]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/manager.c
core: split out core/manager-dump.[ch]
[thirdparty/systemd.git] / src / core / manager.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <linux/kd.h>
6 #include <sys/epoll.h>
7 #include <sys/inotify.h>
8 #include <sys/ioctl.h>
9 #include <sys/reboot.h>
10 #include <sys/timerfd.h>
11 #include <sys/wait.h>
12 #include <unistd.h>
13
14 #if HAVE_AUDIT
15 #include <libaudit.h>
16 #endif
17
18 #include "sd-daemon.h"
19 #include "sd-messages.h"
20 #include "sd-path.h"
21
22 #include "all-units.h"
23 #include "alloc-util.h"
24 #include "audit-fd.h"
25 #include "boot-timestamps.h"
26 #include "bus-common-errors.h"
27 #include "bus-error.h"
28 #include "bus-kernel.h"
29 #include "bus-util.h"
30 #include "clean-ipc.h"
31 #include "clock-util.h"
32 #include "core-varlink.h"
33 #include "creds-util.h"
34 #include "dbus-job.h"
35 #include "dbus-manager.h"
36 #include "dbus-unit.h"
37 #include "dbus.h"
38 #include "def.h"
39 #include "dirent-util.h"
40 #include "env-util.h"
41 #include "escape.h"
42 #include "exec-util.h"
43 #include "execute.h"
44 #include "exit-status.h"
45 #include "fd-util.h"
46 #include "fileio.h"
47 #include "fs-util.h"
48 #include "generator-setup.h"
49 #include "hashmap.h"
50 #include "install.h"
51 #include "io-util.h"
52 #include "label.h"
53 #include "load-fragment.h"
54 #include "locale-setup.h"
55 #include "log.h"
56 #include "macro.h"
57 #include "manager.h"
58 #include "manager-dump.h"
59 #include "memory-util.h"
60 #include "mkdir.h"
61 #include "parse-util.h"
62 #include "path-lookup.h"
63 #include "path-util.h"
64 #include "process-util.h"
65 #include "ratelimit.h"
66 #include "rlimit-util.h"
67 #include "rm-rf.h"
68 #include "selinux-util.h"
69 #include "serialize.h"
70 #include "signal-util.h"
71 #include "socket-util.h"
72 #include "special.h"
73 #include "stat-util.h"
74 #include "string-table.h"
75 #include "string-util.h"
76 #include "strv.h"
77 #include "strxcpyx.h"
78 #include "sysctl-util.h"
79 #include "syslog-util.h"
80 #include "terminal-util.h"
81 #include "time-util.h"
82 #include "transaction.h"
83 #include "umask-util.h"
84 #include "unit-name.h"
85 #include "unit-serialize.h"
86 #include "user-util.h"
87 #include "virt.h"
88 #include "watchdog.h"
89
90 #define NOTIFY_RCVBUF_SIZE (8*1024*1024)
91 #define CGROUPS_AGENT_RCVBUF_SIZE (8*1024*1024)
92
93 /* Initial delay and the interval for printing status messages about running jobs */
94 #define JOBS_IN_PROGRESS_WAIT_USEC (2*USEC_PER_SEC)
95 #define JOBS_IN_PROGRESS_QUIET_WAIT_USEC (25*USEC_PER_SEC)
96 #define JOBS_IN_PROGRESS_PERIOD_USEC (USEC_PER_SEC / 3)
97 #define JOBS_IN_PROGRESS_PERIOD_DIVISOR 3
98
99 /* If there are more than 1K bus messages queue across our API and direct buses, then let's not add more on top until
100 * the queue gets more empty. */
101 #define MANAGER_BUS_BUSY_THRESHOLD 1024LU
102
103 /* How many units and jobs to process of the bus queue before returning to the event loop. */
104 #define MANAGER_BUS_MESSAGE_BUDGET 100U
105
106 static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
107 static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
108 static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
109 static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
110 static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
111 static int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
112 static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata);
113 static int manager_dispatch_run_queue(sd_event_source *source, void *userdata);
114 static int manager_dispatch_sigchld(sd_event_source *source, void *userdata);
115 static int manager_dispatch_timezone_change(sd_event_source *source, const struct inotify_event *event, void *userdata);
116 static int manager_run_environment_generators(Manager *m);
117 static int manager_run_generators(Manager *m);
118 static void manager_vacuum(Manager *m);
119
120 static usec_t manager_watch_jobs_next_time(Manager *m) {
121 return usec_add(now(CLOCK_MONOTONIC),
122 show_status_on(m->show_status) ? JOBS_IN_PROGRESS_WAIT_USEC :
123 JOBS_IN_PROGRESS_QUIET_WAIT_USEC);
124 }
125
126 static void manager_watch_jobs_in_progress(Manager *m) {
127 usec_t next;
128 int r;
129
130 assert(m);
131
132 /* We do not want to show the cylon animation if the user
133 * needs to confirm service executions otherwise confirmation
134 * messages will be screwed by the cylon animation. */
135 if (!manager_is_confirm_spawn_disabled(m))
136 return;
137
138 if (m->jobs_in_progress_event_source)
139 return;
140
141 next = manager_watch_jobs_next_time(m);
142 r = sd_event_add_time(
143 m->event,
144 &m->jobs_in_progress_event_source,
145 CLOCK_MONOTONIC,
146 next, 0,
147 manager_dispatch_jobs_in_progress, m);
148 if (r < 0)
149 return;
150
151 (void) sd_event_source_set_description(m->jobs_in_progress_event_source, "manager-jobs-in-progress");
152 }
153
154 #define CYLON_BUFFER_EXTRA (2*STRLEN(ANSI_RED) + STRLEN(ANSI_HIGHLIGHT_RED) + 2*STRLEN(ANSI_NORMAL))
155
156 static void draw_cylon(char buffer[], size_t buflen, unsigned width, unsigned pos) {
157 char *p = buffer;
158
159 assert(buflen >= CYLON_BUFFER_EXTRA + width + 1);
160 assert(pos <= width+1); /* 0 or width+1 mean that the center light is behind the corner */
161
162 if (pos > 1) {
163 if (pos > 2)
164 p = mempset(p, ' ', pos-2);
165 if (log_get_show_color())
166 p = stpcpy(p, ANSI_RED);
167 *p++ = '*';
168 }
169
170 if (pos > 0 && pos <= width) {
171 if (log_get_show_color())
172 p = stpcpy(p, ANSI_HIGHLIGHT_RED);
173 *p++ = '*';
174 }
175
176 if (log_get_show_color())
177 p = stpcpy(p, ANSI_NORMAL);
178
179 if (pos < width) {
180 if (log_get_show_color())
181 p = stpcpy(p, ANSI_RED);
182 *p++ = '*';
183 if (pos < width-1)
184 p = mempset(p, ' ', width-1-pos);
185 if (log_get_show_color())
186 strcpy(p, ANSI_NORMAL);
187 }
188 }
189
190 static void manager_flip_auto_status(Manager *m, bool enable, const char *reason) {
191 assert(m);
192
193 if (enable) {
194 if (m->show_status == SHOW_STATUS_AUTO)
195 manager_set_show_status(m, SHOW_STATUS_TEMPORARY, reason);
196 } else {
197 if (m->show_status == SHOW_STATUS_TEMPORARY)
198 manager_set_show_status(m, SHOW_STATUS_AUTO, reason);
199 }
200 }
201
202 static void manager_print_jobs_in_progress(Manager *m) {
203 _cleanup_free_ char *job_of_n = NULL;
204 Job *j;
205 unsigned counter = 0, print_nr;
206 char cylon[6 + CYLON_BUFFER_EXTRA + 1];
207 unsigned cylon_pos;
208 char time[FORMAT_TIMESPAN_MAX], limit[FORMAT_TIMESPAN_MAX] = "no limit";
209 uint64_t x;
210
211 assert(m);
212 assert(m->n_running_jobs > 0);
213
214 manager_flip_auto_status(m, true, "delay");
215
216 print_nr = (m->jobs_in_progress_iteration / JOBS_IN_PROGRESS_PERIOD_DIVISOR) % m->n_running_jobs;
217
218 HASHMAP_FOREACH(j, m->jobs)
219 if (j->state == JOB_RUNNING && counter++ == print_nr)
220 break;
221
222 /* m->n_running_jobs must be consistent with the contents of m->jobs,
223 * so the above loop must have succeeded in finding j. */
224 assert(counter == print_nr + 1);
225 assert(j);
226
227 cylon_pos = m->jobs_in_progress_iteration % 14;
228 if (cylon_pos >= 8)
229 cylon_pos = 14 - cylon_pos;
230 draw_cylon(cylon, sizeof(cylon), 6, cylon_pos);
231
232 m->jobs_in_progress_iteration++;
233
234 if (m->n_running_jobs > 1) {
235 if (asprintf(&job_of_n, "(%u of %u) ", counter, m->n_running_jobs) < 0)
236 job_of_n = NULL;
237 }
238
239 format_timespan(time, sizeof(time), now(CLOCK_MONOTONIC) - j->begin_usec, 1*USEC_PER_SEC);
240 if (job_get_timeout(j, &x) > 0)
241 format_timespan(limit, sizeof(limit), x - j->begin_usec, 1*USEC_PER_SEC);
242
243 manager_status_printf(m, STATUS_TYPE_EPHEMERAL, cylon,
244 "%sA %s job is running for %s (%s / %s)",
245 strempty(job_of_n),
246 job_type_to_string(j->type),
247 unit_status_string(j->unit),
248 time, limit);
249 }
250
251 static int have_ask_password(void) {
252 _cleanup_closedir_ DIR *dir = NULL;
253 struct dirent *de;
254
255 dir = opendir("/run/systemd/ask-password");
256 if (!dir) {
257 if (errno == ENOENT)
258 return false;
259 else
260 return -errno;
261 }
262
263 FOREACH_DIRENT_ALL(de, dir, return -errno) {
264 if (startswith(de->d_name, "ask."))
