 uint8_t hot = 0;
4585
4586 /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
4587 * that POLLHUP on it no longer means execve() succeeded. */
4588
4589 if (write(exec_fd, &hot, sizeof(hot)) < 0) {
4590 *exit_status = EXIT_EXEC;
4591 return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
4592 }
4593 }
4594
4595 *exit_status = EXIT_EXEC;
4596 return log_unit_error_errno(unit, r, "Failed to execute %s: %m", executable);
4597 }
4598
4599 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
4600 static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
4601
4602 int exec_spawn(Unit *unit,
4603 ExecCommand *command,
4604 const ExecContext *context,
4605 const ExecParameters *params,
4606 ExecRuntime *runtime,
4607 DynamicCreds *dcreds,
4608 pid_t *ret) {
4609
4610 int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
4611 _cleanup_free_ char *subcgroup_path = NULL;
4612 _cleanup_strv_free_ char **files_env = NULL;
4613 size_t n_storage_fds = 0, n_socket_fds = 0;
4614 _cleanup_free_ char *line = NULL;
4615 pid_t pid;
4616
4617 assert(unit);
4618 assert(command);
4619 assert(context);
4620 assert(ret);
4621 assert(params);
4622 assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
4623
4624 if (context->std_input == EXEC_INPUT_SOCKET ||
4625 context->std_output == EXEC_OUTPUT_SOCKET ||
4626 context->std_error == EXEC_OUTPUT_SOCKET) {
4627
4628 if (params->n_socket_fds > 1)
4629 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got more than one socket.");
4630
4631 if (params->n_socket_fds == 0)
4632 return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EINVAL), "Got no socket.");
4633
4634 socket_fd = params->fds[0];
4635 } else {
4636 socket_fd = -1;
4637 fds = params->fds;
4638 n_socket_fds = params->n_socket_fds;
4639 n_storage_fds = params->n_storage_fds;
4640 }
4641
4642 r = exec_context_named_iofds(context, params, named_iofds);
4643 if (r < 0)
4644 return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
4645
4646 r = exec_context_load_environment(unit, context, &files_env);
4647 if (r < 0)
4648 return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
4649
4650 line = exec_command_line(command->argv);
4651 if (!line)
4652 return log_oom();
4653
4654 /* Fork with up-to-date SELinux label database, so the child inherits the up-to-date db
4655 and, until the next SELinux policy changes, we save further reloads in future children. */
4656 mac_selinux_maybe_reload();
4657
4658 log_struct(LOG_DEBUG,
4659 LOG_UNIT_MESSAGE(unit, "About to execute %s", line),
4660 "EXECUTABLE=%s", command->path, /* We won't know the real executable path until we create
4661 the mount namespace in the child, but we want to log
4662 from the parent, so we need to use the (possibly
4663 inaccurate) path here. */
4664 LOG_UNIT_ID(unit),
4665 LOG_UNIT_INVOCATION_ID(unit));
4666
4667 if (params->cgroup_path) {
4668 r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
4669 if (r < 0)
4670 return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
4671 if (r > 0) { /* We are using a child cgroup */
4672 r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
4673 if (r < 0)
4674 return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
4675 }
4676 }
4677
4678 pid = fork();
4679 if (pid < 0)
4680 return log_unit_error_errno(unit, errno, "Failed to fork: %m");
4681
4682 if (pid == 0) {
4683 int exit_status = EXIT_SUCCESS;
4684
4685 r = exec_child(unit,
4686 command,
4687 context,
4688 params,
4689 runtime,
4690 dcreds,
4691 socket_fd,
4692 named_iofds,
4693 fds,
4694 n_socket_fds,
4695 n_storage_fds,
4696 files_env,
4697 unit->manager->user_lookup_fds[1],
4698 &exit_status);
4699
4700 if (r < 0) {
4701 const char *status =
4702 exit_status_to_string(exit_status,
4703 EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
4704
4705 log_struct_errno(LOG_ERR, r,
4706 "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
4707 LOG_UNIT_ID(unit),
4708 LOG_UNIT_INVOCATION_ID(unit),
4709 LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
4710 status, command->path),
4711 "EXECUTABLE=%s", command->path);
4712 }
4713
4714 _exit(exit_status);
4715 }
4716
4717 log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
4718
4719 /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
4720 * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
4721 * process will be killed too). */
4722 if (subcgroup_path)
4723 (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
4724
4725 exec_status_start(&command->exec_status, pid);
4726
4727 *ret = pid;
4728 return 0;
4729 }
4730
4731 void exec_context_init(ExecContext *c) {
4732 assert(c);
4733
4734 c->umask = 0022;
4735 c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
4736 c->cpu_sched_policy = SCHED_OTHER;
4737 c->syslog_priority = LOG_DAEMON|LOG_INFO;
4738 c->syslog_level_prefix = true;
4739 c->ignore_sigpipe = true;
4740 c->timer_slack_nsec = NSEC_INFINITY;
4741 c->personality = PERSONALITY_INVALID;
4742 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
4743 c->directories[t].mode = 0755;
4744 c->timeout_clean_usec = USEC_INFINITY;
4745 c->capability_bounding_set = CAP_ALL;
4746 assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
4747 c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
4748 c->log_level_max = -1;
4749 #if HAVE_SECCOMP
4750 c->syscall_errno = SECCOMP_ERROR_NUMBER_KILL;
4751 #endif
4752 numa_policy_reset(&c->numa_policy);
4753 }
4754
4755 void exec_context_done(ExecContext *c) {
4756 assert(c);
4757
4758 c->environment = strv_free(c->environment);
4759 c->environment_files = strv_free(c->environment_files);
4760 c->pass_environment = strv_free(c->pass_environment);
4761 c->unset_environment = strv_free(c->unset_environment);
4762
4763 rlimit_free_all(c->rlimit);
4764
4765 for (size_t l = 0; l < 3; l++) {
4766 c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
4767 c->stdio_file[l] = mfree(c->stdio_file[l]);
4768 }
4769
4770 c->working_directory = mfree(c->working_directory);
4771 c->root_directory = mfree(c->root_directory);
4772 c->root_image = mfree(c->root_image);
4773 c->root_image_options = mount_options_free_all(c->root_image_options);
4774 c->root_hash = mfree(c->root_hash);
4775 c->root_hash_size = 0;
4776 c->root_hash_path = mfree(c->root_hash_path);
4777 c->root_hash_sig = mfree(c->root_hash_sig);
4778 c->root_hash_sig_size = 0;
4779 c->root_hash_sig_path = mfree(c->root_hash_sig_path);
