]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/job.c
core: apply LogLevelMax to messages about units
[thirdparty/systemd.git] / src / core / job.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4
5 #include "sd-id128.h"
6 #include "sd-messages.h"
7
8 #include "alloc-util.h"
9 #include "async.h"
10 #include "cgroup.h"
11 #include "dbus-job.h"
12 #include "dbus.h"
13 #include "escape.h"
14 #include "fileio.h"
15 #include "job.h"
16 #include "log.h"
17 #include "macro.h"
18 #include "parse-util.h"
19 #include "serialize.h"
20 #include "set.h"
21 #include "sort-util.h"
22 #include "special.h"
23 #include "stdio-util.h"
24 #include "string-table.h"
25 #include "string-util.h"
26 #include "strv.h"
27 #include "terminal-util.h"
28 #include "unit.h"
29 #include "virt.h"
30
31 Job* job_new_raw(Unit *unit) {
32 Job *j;
33
34 /* used for deserialization */
35
36 assert(unit);
37
38 j = new(Job, 1);
39 if (!j)
40 return NULL;
41
42 *j = (Job) {
43 .manager = unit->manager,
44 .unit = unit,
45 .type = _JOB_TYPE_INVALID,
46 };
47
48 return j;
49 }
50
51 Job* job_new(Unit *unit, JobType type) {
52 Job *j;
53
54 assert(type < _JOB_TYPE_MAX);
55
56 j = job_new_raw(unit);
57 if (!j)
58 return NULL;
59
60 j->id = j->manager->current_job_id++;
61 j->type = type;
62
63 /* We don't link it here, that's what job_dependency() is for */
64
65 return j;
66 }
67
68 void job_unlink(Job *j) {
69 assert(j);
70 assert(!j->installed);
71 assert(!j->transaction_prev);
72 assert(!j->transaction_next);
73 assert(!j->subject_list);
74 assert(!j->object_list);
75
76 if (j->in_run_queue) {
77 prioq_remove(j->manager->run_queue, j, &j->run_queue_idx);
78 j->in_run_queue = false;
79 }
80
81 if (j->in_dbus_queue) {
82 LIST_REMOVE(dbus_queue, j->manager->dbus_job_queue, j);
83 j->in_dbus_queue = false;
84 }
85
86 if (j->in_gc_queue) {
87 LIST_REMOVE(gc_queue, j->manager->gc_job_queue, j);
88 j->in_gc_queue = false;
89 }
90
91 j->timer_event_source = sd_event_source_unref(j->timer_event_source);
92 }
93
94 Job* job_free(Job *j) {
95 assert(j);
96 assert(!j->installed);
97 assert(!j->transaction_prev);
98 assert(!j->transaction_next);
99 assert(!j->subject_list);
100 assert(!j->object_list);
101
102 job_unlink(j);
103
104 sd_bus_track_unref(j->bus_track);
105 strv_free(j->deserialized_clients);
106
107 return mfree(j);
108 }
109
110 static void job_set_state(Job *j, JobState state) {
111 assert(j);
112 assert(state >= 0);
113 assert(state < _JOB_STATE_MAX);
114
115 if (j->state == state)
116 return;
117
118 j->state = state;
119
120 if (!j->installed)
121 return;
122
123 if (j->state == JOB_RUNNING)
124 j->unit->manager->n_running_jobs++;
125 else {
126 assert(j->state == JOB_WAITING);
127 assert(j->unit->manager->n_running_jobs > 0);
128
129 j->unit->manager->n_running_jobs--;
130
131 if (j->unit->manager->n_running_jobs <= 0)
132 j->unit->manager->jobs_in_progress_event_source = sd_event_source_unref(j->unit->manager->jobs_in_progress_event_source);
133 }
134 }
135
136 void job_uninstall(Job *j) {
137 Job **pj;
138
139 assert(j->installed);
140
141 job_set_state(j, JOB_WAITING);
142
143 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
144 assert(*pj == j);
145
146 /* Detach from next 'bigger' objects */
147
148 /* daemon-reload should be transparent to job observers */
149 if (!MANAGER_IS_RELOADING(j->manager))
150 bus_job_send_removed_signal(j);
151
152 *pj = NULL;
153
154 unit_add_to_gc_queue(j->unit);
155
156 unit_add_to_dbus_queue(j->unit); /* The Job property of the unit has changed now */
157
158 hashmap_remove_value(j->manager->jobs, UINT32_TO_PTR(j->id), j);
159 j->installed = false;
160 }
161
162 static bool job_type_allows_late_merge(JobType t) {
163 /* Tells whether it is OK to merge a job of type 't' with an already
164 * running job.
165 * Reloads cannot be merged this way. Think of the sequence:
166 * 1. Reload of a daemon is in progress; the daemon has already loaded
167 * its config file, but hasn't completed the reload operation yet.
168 * 2. Edit foo's config file.
169 * 3. Trigger another reload to have the daemon use the new config.
170 * Should the second reload job be merged into the first one, the daemon
171 * would not know about the new config.
172 * JOB_RESTART jobs on the other hand can be merged, because they get
173 * patched into JOB_START after stopping the unit. So if we see a
174 * JOB_RESTART running, it means the unit hasn't stopped yet and at
175 * this time the merge is still allowed. */
176 return t != JOB_RELOAD;
177 }
178
179 static void job_merge_into_installed(Job *j, Job *other) {
180 assert(j->installed);
181 assert(j->unit == other->unit);
182
183 if (j->type != JOB_NOP)
184 assert_se(job_type_merge_and_collapse(&j->type, other->type, j->unit) == 0);
185 else
186 assert(other->type == JOB_NOP);
187
188 j->irreversible = j->irreversible || other->irreversible;
189 j->ignore_order = j->ignore_order || other->ignore_order;
190 }
191
192 Job* job_install(Job *j) {
193 Job **pj;
194 Job *uj;
195
196 assert(!j->installed);
197 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
198 assert(j->state == JOB_WAITING);
199
200 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
201 uj = *pj;
202
203 if (uj) {
204 if (job_type_is_conflicting(uj->type, j->type))
205 job_finish_and_invalidate(uj, JOB_CANCELED, false, false);
206 else {
207 /* not conflicting, i.e. mergeable */
208
209 if (uj->state == JOB_WAITING ||
210 (job_type_allows_late_merge(j->type) && job_type_is_superset(uj->type, j->type))) {
211 job_merge_into_installed(uj, j);
212 log_unit_debug(uj->unit,
213 "Merged %s/%s into installed job %s/%s as %"PRIu32,
214 j->unit->id, job_type_to_string(j->type), uj->unit->id,
215 job_type_to_string(uj->type), uj->id);
216 return uj;
217 } else {
218 /* already running and not safe to merge into */
219 /* Patch uj to become a merged job and re-run it. */
220 /* XXX It should be safer to queue j to run after uj finishes, but it is
221 * not currently possible to have more than one installed job per unit. */
222 job_merge_into_installed(uj, j);
223 log_unit_debug(uj->unit,
224 "Merged into running job, re-running: %s/%s as %"PRIu32,
225 uj->unit->id, job_type_to_string(uj->type), uj->id);
226
227 job_set_state(uj, JOB_WAITING);
228 return uj;
229 }
230 }
231 }
232
233 /* Install the job */
234 *pj = j;
235 j->installed = true;
236
237 j->manager->n_installed_jobs++;
238 log_unit_debug(j->unit,
239 "Installed new job %s/%s as %u",
240 j->unit->id, job_type_to_string(j->type), (unsigned) j->id);
241
242 job_add_to_gc_queue(j);
243
244 job_add_to_dbus_queue(j); /* announce this job to clients */
245 unit_add_to_dbus_queue(j->unit); /* The Job property of the unit has changed now */
246
247 return j;
248 }
249
250 int job_install_deserialized(Job *j) {
251 Job **pj;
252 int r;
253
254 assert(!j->installed);
255