265 return true;
266 }
267 return false;
268 }
269
270 static int manager_dispatch_ask_password_fd(sd_event_source *source,
271 int fd, uint32_t revents, void *userdata) {
272 Manager *m = userdata;
273
274 assert(m);
275
276 (void) flush_fd(fd);
277
278 m->have_ask_password = have_ask_password();
279 if (m->have_ask_password < 0)
280 /* Log error but continue. Negative have_ask_password
281 * is treated as unknown status. */
282 log_error_errno(m->have_ask_password, "Failed to list /run/systemd/ask-password: %m");
283
284 return 0;
285 }
286
287 static void manager_close_ask_password(Manager *m) {
288 assert(m);
289
290 m->ask_password_event_source = sd_event_source_unref(m->ask_password_event_source);
291 m->ask_password_inotify_fd = safe_close(m->ask_password_inotify_fd);
292 m->have_ask_password = -EINVAL;
293 }
294
295 static int manager_check_ask_password(Manager *m) {
296 int r;
297
298 assert(m);
299
300 if (!m->ask_password_event_source) {
301 assert(m->ask_password_inotify_fd < 0);
302
303 (void) mkdir_p_label("/run/systemd/ask-password", 0755);
304
305 m->ask_password_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
306 if (m->ask_password_inotify_fd < 0)
307 return log_error_errno(errno, "Failed to create inotify object: %m");
308
309 r = inotify_add_watch_and_warn(m->ask_password_inotify_fd,
310 "/run/systemd/ask-password",
311 IN_CREATE|IN_DELETE|IN_MOVE);
312 if (r < 0) {
313 manager_close_ask_password(m);
314 return r;
315 }
316
317 r = sd_event_add_io(m->event, &m->ask_password_event_source,
318 m->ask_password_inotify_fd, EPOLLIN,
319 manager_dispatch_ask_password_fd, m);
320 if (r < 0) {
321 log_error_errno(r, "Failed to add event source for /run/systemd/ask-password: %m");
322 manager_close_ask_password(m);
323 return r;
324 }
325
326 (void) sd_event_source_set_description(m->ask_password_event_source, "manager-ask-password");
327
328 /* Queries might have been added meanwhile... */
329 manager_dispatch_ask_password_fd(m->ask_password_event_source,
330 m->ask_password_inotify_fd, EPOLLIN, m);
331 }
332
333 return m->have_ask_password;
334 }
335
336 static int manager_watch_idle_pipe(Manager *m) {
337 int r;
338
339 assert(m);
340
341 if (m->idle_pipe_event_source)
342 return 0;
343
344 if (m->idle_pipe[2] < 0)
345 return 0;
346
347 r = sd_event_add_io(m->event, &m->idle_pipe_event_source, m->idle_pipe[2], EPOLLIN, manager_dispatch_idle_pipe_fd, m);
348 if (r < 0)
349 return log_error_errno(r, "Failed to watch idle pipe: %m");
350
351 (void) sd_event_source_set_description(m->idle_pipe_event_source, "manager-idle-pipe");
352
353 return 0;
354 }
355
356 static void manager_close_idle_pipe(Manager *m) {
357 assert(m);
358
359 m->idle_pipe_event_source = sd_event_source_unref(m->idle_pipe_event_source);
360
361 safe_close_pair(m->idle_pipe);
362 safe_close_pair(m->idle_pipe + 2);
363 }
364
365 static int manager_setup_time_change(Manager *m) {
366 int r;
367
368 assert(m);
369
370 if (MANAGER_IS_TEST_RUN(m))
371 return 0;
372
373 m->time_change_event_source = sd_event_source_unref(m->time_change_event_source);
374 m->time_change_fd = safe_close(m->time_change_fd);
375
376 m->time_change_fd = time_change_fd();
377 if (m->time_change_fd < 0)
378 return log_error_errno(m->time_change_fd, "Failed to create timer change timer fd: %m");
379
380 r = sd_event_add_io(m->event, &m->time_change_event_source, m->time_change_fd, EPOLLIN, manager_dispatch_time_change_fd, m);
381 if (r < 0)
382 return log_error_errno(r, "Failed to create time change event source: %m");
383
384 /* Schedule this slightly earlier than the .timer event sources */
385 r = sd_event_source_set_priority(m->time_change_event_source, SD_EVENT_PRIORITY_NORMAL-1);
386 if (r < 0)
387 return log_error_errno(r, "Failed to set priority of time change event sources: %m");
388
389 (void) sd_event_source_set_description(m->time_change_event_source, "manager-time-change");
390
391 log_debug("Set up TFD_TIMER_CANCEL_ON_SET timerfd.");
392
393 return 0;
394 }
395
396 static int manager_read_timezone_stat(Manager *m) {
397 struct stat st;
398 bool changed;
399
400 assert(m);
401
402 /* Read the current stat() data of /etc/localtime so that we detect changes */
403 if (lstat("/etc/localtime", &st) < 0) {
404 log_debug_errno(errno, "Failed to stat /etc/localtime, ignoring: %m");
405 changed = m->etc_localtime_accessible;
406 m->etc_localtime_accessible = false;
407 } else {
408 usec_t k;
409
410 k = timespec_load(&st.st_mtim);
411 changed = !m->etc_localtime_accessible || k != m->etc_localtime_mtime;
412
413 m->etc_localtime_mtime = k;
414 m->etc_localtime_accessible = true;
415 }
416
417 return changed;
418 }
419
420 static int manager_setup_timezone_change(Manager *m) {
421 _cleanup_(sd_event_source_unrefp) sd_event_source *new_event = NULL;
422 int r;
423
424 assert(m);
425
426 if (MANAGER_IS_TEST_RUN(m))
427 return 0;
428
429 /* We watch /etc/localtime for three events: change of the link count (which might mean removal from /etc even
430 * though another link might be kept), renames, and file close operations after writing. Note we don't bother
431 * with IN_DELETE_SELF, as that would just report when the inode is removed entirely, i.e. after the link count
432 * went to zero and all fds to it are closed.
433 *
434 * Note that we never follow symlinks here. This is a simplification, but should cover almost all cases
435 * correctly.
436 *
437 * Note that we create the new event source first here, before releasing the old one. This should optimize
438 * behaviour as this way sd-event can reuse the old watch in case the inode didn't change. */
439
440 r = sd_event_add_inotify(m->event, &new_event, "/etc/localtime",
441 IN_ATTRIB|IN_MOVE_SELF|IN_CLOSE_WRITE|IN_DONT_FOLLOW, manager_dispatch_timezone_change, m);
442 if (r == -ENOENT) {
443 /* If the file doesn't exist yet, subscribe to /etc instead, and wait until it is created either by
444 * O_CREATE or by rename() */
445
446 log_debug_errno(r, "/etc/localtime doesn't exist yet, watching /etc instead.");
447 r = sd_event_add_inotify(m->event, &new_event, "/etc",
448 IN_CREATE|IN_MOVED_TO|IN_ONLYDIR, manager_dispatch_timezone_change, m);
449 }
450 if (r < 0)
451 return log_error_errno(r, "Failed to create timezone change event source: %m");
452
453 /* Schedule this slightly earlier than the .timer event sources */
454 r = sd_event_source_set_priority(new_event, SD_EVENT_PRIORITY_NORMAL-1);
455 if (r < 0)
456 return log_error_errno(r, "Failed to set priority of timezone change event sources: %m");
457
458 sd_event_source_unref(m->timezone_change_event_source);
459 m->timezone_change_event_source = TAKE_PTR(new_event);
460
461 return 0;
462 }
463
464 static int enable_special_signals(Manager *m) {
465 _cleanup_close_ int fd = -1;
466
467 assert(m);
468
469 if (MANAGER_IS_TEST_RUN(m))
470 return 0;
471
472 /* Enable that we get SIGINT on control-alt-del. In containers
473 * this will fail with EPERM (older) or EINVAL (newer), so
474 * ignore that. */
475 if (reboot(RB_DISABLE_CAD) < 0 && !IN_SET(errno, EPERM, EINVAL))
476 log_warning_errno(errno, "Failed to enable ctrl-alt-del handling: %m");
477
478 fd = open_terminal("/dev/tty0", O_RDWR|O_NOCTTY|O_CLOEXEC);
479 if (fd < 0) {
480 /* Support systems without virtual console */
481 if (fd != -ENOENT)
482 log_warning_errno(errno, "Failed to open /dev/tty0: %m");
483 } else {
484 /* Enable that we get SIGWINCH on kbrequest */
485 if (ioctl(fd, KDSIGACCEPT, SIGWINCH) < 0)
486 log_warning_errno(errno, "Failed to enable kbrequest handling: %m");
487 }
488
489 return 0;
490 }
491
492 #define RTSIG_IF_AVAILABLE(signum) (signum <= SIGRTMAX ? signum : -1)
493
494 static int manager_setup_signals(Manager *m) {
495 struct sigaction sa = {
496 .sa_handler = SIG_DFL,
497 .sa_flags = SA_NOCLDSTOP|SA_RESTART,
498 };
499 sigset_t mask;
500 int r;
501
502 assert(m);
503
504 assert_se(sigaction(SIGCHLD, &sa, NULL) == 0);
505
506 /* We make liberal use of realtime signals here. On
507 * Linux/glibc we have 30 of them (with the exception of Linux
508 * on hppa, see below), between SIGRTMIN+0 ... SIGRTMIN+30
509 * (aka SIGRTMAX). */
510
511 assert_se(sigemptyset(&mask) == 0);
512 sigset_add_many(&mask,
513 SIGCHLD, /* Child died */
514 SIGTERM, /* Reexecute daemon */
515 SIGHUP, /* Reload configuration */
516 SIGUSR1, /* systemd: reconnect to D-Bus */
517 SIGUSR2, /* systemd: dump status */
518 SIGINT, /* Kernel sends us this on control-alt-del */
519 SIGWINCH, /* Kernel sends us this on kbrequest (alt-arrowup) */
520 SIGPWR, /* Some kernel drivers and upsd send us this on power failure */
521
522 SIGRTMIN+0, /* systemd: start default.target */
523 SIGRTMIN+1, /* systemd: isolate rescue.target */
524 SIGRTMIN+2, /* systemd: isolate emergency.target */
525 SIGRTMIN+3, /* systemd: start halt.target */
526 SIGRTMIN+4, /* systemd: start poweroff.target */
527 SIGRTMIN+5, /* systemd: start reboot.target */
528 SIGRTMIN+6, /* systemd: start kexec.target */
529
530 /* ... space for more special targets ... */
531
532 SIGRTMIN+13, /* systemd: Immediate halt */
533 SIGRTMIN+14, /* systemd: Immediate poweroff */
534 SIGRTMIN+15, /* systemd: Immediate reboot */
535 SIGRTMIN+16, /* systemd: Immediate kexec */
536
537 /* ... space for more immediate system state changes ... */
538
539 SIGRTMIN+20, /* systemd: enable status messages */
540 SIGRTMIN+21, /* systemd: disable status messages */
541 SIGRTMIN+22, /* systemd: set log level to LOG_DEBUG */
542 SIGRTMIN+23, /* systemd: set log level to LOG_INFO */
543 SIGRTMIN+24, /* systemd: Immediate exit (--user only) */
544
545 /* .. one free signal here ... */
546
547 /* Apparently Linux on hppa had fewer RT signals until v3.18,
548 * SIGRTMAX was SIGRTMIN+25, and then SIGRTMIN was lowered,
549 * see commit v3.17-7614-g1f25df2eff.
550 *
551 * We cannot unconditionally make use of those signals here,
552 * so let's use a runtime check. Since these commands are
553 * accessible by different means and only really a safety
554 * net, the missing functionality on hppa shouldn't matter.