4780 c->root_verity = mfree(c->root_verity);
4781 c->tty_path = mfree(c->tty_path);
4782 c->syslog_identifier = mfree(c->syslog_identifier);
4783 c->user = mfree(c->user);
4784 c->group = mfree(c->group);
4785
4786 c->supplementary_groups = strv_free(c->supplementary_groups);
4787
4788 c->pam_name = mfree(c->pam_name);
4789
4790 c->read_only_paths = strv_free(c->read_only_paths);
4791 c->read_write_paths = strv_free(c->read_write_paths);
4792 c->inaccessible_paths = strv_free(c->inaccessible_paths);
4793
4794 bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
4795 c->bind_mounts = NULL;
4796 c->n_bind_mounts = 0;
4797 temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
4798 c->temporary_filesystems = NULL;
4799 c->n_temporary_filesystems = 0;
4800 c->mount_images = mount_image_free_many(c->mount_images, &c->n_mount_images);
4801
4802 cpu_set_reset(&c->cpu_set);
4803 numa_policy_reset(&c->numa_policy);
4804
4805 c->utmp_id = mfree(c->utmp_id);
4806 c->selinux_context = mfree(c->selinux_context);
4807 c->apparmor_profile = mfree(c->apparmor_profile);
4808 c->smack_process_label = mfree(c->smack_process_label);
4809
4810 c->syscall_filter = hashmap_free(c->syscall_filter);
4811 c->syscall_archs = set_free(c->syscall_archs);
4812 c->address_families = set_free(c->address_families);
4813
4814 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
4815 c->directories[t].paths = strv_free(c->directories[t].paths);
4816
4817 c->log_level_max = -1;
4818
4819 exec_context_free_log_extra_fields(c);
4820
4821 c->log_ratelimit_interval_usec = 0;
4822 c->log_ratelimit_burst = 0;
4823
4824 c->stdin_data = mfree(c->stdin_data);
4825 c->stdin_data_size = 0;
4826
4827 c->network_namespace_path = mfree(c->network_namespace_path);
4828
4829 c->log_namespace = mfree(c->log_namespace);
4830
4831 c->load_credentials = strv_free(c->load_credentials);
4832 c->set_credentials = hashmap_free(c->set_credentials);
4833 }
4834
4835 int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
4836 char **i;
4837
4838 assert(c);
4839
4840 if (!runtime_prefix)
4841 return 0;
4842
4843 STRV_FOREACH(i, c->directories[EXEC_DIRECTORY_RUNTIME].paths) {
4844 _cleanup_free_ char *p;
4845
4846 if (exec_directory_is_private(c, EXEC_DIRECTORY_RUNTIME))
4847 p = path_join(runtime_prefix, "private", *i);
4848 else
4849 p = path_join(runtime_prefix, *i);
4850 if (!p)
4851 return -ENOMEM;
4852
4853 /* We execute this synchronously, since we need to be sure this is gone when we start the
4854 * service next. */
4855 (void) rm_rf(p, REMOVE_ROOT);
4856 }
4857
4858 return 0;
4859 }
4860
4861 int exec_context_destroy_credentials(const ExecContext *c, const char *runtime_prefix, const char *unit) {
4862 _cleanup_free_ char *p = NULL;
4863
4864 assert(c);
4865
4866 if (!runtime_prefix || !unit)
4867 return 0;
4868
4869 p = path_join(runtime_prefix, "credentials", unit);
4870 if (!p)
4871 return -ENOMEM;
4872
4873 /* This is either a tmpfs/ramfs of its own, or a plain directory. Either way, let's first try to
4874 * unmount it, and afterwards remove the mount point */
4875 (void) umount2(p, MNT_DETACH|UMOUNT_NOFOLLOW);
4876 (void) rm_rf(p, REMOVE_ROOT|REMOVE_CHMOD);
4877
4878 return 0;
4879 }
4880
4881 static void exec_command_done(ExecCommand *c) {
4882 assert(c);
4883
4884 c->path = mfree(c->path);
4885 c->argv = strv_free(c->argv);
4886 }
4887
4888 void exec_command_done_array(ExecCommand *c, size_t n) {
4889 size_t i;
4890
4891 for (i = 0; i < n; i++)
4892 exec_command_done(c+i);
4893 }
4894
4895 ExecCommand* exec_command_free_list(ExecCommand *c) {
4896 ExecCommand *i;
4897
4898 while ((i = c)) {
4899 LIST_REMOVE(command, c, i);
4900 exec_command_done(i);
4901 free(i);
4902 }
4903
4904 return NULL;
4905 }
4906
4907 void exec_command_free_array(ExecCommand **c, size_t n) {
4908 for (size_t i = 0; i < n; i++)
4909 c[i] = exec_command_free_list(c[i]);
4910 }
4911
4912 void exec_command_reset_status_array(ExecCommand *c, size_t n) {
4913 for (size_t i = 0; i < n; i++)
4914 exec_status_reset(&c[i].exec_status);
4915 }
4916
4917 void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
4918 for (size_t i = 0; i < n; i++) {
4919 ExecCommand *z;
4920
4921 LIST_FOREACH(command, z, c[i])
4922 exec_status_reset(&z->exec_status);
4923 }
4924 }
4925
4926 typedef struct InvalidEnvInfo {
4927 const Unit *unit;
4928 const char *path;
4929 } InvalidEnvInfo;
4930
4931 static void invalid_env(const char *p, void *userdata) {
4932 InvalidEnvInfo *info = userdata;
4933
4934 log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
4935 }
4936
4937 const char* exec_context_fdname(const ExecContext *c, int fd_index) {
4938 assert(c);
4939
4940 switch (fd_index) {
4941
4942 case STDIN_FILENO:
4943 if (c->std_input != EXEC_INPUT_NAMED_FD)
4944 return NULL;
4945
4946 return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
4947
4948 case STDOUT_FILENO:
4949 if (c->std_output != EXEC_OUTPUT_NAMED_FD)
4950 return NULL;
4951
4952 return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
4953
4954 case STDERR_FILENO:
4955 if (c->std_error != EXEC_OUTPUT_NAMED_FD)
4956 return NULL;
4957
4958 return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
4959
4960 default:
4961 return NULL;
4962 }
4963 }
4964
4965 static int exec_context_named_iofds(
4966 const ExecContext *c,
4967 const ExecParameters *p,
4968 int named_iofds[static 3]) {
4969
4970 size_t targets;
4971 const char* stdio_fdname[3];
4972 size_t n_fds;
4973
4974 assert(c);
4975 assert(p);
4976 assert(named_iofds);
4977
4978 targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
4979 (c->std_output == EXEC_OUTPUT_NAMED_FD) +
4980 (c->std_error == EXEC_OUTPUT_NAMED_FD);
4981
4982 for (size_t i = 0; i < 3; i++)
4983 stdio_fdname[i] = exec_context_fdname(c, i);
4984
4985 n_fds = p->n_storage_fds + p->n_socket_fds;
4986
4987 for (size_t i = 0; i < n_fds && targets > 0; i++)
4988 if (named_iofds[STDIN_FILENO] < 0 &&
4989 c->std_input == EXEC_INPUT_NAMED_FD &&
4990 stdio_fdname[STDIN_FILENO] &&
4991 streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
4992
4993 named_iofds[STDIN_FILENO] = p->fds[i];
4994 targets--;
4995
4996 } else if (named_iofds[STDOUT_FILENO] < 0 &&
4997 c->std_output == EXEC_OUTPUT_NAMED_FD &&
4998 stdio_fdname[STDOUT_FILENO] &&
4999 streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
5000
5001 named_iofds[STDOUT_FILENO] = p->fds[i];
5002 targets--;
5003
5004 } else if (named_iofds[STDERR_FILENO] < 0 &&