256 if (j->type < 0 || j->type >= _JOB_TYPE_MAX_IN_TRANSACTION)
257 return log_unit_debug_errno(j->unit, SYNTHETIC_ERRNO(EINVAL),
258 "Invalid job type %s in deserialization.",
259 strna(job_type_to_string(j->type)));
260
261 pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job;
262 if (*pj)
263 return log_unit_debug_errno(j->unit, SYNTHETIC_ERRNO(EEXIST),
264 "Unit already has a job installed. Not installing deserialized job.");
265
266 r = hashmap_ensure_put(&j->manager->jobs, NULL, UINT32_TO_PTR(j->id), j);
267 if (r == -EEXIST)
268 return log_unit_debug_errno(j->unit, r, "Job ID %" PRIu32 " already used, cannot deserialize job.", j->id);
269 if (r < 0)
270 return log_unit_debug_errno(j->unit, r, "Failed to insert job into jobs hash table: %m");
271
272 *pj = j;
273 j->installed = true;
274
275 if (j->state == JOB_RUNNING)
276 j->unit->manager->n_running_jobs++;
277
278 log_unit_debug(j->unit,
279 "Reinstalled deserialized job %s/%s as %u",
280 j->unit->id, job_type_to_string(j->type), (unsigned) j->id);
281 return 0;
282 }
283
284 JobDependency* job_dependency_new(Job *subject, Job *object, bool matters, bool conflicts) {
285 JobDependency *l;
286
287 assert(object);
288
289 /* Adds a new job link, which encodes that the 'subject' job
290 * needs the 'object' job in some way. If 'subject' is NULL
291 * this means the 'anchor' job (i.e. the one the user
292 * explicitly asked for) is the requester. */
293
294 l = new0(JobDependency, 1);
295 if (!l)
296 return NULL;
297
298 l->subject = subject;
299 l->object = object;
300 l->matters = matters;
301 l->conflicts = conflicts;
302
303 if (subject)
304 LIST_PREPEND(subject, subject->subject_list, l);
305
306 LIST_PREPEND(object, object->object_list, l);
307
308 return l;
309 }
310
311 void job_dependency_free(JobDependency *l) {
312 assert(l);
313
314 if (l->subject)
315 LIST_REMOVE(subject, l->subject->subject_list, l);
316
317 LIST_REMOVE(object, l->object->object_list, l);
318
319 free(l);
320 }
321
322 void job_dump(Job *j, FILE *f, const char *prefix) {
323 assert(j);
324 assert(f);
325
326 prefix = strempty(prefix);
327
328 fprintf(f,
329 "%s-> Job %u:\n"
330 "%s\tAction: %s -> %s\n"
331 "%s\tState: %s\n"
332 "%s\tIrreversible: %s\n"
333 "%s\tMay GC: %s\n",
334 prefix, j->id,
335 prefix, j->unit->id, job_type_to_string(j->type),
336 prefix, job_state_to_string(j->state),
337 prefix, yes_no(j->irreversible),
338 prefix, yes_no(job_may_gc(j)));
339 }
340
341 /*
342 * Merging is commutative, so imagine the matrix as symmetric. We store only
343 * its lower triangle to avoid duplication. We don't store the main diagonal,
344 * because A merged with A is simply A.
345 *
346 * If the resulting type is collapsed immediately afterwards (to get rid of
347 * the JOB_RELOAD_OR_START, which lies outside the lookup function's domain),
348 * the following properties hold:
349 *
350 * Merging is associative! A merged with B, and then merged with C is the same
351 * as A merged with the result of B merged with C.
352 *
353 * Mergeability is transitive! If A can be merged with B and B with C then
354 * A also with C.
355 *
356 * Also, if A merged with B cannot be merged with C, then either A or B cannot
357 * be merged with C either.
358 */
359 static const JobType job_merging_table[] = {
360 /* What \ With * JOB_START JOB_VERIFY_ACTIVE JOB_STOP JOB_RELOAD */
361 /*********************************************************************************/
362 /*JOB_START */
363 /*JOB_VERIFY_ACTIVE */ JOB_START,
364 /*JOB_STOP */ -1, -1,
365 /*JOB_RELOAD */ JOB_RELOAD_OR_START, JOB_RELOAD, -1,
366 /*JOB_RESTART */ JOB_RESTART, JOB_RESTART, -1, JOB_RESTART,
367 };
368
369 JobType job_type_lookup_merge(JobType a, JobType b) {
370 assert_cc(ELEMENTSOF(job_merging_table) == _JOB_TYPE_MAX_MERGING * (_JOB_TYPE_MAX_MERGING - 1) / 2);
371 assert(a >= 0 && a < _JOB_TYPE_MAX_MERGING);
372 assert(b >= 0 && b < _JOB_TYPE_MAX_MERGING);
373
374 if (a == b)
375 return a;
376
377 if (a < b) {
378 JobType tmp = a;
379 a = b;
380 b = tmp;
381 }
382
383 return job_merging_table[(a - 1) * a / 2 + b];
384 }
385
386 bool job_type_is_redundant(JobType a, UnitActiveState b) {
387 switch (a) {
388
389 case JOB_START:
390 return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING);
391
392 case JOB_STOP:
393 return IN_SET(b, UNIT_INACTIVE, UNIT_FAILED);
394
395 case JOB_VERIFY_ACTIVE:
396 return IN_SET(b, UNIT_ACTIVE, UNIT_RELOADING);
397
398 case JOB_RELOAD:
399 return
400 b == UNIT_RELOADING;
401
402 case JOB_RESTART:
403 return
404 b == UNIT_ACTIVATING;
405
406 case JOB_NOP:
407 return true;
408
409 default:
410 assert_not_reached("Invalid job type");
411 }
412 }
413
414 JobType job_type_collapse(JobType t, Unit *u) {
415 UnitActiveState s;
416
417 switch (t) {
418
419 case JOB_TRY_RESTART:
420 s = unit_active_state(u);
421 if (!UNIT_IS_ACTIVE_OR_RELOADING(s))
422 return JOB_NOP;
423
424 return JOB_RESTART;
425
426 case JOB_TRY_RELOAD:
427 s = unit_active_state(u);
428 if (!UNIT_IS_ACTIVE_OR_RELOADING(s))
429 return JOB_NOP;
430
431 return JOB_RELOAD;
432
433 case JOB_RELOAD_OR_START:
434 s = unit_active_state(u);
435 if (!UNIT_IS_ACTIVE_OR_RELOADING(s))
436 return JOB_START;
437
438 return JOB_RELOAD;
439
440 default:
441 return t;
442 }
443 }
444
445 int job_type_merge_and_collapse(JobType *a, JobType b, Unit *u) {
446 JobType t;
447
448 t = job_type_lookup_merge(*a, b);
449 if (t < 0)
450 return -EEXIST;
451
452 *a = job_type_collapse(t, u);
453 return 0;
454 }
455
456 static bool job_is_runnable(Job *j) {
457 Unit *other;
458 void *v;
459
460 assert(j);
461 assert(j->installed);
462
463 /* Checks whether there is any job running for the units this
464 * job needs to be running after (in the case of a 'positive'
465 * job type) or before (in the case of a 'negative' job
466 * type. */
467
468 /* Note that unit types have a say in what is runnable,
469 * too. For example, if they return -EAGAIN from
470 * unit_start() they can indicate they are not
471 * runnable yet. */
472
473 /* First check if there is an override */
474 if (j->ignore_order)
475 return true;
476
477 if (j->type == JOB_NOP)
478 return true;
479
480 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER])
481 if (other->job && job_compare(j, other->job, UNIT_AFTER) > 0) {
482 log_unit_debug(j->unit,
483 "starting held back, waiting for: %s",
484 other->id);
485 return false;
486 }
487
488 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE])
489 if (other->job && job_compare(j, other->job, UNIT_BEFORE) > 0) {
490 log_unit_debug(j->unit,
491 "stopping held back, waiting for: %s",
492 other->id);
493 return false;
494 }
495
496 return true;
497 }
498
499 static void job_change_type(Job *j, JobType newtype) {
500 assert(j);
501
502 log_unit_debug(j->unit,
503 "Converting job %s/%s -> %s/%s",
504 j->unit->id, job_type_to_string(j->type),
505 j->unit->id, job_type_to_string(newtype));