555 */
556
557 RTSIG_IF_AVAILABLE(SIGRTMIN+26), /* systemd: set log target to journal-or-kmsg */
558 RTSIG_IF_AVAILABLE(SIGRTMIN+27), /* systemd: set log target to console */
559 RTSIG_IF_AVAILABLE(SIGRTMIN+28), /* systemd: set log target to kmsg */
560 RTSIG_IF_AVAILABLE(SIGRTMIN+29), /* systemd: set log target to syslog-or-kmsg (obsolete) */
561
562 /* ... one free signal here SIGRTMIN+30 ... */
563 -1);
564 assert_se(sigprocmask(SIG_SETMASK, &mask, NULL) == 0);
565
566 m->signal_fd = signalfd(-1, &mask, SFD_NONBLOCK|SFD_CLOEXEC);
567 if (m->signal_fd < 0)
568 return -errno;
569
570 r = sd_event_add_io(m->event, &m->signal_event_source, m->signal_fd, EPOLLIN, manager_dispatch_signal_fd, m);
571 if (r < 0)
572 return r;
573
574 (void) sd_event_source_set_description(m->signal_event_source, "manager-signal");
575
576 /* Process signals a bit earlier than the rest of things, but later than notify_fd processing, so that the
577 * notify processing can still figure out to which process/service a message belongs, before we reap the
578 * process. Also, process this before handling cgroup notifications, so that we always collect child exit
579 * status information before detecting that there's no process in a cgroup. */
580 r = sd_event_source_set_priority(m->signal_event_source, SD_EVENT_PRIORITY_NORMAL-6);
581 if (r < 0)
582 return r;
583
584 if (MANAGER_IS_SYSTEM(m))
585 return enable_special_signals(m);
586
587 return 0;
588 }
589
590 static char** sanitize_environment(char **l) {
591
592 /* Let's remove some environment variables that we need ourselves to communicate with our clients */
593 strv_env_unset_many(
594 l,
595 "CACHE_DIRECTORY",
596 "CONFIGURATION_DIRECTORY",
597 "CREDENTIALS_DIRECTORY",
598 "EXIT_CODE",
599 "EXIT_STATUS",
600 "INVOCATION_ID",
601 "JOURNAL_STREAM",
602 "LISTEN_FDNAMES",
603 "LISTEN_FDS",
604 "LISTEN_PID",
605 "LOGS_DIRECTORY",
606 "MAINPID",
607 "MANAGERPID",
608 "NOTIFY_SOCKET",
609 "PIDFILE",
610 "REMOTE_ADDR",
611 "REMOTE_PORT",
612 "RUNTIME_DIRECTORY",
613 "SERVICE_RESULT",
614 "STATE_DIRECTORY",
615 "WATCHDOG_PID",
616 "WATCHDOG_USEC",
617 NULL);
618
619 /* Let's order the environment alphabetically, just to make it pretty */
620 strv_sort(l);
621
622 return l;
623 }
624
625 int manager_default_environment(Manager *m) {
626 int r;
627
628 assert(m);
629
630 m->transient_environment = strv_free(m->transient_environment);
631
632 if (MANAGER_IS_SYSTEM(m)) {
633 /* The system manager always starts with a clean
634 * environment for its children. It does not import
635 * the kernel's or the parents' exported variables.
636 *
637 * The initial passed environment is untouched to keep
638 * /proc/self/environ valid; it is used for tagging
639 * the init process inside containers. */
640 m->transient_environment = strv_new("PATH=" DEFAULT_PATH);
641 if (!m->transient_environment)
642 return log_oom();
643
644 /* Import locale variables LC_*= from configuration */
645 (void) locale_setup(&m->transient_environment);
646 } else {
647 /* The user manager passes its own environment along to its children, except for $PATH. */
648 m->transient_environment = strv_copy(environ);
649 if (!m->transient_environment)
650 return log_oom();
651
652 r = strv_env_replace_strdup(&m->transient_environment, "PATH=" DEFAULT_USER_PATH);
653 if (r < 0)
654 return log_oom();
655 }
656
657 sanitize_environment(m->transient_environment);
658
659 return 0;
660 }
661
662 static int manager_setup_prefix(Manager *m) {
663 struct table_entry {
664 uint64_t type;
665 const char *suffix;
666 };
667
668 static const struct table_entry paths_system[_EXEC_DIRECTORY_TYPE_MAX] = {
669 [EXEC_DIRECTORY_RUNTIME] = { SD_PATH_SYSTEM_RUNTIME, NULL },
670 [EXEC_DIRECTORY_STATE] = { SD_PATH_SYSTEM_STATE_PRIVATE, NULL },
671 [EXEC_DIRECTORY_CACHE] = { SD_PATH_SYSTEM_STATE_CACHE, NULL },
672 [EXEC_DIRECTORY_LOGS] = { SD_PATH_SYSTEM_STATE_LOGS, NULL },
673 [EXEC_DIRECTORY_CONFIGURATION] = { SD_PATH_SYSTEM_CONFIGURATION, NULL },
674 };
675
676 static const struct table_entry paths_user[_EXEC_DIRECTORY_TYPE_MAX] = {
677 [EXEC_DIRECTORY_RUNTIME] = { SD_PATH_USER_RUNTIME, NULL },
678 [EXEC_DIRECTORY_STATE] = { SD_PATH_USER_CONFIGURATION, NULL },
679 [EXEC_DIRECTORY_CACHE] = { SD_PATH_USER_STATE_CACHE, NULL },
680 [EXEC_DIRECTORY_LOGS] = { SD_PATH_USER_CONFIGURATION, "log" },
681 [EXEC_DIRECTORY_CONFIGURATION] = { SD_PATH_USER_CONFIGURATION, NULL },
682 };
683
684 assert(m);
685
686 const struct table_entry *p = MANAGER_IS_SYSTEM(m) ? paths_system : paths_user;
687 int r;
688
689 for (ExecDirectoryType i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++) {
690 r = sd_path_lookup(p[i].type, p[i].suffix, &m->prefix[i]);
691 if (r < 0)
692 return log_warning_errno(r, "Failed to lookup %s path: %m",
693 exec_directory_type_to_string(i));
694 }
695
696 return 0;
697 }
698
699 static void manager_free_unit_name_maps(Manager *m) {
700 m->unit_id_map = hashmap_free(m->unit_id_map);
701 m->unit_name_map = hashmap_free(m->unit_name_map);
702 m->unit_path_cache = set_free(m->unit_path_cache);
703 m->unit_cache_timestamp_hash = 0;
704 }
705
706 static int manager_setup_run_queue(Manager *m) {
707 int r;
708
709 assert(m);
710 assert(!m->run_queue_event_source);
711
712 r = sd_event_add_defer(m->event, &m->run_queue_event_source, manager_dispatch_run_queue, m);
713 if (r < 0)
714 return r;
715
716 r = sd_event_source_set_priority(m->run_queue_event_source, SD_EVENT_PRIORITY_IDLE);
717 if (r < 0)
718 return r;
719
720 r = sd_event_source_set_enabled(m->run_queue_event_source, SD_EVENT_OFF);
721 if (r < 0)
722 return r;
723
724 (void) sd_event_source_set_description(m->run_queue_event_source, "manager-run-queue");
725
726 return 0;
727 }
728
729 static int manager_setup_sigchld_event_source(Manager *m) {
730 int r;
731
732 assert(m);
733 assert(!m->sigchld_event_source);
734
735 r = sd_event_add_defer(m->event, &m->sigchld_event_source, manager_dispatch_sigchld, m);
736 if (r < 0)
737 return r;
738
739 r = sd_event_source_set_priority(m->sigchld_event_source, SD_EVENT_PRIORITY_NORMAL-7);
740 if (r < 0)
741 return r;
742
743 r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_OFF);
744 if (r < 0)
745 return r;
746
747 (void) sd_event_source_set_description(m->sigchld_event_source, "manager-sigchld");
748
749 return 0;
750 }
751
752 int manager_new(UnitFileScope scope, ManagerTestRunFlags test_run_flags, Manager **_m) {
753 _cleanup_(manager_freep) Manager *m = NULL;
754 const char *e;
755 int r;
756
757 assert(_m);
758 assert(IN_SET(scope, UNIT_FILE_SYSTEM, UNIT_FILE_USER));
759
760 m = new(Manager, 1);
761 if (!m)
762 return -ENOMEM;
763
764 *m = (Manager) {
765 .unit_file_scope = scope,
766 .objective = _MANAGER_OBJECTIVE_INVALID,
767
768 .status_unit_format = STATUS_UNIT_FORMAT_DEFAULT,
769
770 .default_timer_accuracy_usec = USEC_PER_MINUTE,
771 .default_memory_accounting = MEMORY_ACCOUNTING_DEFAULT,
772 .default_tasks_accounting = true,
773 .default_tasks_max = TASKS_MAX_UNSET,
774 .default_timeout_start_usec = DEFAULT_TIMEOUT_USEC,
775 .default_timeout_stop_usec = DEFAULT_TIMEOUT_USEC,
776 .default_restart_usec = DEFAULT_RESTART_USEC,
777
778 .original_log_level = -1,
779 .original_log_target = _LOG_TARGET_INVALID,
780
781 .watchdog_overridden[WATCHDOG_RUNTIME] = USEC_INFINITY,
782 .watchdog_overridden[WATCHDOG_REBOOT] = USEC_INFINITY,
783 .watchdog_overridden[WATCHDOG_KEXEC] = USEC_INFINITY,
784
785 .show_status_overridden = _SHOW_STATUS_INVALID,
786
787 .notify_fd = -1,
788 .cgroups_agent_fd = -1,
789 .signal_fd = -1,
790 .time_change_fd = -1,
791 .user_lookup_fds = { -1, -1 },
792 .private_listen_fd = -1,
793 .dev_autofs_fd = -1,
794 .cgroup_inotify_fd = -1,
795 .pin_cgroupfs_fd = -1,
796 .ask_password_inotify_fd = -1,
797 .idle_pipe = { -1, -1, -1, -1},
798
799 /* start as id #1, so that we can leave #0 around as "null-like" value */
800 .current_job_id = 1,
801
802 .have_ask_password = -EINVAL, /* we don't know */
803 .first_boot = -1,
804 .test_run_flags = test_run_flags,
805
806 .default_oom_policy = OOM_STOP,
807 };
808
809 #if ENABLE_EFI
810 if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0)
811 boot_timestamps(m->timestamps + MANAGER_TIMESTAMP_USERSPACE,
812 m->timestamps + MANAGER_TIMESTAMP_FIRMWARE,
813 m->timestamps + MANAGER_TIMESTAMP_LOADER);
814 #endif
815
816 /* Prepare log fields we can use for structured logging */
817 if (MANAGER_IS_SYSTEM(m)) {
818 m->unit_log_field = "UNIT=";
819 m->unit_log_format_string = "UNIT=%s";
820
821 m->invocation_log_field = "INVOCATION_ID=";
822 m->invocation_log_format_string = "INVOCATION_ID=%s";
823 } else {
824 m->unit_log_field = "USER_UNIT=";
825 m->unit_log_format_string = "USER_UNIT=%s";
826
827 m->invocation_log_field = "USER_INVOCATION_ID=";
828 m->invocation_log_format_string = "USER_INVOCATION_ID=%s";
829 }
830
831 /* Reboot immediately if the user hits C-A-D more often than 7x per 2s */
832 m->ctrl_alt_del_ratelimit = (RateLimit) { .interval = 2 * USEC_PER_SEC, .burst = 7 };
833
834 r = manager_default_environment(m);