5005 c->std_error == EXEC_OUTPUT_NAMED_FD &&
5006 stdio_fdname[STDERR_FILENO] &&
5007 streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
5008
5009 named_iofds[STDERR_FILENO] = p->fds[i];
5010 targets--;
5011 }
5012
5013 return targets == 0 ? 0 : -ENOENT;
5014 }
5015
5016 static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l) {
5017 char **i, **r = NULL;
5018
5019 assert(c);
5020 assert(l);
5021
5022 STRV_FOREACH(i, c->environment_files) {
5023 char *fn;
5024 int k;
5025 bool ignore = false;
5026 char **p;
5027 _cleanup_globfree_ glob_t pglob = {};
5028
5029 fn = *i;
5030
5031 if (fn[0] == '-') {
5032 ignore = true;
5033 fn++;
5034 }
5035
5036 if (!path_is_absolute(fn)) {
5037 if (ignore)
5038 continue;
5039
5040 strv_free(r);
5041 return -EINVAL;
5042 }
5043
5044 /* Filename supports globbing, take all matching files */
5045 k = safe_glob(fn, 0, &pglob);
5046 if (k < 0) {
5047 if (ignore)
5048 continue;
5049
5050 strv_free(r);
5051 return k;
5052 }
5053
5054 /* When we don't match anything, -ENOENT should be returned */
5055 assert(pglob.gl_pathc > 0);
5056
5057 for (unsigned n = 0; n < pglob.gl_pathc; n++) {
5058 k = load_env_file(NULL, pglob.gl_pathv[n], &p);
5059 if (k < 0) {
5060 if (ignore)
5061 continue;
5062
5063 strv_free(r);
5064 return k;
5065 }
5066 /* Log invalid environment variables with filename */
5067 if (p) {
5068 InvalidEnvInfo info = {
5069 .unit = unit,
5070 .path = pglob.gl_pathv[n]
5071 };
5072
5073 p = strv_env_clean_with_callback(p, invalid_env, &info);
5074 }
5075
5076 if (!r)
5077 r = p;
5078 else {
5079 char **m;
5080
5081 m = strv_env_merge(2, r, p);
5082 strv_free(r);
5083 strv_free(p);
5084 if (!m)
5085 return -ENOMEM;
5086
5087 r = m;
5088 }
5089 }
5090 }
5091
5092 *l = r;
5093
5094 return 0;
5095 }
5096
5097 static bool tty_may_match_dev_console(const char *tty) {
5098 _cleanup_free_ char *resolved = NULL;
5099
5100 if (!tty)
5101 return true;
5102
5103 tty = skip_dev_prefix(tty);
5104
5105 /* trivial identity? */
5106 if (streq(tty, "console"))
5107 return true;
5108
5109 if (resolve_dev_console(&resolved) < 0)
5110 return true; /* if we could not resolve, assume it may */
5111
5112 /* "tty0" means the active VC, so it may be the same sometimes */
5113 return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
5114 }
5115
5116 static bool exec_context_may_touch_tty(const ExecContext *ec) {
5117 assert(ec);
5118
5119 return ec->tty_reset ||
5120 ec->tty_vhangup ||
5121 ec->tty_vt_disallocate ||
5122 is_terminal_input(ec->std_input) ||
5123 is_terminal_output(ec->std_output) ||
5124 is_terminal_output(ec->std_error);
5125 }
5126
5127 bool exec_context_may_touch_console(const ExecContext *ec) {
5128
5129 return exec_context_may_touch_tty(ec) &&
5130 tty_may_match_dev_console(exec_context_tty_path(ec));
5131 }
5132
5133 static void strv_fprintf(FILE *f, char **l) {
5134 char **g;
5135
5136 assert(f);
5137
5138 STRV_FOREACH(g, l)
5139 fprintf(f, " %s", *g);
5140 }
5141
5142 void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
5143 char **e, **d, buf_clean[FORMAT_TIMESPAN_MAX];
5144 int r;
5145
5146 assert(c);
5147 assert(f);
5148
5149 prefix = strempty(prefix);
5150
5151 fprintf(f,
5152 "%sUMask: %04o\n"
5153 "%sWorkingDirectory: %s\n"
5154 "%sRootDirectory: %s\n"
5155 "%sNonBlocking: %s\n"
5156 "%sPrivateTmp: %s\n"
5157 "%sPrivateDevices: %s\n"
5158 "%sProtectKernelTunables: %s\n"
5159 "%sProtectKernelModules: %s\n"
5160 "%sProtectKernelLogs: %s\n"
5161 "%sProtectClock: %s\n"
5162 "%sProtectControlGroups: %s\n"
5163 "%sPrivateNetwork: %s\n"
5164 "%sPrivateUsers: %s\n"
5165 "%sProtectHome: %s\n"
5166 "%sProtectSystem: %s\n"
5167 "%sMountAPIVFS: %s\n"
5168 "%sIgnoreSIGPIPE: %s\n"
5169 "%sMemoryDenyWriteExecute: %s\n"
5170 "%sRestrictRealtime: %s\n"
5171 "%sRestrictSUIDSGID: %s\n"
5172 "%sKeyringMode: %s\n"
5173 "%sProtectHostname: %s\n"
5174 "%sProtectProc: %s\n"
5175 "%sProcSubset: %s\n",
5176 prefix, c->umask,
5177 prefix, empty_to_root(c->working_directory),
5178 prefix, empty_to_root(c->root_directory),
5179 prefix, yes_no(c->non_blocking),
5180 prefix, yes_no(c->private_tmp),
5181 prefix, yes_no(c->private_devices),
5182 prefix, yes_no(c->protect_kernel_tunables),
5183 prefix, yes_no(c->protect_kernel_modules),
5184 prefix, yes_no(c->protect_kernel_logs),
5185 prefix, yes_no(c->protect_clock),
5186 prefix, yes_no(c->protect_control_groups),
5187 prefix, yes_no(c->private_network),
5188 prefix, yes_no(c->private_users),
5189 prefix, protect_home_to_string(c->protect_home),
5190 prefix, protect_system_to_string(c->protect_system),
5191 prefix, yes_no(exec_context_get_effective_mount_apivfs(c)),
5192 prefix, yes_no(c->ignore_sigpipe),
5193 prefix, yes_no(c->memory_deny_write_execute),
5194 prefix, yes_no(c->restrict_realtime),
5195 prefix, yes_no(c->restrict_suid_sgid),
5196 prefix, exec_keyring_mode_to_string(c->keyring_mode),
5197 prefix, yes_no(c->protect_hostname),
5198 prefix, protect_proc_to_string(c->protect_proc),
5199 prefix, proc_subset_to_string(c->proc_subset));
5200
5201 if (c->root_image)
5202 fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
5203
5204 if (c->root_image_options) {
5205 MountOptions *o;
5206
5207 fprintf(f, "%sRootImageOptions:", prefix);
5208 LIST_FOREACH(mount_options, o, c->root_image_options)
5209 if (!isempty(o->options))
5210 fprintf(f, " %s:%s",
5211 partition_designator_to_string(o->partition_designator),
5212 o->options);
5213 fprintf(f, "\n");
5214 }
5215
5216 if (c->root_hash) {
5217 _cleanup_free_ char *encoded = NULL;
5218 encoded = hexmem(c->root_hash, c->root_hash_size);
5219 if (encoded)
5220 fprintf(f, "%sRootHash: %s\n", prefix, encoded);
5221 }
5222
5223 if (c->root_hash_path)
5224 fprintf(f, "%sRootHash: %s\n", prefix, c->root_hash_path);
5225
5226 if (c->root_hash_sig) {
5227 _cleanup_free_ char *encoded = NULL;
5228 ssize_t len;
5229 len = base64mem(c->root_hash_sig, c->root_hash_sig_size, &encoded);
5230 if (len)
5231 fprintf(f, "%sRootHashSignature: base64:%s\n", prefix, encoded);
5232 }
5233
5234 if (c->root_hash_sig_path)
5235 fprintf(f, "%sRootHashSignature: %s\n", prefix, c->root_hash_sig_path);
5236
5237 if (c->root_verity)
5238 fprintf(f, "%sRootVerity: %s\n", prefix, c->root_verity);
5239
5240 STRV_FOREACH(e, c->environment)
5241 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
5242
5243 STRV_FOREACH(e, c->environment_files)