506
507 j->type = newtype;
508 }
509
510 _pure_ static const char* job_get_begin_status_message_format(Unit *u, JobType t) {
511 const char *format;
512
513 assert(u);
514
515 if (t == JOB_RELOAD)
516 return "Reloading %s.";
517
518 assert(IN_SET(t, JOB_START, JOB_STOP));
519
520 format = UNIT_VTABLE(u)->status_message_formats.starting_stopping[t == JOB_STOP];
521 if (format)
522 return format;
523
524 /* Return generic strings */
525 if (t == JOB_START)
526 return "Starting %s.";
527 else {
528 assert(t == JOB_STOP);
529 return "Stopping %s.";
530 }
531 }
532
533 static void job_print_begin_status_message(Unit *u, JobType t) {
534 const char *format;
535
536 assert(u);
537
538 /* Reload status messages have traditionally not been printed to console. */
539 if (!IN_SET(t, JOB_START, JOB_STOP))
540 return;
541
542 format = job_get_begin_status_message_format(u, t);
543
544 DISABLE_WARNING_FORMAT_NONLITERAL;
545 unit_status_printf(u, STATUS_TYPE_NORMAL, "", format);
546 REENABLE_WARNING;
547 }
548
549 static void job_log_begin_status_message(Unit *u, uint32_t job_id, JobType t) {
550 const char *format, *mid;
551 char buf[LINE_MAX];
552
553 assert(u);
554 assert(t >= 0);
555 assert(t < _JOB_TYPE_MAX);
556
557 if (!IN_SET(t, JOB_START, JOB_STOP, JOB_RELOAD))
558 return;
559
560 if (!unit_log_level_test(u, LOG_INFO))
561 return;
562
563 if (log_on_console()) /* Skip this if it would only go on the console anyway */
564 return;
565
566 /* We log status messages for all units and all operations. */
567
568 format = job_get_begin_status_message_format(u, t);
569
570 DISABLE_WARNING_FORMAT_NONLITERAL;
571 (void) snprintf(buf, sizeof buf, format, unit_status_string(u));
572 REENABLE_WARNING;
573
574 mid = t == JOB_START ? "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTING_STR :
575 t == JOB_STOP ? "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPING_STR :
576 "MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADING_STR;
577
578 /* Note that we deliberately use LOG_MESSAGE() instead of
579 * LOG_UNIT_MESSAGE() here, since this is supposed to mimic
580 * closely what is written to screen using the status output,
581 * which is supposed the highest level, friendliest output
582 * possible, which means we should avoid the low-level unit
583 * name. */
584 log_unit_struct(u, LOG_INFO,
585 LOG_MESSAGE("%s", buf),
586 "JOB_ID=%" PRIu32, job_id,
587 "JOB_TYPE=%s", job_type_to_string(t),
588 LOG_UNIT_INVOCATION_ID(u),
589 mid);
590 }
591
592 static void job_emit_begin_status_message(Unit *u, uint32_t job_id, JobType t) {
593 assert(u);
594 assert(t >= 0);
595 assert(t < _JOB_TYPE_MAX);
596
597 job_log_begin_status_message(u, job_id, t);
598 job_print_begin_status_message(u, t);
599 }
600
601 static int job_perform_on_unit(Job **j) {
602 uint32_t id;
603 Manager *m;
604 JobType t;
605 Unit *u;
606 int r;
607
608 /* While we execute this operation the job might go away (for
609 * example: because it finishes immediately or is replaced by
610 * a new, conflicting job.) To make sure we don't access a
611 * freed job later on we store the id here, so that we can
612 * verify the job is still valid. */
613
614 assert(j);
615 assert(*j);
616
617 m = (*j)->manager;
618 u = (*j)->unit;
619 t = (*j)->type;
620 id = (*j)->id;
621
622 switch (t) {
623 case JOB_START:
624 r = unit_start(u);
625 break;
626
627 case JOB_RESTART:
628 t = JOB_STOP;
629 _fallthrough_;
630 case JOB_STOP:
631 r = unit_stop(u);
632 break;
633
634 case JOB_RELOAD:
635 r = unit_reload(u);
636 break;
637
638 default:
639 assert_not_reached("Invalid job type");
640 }
641
642 /* Log if the job still exists and the start/stop/reload function actually did something. Note that this means
643 * for units for which there's no 'activating' phase (i.e. because we transition directly from 'inactive' to
644 * 'active') we'll possibly skip the "Starting..." message. */
645 *j = manager_get_job(m, id);
646 if (*j && r > 0)
647 job_emit_begin_status_message(u, id, t);
648
649 return r;
650 }
651
652 int job_run_and_invalidate(Job *j) {
653 int r;
654
655 assert(j);
656 assert(j->installed);
657 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
658 assert(j->in_run_queue);
659
660 prioq_remove(j->manager->run_queue, j, &j->run_queue_idx);
661 j->in_run_queue = false;
662
663 if (j->state != JOB_WAITING)
664 return 0;
665
666 if (!job_is_runnable(j))
667 return -EAGAIN;
668
669 job_start_timer(j, true);
670 job_set_state(j, JOB_RUNNING);
671 job_add_to_dbus_queue(j);
672
673 switch (j->type) {
674
675 case JOB_VERIFY_ACTIVE: {
676 UnitActiveState t;
677
678 t = unit_active_state(j->unit);
679 if (UNIT_IS_ACTIVE_OR_RELOADING(t))
680 r = -EALREADY;
681 else if (t == UNIT_ACTIVATING)
682 r = -EAGAIN;
683 else
684 r = -EBADR;
685 break;
686 }
687
688 case JOB_START:
689 case JOB_STOP:
690 case JOB_RESTART:
691 r = job_perform_on_unit(&j);
692
693 /* If the unit type does not support starting/stopping, then simply wait. */
694 if (r == -EBADR)
695 r = 0;
696 break;
697
698 case JOB_RELOAD:
699 r = job_perform_on_unit(&j);
700 break;
701
702 case JOB_NOP:
703 r = -EALREADY;
704 break;
705
706 default:
707 assert_not_reached("Unknown job type");
708 }
709
710 if (j) {
711 if (r == -EAGAIN)
712 job_set_state(j, JOB_WAITING); /* Hmm, not ready after all, let's return to JOB_WAITING state */
713 else if (r == -EALREADY) /* already being executed */
714 r = job_finish_and_invalidate(j, JOB_DONE, true, true);
715 else if (r == -ECOMM) /* condition failed, but all is good */
716 r = job_finish_and_invalidate(j, JOB_DONE, true, false);
717 else if (r == -EBADR)
718 r = job_finish_and_invalidate(j, JOB_SKIPPED, true, false);
719 else if (r == -ENOEXEC)
720 r = job_finish_and_invalidate(j, JOB_INVALID, true, false);
721 else if (r == -EPROTO)
722 r = job_finish_and_invalidate(j, JOB_ASSERT, true, false);
723 else if (r == -EOPNOTSUPP)
724 r = job_finish_and_invalidate(j, JOB_UNSUPPORTED, true, false);
725 else if (r == -ENOLINK)
726 r = job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false);
727 else if (r == -ESTALE)
728 r = job_finish_and_invalidate(j, JOB_ONCE, true, false);
729 else if (r < 0)
730 r = job_finish_and_invalidate(j, JOB_FAILED, true, false);
731 }
732
733 return r;
734 }
735
736 _pure_ static const char *job_get_done_status_message_format(Unit *u, JobType t, JobResult result) {
737
738 static const char *const generic_finished_start_job[_JOB_RESULT_MAX] = {
739 [JOB_DONE] = "Started %s.",
740 [JOB_TIMEOUT] = "Timed out starting %s.",
741 [JOB_FAILED] = "Failed to start %s.",
742 [JOB_DEPENDENCY] = "Dependency failed for %s.",
743 [JOB_ASSERT] = "Assertion failed for %s.",
744 [JOB_UNSUPPORTED] = "Starting of %s not supported.",
745 [JOB_COLLECTED] = "Unnecessary job for %s was removed.",
746 [JOB_ONCE] = "Unit %s has been started before and cannot be started again."