835 if (r < 0)
836 return r;
837
838 r = hashmap_ensure_allocated(&m->units, &string_hash_ops);
839 if (r < 0)
840 return r;
841
842 r = hashmap_ensure_allocated(&m->cgroup_unit, &path_hash_ops);
843 if (r < 0)
844 return r;
845
846 r = hashmap_ensure_allocated(&m->watch_bus, &string_hash_ops);
847 if (r < 0)
848 return r;
849
850 r = prioq_ensure_allocated(&m->run_queue, compare_job_priority);
851 if (r < 0)
852 return r;
853
854 r = manager_setup_prefix(m);
855 if (r < 0)
856 return r;
857
858 r = get_credentials_dir(&e);
859 if (r >= 0) {
860 m->received_credentials = strdup(e);
861 if (!m->received_credentials)
862 return -ENOMEM;
863 }
864
865 r = sd_event_default(&m->event);
866 if (r < 0)
867 return r;
868
869 r = manager_setup_run_queue(m);
870 if (r < 0)
871 return r;
872
873 if (test_run_flags == MANAGER_TEST_RUN_MINIMAL) {
874 m->cgroup_root = strdup("");
875 if (!m->cgroup_root)
876 return -ENOMEM;
877 } else {
878 r = manager_setup_signals(m);
879 if (r < 0)
880 return r;
881
882 r = manager_setup_cgroup(m);
883 if (r < 0)
884 return r;
885
886 r = manager_setup_time_change(m);
887 if (r < 0)
888 return r;
889
890 r = manager_read_timezone_stat(m);
891 if (r < 0)
892 return r;
893
894 (void) manager_setup_timezone_change(m);
895
896 r = manager_setup_sigchld_event_source(m);
897 if (r < 0)
898 return r;
899 }
900
901 if (test_run_flags == 0) {
902 if (MANAGER_IS_SYSTEM(m))
903 r = mkdir_label("/run/systemd/units", 0755);
904 else {
905 _cleanup_free_ char *units_path = NULL;
906 r = xdg_user_runtime_dir(&units_path, "/systemd/units");
907 if (r < 0)
908 return r;
909 r = mkdir_p_label(units_path, 0755);
910 }
911
912 if (r < 0 && r != -EEXIST)
913 return r;
914 }
915
916 m->taint_usr =
917 !in_initrd() &&
918 dir_is_empty("/usr") > 0;
919
920 /* Note that we do not set up the notify fd here. We do that after deserialization,
921 * since they might have gotten serialized across the reexec. */
922
923 *_m = TAKE_PTR(m);
924
925 return 0;
926 }
927
928 static int manager_setup_notify(Manager *m) {
929 int r;
930
931 if (MANAGER_IS_TEST_RUN(m))
932 return 0;
933
934 if (m->notify_fd < 0) {
935 _cleanup_close_ int fd = -1;
936 union sockaddr_union sa;
937 socklen_t sa_len;
938
939 /* First free all secondary fields */
940 m->notify_socket = mfree(m->notify_socket);
941 m->notify_event_source = sd_event_source_unref(m->notify_event_source);
942
943 fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
944 if (fd < 0)
945 return log_error_errno(errno, "Failed to allocate notification socket: %m");
946
947 fd_inc_rcvbuf(fd, NOTIFY_RCVBUF_SIZE);
948
949 m->notify_socket = path_join(m->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/notify");
950 if (!m->notify_socket)
951 return log_oom();
952
953 r = sockaddr_un_set_path(&sa.un, m->notify_socket);
954 if (r < 0)
955 return log_error_errno(r, "Notify socket '%s' not valid for AF_UNIX socket address, refusing.",
956 m->notify_socket);
957 sa_len = r;
958
959 (void) mkdir_parents_label(m->notify_socket, 0755);
960 (void) sockaddr_un_unlink(&sa.un);
961
962 r = mac_selinux_bind(fd, &sa.sa, sa_len);
963 if (r < 0)
964 return log_error_errno(r, "bind(%s) failed: %m", m->notify_socket);
965
966 r = setsockopt_int(fd, SOL_SOCKET, SO_PASSCRED, true);
967 if (r < 0)
968 return log_error_errno(r, "SO_PASSCRED failed: %m");
969
970 m->notify_fd = TAKE_FD(fd);
971
972 log_debug("Using notification socket %s", m->notify_socket);
973 }
974
975 if (!m->notify_event_source) {
976 r = sd_event_add_io(m->event, &m->notify_event_source, m->notify_fd, EPOLLIN, manager_dispatch_notify_fd, m);
977 if (r < 0)
978 return log_error_errno(r, "Failed to allocate notify event source: %m");
979
980 /* Process notification messages a bit earlier than SIGCHLD, so that we can still identify to which
981 * service an exit message belongs. */
982 r = sd_event_source_set_priority(m->notify_event_source, SD_EVENT_PRIORITY_NORMAL-8);
983 if (r < 0)
984 return log_error_errno(r, "Failed to set priority of notify event source: %m");
985
986 (void) sd_event_source_set_description(m->notify_event_source, "manager-notify");
987 }
988
989 return 0;
990 }
991
992 static int manager_setup_cgroups_agent(Manager *m) {
993
994 static const union sockaddr_union sa = {
995 .un.sun_family = AF_UNIX,
996 .un.sun_path = "/run/systemd/cgroups-agent",
997 };
998 int r;
999
1000 /* This creates a listening socket we receive cgroups agent messages on. We do not use D-Bus for delivering
1001 * these messages from the cgroups agent binary to PID 1, as the cgroups agent binary is very short-living, and
1002 * each instance of it needs a new D-Bus connection. Since D-Bus connections are SOCK_STREAM/AF_UNIX, on
1003 * overloaded systems the backlog of the D-Bus socket becomes relevant, as not more than the configured number
1004 * of D-Bus connections may be queued until the kernel will start dropping further incoming connections,
1005 * possibly resulting in lost cgroups agent messages. To avoid this, we'll use a private SOCK_DGRAM/AF_UNIX
1006 * socket, where no backlog is relevant as communication may take place without an actual connect() cycle, and
1007 * we thus won't lose messages.
1008 *
1009 * Note that PID 1 will forward the agent message to system bus, so that the user systemd instance may listen
1010 * to it. The system instance hence listens on this special socket, but the user instances listen on the system
1011 * bus for these messages. */
1012
1013 if (MANAGER_IS_TEST_RUN(m))
1014 return 0;
1015
1016 if (!MANAGER_IS_SYSTEM(m))
1017 return 0;
1018
1019 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
1020 if (r < 0)
1021 return log_error_errno(r, "Failed to determine whether unified cgroups hierarchy is used: %m");
1022 if (r > 0) /* We don't need this anymore on the unified hierarchy */
1023 return 0;
1024
1025 if (m->cgroups_agent_fd < 0) {
1026 _cleanup_close_ int fd = -1;
1027
1028 /* First free all secondary fields */
1029 m->cgroups_agent_event_source = sd_event_source_unref(m->cgroups_agent_event_source);
1030
1031 fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
1032 if (fd < 0)
1033 return log_error_errno(errno, "Failed to allocate cgroups agent socket: %m");
1034
1035 fd_inc_rcvbuf(fd, CGROUPS_AGENT_RCVBUF_SIZE);
1036
1037 (void) sockaddr_un_unlink(&sa.un);
1038
1039 /* Only allow root to connect to this socket */
1040 RUN_WITH_UMASK(0077)
1041 r = bind(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un));
1042 if (r < 0)
1043 return log_error_errno(errno, "bind(%s) failed: %m", sa.un.sun_path);
1044
1045 m->cgroups_agent_fd = TAKE_FD(fd);
1046 }
1047
1048 if (!m->cgroups_agent_event_source) {
1049 r = sd_event_add_io(m->event, &m->cgroups_agent_event_source, m->cgroups_agent_fd, EPOLLIN, manager_dispatch_cgroups_agent_fd, m);
1050 if (r < 0)
1051 return log_error_errno(r, "Failed to allocate cgroups agent event source: %m");
1052
1053 /* Process cgroups notifications early. Note that when the agent notification is received
1054 * we'll just enqueue the unit in the cgroup empty queue, hence pick a high priority than
1055 * that. Also see handling of cgroup inotify for the unified cgroup stuff. */
1056 r = sd_event_source_set_priority(m->cgroups_agent_event_source, SD_EVENT_PRIORITY_NORMAL-9);
1057 if (r < 0)
1058 return log_error_errno(r, "Failed to set priority of cgroups agent event source: %m");
1059
1060 (void) sd_event_source_set_description(m->cgroups_agent_event_source, "manager-cgroups-agent");
1061 }
1062
1063 return 0;
1064 }
1065
1066 static int manager_setup_user_lookup_fd(Manager *m) {
1067 int r;
1068
1069 assert(m);
1070
1071 /* Set up the socket pair used for passing UID/GID resolution results from forked off processes to PID
1072 * 1. Background: we can't do name lookups (NSS) from PID 1, since it might involve IPC and thus activation,
1073 * and we might hence deadlock on ourselves. Hence we do all user/group lookups asynchronously from the forked
1074 * off processes right before executing the binaries to start. In order to be able to clean up any IPC objects
1075 * created by a unit (see RemoveIPC=) we need to know in PID 1 the used UID/GID of the executed processes,
1076 * hence we establish this communication channel so that forked off processes can pass their UID/GID
1077 * information back to PID 1. The forked off processes send their resolved UID/GID to PID 1 in a simple
1078 * datagram, along with their unit name, so that we can share one communication socket pair among all units for
1079 * this purpose.
1080 *
1081 * You might wonder why we need a communication channel for this that is independent of the usual notification
1082 * socket scheme (i.e. $NOTIFY_SOCKET). The primary difference is about trust: data sent via the $NOTIFY_SOCKET
1083 * channel is only accepted if it originates from the right unit and if reception was enabled for it. The user
1084 * lookup socket OTOH is only accessible by PID 1 and its children until they exec(), and always available.