5244 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
5245
5246 STRV_FOREACH(e, c->pass_environment)
5247 fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
5248
5249 STRV_FOREACH(e, c->unset_environment)
5250 fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
5251
5252 fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
5253
5254 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
5255 fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
5256
5257 STRV_FOREACH(d, c->directories[dt].paths)
5258 fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), *d);
5259 }
5260
5261 fprintf(f,
5262 "%sTimeoutCleanSec: %s\n",
5263 prefix, format_timespan(buf_clean, sizeof(buf_clean), c->timeout_clean_usec, USEC_PER_SEC));
5264
5265 if (c->nice_set)
5266 fprintf(f,
5267 "%sNice: %i\n",
5268 prefix, c->nice);
5269
5270 if (c->oom_score_adjust_set)
5271 fprintf(f,
5272 "%sOOMScoreAdjust: %i\n",
5273 prefix, c->oom_score_adjust);
5274
5275 if (c->coredump_filter_set)
5276 fprintf(f,
5277 "%sCoredumpFilter: 0x%"PRIx64"\n",
5278 prefix, c->coredump_filter);
5279
5280 for (unsigned i = 0; i < RLIM_NLIMITS; i++)
5281 if (c->rlimit[i]) {
5282 fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
5283 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
5284 fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
5285 prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
5286 }
5287
5288 if (c->ioprio_set) {
5289 _cleanup_free_ char *class_str = NULL;
5290
5291 r = ioprio_class_to_string_alloc(IOPRIO_PRIO_CLASS(c->ioprio), &class_str);
5292 if (r >= 0)
5293 fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
5294
5295 fprintf(f, "%sIOPriority: %lu\n", prefix, IOPRIO_PRIO_DATA(c->ioprio));
5296 }
5297
5298 if (c->cpu_sched_set) {
5299 _cleanup_free_ char *policy_str = NULL;
5300
5301 r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
5302 if (r >= 0)
5303 fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
5304
5305 fprintf(f,
5306 "%sCPUSchedulingPriority: %i\n"
5307 "%sCPUSchedulingResetOnFork: %s\n",
5308 prefix, c->cpu_sched_priority,
5309 prefix, yes_no(c->cpu_sched_reset_on_fork));
5310 }
5311
5312 if (c->cpu_set.set) {
5313 _cleanup_free_ char *affinity = NULL;
5314
5315 affinity = cpu_set_to_range_string(&c->cpu_set);
5316 fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
5317 }
5318
5319 if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
5320 _cleanup_free_ char *nodes = NULL;
5321
5322 nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
5323 fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
5324 fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
5325 }
5326
5327 if (c->timer_slack_nsec != NSEC_INFINITY)
5328 fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
5329
5330 fprintf(f,
5331 "%sStandardInput: %s\n"
5332 "%sStandardOutput: %s\n"
5333 "%sStandardError: %s\n",
5334 prefix, exec_input_to_string(c->std_input),
5335 prefix, exec_output_to_string(c->std_output),
5336 prefix, exec_output_to_string(c->std_error));
5337
5338 if (c->std_input == EXEC_INPUT_NAMED_FD)
5339 fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
5340 if (c->std_output == EXEC_OUTPUT_NAMED_FD)
5341 fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
5342 if (c->std_error == EXEC_OUTPUT_NAMED_FD)
5343 fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
5344
5345 if (c->std_input == EXEC_INPUT_FILE)
5346 fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
5347 if (c->std_output == EXEC_OUTPUT_FILE)
5348 fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5349 if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
5350 fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
5351 if (c->std_error == EXEC_OUTPUT_FILE)
5352 fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5353 if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
5354 fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
5355
5356 if (c->tty_path)
5357 fprintf(f,
5358 "%sTTYPath: %s\n"
5359 "%sTTYReset: %s\n"
5360 "%sTTYVHangup: %s\n"
5361 "%sTTYVTDisallocate: %s\n",
5362 prefix, c->tty_path,
5363 prefix, yes_no(c->tty_reset),
5364 prefix, yes_no(c->tty_vhangup),
5365 prefix, yes_no(c->tty_vt_disallocate));
5366
5367 if (IN_SET(c->std_output,
5368 EXEC_OUTPUT_KMSG,
5369 EXEC_OUTPUT_JOURNAL,
5370 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5371 EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
5372 IN_SET(c->std_error,
5373 EXEC_OUTPUT_KMSG,
5374 EXEC_OUTPUT_JOURNAL,
5375 EXEC_OUTPUT_KMSG_AND_CONSOLE,
5376 EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
5377
5378 _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
5379
5380 r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
5381 if (r >= 0)
5382 fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
5383
5384 r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
5385 if (r >= 0)
5386 fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
5387 }
5388
5389 if (c->log_level_max >= 0) {
5390 _cleanup_free_ char *t = NULL;
5391
5392 (void) log_level_to_string_alloc(c->log_level_max, &t);
5393
5394 fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
5395 }
5396
5397 if (c->log_ratelimit_interval_usec > 0) {
5398 char buf_timespan[FORMAT_TIMESPAN_MAX];
5399
5400 fprintf(f,
5401 "%sLogRateLimitIntervalSec: %s\n",
5402 prefix, format_timespan(buf_timespan, sizeof(buf_timespan), c->log_ratelimit_interval_usec, USEC_PER_SEC));
5403 }
5404
5405 if (c->log_ratelimit_burst > 0)
5406 fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_ratelimit_burst);
5407
5408 for (size_t j = 0; j < c->n_log_extra_fields; j++) {
5409 fprintf(f, "%sLogExtraFields: ", prefix);
5410 fwrite(c->log_extra_fields[j].iov_base,
5411 1, c->log_extra_fields[j].iov_len,
5412 f);
5413 fputc('\n', f);
5414 }
5415
5416 if (c->log_namespace)
5417 fprintf(f, "%sLogNamespace: %s\n", prefix, c->log_namespace);
5418
5419 if (c->secure_bits) {
5420 _cleanup_free_ char *str = NULL;
5421
5422 r = secure_bits_to_string_alloc(c->secure_bits, &str);
5423 if (r >= 0)
5424 fprintf(f, "%sSecure Bits: %s\n", prefix, str);
5425 }
5426
5427 if (c->capability_bounding_set != CAP_ALL) {
5428 _cleanup_free_ char *str = NULL;
5429
5430 r = capability_set_to_string_alloc(c->capability_bounding_set, &str);
5431 if (r >= 0)
5432 fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
5433 }
5434
5435 if (c->capability_ambient_set != 0) {
5436 _cleanup_free_ char *str = NULL;
5437