747 };
748 static const char *const generic_finished_stop_job[_JOB_RESULT_MAX] = {
749 [JOB_DONE] = "Stopped %s.",
750 [JOB_FAILED] = "Stopped (with error) %s.",
751 [JOB_TIMEOUT] = "Timed out stopping %s.",
752 };
753 static const char *const generic_finished_reload_job[_JOB_RESULT_MAX] = {
754 [JOB_DONE] = "Reloaded %s.",
755 [JOB_FAILED] = "Reload failed for %s.",
756 [JOB_TIMEOUT] = "Timed out reloading %s.",
757 };
758 /* When verify-active detects the unit is inactive, report it.
759 * Most likely a DEPEND warning from a requisiting unit will
760 * occur next and it's nice to see what was requisited. */
761 static const char *const generic_finished_verify_active_job[_JOB_RESULT_MAX] = {
762 [JOB_SKIPPED] = "%s is not active.",
763 };
764
765 const char *format;
766
767 assert(u);
768 assert(t >= 0);
769 assert(t < _JOB_TYPE_MAX);
770
771 if (IN_SET(t, JOB_START, JOB_STOP, JOB_RESTART)) {
772 const UnitStatusMessageFormats *formats = &UNIT_VTABLE(u)->status_message_formats;
773 if (formats->finished_job) {
774 format = formats->finished_job(u, t, result);
775 if (format)
776 return format;
777 }
778 format = t == JOB_START ?
779 formats->finished_start_job[result] :
780 formats->finished_stop_job[result];
781 if (format)
782 return format;
783 }
784
785 /* Return generic strings */
786 if (t == JOB_START)
787 return generic_finished_start_job[result];
788 else if (IN_SET(t, JOB_STOP, JOB_RESTART))
789 return generic_finished_stop_job[result];
790 else if (t == JOB_RELOAD)
791 return generic_finished_reload_job[result];
792 else if (t == JOB_VERIFY_ACTIVE)
793 return generic_finished_verify_active_job[result];
794
795 return NULL;
796 }
797
798 static const struct {
799 const char *color, *word;
800 } job_print_done_status_messages[_JOB_RESULT_MAX] = {
801 [JOB_DONE] = { ANSI_OK_COLOR, " OK " },
802 [JOB_TIMEOUT] = { ANSI_HIGHLIGHT_RED, " TIME " },
803 [JOB_FAILED] = { ANSI_HIGHLIGHT_RED, "FAILED" },
804 [JOB_DEPENDENCY] = { ANSI_HIGHLIGHT_YELLOW, "DEPEND" },
805 [JOB_SKIPPED] = { ANSI_HIGHLIGHT, " INFO " },
806 [JOB_ASSERT] = { ANSI_HIGHLIGHT_YELLOW, "ASSERT" },
807 [JOB_UNSUPPORTED] = { ANSI_HIGHLIGHT_YELLOW, "UNSUPP" },
808 /* JOB_COLLECTED */
809 [JOB_ONCE] = { ANSI_HIGHLIGHT_RED, " ONCE " },
810 };
811
812 static void job_print_done_status_message(Unit *u, JobType t, JobResult result) {
813 const char *format;
814 const char *status;
815
816 assert(u);
817 assert(t >= 0);
818 assert(t < _JOB_TYPE_MAX);
819
820 /* Reload status messages have traditionally not been printed to console. */
821 if (t == JOB_RELOAD)
822 return;
823
824 /* No message if the job did not actually do anything due to failed condition. */
825 if (t == JOB_START && result == JOB_DONE && !u->condition_result)
826 return;
827
828 if (!job_print_done_status_messages[result].word)
829 return;
830
831 format = job_get_done_status_message_format(u, t, result);
832 if (!format)
833 return;
834
835 if (log_get_show_color())
836 status = strjoina(job_print_done_status_messages[result].color,
837 job_print_done_status_messages[result].word,
838 ANSI_NORMAL);
839 else
840 status = job_print_done_status_messages[result].word;
841
842 DISABLE_WARNING_FORMAT_NONLITERAL;
843 unit_status_printf(u,
844 result == JOB_DONE ? STATUS_TYPE_NORMAL : STATUS_TYPE_NOTICE,
845 status, format);
846 REENABLE_WARNING;
847
848 if (t == JOB_START && result == JOB_FAILED) {
849 _cleanup_free_ char *quoted = NULL;
850
851 quoted = shell_maybe_quote(u->id, ESCAPE_BACKSLASH);
852 manager_status_printf(u->manager, STATUS_TYPE_NORMAL, NULL, "See 'systemctl status %s' for details.", strna(quoted));
853 }
854 }
855
856 static void job_log_done_status_message(Unit *u, uint32_t job_id, JobType t, JobResult result) {
857 const char *format, *mid;
858 char buf[LINE_MAX];
859 static const int job_result_log_level[_JOB_RESULT_MAX] = {
860 [JOB_DONE] = LOG_INFO,
861 [JOB_CANCELED] = LOG_INFO,
862 [JOB_TIMEOUT] = LOG_ERR,
863 [JOB_FAILED] = LOG_ERR,
864 [JOB_DEPENDENCY] = LOG_WARNING,
865 [JOB_SKIPPED] = LOG_NOTICE,
866 [JOB_INVALID] = LOG_INFO,
867 [JOB_ASSERT] = LOG_WARNING,
868 [JOB_UNSUPPORTED] = LOG_WARNING,
869 [JOB_COLLECTED] = LOG_INFO,
870 [JOB_ONCE] = LOG_ERR,
871 };
872
873 assert(u);
874 assert(t >= 0);
875 assert(t < _JOB_TYPE_MAX);
876
877 /* Skip printing if output goes to the console, and job_print_status_message()
878 will actually print something to the console. */
879 if (log_on_console() && job_print_done_status_messages[result].word)
880 return;
881
882 /* Show condition check message if the job did not actually do anything due to failed condition. */
883 if (t == JOB_START && result == JOB_DONE && !u->condition_result) {
884 log_unit_struct(u, LOG_INFO,
885 "MESSAGE=Condition check resulted in %s being skipped.", unit_status_string(u),
886 "JOB_ID=%" PRIu32, job_id,
887 "JOB_TYPE=%s", job_type_to_string(t),
888 "JOB_RESULT=%s", job_result_to_string(result),
889 LOG_UNIT_INVOCATION_ID(u),