1085 *
1086 * Note that this function is called under two circumstances: when we first initialize (in which case we
1087 * allocate both the socket pair and the event source to listen on it), and when we deserialize after a reload
1088 * (in which case the socket pair already exists but we still need to allocate the event source for it). */
1089
1090 if (m->user_lookup_fds[0] < 0) {
1091
1092 /* Free all secondary fields */
1093 safe_close_pair(m->user_lookup_fds);
1094 m->user_lookup_event_source = sd_event_source_unref(m->user_lookup_event_source);
1095
1096 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, m->user_lookup_fds) < 0)
1097 return log_error_errno(errno, "Failed to allocate user lookup socket: %m");
1098
1099 (void) fd_inc_rcvbuf(m->user_lookup_fds[0], NOTIFY_RCVBUF_SIZE);
1100 }
1101
1102 if (!m->user_lookup_event_source) {
1103 r = sd_event_add_io(m->event, &m->user_lookup_event_source, m->user_lookup_fds[0], EPOLLIN, manager_dispatch_user_lookup_fd, m);
1104 if (r < 0)
1105 return log_error_errno(errno, "Failed to allocate user lookup event source: %m");
1106
1107 /* Process even earlier than the notify event source, so that we always know first about valid UID/GID
1108 * resolutions */
1109 r = sd_event_source_set_priority(m->user_lookup_event_source, SD_EVENT_PRIORITY_NORMAL-11);
1110 if (r < 0)
1111 return log_error_errno(errno, "Failed to set priority of user lookup event source: %m");
1112
1113 (void) sd_event_source_set_description(m->user_lookup_event_source, "user-lookup");
1114 }
1115
1116 return 0;
1117 }
1118
1119 static unsigned manager_dispatch_cleanup_queue(Manager *m) {
1120 Unit *u;
1121 unsigned n = 0;
1122
1123 assert(m);
1124
1125 while ((u = m->cleanup_queue)) {
1126 assert(u->in_cleanup_queue);
1127
1128 unit_free(u);
1129 n++;
1130 }
1131
1132 return n;
1133 }
1134
1135 enum {
1136 GC_OFFSET_IN_PATH, /* This one is on the path we were traveling */
1137 GC_OFFSET_UNSURE, /* No clue */
1138 GC_OFFSET_GOOD, /* We still need this unit */
1139 GC_OFFSET_BAD, /* We don't need this unit anymore */
1140 _GC_OFFSET_MAX
1141 };
1142
1143 static void unit_gc_mark_good(Unit *u, unsigned gc_marker) {
1144 Unit *other;
1145
1146 u->gc_marker = gc_marker + GC_OFFSET_GOOD;
1147
1148 /* Recursively mark referenced units as GOOD as well */
1149 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_REFERENCES)
1150 if (other->gc_marker == gc_marker + GC_OFFSET_UNSURE)
1151 unit_gc_mark_good(other, gc_marker);
1152 }
1153
1154 static void unit_gc_sweep(Unit *u, unsigned gc_marker) {
1155 Unit *other;
1156 bool is_bad;
1157
1158 assert(u);
1159
1160 if (IN_SET(u->gc_marker - gc_marker,
1161 GC_OFFSET_GOOD, GC_OFFSET_BAD, GC_OFFSET_UNSURE, GC_OFFSET_IN_PATH))
1162 return;
1163
1164 if (u->in_cleanup_queue)
1165 goto bad;
1166
1167 if (!unit_may_gc(u))
1168 goto good;
1169
1170 u->gc_marker = gc_marker + GC_OFFSET_IN_PATH;
1171
1172 is_bad = true;
1173
1174 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_REFERENCED_BY) {
1175 unit_gc_sweep(other, gc_marker);
1176
1177 if (other->gc_marker == gc_marker + GC_OFFSET_GOOD)
1178 goto good;
1179
1180 if (other->gc_marker != gc_marker + GC_OFFSET_BAD)
1181 is_bad = false;
1182 }
1183
1184 const UnitRef *ref;
1185 LIST_FOREACH(refs_by_target, ref, u->refs_by_target) {
1186 unit_gc_sweep(ref->source, gc_marker);
1187
1188 if (ref->source->gc_marker == gc_marker + GC_OFFSET_GOOD)
1189 goto good;
1190
1191 if (ref->source->gc_marker != gc_marker + GC_OFFSET_BAD)
1192 is_bad = false;
1193 }
1194
1195 if (is_bad)
1196 goto bad;
1197
1198 /* We were unable to find anything out about this entry, so
1199 * let's investigate it later */
1200 u->gc_marker = gc_marker + GC_OFFSET_UNSURE;
1201 unit_add_to_gc_queue(u);
1202 return;
1203
1204 bad:
1205 /* We definitely know that this one is not useful anymore, so
1206 * let's mark it for deletion */
1207 u->gc_marker = gc_marker + GC_OFFSET_BAD;
1208 unit_add_to_cleanup_queue(u);
1209 return;
1210
1211 good:
1212 unit_gc_mark_good(u, gc_marker);
1213 }
1214
1215 static unsigned manager_dispatch_gc_unit_queue(Manager *m) {
1216 unsigned n = 0, gc_marker;
1217 Unit *u;
1218
1219 assert(m);
1220
1221 /* log_debug("Running GC..."); */
1222
1223 m->gc_marker += _GC_OFFSET_MAX;
1224 if (m->gc_marker + _GC_OFFSET_MAX <= _GC_OFFSET_MAX)
1225 m->gc_marker = 1;
1226
1227 gc_marker = m->gc_marker;
1228
1229 while ((u = m->gc_unit_queue)) {
1230 assert(u->in_gc_queue);
1231
1232 unit_gc_sweep(u, gc_marker);
1233
1234 LIST_REMOVE(gc_queue, m->gc_unit_queue, u);
1235 u->in_gc_queue = false;
1236
1237 n++;
1238
1239 if (IN_SET(u->gc_marker - gc_marker,
1240 GC_OFFSET_BAD, GC_OFFSET_UNSURE)) {
1241 if (u->id)
1242 log_unit_debug(u, "Collecting.");
1243 u->gc_marker = gc_marker + GC_OFFSET_BAD;
1244 unit_add_to_cleanup_queue(u);
1245 }
1246 }
1247
1248 return n;
1249 }
1250
1251 static unsigned manager_dispatch_gc_job_queue(Manager *m) {
1252 unsigned n = 0;
1253 Job *j;
1254
1255 assert(m);
1256
1257 while ((j = m->gc_job_queue)) {
1258 assert(j->in_gc_queue);
1259
1260 LIST_REMOVE(gc_queue, m->gc_job_queue, j);
1261 j->in_gc_queue = false;
1262
1263 n++;
1264
1265 if (!job_may_gc(j))
1266 continue;
1267
1268 log_unit_debug(j->unit, "Collecting job.");
1269 (void) job_finish_and_invalidate(j, JOB_COLLECTED, false, false);
1270 }
1271
1272 return n;
1273 }
1274
1275 static unsigned manager_dispatch_stop_when_unneeded_queue(Manager *m) {
1276 unsigned n = 0;
1277 Unit *u;
1278 int r;
1279
1280 assert(m);
1281
1282 while ((u = m->stop_when_unneeded_queue)) {
1283 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1284
1285 assert(u->in_stop_when_unneeded_queue);
1286 LIST_REMOVE(stop_when_unneeded_queue, m->stop_when_unneeded_queue, u);
1287 u->in_stop_when_unneeded_queue = false;
1288
1289 n++;
1290
1291 if (!unit_is_unneeded(u))
1292 continue;
1293
1294 log_unit_debug(u, "Unit is not needed anymore.");
1295
1296 /* If stopping a unit fails continuously we might enter a stop loop here, hence stop acting on the
1297 * service being unnecessary after a while. */
1298
1299 if (!ratelimit_below(&u->auto_start_stop_ratelimit)) {
1300 log_unit_warning(u, "Unit not needed anymore, but not stopping since we tried this too often recently.");
1301 continue;
1302 }
1303
1304 /* Ok, nobody needs us anymore. Sniff. Then let's commit suicide */
1305 r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, NULL, &error, NULL);
1306 if (r < 0)
1307 log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r));
1308 }
1309
1310 return n;
1311 }
1312
1313 static unsigned manager_dispatch_start_when_upheld_queue(Manager *m) {
1314 unsigned n = 0;
1315 Unit *u;
1316 int r;
1317
1318 assert(m);
1319
1320 while ((u = m->start_when_upheld_queue)) {
1321 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1322 Unit *culprit = NULL;
1323
1324 assert(u->in_start_when_upheld_queue);
1325 LIST_REMOVE(start_when_upheld_queue, m->start_when_upheld_queue, u);
1326 u->in_start_when_upheld_queue = false;
1327
1328 n++;
1329
1330 if (!unit_is_upheld_by_active(u, &culprit))
1331 continue;
1332
1333 log_unit_debug(u, "Unit is started because upheld by active unit %s.", culprit->id);
1334
1335 /* If stopping a unit fails continuously we might enter a stop loop here, hence stop acting on the
1336 * service being unnecessary after a while. */
1337
1338 if (!ratelimit_below(&u->auto_start_stop_ratelimit)) {
1339 log_unit_warning(u, "Unit needs to be started because active unit %s upholds it, but not starting since we tried this too often recently.", culprit->id);
1340 continue;
1341 }
1342
1343 r = manager_add_job(u->manager, JOB_START, u, JOB_FAIL, NULL, &error, NULL);
1344 if (r < 0)
1345 log_unit_warning_errno(u, r, "Failed to enqueue start job, ignoring: %s", bus_error_message(&error, r));
1346 }
1347
1348 return n;
1349 }
1350
1351 static unsigned manager_dispatch_stop_when_bound_queue(Manager *m) {
1352 unsigned n = 0;
1353 Unit *u;
1354 int r;
1355
1356 assert(m);
1357
1358 while ((u = m->stop_when_bound_queue)) {
1359 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1360 Unit *culprit = NULL;
1361
1362 assert(u->in_stop_when_bound_queue);
1363 LIST_REMOVE(stop_when_bound_queue, m->stop_when_bound_queue, u);
1364 u->in_stop_when_bound_queue = false;
1365
1366 n++;
1367
1368 if (!unit_is_bound_by_inactive(u, &culprit))
1369 continue;
1370
1371 log_unit_debug(u, "Unit is stopped because bound to inactive unit %s.", culprit->id);
1372
1373 /* If stopping a unit fails continuously we might enter a stop loop here, hence stop acting on the
1374 * service being unnecessary after a while. */
1375
1376 if (!ratelimit_below(&u->auto_start_stop_ratelimit)) {
1377 log_unit_warning(u, "Unit needs to be stopped because it is bound to inactive unit %s it, but not stopping since we tried this too often recently.", culprit->id);
1378 continue;
1379 }
1380
1381 r = manager_add_job(u->manager, JOB_STOP, u, JOB_REPLACE, NULL, &error, NULL);
1382 if (r < 0)
1383 log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r));
1384 }
1385
1386 return n;
1387 }
1388
1389 static void manager_clear_jobs_and_units(Manager *m) {
1390 Unit *u;
1391
1392 assert(m);
1393
1394 while ((u = hashmap_first(m->units)))
1395 unit_free(u);
1396
1397 manager_dispatch_cleanup_queue(m);