5438 r = capability_set_to_string_alloc(c->capability_ambient_set, &str);
5439 if (r >= 0)
5440 fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
5441 }
5442
5443 if (c->user)
5444 fprintf(f, "%sUser: %s\n", prefix, c->user);
5445 if (c->group)
5446 fprintf(f, "%sGroup: %s\n", prefix, c->group);
5447
5448 fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
5449
5450 if (!strv_isempty(c->supplementary_groups)) {
5451 fprintf(f, "%sSupplementaryGroups:", prefix);
5452 strv_fprintf(f, c->supplementary_groups);
5453 fputs("\n", f);
5454 }
5455
5456 if (c->pam_name)
5457 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
5458
5459 if (!strv_isempty(c->read_write_paths)) {
5460 fprintf(f, "%sReadWritePaths:", prefix);
5461 strv_fprintf(f, c->read_write_paths);
5462 fputs("\n", f);
5463 }
5464
5465 if (!strv_isempty(c->read_only_paths)) {
5466 fprintf(f, "%sReadOnlyPaths:", prefix);
5467 strv_fprintf(f, c->read_only_paths);
5468 fputs("\n", f);
5469 }
5470
5471 if (!strv_isempty(c->inaccessible_paths)) {
5472 fprintf(f, "%sInaccessiblePaths:", prefix);
5473 strv_fprintf(f, c->inaccessible_paths);
5474 fputs("\n", f);
5475 }
5476
5477 for (size_t i = 0; i < c->n_bind_mounts; i++)
5478 fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
5479 c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
5480 c->bind_mounts[i].ignore_enoent ? "-": "",
5481 c->bind_mounts[i].source,
5482 c->bind_mounts[i].destination,
5483 c->bind_mounts[i].recursive ? "rbind" : "norbind");
5484
5485 for (size_t i = 0; i < c->n_temporary_filesystems; i++) {
5486 const TemporaryFileSystem *t = c->temporary_filesystems + i;
5487
5488 fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
5489 t->path,
5490 isempty(t->options) ? "" : ":",
5491 strempty(t->options));
5492 }
5493
5494 if (c->utmp_id)
5495 fprintf(f,
5496 "%sUtmpIdentifier: %s\n",
5497 prefix, c->utmp_id);
5498
5499 if (c->selinux_context)
5500 fprintf(f,
5501 "%sSELinuxContext: %s%s\n",
5502 prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
5503
5504 if (c->apparmor_profile)
5505 fprintf(f,
5506 "%sAppArmorProfile: %s%s\n",
5507 prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
5508
5509 if (c->smack_process_label)
5510 fprintf(f,
5511 "%sSmackProcessLabel: %s%s\n",
5512 prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
5513
5514 if (c->personality != PERSONALITY_INVALID)
5515 fprintf(f,
5516 "%sPersonality: %s\n",
5517 prefix, strna(personality_to_string(c->personality)));
5518
5519 fprintf(f,
5520 "%sLockPersonality: %s\n",
5521 prefix, yes_no(c->lock_personality));
5522
5523 if (c->syscall_filter) {
5524 #if HAVE_SECCOMP
5525 void *id, *val;
5526 bool first = true;
5527 #endif
5528
5529 fprintf(f,
5530 "%sSystemCallFilter: ",
5531 prefix);
5532
5533 if (!c->syscall_allow_list)
5534 fputc('~', f);
5535
5536 #if HAVE_SECCOMP
5537 HASHMAP_FOREACH_KEY(val, id, c->syscall_filter) {
5538 _cleanup_free_ char *name = NULL;
5539 const char *errno_name = NULL;
5540 int num = PTR_TO_INT(val);
5541
5542 if (first)
5543 first = false;
5544 else
5545 fputc(' ', f);
5546
5547 name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
5548 fputs(strna(name), f);
5549
5550 if (num >= 0) {
5551 errno_name = seccomp_errno_or_action_to_string(num);
5552 if (errno_name)
5553 fprintf(f, ":%s", errno_name);
5554 else
5555 fprintf(f, ":%d", num);
5556 }
5557 }
5558 #endif
5559
5560 fputc('\n', f);
5561 }
5562
5563 if (c->syscall_archs) {
5564 #if HAVE_SECCOMP
5565 void *id;
5566 #endif
5567
5568 fprintf(f,
5569 "%sSystemCallArchitectures:",
5570 prefix);
5571
5572 #if HAVE_SECCOMP
5573 SET_FOREACH(id, c->syscall_archs)
5574 fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
5575 #endif
5576 fputc('\n', f);
5577 }
5578
5579 if (exec_context_restrict_namespaces_set(c)) {
5580 _cleanup_free_ char *s = NULL;
5581
5582 r = namespace_flags_to_string(c->restrict_namespaces, &s);
5583 if (r >= 0)
5584 fprintf(f, "%sRestrictNamespaces: %s\n",
5585 prefix, strna(s));
5586 }
5587
5588 if (c->network_namespace_path)
5589 fprintf(f,
5590 "%sNetworkNamespacePath: %s\n",
5591 prefix, c->network_namespace_path);
5592
5593 if (c->syscall_errno > 0) {
5594 #if HAVE_SECCOMP
5595 const char *errno_name;
5596 #endif
5597
5598 fprintf(f, "%sSystemCallErrorNumber: ", prefix);
5599
5600 #if HAVE_SECCOMP
5601 errno_name = seccomp_errno_or_action_to_string(c->syscall_errno);
5602 if (errno_name)
5603 fputs(errno_name, f);
5604 else
5605 fprintf(f, "%d", c->syscall_errno);
5606 #endif
5607 fputc('\n', f);
5608 }
5609
5610 for (size_t i = 0; i < c->n_mount_images; i++) {
5611 MountOptions *o;
5612
5613 fprintf(f, "%sMountImages: %s%s:%s%s", prefix,
5614 c->mount_images[i].ignore_enoent ? "-": "",
5615 c->mount_images[i].source,
5616 c->mount_images[i].destination,
5617 LIST_IS_EMPTY(c->mount_images[i].mount_options) ? "": ":");
5618 LIST_FOREACH(mount_options, o, c->mount_images[i].mount_options)
5619 fprintf(f, "%s:%s",
5620 partition_designator_to_string(o->partition_designator),
5621 o->options);
5622 fprintf(f, "\n");
5623 }
5624 }
5625
5626 bool exec_context_maintains_privileges(const ExecContext *c) {
5627 assert(c);
5628
5629 /* Returns true if the process forked off would run under
5630 * an unchanged UID or as root. */
5631
5632 if (!c->user)
5633 return true;
5634
5635 if (streq(c->user, "root") || streq(c->user, "0"))
5636 return true;
5637
5638 return false;
5639 }
5640
5641 int exec_context_get_effective_ioprio(const ExecContext *c) {
5642 int p;
5643
5644 assert(c);
5645
5646 if (c->ioprio_set)
5647 return c->ioprio;
5648
5649 p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
5650 if (p < 0)
5651 return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 4);
5652
5653 return p;
5654 }
5655
5656 bool exec_context_get_effective_mount_apivfs(const ExecContext *c) {
5657 assert(c);
5658
5659 /* Explicit setting wins */
5660 if (c->mount_apivfs_set)
5661 return c->mount_apivfs;
5662
5663 /* Default to "yes" if root directory or image are specified */
5664 if (exec_context_with_rootfs(c))
5665 return true;
5666
5667 return false;
5668 }
5669
5670 void exec_context_free_log_extra_fields(ExecContext *c) {
5671 assert(c);
5672
5673 for (size_t l = 0; l < c->n_log_extra_fields; l++)
5674 free(c->log_extra_fields[l].iov_base);
5675 c->log_extra_fields = mfree(c->log_extra_fields);
5676 c->n_log_extra_fields = 0;
5677 }
5678
5679 void exec_context_revert_tty(ExecContext *c) {