890 "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTED_STR);
891
892 return;
893 }
894
895 if (!unit_log_level_test(u, job_result_log_level[result]))
896 return;
897
898 format = job_get_done_status_message_format(u, t, result);
899 if (!format)
900 return;
901
902 /* The description might be longer than the buffer, but that's OK,
903 * we'll just truncate it here. Note that we use snprintf() rather than
904 * xsprintf() on purpose here: we are fine with truncation and don't
905 * consider that an error. */
906 DISABLE_WARNING_FORMAT_NONLITERAL;
907 (void) snprintf(buf, sizeof(buf), format, unit_status_string(u));
908 REENABLE_WARNING;
909
910 switch (t) {
911
912 case JOB_START:
913 if (result == JOB_DONE)
914 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STARTED_STR;
915 else
916 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILED_STR;
917 break;
918
919 case JOB_RELOAD:
920 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_RELOADED_STR;
921 break;
922
923 case JOB_STOP:
924 case JOB_RESTART:
925 mid = "MESSAGE_ID=" SD_MESSAGE_UNIT_STOPPED_STR;
926 break;
927
928 default:
929 log_unit_struct(u, job_result_log_level[result],
930 LOG_MESSAGE("%s", buf),
931 "JOB_ID=%" PRIu32, job_id,
932 "JOB_TYPE=%s", job_type_to_string(t),
933 "JOB_RESULT=%s", job_result_to_string(result),
934 LOG_UNIT_INVOCATION_ID(u));
935 return;
936 }
937
938 log_unit_struct(u, job_result_log_level[result],
939 LOG_MESSAGE("%s", buf),
940 "JOB_ID=%" PRIu32, job_id,
941 "JOB_TYPE=%s", job_type_to_string(t),
942 "JOB_RESULT=%s", job_result_to_string(result),
943 LOG_UNIT_INVOCATION_ID(u),
944 mid);
945 }
946
947 static void job_emit_done_status_message(Unit *u, uint32_t job_id, JobType t, JobResult result) {
948 assert(u);
949
950 job_log_done_status_message(u, job_id, t, result);
951 job_print_done_status_message(u, t, result);
952 }
953
954 static void job_fail_dependencies(Unit *u, UnitDependency d) {
955 Unit *other;
956 void *v;
957
958 assert(u);
959
960 HASHMAP_FOREACH_KEY(v, other, u->dependencies[d]) {
961 Job *j = other->job;
962
963 if (!j)
964 continue;
965 if (!IN_SET(j->type, JOB_START, JOB_VERIFY_ACTIVE))
966 continue;
967
968 job_finish_and_invalidate(j, JOB_DEPENDENCY, true, false);
969 }
970 }
971
972 int job_finish_and_invalidate(Job *j, JobResult result, bool recursive, bool already) {
973 Unit *u;
974 Unit *other;
975 JobType t;
976 void *v;
977
978 assert(j);
979 assert(j->installed);
980 assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION);
981
982 u = j->unit;
983 t = j->type;
984
985 j->result = result;
986
987 log_unit_debug(u, "Job %" PRIu32 " %s/%s finished, result=%s",
988 j->id, u->id, job_type_to_string(t), job_result_to_string(result));
989
990 /* If this job did nothing to the respective unit we don't log the status message */
991 if (!already)
992 job_emit_done_status_message(u, j->id, t, result);
993
994 /* Patch restart jobs so that they become normal start jobs */
995 if (result == JOB_DONE && t == JOB_RESTART) {
996
997 job_change_type(j, JOB_START);
998 job_set_state(j, JOB_WAITING);
999
1000 job_add_to_dbus_queue(j);
1001 job_add_to_run_queue(j);
1002 job_add_to_gc_queue(j);
1003
1004 goto finish;
1005 }
1006
1007 if (IN_SET(result, JOB_FAILED, JOB_INVALID))
1008 j->manager->n_failed_jobs++;
1009
1010 job_uninstall(j);
1011 job_free(j);
1012
1013 /* Fail depending jobs on failure */
1014 if (result != JOB_DONE && recursive) {
1015 if (IN_SET(t, JOB_START, JOB_VERIFY_ACTIVE)) {
1016 job_fail_dependencies(u, UNIT_REQUIRED_BY);
1017 job_fail_dependencies(u, UNIT_REQUISITE_OF);
1018 job_fail_dependencies(u, UNIT_BOUND_BY);
1019 } else if (t == JOB_STOP)
1020 job_fail_dependencies(u, UNIT_CONFLICTED_BY);
1021 }
1022
1023 /* A special check to make sure we take down anything RequisiteOf if we
1024 * aren't active. This is when the verify-active job merges with a
1025 * satisfying job type, and then loses it's invalidation effect, as the
1026 * result there is JOB_DONE for the start job we merged into, while we
1027 * should be failing the depending job if the said unit isn't in fact
1028 * active. Oneshots are an example of this, where going directly from
1029 * activating to inactive is success.
1030 *
1031 * This happens when you use ConditionXYZ= in a unit too, since in that
1032 * case the job completes with the JOB_DONE result, but the unit never
1033 * really becomes active. Note that such a case still involves merging:
1034 *
1035 * A start job waits for something else, and a verify-active comes in
1036 * and merges in the installed job. Then, later, when it becomes
1037 * runnable, it finishes with JOB_DONE result as execution on conditions
1038 * not being met is skipped, breaking our dependency semantics.
1039 *
1040 * Also, depending on if start job waits or not, the merging may or may
1041 * not happen (the verify-active job may trigger after it finishes), so
1042 * you get undeterministic results without this check.