1398
1399 assert(!m->load_queue);
1400 assert(prioq_isempty(m->run_queue));
1401 assert(!m->dbus_unit_queue);
1402 assert(!m->dbus_job_queue);
1403 assert(!m->cleanup_queue);
1404 assert(!m->gc_unit_queue);
1405 assert(!m->gc_job_queue);
1406 assert(!m->stop_when_unneeded_queue);
1407 assert(!m->start_when_upheld_queue);
1408 assert(!m->stop_when_bound_queue);
1409
1410 assert(hashmap_isempty(m->jobs));
1411 assert(hashmap_isempty(m->units));
1412
1413 m->n_on_console = 0;
1414 m->n_running_jobs = 0;
1415 m->n_installed_jobs = 0;
1416 m->n_failed_jobs = 0;
1417 }
1418
1419 Manager* manager_free(Manager *m) {
1420 if (!m)
1421 return NULL;
1422
1423 manager_clear_jobs_and_units(m);
1424
1425 for (UnitType c = 0; c < _UNIT_TYPE_MAX; c++)
1426 if (unit_vtable[c]->shutdown)
1427 unit_vtable[c]->shutdown(m);
1428
1429 /* Keep the cgroup hierarchy in place except when we know we are going down for good */
1430 manager_shutdown_cgroup(m, IN_SET(m->objective, MANAGER_EXIT, MANAGER_REBOOT, MANAGER_POWEROFF, MANAGER_HALT, MANAGER_KEXEC));
1431
1432 lookup_paths_flush_generator(&m->lookup_paths);
1433
1434 bus_done(m);
1435 manager_varlink_done(m);
1436
1437 exec_runtime_vacuum(m);
1438 hashmap_free(m->exec_runtime_by_id);
1439
1440 dynamic_user_vacuum(m, false);
1441 hashmap_free(m->dynamic_users);
1442
1443 hashmap_free(m->units);
1444 hashmap_free(m->units_by_invocation_id);
1445 hashmap_free(m->jobs);
1446 hashmap_free(m->watch_pids);
1447 hashmap_free(m->watch_bus);
1448
1449 prioq_free(m->run_queue);
1450
1451 set_free(m->startup_units);
1452 set_free(m->failed_units);
1453
1454 sd_event_source_unref(m->signal_event_source);
1455 sd_event_source_unref(m->sigchld_event_source);
1456 sd_event_source_unref(m->notify_event_source);
1457 sd_event_source_unref(m->cgroups_agent_event_source);
1458 sd_event_source_unref(m->time_change_event_source);
1459 sd_event_source_unref(m->timezone_change_event_source);
1460 sd_event_source_unref(m->jobs_in_progress_event_source);
1461 sd_event_source_unref(m->run_queue_event_source);
1462 sd_event_source_unref(m->user_lookup_event_source);
1463
1464 safe_close(m->signal_fd);
1465 safe_close(m->notify_fd);
1466 safe_close(m->cgroups_agent_fd);
1467 safe_close(m->time_change_fd);
1468 safe_close_pair(m->user_lookup_fds);
1469
1470 manager_close_ask_password(m);
1471
1472 manager_close_idle_pipe(m);
1473
1474 sd_event_unref(m->event);
1475
1476 free(m->notify_socket);
1477
1478 lookup_paths_free(&m->lookup_paths);
1479 strv_free(m->transient_environment);
1480 strv_free(m->client_environment);
1481
1482 hashmap_free(m->cgroup_unit);
1483 manager_free_unit_name_maps(m);
1484
1485 free(m->switch_root);
1486 free(m->switch_root_init);
1487
1488 rlimit_free_all(m->rlimit);
1489
1490 assert(hashmap_isempty(m->units_requiring_mounts_for));
1491 hashmap_free(m->units_requiring_mounts_for);
1492
1493 hashmap_free(m->uid_refs);
1494 hashmap_free(m->gid_refs);
1495
1496 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++)
1497 m->prefix[dt] = mfree(m->prefix[dt]);
1498 free(m->received_credentials);
1499
1500 return mfree(m);
1501 }
1502
1503 static void manager_enumerate_perpetual(Manager *m) {
1504 assert(m);
1505
1506 if (m->test_run_flags == MANAGER_TEST_RUN_MINIMAL)
1507 return;
1508
1509 /* Let's ask every type to load all units from disk/kernel that it might know */
1510 for (UnitType c = 0; c < _UNIT_TYPE_MAX; c++) {
1511 if (!unit_type_supported(c)) {
1512 log_debug("Unit type .%s is not supported on this system.", unit_type_to_string(c));
1513 continue;
1514 }
1515
1516 if (unit_vtable[c]->enumerate_perpetual)
1517 unit_vtable[c]->enumerate_perpetual(m);
1518 }
1519 }
1520
1521 static void manager_enumerate(Manager *m) {
1522 assert(m);
1523
1524 if (m->test_run_flags == MANAGER_TEST_RUN_MINIMAL)
1525 return;
1526
1527 /* Let's ask every type to load all units from disk/kernel that it might know */
1528 for (UnitType c = 0; c < _UNIT_TYPE_MAX; c++) {
1529 if (!unit_type_supported(c)) {
1530 log_debug("Unit type .%s is not supported on this system.", unit_type_to_string(c));
1531 continue;
1532 }
1533
1534 if (unit_vtable[c]->enumerate)
1535 unit_vtable[c]->enumerate(m);
1536 }
1537
1538 manager_dispatch_load_queue(m);
1539 }
1540
1541 static void manager_coldplug(Manager *m) {
1542 Unit *u;
1543 char *k;
1544 int r;
1545
1546 assert(m);
1547
1548 log_debug("Invoking unit coldplug() handlers…");
1549
1550 /* Let's place the units back into their deserialized state */
1551 HASHMAP_FOREACH_KEY(u, k, m->units) {
1552
1553 /* ignore aliases */
1554 if (u->id != k)
1555 continue;
1556
1557 r = unit_coldplug(u);
1558 if (r < 0)
1559 log_warning_errno(r, "We couldn't coldplug %s, proceeding anyway: %m", u->id);
1560 }
1561 }
1562
1563 static void manager_catchup(Manager *m) {
1564 Unit *u;
1565 char *k;
1566
1567 assert(m);
1568
1569 log_debug("Invoking unit catchup() handlers…");
1570
1571 /* Let's catch up on any state changes that happened while we were reloading/reexecing */
1572 HASHMAP_FOREACH_KEY(u, k, m->units) {
1573
1574 /* ignore aliases */
1575 if (u->id != k)
1576 continue;
1577
1578 unit_catchup(u);
1579 }
1580 }
1581
1582 static void manager_distribute_fds(Manager *m, FDSet *fds) {
1583 Unit *u;
1584
1585 assert(m);
1586
1587 HASHMAP_FOREACH(u, m->units) {
1588
1589 if (fdset_size(fds) <= 0)
1590 break;
1591
1592 if (!UNIT_VTABLE(u)->distribute_fds)
1593 continue;
1594
1595 UNIT_VTABLE(u)->distribute_fds(u, fds);
1596 }
1597 }
1598
1599 static bool manager_dbus_is_running(Manager *m, bool deserialized) {
1600 Unit *u;
1601
1602 assert(m);
1603
1604 /* This checks whether the dbus instance we are supposed to expose our APIs on is up. We check both the socket
1605 * and the service unit. If the 'deserialized' parameter is true we'll check the deserialized state of the unit
1606 * rather than the current one. */
1607
1608 if (MANAGER_IS_TEST_RUN(m))
1609 return false;
1610
1611 u = manager_get_unit(m, SPECIAL_DBUS_SOCKET);
1612 if (!u)
1613 return false;
1614 if ((deserialized ? SOCKET(u)->deserialized_state : SOCKET(u)->state) != SOCKET_RUNNING)
1615 return false;
1616
1617 u = manager_get_unit(m, SPECIAL_DBUS_SERVICE);
1618 if (!u)
1619 return false;
1620 if (!IN_SET((deserialized ? SERVICE(u)->deserialized_state : SERVICE(u)->state), SERVICE_RUNNING, SERVICE_RELOAD))
1621 return false;
1622
1623 return true;
1624 }
1625
1626 static void manager_setup_bus(Manager *m) {
1627 assert(m);
1628
1629 /* Let's set up our private bus connection now, unconditionally */
1630 (void) bus_init_private(m);
1631
1632 /* If we are in --user mode also connect to the system bus now */
1633 if (MANAGER_IS_USER(m))
1634 (void) bus_init_system(m);
1635
1636 /* Let's connect to the bus now, but only if the unit is supposed to be up */
1637 if (manager_dbus_is_running(m, MANAGER_IS_RELOADING(m))) {
1638 (void) bus_init_api(m);
1639
1640 if (MANAGER_IS_SYSTEM(m))
1641 (void) bus_init_system(m);
1642 }
1643 }
1644
1645 static void manager_preset_all(Manager *m) {
1646 int r;
1647
1648 assert(m);
1649
1650 if (m->first_boot <= 0)
1651 return;
1652
1653 if (!MANAGER_IS_SYSTEM(m))
1654 return;
1655
1656 if (MANAGER_IS_TEST_RUN(m))
1657 return;
1658
1659 /* If this is the first boot, and we are in the host system, then preset everything */
1660 r = unit_file_preset_all(UNIT_FILE_SYSTEM, 0, NULL, UNIT_FILE_PRESET_ENABLE_ONLY, NULL, 0);
1661 if (r < 0)
1662 log_full_errno(r == -EEXIST ? LOG_NOTICE : LOG_WARNING, r,
1663 "Failed to populate /etc with preset unit settings, ignoring: %m");
1664 else
1665 log_info("Populated /etc with preset unit settings.");
1666 }
1667
1668 static void manager_ready(Manager *m) {
1669 assert(m);
1670
1671 /* After having loaded everything, do the final round of catching up with what might have changed */
1672
1673 m->objective = MANAGER_OK; /* Tell everyone we are up now */
1674
1675 /* It might be safe to log to the journal now and connect to dbus */
1676 manager_recheck_journal(m);
1677 manager_recheck_dbus(m);
1678
1679 /* Let's finally catch up with any changes that took place while we were reloading/reexecing */
1680 manager_catchup(m);
1681
1682 m->honor_device_enumeration = true;
1683 }
1684
1685 static Manager* manager_reloading_start(Manager *m) {
1686 m->n_reloading++;
1687 return m;
1688 }
1689 static void manager_reloading_stopp(Manager **m) {
1690 if (*m) {
1691 assert((*m)->n_reloading > 0);
1692 (*m)->n_reloading--;
1693 }
1694 }
1695
1696 int manager_startup(Manager *m, FILE *serialization, FDSet *fds) {
1697 int r;
1698
1699 assert(m);
1700
1701 /* If we are running in test mode, we still want to run the generators,
1702 * but we should not touch the real generator directories. */
1703 r = lookup_paths_init(&m->lookup_paths, m->unit_file_scope,
1704 MANAGER_IS_TEST_RUN(m) ? LOOKUP_PATHS_TEMPORARY_GENERATED : 0,
1705 NULL);
1706 if (r < 0)
1707 return log_error_errno(r, "Failed to initialize path lookup table: %m");
1708
1709 dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_GENERATORS_START));
1710 r = manager_run_environment_generators(m);
1711 if (r >= 0)
1712 r = manager_run_generators(m);
1713 dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_GENERATORS_FINISH));
1714 if (r < 0)
1715 return r;
1716
1717 manager_preset_all(m);