5680 int r;
5681
5682 assert(c);
5683
5684 /* First, reset the TTY (possibly kicking everybody else from the TTY) */
5685 exec_context_tty_reset(c, NULL);
5686
5687 /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
5688 * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
5689 * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
5690
5691 if (exec_context_may_touch_tty(c)) {
5692 const char *path;
5693
5694 path = exec_context_tty_path(c);
5695 if (path) {
5696 r = chmod_and_chown(path, TTY_MODE, 0, TTY_GID);
5697 if (r < 0 && r != -ENOENT)
5698 log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
5699 }
5700 }
5701 }
5702
5703 int exec_context_get_clean_directories(
5704 ExecContext *c,
5705 char **prefix,
5706 ExecCleanMask mask,
5707 char ***ret) {
5708
5709 _cleanup_strv_free_ char **l = NULL;
5710 int r;
5711
5712 assert(c);
5713 assert(prefix);
5714 assert(ret);
5715
5716 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
5717 char **i;
5718
5719 if (!FLAGS_SET(mask, 1U << t))
5720 continue;
5721
5722 if (!prefix[t])
5723 continue;
5724
5725 STRV_FOREACH(i, c->directories[t].paths) {
5726 char *j;
5727
5728 j = path_join(prefix[t], *i);
5729 if (!j)
5730 return -ENOMEM;
5731
5732 r = strv_consume(&l, j);
5733 if (r < 0)
5734 return r;
5735
5736 /* Also remove private directories unconditionally. */
5737 if (t != EXEC_DIRECTORY_CONFIGURATION) {
5738 j = path_join(prefix[t], "private", *i);
5739 if (!j)
5740 return -ENOMEM;
5741
5742 r = strv_consume(&l, j);
5743 if (r < 0)
5744 return r;
5745 }
5746 }
5747 }
5748
5749 *ret = TAKE_PTR(l);
5750 return 0;
5751 }
5752
5753 int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
5754 ExecCleanMask mask = 0;
5755
5756 assert(c);
5757 assert(ret);
5758
5759 for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
5760 if (!strv_isempty(c->directories[t].paths))
5761 mask |= 1U << t;
5762
5763 *ret = mask;
5764 return 0;
5765 }
5766
5767 void exec_status_start(ExecStatus *s, pid_t pid) {
5768 assert(s);
5769
5770 *s = (ExecStatus) {
5771 .pid = pid,
5772 };
5773
5774 dual_timestamp_get(&s->start_timestamp);
5775 }
5776
5777 void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
5778 assert(s);
5779
5780 if (s->pid != pid)
5781 *s = (ExecStatus) {
5782 .pid = pid,
5783 };
5784
5785 dual_timestamp_get(&s->exit_timestamp);
5786
5787 s->code = code;
5788 s->status = status;
5789
5790 if (context && context->utmp_id)
5791 (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
5792 }
5793
5794 void exec_status_reset(ExecStatus *s) {
5795 assert(s);
5796
5797 *s = (ExecStatus) {};
5798 }
5799
5800 void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
5801 char buf[FORMAT_TIMESTAMP_MAX];
5802
5803 assert(s);
5804 assert(f);
5805
5806 if (s->pid <= 0)
5807 return;
5808
5809 prefix = strempty(prefix);
5810
5811 fprintf(f,
5812 "%sPID: "PID_FMT"\n",
5813 prefix, s->pid);
5814
5815 if (dual_timestamp_is_set(&s->start_timestamp))
5816 fprintf(f,
5817 "%sStart Timestamp: %s\n",
5818 prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
5819
5820 if (dual_timestamp_is_set(&s->exit_timestamp))
5821 fprintf(f,
5822 "%sExit Timestamp: %s\n"
5823 "%sExit Code: %s\n"
5824 "%sExit Status: %i\n",
5825 prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
5826 prefix, sigchld_code_to_string(s->code),
5827 prefix, s->status);
5828 }
5829
5830 static char *exec_command_line(char **argv) {
5831 size_t k;
5832 char *n, *p, **a;
5833 bool first = true;
5834
5835 assert(argv);
5836
5837 k = 1;
5838 STRV_FOREACH(a, argv)
5839 k += strlen(*a)+3;
5840
5841 n = new(char, k);
5842 if (!n)
5843 return NULL;
5844
5845 p = n;
5846 STRV_FOREACH(a, argv) {
5847
5848 if (!first)
5849 *(p++) = ' ';
5850 else
5851 first = false;
5852
5853 if (strpbrk(*a, WHITESPACE)) {
5854 *(p++) = '\'';
5855 p = stpcpy(p, *a);
5856 *(p++) = '\'';
5857 } else
5858 p = stpcpy(p, *a);
5859
5860 }
5861
5862 *p = 0;
5863
5864 /* FIXME: this doesn't really handle arguments that have
5865 * spaces and ticks in them */
5866
5867 return n;
5868 }
5869
5870 static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
5871 _cleanup_free_ char *cmd = NULL;
5872 const char *prefix2;
5873
5874 assert(c);
5875 assert(f);
5876
5877 prefix = strempty(prefix);
5878 prefix2 = strjoina(prefix, "\t");
5879
5880 cmd = exec_command_line(c->argv);
5881 fprintf(f,
5882 "%sCommand Line: %s\n",
5883 prefix, cmd ? cmd : strerror_safe(ENOMEM));
5884
5885 exec_status_dump(&c->exec_status, f, prefix2);
5886 }
5887
5888 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
5889 assert(f);
5890
5891 prefix = strempty(prefix);
5892
5893 LIST_FOREACH(command, c, c)
5894 exec_command_dump(c, f, prefix);
5895 }
5896
5897 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
5898 ExecCommand *end;
5899
5900 assert(l);
5901 assert(e);
5902
5903 if (*l) {
5904 /* It's kind of important, that we keep the order here */
5905 LIST_FIND_TAIL(command, *l, end);
5906 LIST_INSERT_AFTER(command, *l, end, e);
5907 } else
5908 *l = e;
5909 }
5910
5911 int exec_command_set(ExecCommand *c, const char *path, ...) {
5912 va_list ap;
5913 char **l, *p;
5914
5915 assert(c);
5916 assert(path);
5917
5918 va_start(ap, path);
5919 l = strv_new_ap(path, ap);
5920 va_end(ap);
5921
5922 if (!l)
5923 return -ENOMEM;
5924
5925 p = strdup(path);
5926 if (!p) {
5927 strv_free(l);
5928 return -ENOMEM;
5929 }
5930
5931 free_and_replace(c->path, p);
5932
5933 return strv_free_and_replace(c->argv, l);
5934 }
5935
5936 int exec_command_append(ExecCommand *c, const char *path, ...) {
5937 _cleanup_strv_free_ char **l = NULL;
5938 va_list ap;
5939 int r;
5940
5941 assert(c);
5942 assert(path);
5943
5944 va_start(ap, path);
5945 l = strv_new_ap(path, ap);
5946 va_end(ap);
5947
5948 if (!l)
5949 return -ENOMEM;
5950
5951 r = strv_extend_strv(&c->argv, l, false);
5952 if (r < 0)
5953 return r;
5954
5955 return 0;
5956 }
5957
5958 static void *remove_tmpdir_thread(void *p) {
5959 _cleanup_free_ char *path = p;
5960
5961 (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
5962 return NULL;
5963 }
5964
5965 static ExecRuntime* exec_runtime_free(ExecRuntime *rt, bool destroy) {
5966 int r;
5967
5968 if (!rt)
5969 return NULL;
5970
5971 if (rt->manager)
5972 (void) hashmap_remove(rt->manager->exec_runtime_by_id, rt->id);
5973
5974 /* When destroy is true, then rm_rf tmp_dir and var_tmp_dir. */
5975
5976 if (destroy && rt->tmp_dir && !streq(rt->tmp_dir, RUN_SYSTEMD_EMPTY)) {