1043 */
1044 if (result == JOB_DONE && recursive && !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u))) {
1045 if (IN_SET(t, JOB_START, JOB_RELOAD))
1046 job_fail_dependencies(u, UNIT_REQUISITE_OF);
1047 }
1048 /* Trigger OnFailure dependencies that are not generated by
1049 * the unit itself. We don't treat JOB_CANCELED as failure in
1050 * this context. And JOB_FAILURE is already handled by the
1051 * unit itself. */
1052 if (IN_SET(result, JOB_TIMEOUT, JOB_DEPENDENCY)) {
1053 log_unit_struct(u, LOG_NOTICE,
1054 "JOB_TYPE=%s", job_type_to_string(t),
1055 "JOB_RESULT=%s", job_result_to_string(result),
1056 LOG_UNIT_MESSAGE(u, "Job %s/%s failed with result '%s'.",
1057 u->id,
1058 job_type_to_string(t),
1059 job_result_to_string(result)));
1060
1061 unit_start_on_failure(u);
1062 }
1063
1064 unit_trigger_notify(u);
1065
1066 finish:
1067 /* Try to start the next jobs that can be started */
1068 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_AFTER])
1069 if (other->job) {
1070 job_add_to_run_queue(other->job);
1071 job_add_to_gc_queue(other->job);
1072 }
1073 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BEFORE])
1074 if (other->job) {
1075 job_add_to_run_queue(other->job);
1076 job_add_to_gc_queue(other->job);
1077 }
1078
1079 manager_check_finished(u->manager);
1080
1081 return 0;
1082 }
1083
1084 static int job_dispatch_timer(sd_event_source *s, uint64_t monotonic, void *userdata) {
1085 Job *j = userdata;
1086 Unit *u;
1087
1088 assert(j);
1089 assert(s == j->timer_event_source);
1090
1091 log_unit_warning(j->unit, "Job %s/%s timed out.", j->unit->id, job_type_to_string(j->type));
1092
1093 u = j->unit;
1094 job_finish_and_invalidate(j, JOB_TIMEOUT, true, false);
1095
1096 emergency_action(u->manager, u->job_timeout_action,
1097 EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
1098 u->job_timeout_reboot_arg, -1, "job timed out");
1099
1100 return 0;
1101 }
1102
1103 int job_start_timer(Job *j, bool job_running) {
1104 int r;
1105 usec_t timeout_time, old_timeout_time;
1106
1107 if (job_running) {
1108 j->begin_running_usec = now(CLOCK_MONOTONIC);
1109
1110 if (j->unit->job_running_timeout == USEC_INFINITY)
1111 return 0;
1112
1113 timeout_time = usec_add(j->begin_running_usec, j->unit->job_running_timeout);
1114
1115 if (j->timer_event_source) {
1116 /* Update only if JobRunningTimeoutSec= results in earlier timeout */
1117 r = sd_event_source_get_time(j->timer_event_source, &old_timeout_time);
1118 if (r < 0)
1119 return r;
1120
1121 if (old_timeout_time <= timeout_time)
1122 return 0;
1123
1124 return sd_event_source_set_time(j->timer_event_source, timeout_time);
1125 }
1126 } else {
1127 if (j->timer_event_source)
1128 return 0;
1129
1130 j->begin_usec = now(CLOCK_MONOTONIC);
1131
1132 if (j->unit->job_timeout == USEC_INFINITY)
1133 return 0;
1134
1135 timeout_time = usec_add(j->begin_usec, j->unit->job_timeout);
1136 }
1137
1138 r = sd_event_add_time(
1139 j->manager->event,
1140 &j->timer_event_source,
1141 CLOCK_MONOTONIC,
1142 timeout_time, 0,
1143 job_dispatch_timer, j);
1144 if (r < 0)
1145 return r;
1146
1147 (void) sd_event_source_set_description(j->timer_event_source, "job-start");
1148
1149 return 0;
1150 }
1151
1152 void job_add_to_run_queue(Job *j) {
1153 int r;
1154
1155 assert(j);
1156 assert(j->installed);
1157
1158 if (j->in_run_queue)
1159 return;
1160
1161 if (prioq_isempty(j->manager->run_queue)) {
1162 r = sd_event_source_set_enabled(j->manager->run_queue_event_source, SD_EVENT_ONESHOT);
1163 if (r < 0)
1164 log_warning_errno(r, "Failed to enable job run queue event source, ignoring: %m");
1165 }
1166
1167 r = prioq_put(j->manager->run_queue, j, &j->run_queue_idx);
1168 if (r < 0)
1169 log_warning_errno(r, "Failed put job in run queue, ignoring: %m");
1170 else
1171 j->in_run_queue = true;
1172 }
1173
1174 void job_add_to_dbus_queue(Job *j) {
1175 assert(j);
1176 assert(j->installed);
1177
1178 if (j->in_dbus_queue)
1179 return;
1180
1181 /* We don't check if anybody is subscribed here, since this
1182 * job might just have been created and not yet assigned to a
1183 * connection/client. */
1184
1185 LIST_PREPEND(dbus_queue, j->manager->dbus_job_queue, j);
1186 j->in_dbus_queue = true;
1187 }
1188
1189 char *job_dbus_path(Job *j) {
1190 char *p;
1191
1192 assert(j);
1193
1194 if (asprintf(&p, "/org/freedesktop/systemd1/job/%"PRIu32, j->id) < 0)
1195 return NULL;
1196
1197 return p;
1198 }
1199
1200 int job_serialize(Job *j, FILE *f) {
1201 assert(j);
1202 assert(f);
1203
1204 (void) serialize_item_format(f, "job-id", "%u", j->id);
1205 (void) serialize_item(f, "job-type", job_type_to_string(j->type));
1206 (void) serialize_item(f, "job-state", job_state_to_string(j->state));
1207 (void) serialize_bool(f, "job-irreversible", j->irreversible);
1208 (void) serialize_bool(f, "job-sent-dbus-new-signal", j->sent_dbus_new_signal);
1209 (void) serialize_bool(f, "job-ignore-order", j->ignore_order);
1210
1211 if (j->begin_usec > 0)
1212 (void) serialize_usec(f, "job-begin", j->begin_usec);
1213 if (j->begin_running_usec > 0)
1214 (void) serialize_usec(f, "job-begin-running", j->begin_running_usec);
1215
1216 bus_track_serialize(j->bus_track, f, "subscribed");
1217
1218 /* End marker */
1219 fputc('\n', f);
1220 return 0;
1221 }
1222
1223 int job_deserialize(Job *j, FILE *f) {
1224 int r;
1225
1226 assert(j);
1227 assert(f);
1228
1229 for (;;) {
1230 _cleanup_free_ char *line = NULL;
1231 char *l, *v;
1232 size_t k;
1233
1234 r = read_line(f, LONG_LINE_MAX, &line);
1235 if (r < 0)
1236 return log_error_errno(r, "Failed to read serialization line: %m");
1237 if (r == 0)
1238 return 0;
1239
1240 l = strstrip(line);
1241
1242 /* End marker */
1243 if (isempty(l))
1244 return 0;
1245
1246 k = strcspn(l, "=");
1247
1248 if (l[k] == '=') {
1249 l[k] = 0;
1250 v = l+k+1;
1251 } else
1252 v = l+k;
1253
1254 if (streq(l, "job-id")) {
1255
1256 if (safe_atou32(v, &j->id) < 0)
1257 log_debug("Failed to parse job id value: %s", v);
1258
1259 } else if (streq(l, "job-type")) {
1260 JobType t;
1261
1262 t = job_type_from_string(v);
1263 if (t < 0)
1264 log_debug("Failed to parse job type: %s", v);
1265 else if (t >= _JOB_TYPE_MAX_IN_TRANSACTION)
1266 log_debug("Cannot deserialize job of type: %s", v);
1267 else
1268 j->type = t;
1269
1270 } else if (streq(l, "job-state")) {
1271 JobState s;
1272
1273 s = job_state_from_string(v);
1274 if (s < 0)
1275 log_debug("Failed to parse job state: %s", v);
1276 else
1277 job_set_state(j, s);
1278
1279 } else if (streq(l, "job-irreversible")) {
1280 int b;
1281
1282 b = parse_boolean(v);
1283 if (b < 0)
1284 log_debug("Failed to parse job irreversible flag: %s", v);
1285 else
1286 j->irreversible = j->irreversible || b;
1287
1288 } else if (streq(l, "job-sent-dbus-new-signal")) {
1289 int b;
1290
1291 b = parse_boolean(v);
1292 if (b < 0)
1293 log_debug("Failed to parse job sent_dbus_new_signal flag: %s", v);
1294 else
1295 j->sent_dbus_new_signal = j->sent_dbus_new_signal || b;
1296
1297 } else if (streq(l, "job-ignore-order")) {
1298 int b;
1299
1300 b = parse_boolean(v);
1301 if (b < 0)
1302 log_debug("Failed to parse job ignore_order flag: %s", v);
1303 else
1304 j->ignore_order = j->ignore_order || b;
1305
1306 } else if (streq(l, "job-begin"))
1307 (void) deserialize_usec(v, &j->begin_usec);
1308
1309 else if (streq(l, "job-begin-running"))
1310 (void) deserialize_usec(v, &j->begin_running_usec);
1311
1312 else if (streq(l, "subscribed")) {
1313 if (strv_extend(&j->deserialized_clients, v) < 0)
1314 return log_oom();
1315 } else
1316 log_debug("Unknown job serialization key: %s", l);
1317 }
1318 }
1319
1320 int job_coldplug(Job *j) {
1321 int r;
1322 usec_t timeout_time = USEC_INFINITY;
1323
1324 assert(j);
1325
1326 /* After deserialization is complete and the bus connection
1327 * set up again, let's start watching our subscribers again */
1328 (void) bus_job_coldplug_bus_track(j);
1329
1330 if (j->state == JOB_WAITING)
1331 job_add_to_run_queue(j);
1332
1333 /* Maybe due to new dependencies we don't actually need this job anymore? */
1334 job_add_to_gc_queue(j);
1335
1336 /* Create timer only when job began or began running and the respective timeout is finite.