1718
1719 lookup_paths_log(&m->lookup_paths);
1720
1721 {
1722 /* This block is (optionally) done with the reloading counter bumped */
1723 _cleanup_(manager_reloading_stopp) Manager *reloading = NULL;
1724
1725 /* If we will deserialize make sure that during enumeration this is already known, so we increase the
1726 * counter here already */
1727 if (serialization)
1728 reloading = manager_reloading_start(m);
1729
1730 /* First, enumerate what we can from all config files */
1731 dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_UNITS_LOAD_START));
1732 manager_enumerate_perpetual(m);
1733 manager_enumerate(m);
1734 dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_UNITS_LOAD_FINISH));
1735
1736 /* Second, deserialize if there is something to deserialize */
1737 if (serialization) {
1738 r = manager_deserialize(m, serialization, fds);
1739 if (r < 0)
1740 return log_error_errno(r, "Deserialization failed: %m");
1741 }
1742
1743 /* Any fds left? Find some unit which wants them. This is useful to allow container managers to pass
1744 * some file descriptors to us pre-initialized. This enables socket-based activation of entire
1745 * containers. */
1746 manager_distribute_fds(m, fds);
1747
1748 /* We might have deserialized the notify fd, but if we didn't then let's create the bus now */
1749 r = manager_setup_notify(m);
1750 if (r < 0)
1751 /* No sense to continue without notifications, our children would fail anyway. */
1752 return r;
1753
1754 r = manager_setup_cgroups_agent(m);
1755 if (r < 0)
1756 /* Likewise, no sense to continue without empty cgroup notifications. */
1757 return r;
1758
1759 r = manager_setup_user_lookup_fd(m);
1760 if (r < 0)
1761 /* This shouldn't fail, except if things are really broken. */
1762 return r;
1763
1764 /* Connect to the bus if we are good for it */
1765 manager_setup_bus(m);
1766
1767 /* Now that we are connected to all possible buses, let's deserialize who is tracking us. */
1768 r = bus_track_coldplug(m, &m->subscribed, false, m->deserialized_subscribed);
1769 if (r < 0)
1770 log_warning_errno(r, "Failed to deserialized tracked clients, ignoring: %m");
1771 m->deserialized_subscribed = strv_free(m->deserialized_subscribed);
1772
1773 r = manager_varlink_init(m);
1774 if (r < 0)
1775 log_warning_errno(r, "Failed to set up Varlink server, ignoring: %m");
1776
1777 /* Third, fire things up! */
1778 manager_coldplug(m);
1779
1780 /* Clean up runtime objects */
1781 manager_vacuum(m);
1782
1783 if (serialization)
1784 /* Let's wait for the UnitNew/JobNew messages being sent, before we notify that the
1785 * reload is finished */
1786 m->send_reloading_done = true;
1787 }
1788
1789 manager_ready(m);
1790
1791 return 0;
1792 }
1793
1794 int manager_add_job(
1795 Manager *m,
1796 JobType type,
1797 Unit *unit,
1798 JobMode mode,
1799 Set *affected_jobs,
1800 sd_bus_error *error,
1801 Job **ret) {
1802
1803 Transaction *tr;
1804 int r;
1805
1806 assert(m);
1807 assert(type < _JOB_TYPE_MAX);
1808 assert(unit);
1809 assert(mode < _JOB_MODE_MAX);
1810
1811 if (mode == JOB_ISOLATE && type != JOB_START)
1812 return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "Isolate is only valid for start.");
1813
1814 if (mode == JOB_ISOLATE && !unit->allow_isolate)
1815 return sd_bus_error_set(error, BUS_ERROR_NO_ISOLATION, "Operation refused, unit may not be isolated.");
1816
1817 if (mode == JOB_TRIGGERING && type != JOB_STOP)
1818 return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "--job-mode=triggering is only valid for stop.");
1819
1820 log_unit_debug(unit, "Trying to enqueue job %s/%s/%s", unit->id, job_type_to_string(type), job_mode_to_string(mode));
1821
1822 type = job_type_collapse(type, unit);
1823
1824 tr = transaction_new(mode == JOB_REPLACE_IRREVERSIBLY);
1825 if (!tr)
1826 return -ENOMEM;
1827
1828 r = transaction_add_job_and_dependencies(tr, type, unit, NULL, true, false,
1829 IN_SET(mode, JOB_IGNORE_DEPENDENCIES, JOB_IGNORE_REQUIREMENTS),
1830 mode == JOB_IGNORE_DEPENDENCIES, error);
1831 if (r < 0)
1832 goto tr_abort;
1833
1834 if (mode == JOB_ISOLATE) {
1835 r = transaction_add_isolate_jobs(tr, m);
1836 if (r < 0)
1837 goto tr_abort;
1838 }
1839
1840 if (mode == JOB_TRIGGERING) {
1841 r = transaction_add_triggering_jobs(tr, unit);
1842 if (r < 0)
1843 goto tr_abort;
1844 }
1845
1846 r = transaction_activate(tr, m, mode, affected_jobs, error);
1847 if (r < 0)
1848 goto tr_abort;
1849
1850 log_unit_debug(unit,
1851 "Enqueued job %s/%s as %u", unit->id,
1852 job_type_to_string(type), (unsigned) tr->anchor_job->id);
1853
1854 if (ret)
1855 *ret = tr->anchor_job;
1856
1857 transaction_free(tr);
1858 return 0;
1859
1860 tr_abort:
1861 transaction_abort(tr);
1862 transaction_free(tr);
1863 return r;
1864 }
1865
1866 int manager_add_job_by_name(Manager *m, JobType type, const char *name, JobMode mode, Set *affected_jobs, sd_bus_error *e, Job **ret) {
1867 Unit *unit = NULL; /* just to appease gcc, initialization is not really necessary */
1868 int r;
1869
1870 assert(m);
1871 assert(type < _JOB_TYPE_MAX);
1872 assert(name);
1873 assert(mode < _JOB_MODE_MAX);
1874
1875 r = manager_load_unit(m, name, NULL, NULL, &unit);
1876 if (r < 0)
1877 return r;
1878 assert(unit);
1879
1880 return manager_add_job(m, type, unit, mode, affected_jobs, e, ret);
1881 }
1882
1883 int manager_add_job_by_name_and_warn(Manager *m, JobType type, const char *name, JobMode mode, Set *affected_jobs, Job **ret) {
1884 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1885 int r;
1886
1887 assert(m);
1888 assert(type < _JOB_TYPE_MAX);
1889 assert(name);
1890 assert(mode < _JOB_MODE_MAX);
1891
1892 r = manager_add_job_by_name(m, type, name, mode, affected_jobs, &error, ret);
1893 if (r < 0)
1894 return log_warning_errno(r, "Failed to enqueue %s job for %s: %s", job_mode_to_string(mode), name, bus_error_message(&error, r));
1895
1896 return r;
1897 }
1898
1899 int manager_propagate_reload(Manager *m, Unit *unit, JobMode mode, sd_bus_error *e) {
1900 int r;
1901 Transaction *tr;
1902
1903 assert(m);
1904 assert(unit);
1905 assert(mode < _JOB_MODE_MAX);
1906 assert(mode != JOB_ISOLATE); /* Isolate is only valid for start */
1907
1908 tr = transaction_new(mode == JOB_REPLACE_IRREVERSIBLY);
1909 if (!tr)
1910 return -ENOMEM;
1911
1912 /* We need an anchor job */
1913 r = transaction_add_job_and_dependencies(tr, JOB_NOP, unit, NULL, false, false, true, true, e);
1914 if (r < 0)
1915 goto tr_abort;
1916
1917 /* Failure in adding individual dependencies is ignored, so this always succeeds. */
1918 transaction_add_propagate_reload_jobs(tr, unit, tr->anchor_job, mode == JOB_IGNORE_DEPENDENCIES, e);
1919
1920 r = transaction_activate(tr, m, mode, NULL, e);
1921 if (r < 0)
1922 goto tr_abort;
1923
1924 transaction_free(tr);
1925 return 0;
1926
1927 tr_abort:
1928 transaction_abort(tr);
1929 transaction_free(tr);
1930 return r;
1931 }
1932
1933 Job *manager_get_job(Manager *m, uint32_t id) {
1934 assert(m);
1935
1936 return hashmap_get(m->jobs, UINT32_TO_PTR(id));
1937 }
1938
1939 Unit *manager_get_unit(Manager *m, const char *name) {
1940 assert(m);
1941 assert(name);
1942
1943 return hashmap_get(m->units, name);
1944 }
1945
1946 static int manager_dispatch_target_deps_queue(Manager *m) {
1947 Unit *u;
1948 int r = 0;
1949
1950 assert(m);
1951
1952 while ((u = m->target_deps_queue)) {
1953 _cleanup_free_ Unit **targets = NULL;
1954 int n_targets;
1955
1956 assert(u->in_target_deps_queue);
1957
1958 LIST_REMOVE(target_deps_queue, u->manager->target_deps_queue, u);
1959 u->in_target_deps_queue = false;
1960
1961 /* Take an "atomic" snapshot of dependencies here, as the call below will likely modify the
1962 * dependencies, and we can't have it that hash tables we iterate through are modified while
1963 * we are iterating through them. */
1964 n_targets = unit_get_dependency_array(u, UNIT_ATOM_DEFAULT_TARGET_DEPENDENCIES, &targets);
1965 if (n_targets < 0)
1966 return n_targets;
1967
1968 for (int i = 0; i < n_targets; i++) {
1969 r = unit_add_default_target_dependency(u, targets[i]);
1970 if (r < 0)
1971 return r;
1972 }
1973 }
1974
1975 return r;
1976 }
1977
1978 unsigned manager_dispatch_load_queue(Manager *m) {
1979 Unit *u;
1980 unsigned n = 0;
1981
1982 assert(m);
1983
1984 /* Make sure we are not run recursively */
1985 if (m->dispatching_load_queue)
1986 return 0;
1987
1988 m->dispatching_load_queue = true;
1989
1990 /* Dispatches the load queue. Takes a unit from the queue and
1991 * tries to load its data until the queue is empty */
1992
1993 while ((u = m->load_queue)) {
1994 assert(u->in_load_queue);
1995
1996 unit_load(u);
1997 n++;
1998 }
1999
2000 m->dispatching_load_queue = false;
2001
2002 /* Dispatch the units waiting for their target dependencies to be added now, as all targets that we know about
2003 * should be loaded and have aliases resolved */
2004 (void) manager_dispatch_target_deps_queue(m);
2005
2006 return n;
2007 }
2008
2009 bool manager_unit_cache_should_retry_load(Unit *u) {
2010 assert(u);
2011
2012 /* Automatic reloading from disk only applies to units which were not found sometime in the past, and
2013 * the not-found stub is kept pinned in the unit graph by dependencies. For units that were