5977 log_debug("Spawning thread to nuke %s", rt->tmp_dir);
5978
5979 r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
5980 if (r < 0)
5981 log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
5982 else
5983 rt->tmp_dir = NULL;
5984 }
5985
5986 if (destroy && rt->var_tmp_dir && !streq(rt->var_tmp_dir, RUN_SYSTEMD_EMPTY)) {
5987 log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
5988
5989 r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
5990 if (r < 0)
5991 log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
5992 else
5993 rt->var_tmp_dir = NULL;
5994 }
5995
5996 rt->id = mfree(rt->id);
5997 rt->tmp_dir = mfree(rt->tmp_dir);
5998 rt->var_tmp_dir = mfree(rt->var_tmp_dir);
5999 safe_close_pair(rt->netns_storage_socket);
6000 return mfree(rt);
6001 }
6002
6003 static void exec_runtime_freep(ExecRuntime **rt) {
6004 (void) exec_runtime_free(*rt, false);
6005 }
6006
6007 static int exec_runtime_allocate(ExecRuntime **ret, const char *id) {
6008 _cleanup_free_ char *id_copy = NULL;
6009 ExecRuntime *n;
6010
6011 assert(ret);
6012
6013 id_copy = strdup(id);
6014 if (!id_copy)
6015 return -ENOMEM;
6016
6017 n = new(ExecRuntime, 1);
6018 if (!n)
6019 return -ENOMEM;
6020
6021 *n = (ExecRuntime) {
6022 .id = TAKE_PTR(id_copy),
6023 .netns_storage_socket = { -1, -1 },
6024 };
6025
6026 *ret = n;
6027 return 0;
6028 }
6029
6030 static int exec_runtime_add(
6031 Manager *m,
6032 const char *id,
6033 char **tmp_dir,
6034 char **var_tmp_dir,
6035 int netns_storage_socket[2],
6036 ExecRuntime **ret) {
6037
6038 _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
6039 int r;
6040
6041 assert(m);
6042 assert(id);
6043
6044 /* tmp_dir, var_tmp_dir, netns_storage_socket fds are donated on success */
6045
6046 r = hashmap_ensure_allocated(&m->exec_runtime_by_id, &string_hash_ops);
6047 if (r < 0)
6048 return r;
6049
6050 r = exec_runtime_allocate(&rt, id);
6051 if (r < 0)
6052 return r;
6053
6054 r = hashmap_put(m->exec_runtime_by_id, rt->id, rt);
6055 if (r < 0)
6056 return r;
6057
6058 assert(!!rt->tmp_dir == !!rt->var_tmp_dir); /* We require both to be set together */
6059 rt->tmp_dir = TAKE_PTR(*tmp_dir);
6060 rt->var_tmp_dir = TAKE_PTR(*var_tmp_dir);
6061
6062 if (netns_storage_socket) {
6063 rt->netns_storage_socket[0] = TAKE_FD(netns_storage_socket[0]);
6064 rt->netns_storage_socket[1] = TAKE_FD(netns_storage_socket[1]);
6065 }
6066
6067 rt->manager = m;
6068
6069 if (ret)
6070 *ret = rt;
6071 /* do not remove created ExecRuntime object when the operation succeeds. */
6072 TAKE_PTR(rt);
6073 return 0;
6074 }
6075
6076 static int exec_runtime_make(
6077 Manager *m,
6078 const ExecContext *c,
6079 const char *id,
6080 ExecRuntime **ret) {
6081
6082 _cleanup_(namespace_cleanup_tmpdirp) char *tmp_dir = NULL, *var_tmp_dir = NULL;
6083 _cleanup_close_pair_ int netns_storage_socket[2] = { -1, -1 };
6084 int r;
6085
6086 assert(m);
6087 assert(c);
6088 assert(id);
6089
6090 /* It is not necessary to create ExecRuntime object. */
6091 if (!c->private_network && !c->private_tmp && !c->network_namespace_path) {
6092 *ret = NULL;
6093 return 0;
6094 }
6095
6096 if (c->private_tmp &&
6097 !(prefixed_path_strv_contains(c->inaccessible_paths, "/tmp") &&
6098 (prefixed_path_strv_contains(c->inaccessible_paths, "/var/tmp") ||
6099 prefixed_path_strv_contains(c->inaccessible_paths, "/var")))) {
6100 r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
6101 if (r < 0)
6102 return r;
6103 }
6104
6105 if (c->private_network || c->network_namespace_path) {
6106 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
6107 return -errno;
6108 }
6109
6110 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, netns_storage_socket, ret);
6111 if (r < 0)
6112 return r;
6113
6114 return 1;
6115 }
6116
6117 int exec_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecRuntime **ret) {
6118 ExecRuntime *rt;
6119 int r;
6120
6121 assert(m);
6122 assert(id);
6123 assert(ret);
6124
6125 rt = hashmap_get(m->exec_runtime_by_id, id);
6126 if (rt)
6127 /* We already have a ExecRuntime object, let's increase the ref count and reuse it */
6128 goto ref;
6129
6130 if (!create) {
6131 *ret = NULL;
6132 return 0;
6133 }
6134
6135 /* If not found, then create a new object. */
6136 r = exec_runtime_make(m, c, id, &rt);
6137 if (r < 0)
6138 return r;
6139 if (r == 0) {
6140 /* When r == 0, it is not necessary to create ExecRuntime object. */
6141 *ret = NULL;
6142 return 0;
6143 }
6144
6145 ref:
6146 /* increment reference counter. */
6147 rt->n_ref++;
6148 *ret = rt;
6149 return 1;
6150 }
6151
6152 ExecRuntime *exec_runtime_unref(ExecRuntime *rt, bool destroy) {
6153 if (!rt)
6154 return NULL;
6155
6156 assert(rt->n_ref > 0);
6157
6158 rt->n_ref--;
6159 if (rt->n_ref > 0)
6160 return NULL;
6161
6162 return exec_runtime_free(rt, destroy);
6163 }
6164
6165 int exec_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
6166 ExecRuntime *rt;
6167
6168 assert(m);
6169 assert(f);
6170 assert(fds);
6171
6172 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
6173 fprintf(f, "exec-runtime=%s", rt->id);
6174
6175 if (rt->tmp_dir)
6176 fprintf(f, " tmp-dir=%s", rt->tmp_dir);
6177
6178 if (rt->var_tmp_dir)
6179 fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
6180
6181 if (rt->netns_storage_socket[0] >= 0) {
6182 int copy;
6183
6184 copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
6185 if (copy < 0)
6186 return copy;
6187
6188 fprintf(f, " netns-socket-0=%i", copy);
6189 }
6190
6191 if (rt->netns_storage_socket[1] >= 0) {
6192 int copy;
6193
6194 copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
6195 if (copy < 0)
6196 return copy;
6197
6198 fprintf(f, " netns-socket-1=%i", copy);
6199 }
6200
6201 fputc('\n', f);
6202 }
6203
6204 return 0;
6205 }
6206
6207 int exec_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
6208 _cleanup_(exec_runtime_freep) ExecRuntime *rt_create = NULL;
6209 ExecRuntime *rt;
6210 int r;
6211
6212 /* This is for the migration from old (v237 or earlier) deserialization text.
6213 * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
6214 * Even if the ExecRuntime object originally created by the other unit, we cannot judge
6215 * so or not from the serialized text, then we always creates a new object owned by this. */
6216
6217 assert(u);
6218 assert(key);
6219 assert(value);
6220
6221 /* Manager manages ExecRuntime objects by the unit id.