1337 * Follow logic of job_start_timer() if both timeouts are finite */
1338 if (j->begin_usec == 0)
1339 return 0;
1340
1341 if (j->unit->job_timeout != USEC_INFINITY)
1342 timeout_time = usec_add(j->begin_usec, j->unit->job_timeout);
1343
1344 if (timestamp_is_set(j->begin_running_usec))
1345 timeout_time = MIN(timeout_time, usec_add(j->begin_running_usec, j->unit->job_running_timeout));
1346
1347 if (timeout_time == USEC_INFINITY)
1348 return 0;
1349
1350 j->timer_event_source = sd_event_source_unref(j->timer_event_source);
1351
1352 r = sd_event_add_time(
1353 j->manager->event,
1354 &j->timer_event_source,
1355 CLOCK_MONOTONIC,
1356 timeout_time, 0,
1357 job_dispatch_timer, j);
1358 if (r < 0)
1359 log_debug_errno(r, "Failed to restart timeout for job: %m");
1360
1361 (void) sd_event_source_set_description(j->timer_event_source, "job-timeout");
1362
1363 return r;
1364 }
1365
1366 void job_shutdown_magic(Job *j) {
1367 assert(j);
1368
1369 /* The shutdown target gets some special treatment here: we
1370 * tell the kernel to begin with flushing its disk caches, to
1371 * optimize shutdown time a bit. Ideally we wouldn't hardcode
1372 * this magic into PID 1. However all other processes aren't
1373 * options either since they'd exit much sooner than PID 1 and
1374 * asynchronous sync() would cause their exit to be
1375 * delayed. */
1376
1377 if (j->type != JOB_START)
1378 return;
1379
1380 if (!MANAGER_IS_SYSTEM(j->unit->manager))
1381 return;
1382
1383 if (!unit_has_name(j->unit, SPECIAL_SHUTDOWN_TARGET))
1384 return;
1385
1386 /* In case messages on console has been disabled on boot */
1387 j->unit->manager->no_console_output = false;
1388
1389 if (detect_container() > 0)
1390 return;
1391
1392 (void) asynchronous_sync(NULL);
1393 }
1394
1395 int job_get_timeout(Job *j, usec_t *timeout) {
1396 usec_t x = USEC_INFINITY, y = USEC_INFINITY;
1397 Unit *u = j->unit;
1398 int r;
1399
1400 assert(u);
1401
1402 if (j->timer_event_source) {
1403 r = sd_event_source_get_time(j->timer_event_source, &x);
1404 if (r < 0)
1405 return r;
1406 }
1407
1408 if (UNIT_VTABLE(u)->get_timeout) {
1409 r = UNIT_VTABLE(u)->get_timeout(u, &y);
1410 if (r < 0)
1411 return r;
1412 }
1413
1414 if (x == USEC_INFINITY && y == USEC_INFINITY)
1415 return 0;
1416
1417 *timeout = MIN(x, y);
1418 return 1;
1419 }
1420
1421 bool job_may_gc(Job *j) {
1422 Unit *other;
1423 void *v;
1424
1425 assert(j);
1426
1427 /* Checks whether this job should be GC'ed away. We only do this for jobs of units that have no effect on their
1428 * own and just track external state. For now the only unit type that qualifies for this are .device units.