6222 * So, we omit the serialized text when the unit does not have id (yet?)... */
6223 if (isempty(u->id)) {
6224 log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
6225 return 0;
6226 }
6227
6228 r = hashmap_ensure_allocated(&u->manager->exec_runtime_by_id, &string_hash_ops);
6229 if (r < 0) {
6230 log_unit_debug_errno(u, r, "Failed to allocate storage for runtime parameter: %m");
6231 return 0;
6232 }
6233
6234 rt = hashmap_get(u->manager->exec_runtime_by_id, u->id);
6235 if (!rt) {
6236 r = exec_runtime_allocate(&rt_create, u->id);
6237 if (r < 0)
6238 return log_oom();
6239
6240 rt = rt_create;
6241 }
6242
6243 if (streq(key, "tmp-dir")) {
6244 char *copy;
6245
6246 copy = strdup(value);
6247 if (!copy)
6248 return log_oom();
6249
6250 free_and_replace(rt->tmp_dir, copy);
6251
6252 } else if (streq(key, "var-tmp-dir")) {
6253 char *copy;
6254
6255 copy = strdup(value);
6256 if (!copy)
6257 return log_oom();
6258
6259 free_and_replace(rt->var_tmp_dir, copy);
6260
6261 } else if (streq(key, "netns-socket-0")) {
6262 int fd;
6263
6264 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6265 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6266 return 0;
6267 }
6268
6269 safe_close(rt->netns_storage_socket[0]);
6270 rt->netns_storage_socket[0] = fdset_remove(fds, fd);
6271
6272 } else if (streq(key, "netns-socket-1")) {
6273 int fd;
6274
6275 if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
6276 log_unit_debug(u, "Failed to parse netns socket value: %s", value);
6277 return 0;
6278 }
6279
6280 safe_close(rt->netns_storage_socket[1]);
6281 rt->netns_storage_socket[1] = fdset_remove(fds, fd);
6282 } else
6283 return 0;
6284
6285 /* If the object is newly created, then put it to the hashmap which manages ExecRuntime objects. */
6286 if (rt_create) {
6287 r = hashmap_put(u->manager->exec_runtime_by_id, rt_create->id, rt_create);
6288 if (r < 0) {
6289 log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
6290 return 0;
6291 }
6292
6293 rt_create->manager = u->manager;
6294
6295 /* Avoid cleanup */
6296 TAKE_PTR(rt_create);
6297 }
6298
6299 return 1;
6300 }
6301
6302 int exec_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
6303 _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
6304 char *id = NULL;
6305 int r, fdpair[] = {-1, -1};
6306 const char *p, *v = value;
6307 size_t n;
6308
6309 assert(m);
6310 assert(value);
6311 assert(fds);
6312
6313 n = strcspn(v, " ");
6314 id = strndupa(v, n);
6315 if (v[n] != ' ')
6316 goto finalize;
6317 p = v + n + 1;
6318
6319 v = startswith(p, "tmp-dir=");
6320 if (v) {
6321 n = strcspn(v, " ");
6322 tmp_dir = strndup(v, n);
6323 if (!tmp_dir)
6324 return log_oom();
6325 if (v[n] != ' ')
6326 goto finalize;
6327 p = v + n + 1;
6328 }
6329
6330 v = startswith(p, "var-tmp-dir=");
6331 if (v) {
6332 n = strcspn(v, " ");
6333 var_tmp_dir = strndup(v, n);
6334 if (!var_tmp_dir)
6335 return log_oom();
6336 if (v[n] != ' ')
6337 goto finalize;
6338 p = v + n + 1;
6339 }
6340
6341 v = startswith(p, "netns-socket-0=");
6342 if (v) {
6343 char *buf;
6344
6345 n = strcspn(v, " ");
6346 buf = strndupa(v, n);
6347
6348 r = safe_atoi(buf, &fdpair[0]);
6349 if (r < 0)
6350 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-0=%s: %m", buf);
6351 if (!fdset_contains(fds, fdpair[0]))
6352 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6353 "exec-runtime specification netns-socket-0= refers to unknown fd %d: %m", fdpair[0]);
6354 fdpair[0] = fdset_remove(fds, fdpair[0]);
6355 if (v[n] != ' ')
6356 goto finalize;
6357 p = v + n + 1;
6358 }
6359
6360 v = startswith(p, "netns-socket-1=");
6361 if (v) {
6362 char *buf;
6363
6364 n = strcspn(v, " ");
6365 buf = strndupa(v, n);
6366 r = safe_atoi(buf, &fdpair[1]);
6367 if (r < 0)
6368 return log_debug_errno(r, "Unable to parse exec-runtime specification netns-socket-1=%s: %m", buf);
6369 if (!fdset_contains(fds, fdpair[1]))
6370 return log_debug_errno(SYNTHETIC_ERRNO(EBADF),
6371 "exec-runtime specification netns-socket-1= refers to unknown fd %d: %m", fdpair[1]);
6372 fdpair[1] = fdset_remove(fds, fdpair[1]);
6373 }
6374
6375 finalize:
6376 r = exec_runtime_add(m, id, &tmp_dir, &var_tmp_dir, fdpair, NULL);
6377 if (r < 0)
6378 return log_debug_errno(r, "Failed to add exec-runtime: %m");
6379 return 0;
6380 }
6381
6382 void exec_runtime_vacuum(Manager *m) {
6383 ExecRuntime *rt;
6384
6385 assert(m);
6386
6387 /* Free unreferenced ExecRuntime objects. This is used after manager deserialization process. */
6388
6389 HASHMAP_FOREACH(rt, m->exec_runtime_by_id) {
6390 if (rt->n_ref > 0)
6391 continue;
6392
6393 (void) exec_runtime_free(rt, false);
6394 }
6395 }
6396
6397 void exec_params_clear(ExecParameters *p) {
6398 if (!p)
6399 return;
6400
6401 p->environment = strv_free(p->environment);
6402 p->fd_names = strv_free(p->fd_names);
6403 p->fds = mfree(p->fds);
6404 p->exec_fd = safe_close(p->exec_fd);
6405 }
6406
6407 ExecSetCredential *exec_set_credential_free(ExecSetCredential *sc) {
6408 if (!sc)
6409 return NULL;
6410
6411 free(sc->id);
6412 free(sc->data);
6413 return mfree(sc);
6414 }
6415
6416 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(exec_set_credential_hash_ops, char, string_hash_func, string_compare_func, ExecSetCredential, exec_set_credential_free);
6417
6418 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
6419 [EXEC_INPUT_NULL] = "null",
6420 [EXEC_INPUT_TTY] = "tty",
6421 [EXEC_INPUT_TTY_FORCE] = "tty-force",
6422 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
6423 [EXEC_INPUT_SOCKET] = "socket",
6424 [EXEC_INPUT_NAMED_FD] = "fd",
6425 [EXEC_INPUT_DATA] = "data",
6426 [EXEC_INPUT_FILE] = "file",
6427 };
6428
6429 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
6430
6431 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
6432 [EXEC_OUTPUT_INHERIT] = "inherit",
6433 [EXEC_OUTPUT_NULL] = "null",
6434 [EXEC_OUTPUT_TTY] = "tty",
6435 [EXEC_OUTPUT_KMSG] = "kmsg",
6436 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
6437 [EXEC_OUTPUT_JOURNAL] = "journal",
6438 [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
6439 [EXEC_OUTPUT_SOCKET] = "socket",
6440 [EXEC_OUTPUT_NAMED_FD] = "fd",
6441 [EXEC_OUTPUT_FILE] = "file",
6442 [EXEC_OUTPUT_FILE_APPEND] = "append",
6443 };
6444
6445 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
6446
6447 static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
6448 [EXEC_UTMP_INIT] = "init",
6449 [EXEC_UTMP_LOGIN] = "login",
6450 [EXEC_UTMP_USER] = "user",
6451 };
6452
6453 DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
6454
6455 static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
6456 [EXEC_PRESERVE_NO] = "no",
6457 [EXEC_PRESERVE_YES] = "yes",
6458 [EXEC_PRESERVE_RESTART] = "restart",
6459 };
6460
6461 DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
6462
6463 /* This table maps ExecDirectoryType to the setting it is configured with in the unit */
6464 static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6465 [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
6466 [EXEC_DIRECTORY_STATE] = "StateDirectory",
6467 [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
6468 [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
6469 [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
6470 };
6471
6472 DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
6473
6474 /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
6475 * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
6476 * directories, specifically .timer units with their timestamp touch file. */
6477 static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6478 [EXEC_DIRECTORY_RUNTIME] = "runtime",
6479 [EXEC_DIRECTORY_STATE] = "state",
6480 [EXEC_DIRECTORY_CACHE] = "cache",
6481 [EXEC_DIRECTORY_LOGS] = "logs",
6482 [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
6483 };
6484
6485 DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
6486
6487 /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
6488 * the service payload in. */
6489 static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
6490 [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
6491 [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
6492 [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
6493 [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
6494 [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
6495 };
6496
6497 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
6498
6499 static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
6500 [EXEC_KEYRING_INHERIT] = "inherit",
6501 [EXEC_KEYRING_PRIVATE] = "private",
6502 [EXEC_KEYRING_SHARED] = "shared",
6503 };
6504
6505 DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);