1429 * Returns true if the job can be collected. */
1430
1431 if (!UNIT_VTABLE(j->unit)->gc_jobs)
1432 return false;
1433
1434 if (sd_bus_track_count(j->bus_track) > 0)
1435 return false;
1436
1437 /* FIXME: So this is a bit ugly: for now we don't properly track references made via private bus connections
1438 * (because it's nasty, as sd_bus_track doesn't apply to it). We simply remember that the job was once
1439 * referenced by one, and reset this whenever we notice that no private bus connections are around. This means
1440 * the GC is a bit too conservative when it comes to jobs created by private bus connections. */
1441 if (j->ref_by_private_bus) {
1442 if (set_isempty(j->unit->manager->private_buses))
1443 j->ref_by_private_bus = false;
1444 else
1445 return false;
1446 }
1447
1448 if (j->type == JOB_NOP)
1449 return false;
1450
1451 /* The logic is inverse to job_is_runnable, we cannot GC as long as we block any job. */
1452 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE])
1453 if (other->job && job_compare(j, other->job, UNIT_BEFORE) < 0)
1454 return false;
1455
1456 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER])
1457 if (other->job && job_compare(j, other->job, UNIT_AFTER) < 0)
1458 return false;
1459
1460 return true;
1461 }
1462
1463 void job_add_to_gc_queue(Job *j) {
1464 assert(j);
1465
1466 if (j->in_gc_queue)
1467 return;
1468
1469 if (!job_may_gc(j))
1470 return;
1471
1472 LIST_PREPEND(gc_queue, j->unit->manager->gc_job_queue, j);
1473 j->in_gc_queue = true;
1474 }
1475
1476 static int job_compare_id(Job * const *a, Job * const *b) {
1477 return CMP((*a)->id, (*b)->id);
1478 }
1479
1480 static size_t sort_job_list(Job **list, size_t n) {
1481 Job *previous = NULL;
1482 size_t a, b;
1483
1484 /* Order by numeric IDs */
1485 typesafe_qsort(list, n, job_compare_id);
1486
1487 /* Filter out duplicates */
1488 for (a = 0, b = 0; a < n; a++) {
1489
1490 if (previous == list[a])
1491 continue;
1492
1493 previous = list[b++] = list[a];
1494 }
1495
1496 return b;
1497 }
1498
1499 int job_get_before(Job *j, Job*** ret) {
1500 _cleanup_free_ Job** list = NULL;
1501 size_t n = 0, n_allocated = 0;
1502 Unit *other = NULL;
1503 void *v;
1504
1505 /* Returns a list of all pending jobs that need to finish before this job may be started. */
1506
1507 assert(j);
1508 assert(ret);
1509
1510 if (j->ignore_order) {
1511 *ret = NULL;
1512 return 0;
1513 }
1514
1515 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER]) {
1516 if (!other->job)
1517 continue;
1518 if (job_compare(j, other->job, UNIT_AFTER) <= 0)
1519 continue;
1520
1521 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1522 return -ENOMEM;
1523 list[n++] = other->job;
1524 }
1525
1526 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE]) {
1527 if (!other->job)
1528 continue;
1529 if (job_compare(j, other->job, UNIT_BEFORE) <= 0)
1530 continue;
1531
1532 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1533 return -ENOMEM;
1534 list[n++] = other->job;
1535 }
1536
1537 n = sort_job_list(list, n);
1538
1539 *ret = TAKE_PTR(list);
1540
1541 return (int) n;
1542 }
1543
1544 int job_get_after(Job *j, Job*** ret) {
1545 _cleanup_free_ Job** list = NULL;
1546 size_t n = 0, n_allocated = 0;
1547 Unit *other = NULL;
1548 void *v;
1549
1550 assert(j);
1551 assert(ret);
1552
1553 /* Returns a list of all pending jobs that are waiting for this job to finish. */
1554
1555 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_BEFORE]) {
1556 if (!other->job)
1557 continue;
1558
1559 if (other->job->ignore_order)
1560 continue;
1561
1562 if (job_compare(j, other->job, UNIT_BEFORE) >= 0)
1563 continue;
1564
1565 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1566 return -ENOMEM;
1567 list[n++] = other->job;
1568 }
1569
1570 HASHMAP_FOREACH_KEY(v, other, j->unit->dependencies[UNIT_AFTER]) {
1571 if (!other->job)
1572 continue;
1573
1574 if (other->job->ignore_order)
1575 continue;
1576
1577 if (job_compare(j, other->job, UNIT_AFTER) >= 0)
1578 continue;
1579
1580 if (!GREEDY_REALLOC(list, n_allocated, n+1))
1581 return -ENOMEM;
1582 list[n++] = other->job;
1583 }
1584
1585 n = sort_job_list(list, n);
1586
1587 *ret = TAKE_PTR(list);
1588
1589 return (int) n;
1590 }
1591
1592 static const char* const job_state_table[_JOB_STATE_MAX] = {
1593 [JOB_WAITING] = "waiting",
1594 [JOB_RUNNING] = "running",
1595 };
1596
1597 DEFINE_STRING_TABLE_LOOKUP(job_state, JobState);
1598
1599 static const char* const job_type_table[_JOB_TYPE_MAX] = {
1600 [JOB_START] = "start",
1601 [JOB_VERIFY_ACTIVE] = "verify-active",
1602 [JOB_STOP] = "stop",
1603 [JOB_RELOAD] = "reload",
1604 [JOB_RELOAD_OR_START] = "reload-or-start",
1605 [JOB_RESTART] = "restart",
1606 [JOB_TRY_RESTART] = "try-restart",
1607 [JOB_TRY_RELOAD] = "try-reload",
1608 [JOB_NOP] = "nop",
1609 };
1610
1611 DEFINE_STRING_TABLE_LOOKUP(job_type, JobType);
1612
1613 static const char* const job_mode_table[_JOB_MODE_MAX] = {
1614 [JOB_FAIL] = "fail",
1615 [JOB_REPLACE] = "replace",
1616 [JOB_REPLACE_IRREVERSIBLY] = "replace-irreversibly",
1617 [JOB_ISOLATE] = "isolate",
1618 [JOB_FLUSH] = "flush",
1619 [JOB_IGNORE_DEPENDENCIES] = "ignore-dependencies",
1620 [JOB_IGNORE_REQUIREMENTS] = "ignore-requirements",
1621 [JOB_TRIGGERING] = "triggering",
1622 };
1623
1624 DEFINE_STRING_TABLE_LOOKUP(job_mode, JobMode);
1625
1626 static const char* const job_result_table[_JOB_RESULT_MAX] = {
1627 [JOB_DONE] = "done",
1628 [JOB_CANCELED] = "canceled",
1629 [JOB_TIMEOUT] = "timeout",
1630 [JOB_FAILED] = "failed",
1631 [JOB_DEPENDENCY] = "dependency",
1632 [JOB_SKIPPED] = "skipped",
1633 [JOB_INVALID] = "invalid",
1634 [JOB_ASSERT] = "assert",
1635 [JOB_UNSUPPORTED] = "unsupported",
1636 [JOB_COLLECTED] = "collected",
1637 [JOB_ONCE] = "once",
1638 };
1639
1640 DEFINE_STRING_TABLE_LOOKUP(job_result, JobResult);
1641
1642 const char* job_type_to_access_method(JobType t) {
1643 assert(t >= 0);
1644 assert(t < _JOB_TYPE_MAX);
1645
1646 if (IN_SET(t, JOB_START, JOB_RESTART, JOB_TRY_RESTART))
1647 return "start";
1648 else if (t == JOB_STOP)
1649 return "stop";
1650 else
1651 return "reload";
1652 }
1653
1654 /*
1655 * assume_dep assumed dependency between units (a is before/after b)
1656 *
1657 * Returns
1658 * 0 jobs are independent,
1659 * >0 a should run after b,
1660 * <0 a should run before b,
1661 *
1662 * The logic means that for a service a and a service b where b.After=a:
1663 *
1664 * start a + start b → 1st step start a, 2nd step start b
1665 * start a + stop b → 1st step stop b, 2nd step start a
1666 * stop a + start b → 1st step stop a, 2nd step start b
1667 * stop a + stop b → 1st step stop b, 2nd step stop a
1668 *
1669 * This has the side effect that restarts are properly
1670 * synchronized too.
1671 */
1672 int job_compare(Job *a, Job *b, UnitDependency assume_dep) {
1673 assert(a->type < _JOB_TYPE_MAX_IN_TRANSACTION);
1674 assert(b->type < _JOB_TYPE_MAX_IN_TRANSACTION);
1675 assert(IN_SET(assume_dep, UNIT_AFTER, UNIT_BEFORE));
1676
1677 /* Trivial cases first */
1678 if (a->type == JOB_NOP || b->type == JOB_NOP)
1679 return 0;
1680
1681 if (a->ignore_order || b->ignore_order)
1682 return 0;
1683
1684 if (assume_dep == UNIT_AFTER)
1685 return -job_compare(b, a, UNIT_BEFORE);
1686
1687 /* Let's make it simple, JOB_STOP goes always first (in case both ua and ub stop,
1688 * then ub's stop goes first anyway).
1689 * JOB_RESTART is JOB_STOP in disguise (before it is patched to JOB_START). */
1690 if (IN_SET(b->type, JOB_STOP, JOB_RESTART))
1691 return 1;
1692 else
1693 return -1;
1694 }