2014 * previously loaded, we don't do automatic reloading, and daemon-reload is necessary to update. */
2015 if (u->load_state != UNIT_NOT_FOUND)
2016 return false;
2017
2018 /* The cache has been updated since the last time we tried to load the unit. There might be new
2019 * fragment paths to read. */
2020 if (u->manager->unit_cache_timestamp_hash != u->fragment_not_found_timestamp_hash)
2021 return true;
2022
2023 /* The cache needs to be updated because there are modifications on disk. */
2024 return !lookup_paths_timestamp_hash_same(&u->manager->lookup_paths, u->manager->unit_cache_timestamp_hash, NULL);
2025 }
2026
2027 int manager_load_unit_prepare(
2028 Manager *m,
2029 const char *name,
2030 const char *path,
2031 sd_bus_error *e,
2032 Unit **_ret) {
2033
2034 _cleanup_(unit_freep) Unit *cleanup_ret = NULL;
2035 Unit *ret;
2036 UnitType t;
2037 int r;
2038
2039 assert(m);
2040 assert(_ret);
2041
2042 /* This will prepare the unit for loading, but not actually load anything from disk. */
2043
2044 if (path && !path_is_absolute(path))
2045 return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Path %s is not absolute.", path);
2046
2047 if (!name) {
2048 /* 'name' and 'path' must not both be null. Check here 'path' using assert_se() to
2049 * workaround a bug in gcc that generates a -Wnonnull warning when calling basename(),
2050 * but this cannot be possible in any code path (See #6119). */
2051 assert_se(path);
2052 name = basename(path);
2053 }
2054
2055 t = unit_name_to_type(name);
2056
2057 if (t == _UNIT_TYPE_INVALID || !unit_name_is_valid(name, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) {
2058 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE))
2059 return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is missing the instance name.", name);
2060
2061 return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is not valid.", name);
2062 }
2063
2064 ret = manager_get_unit(m, name);
2065 if (ret) {
2066 /* The time-based cache allows to start new units without daemon-reload,
2067 * but if they are already referenced (because of dependencies or ordering)
2068 * then we have to force a load of the fragment. As an optimization, check
2069 * first if anything in the usual paths was modified since the last time
2070 * the cache was loaded. Also check if the last time an attempt to load the
2071 * unit was made was before the most recent cache refresh, so that we know
2072 * we need to try again — even if the cache is current, it might have been
2073 * updated in a different context before we had a chance to retry loading
2074 * this particular unit. */
2075 if (manager_unit_cache_should_retry_load(ret))
2076 ret->load_state = UNIT_STUB;
2077 else {
2078 *_ret = ret;
2079 return 1;
2080 }
2081 } else {
2082 ret = cleanup_ret = unit_new(m, unit_vtable[t]->object_size);
2083 if (!ret)
2084 return -ENOMEM;
2085 }
2086
2087 if (path) {
2088 r = free_and_strdup(&ret->fragment_path, path);
2089 if (r < 0)
2090 return r;
2091 }
2092
2093 r = unit_add_name(ret, name);
2094 if (r < 0)
2095 return r;
2096
2097 unit_add_to_load_queue(ret);
2098 unit_add_to_dbus_queue(ret);
2099 unit_add_to_gc_queue(ret);
2100
2101 *_ret = ret;
2102 cleanup_ret = NULL;
2103
2104 return 0;
2105 }
2106
2107 int manager_load_unit(
2108 Manager *m,
2109 const char *name,
2110 const char *path,
2111 sd_bus_error *e,
2112 Unit **_ret) {
2113
2114 int r;
2115
2116 assert(m);
2117 assert(_ret);
2118
2119 /* This will load the service information files, but not actually
2120 * start any services or anything. */
2121
2122 r = manager_load_unit_prepare(m, name, path, e, _ret);
2123 if (r != 0)
2124 return r;
2125
2126 manager_dispatch_load_queue(m);
2127
2128 *_ret = unit_follow_merge(*_ret);
2129 return 0;
2130 }
2131
2132 int manager_load_startable_unit_or_warn(
2133 Manager *m,
2134 const char *name,
2135 const char *path,
2136 Unit **ret) {
2137
2138 /* Load a unit, make sure it loaded fully and is not masked. */
2139
2140 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2141 Unit *unit;
2142 int r;
2143
2144 r = manager_load_unit(m, name, path, &error, &unit);
2145 if (r < 0)
2146 return log_error_errno(r, "Failed to load %s %s: %s",
2147 name ? "unit" : "unit file", name ?: path,
2148 bus_error_message(&error, r));
2149
2150 r = bus_unit_validate_load_state(unit, &error);
2151 if (r < 0)
2152 return log_error_errno(r, "%s", bus_error_message(&error, r));
2153
2154 *ret = unit;
2155 return 0;
2156 }
2157
2158 void manager_clear_jobs(Manager *m) {
2159 Job *j;
2160
2161 assert(m);
2162
2163 while ((j = hashmap_first(m->jobs)))
2164 /* No need to recurse. We're cancelling all jobs. */
2165 job_finish_and_invalidate(j, JOB_CANCELED, false, false);
2166 }
2167
2168 void manager_unwatch_pid(Manager *m, pid_t pid) {
2169 assert(m);
2170
2171 /* First let's drop the unit keyed as "pid". */
2172 (void) hashmap_remove(m->watch_pids, PID_TO_PTR(pid));
2173
2174 /* Then, let's also drop the array keyed by -pid. */
2175 free(hashmap_remove(m->watch_pids, PID_TO_PTR(-pid)));
2176 }
2177
2178 static int manager_dispatch_run_queue(sd_event_source *source, void *userdata) {
2179 Manager *m = userdata;
2180 Job *j;
2181
2182 assert(source);
2183 assert(m);
2184
2185 while ((j = prioq_peek(m->run_queue))) {
2186 assert(j->installed);
2187 assert(j->in_run_queue);
2188
2189 (void) job_run_and_invalidate(j);
2190 }
2191
2192 if (m->n_running_jobs > 0)
2193 manager_watch_jobs_in_progress(m);
2194
2195 if (m->n_on_console > 0)
2196 manager_watch_idle_pipe(m);
2197
2198 return 1;
2199 }
2200
2201 static unsigned manager_dispatch_dbus_queue(Manager *m) {
2202 unsigned n = 0, budget;
2203 Unit *u;
2204 Job *j;
2205
2206 assert(m);
2207
2208 /* When we are reloading, let's not wait with generating signals, since we need to exit the manager as quickly
2209 * as we can. There's no point in throttling generation of signals in that case. */
2210 if (MANAGER_IS_RELOADING(m) || m->send_reloading_done || m->pending_reload_message)
2211 budget = UINT_MAX; /* infinite budget in this case */
2212 else {
2213 /* Anything to do at all? */
2214 if (!m->dbus_unit_queue && !m->dbus_job_queue)
2215 return 0;
2216
2217 /* Do we have overly many messages queued at the moment? If so, let's not enqueue more on top, let's
2218 * sit this cycle out, and process things in a later cycle when the queues got a bit emptier. */
2219 if (manager_bus_n_queued_write(m) > MANAGER_BUS_BUSY_THRESHOLD)
2220 return 0;
2221
2222 /* Only process a certain number of units/jobs per event loop iteration. Even if the bus queue wasn't
2223 * overly full before this call we shouldn't increase it in size too wildly in one step, and we
2224 * shouldn't monopolize CPU time with generating these messages. Note the difference in counting of
2225 * this "budget" and the "threshold" above: the "budget" is decreased only once per generated message,
2226 * regardless how many buses/direct connections it is enqueued on, while the "threshold" is applied to
2227 * each queued instance of bus message, i.e. if the same message is enqueued to five buses/direct
2228 * connections it will be counted five times. This difference in counting ("references"
2229 * vs. "instances") is primarily a result of the fact that it's easier to implement it this way,
2230 * however it also reflects the thinking that the "threshold" should put a limit on used queue memory,
2231 * i.e. space, while the "budget" should put a limit on time. Also note that the "threshold" is
2232 * currently chosen much higher than the "budget". */
2233 budget = MANAGER_BUS_MESSAGE_BUDGET;
2234 }
2235
2236 while (budget != 0 && (u = m->dbus_unit_queue)) {
2237
2238 assert(u->in_dbus_queue);
2239
2240 bus_unit_send_change_signal(u);
2241 n++;
2242
2243 if (budget != UINT_MAX)
2244 budget--;
2245 }
2246
2247 while (budget != 0 && (j = m->dbus_job_queue)) {
2248 assert(j->in_dbus_queue);
2249
2250 bus_job_send_change_signal(j);
2251 n++;
2252
2253 if (budget != UINT_MAX)
2254 budget--;
2255 }
2256
2257 if (m->send_reloading_done) {
2258 m->send_reloading_done = false;
2259 bus_manager_send_reloading(m, false);
2260 n++;
2261 }
2262
2263 if (m->pending_reload_message) {
2264 bus_send_pending_reload_message(m);
2265 n++;
2266 }
2267
2268 return n;
2269 }
2270
2271 static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
2272 Manager *m = userdata;
2273 char buf[PATH_MAX];
2274 ssize_t n;
2275
2276 n = recv(fd, buf, sizeof(buf), 0);
2277 if (n < 0)
2278 return log_error_errno(errno, "Failed to read cgroups agent message: %m");
2279 if (n == 0) {
2280 log_error("Got zero-length cgroups agent message, ignoring.");
2281 return 0;
2282 }
2283 if ((size_t) n >= sizeof(buf)) {
2284 log_error("Got overly long cgroups agent message, ignoring.");
2285 return 0;
2286 }
2287
2288 if (memchr(buf, 0, n)) {
2289 log_error("Got cgroups agent message with embedded NUL byte, ignoring.");
2290 return 0;
2291 }
2292 buf[n] = 0;
2293
2294 manager_notify_cgroup_empty(m, buf);
2295 (void) bus_forward_agent_released(m, buf);
2296
2297 return 0;
2298 }
2299
2300 static bool manager_process_barrier_fd(char * const *tags, FDSet *fds) {
2301
2302 /* nothing else must be sent when using BARRIER=1 */
2303 if (strv_contains(tags, "BARRIER=1")) {
2304 if (strv_length(tags) == 1) {
2305 if (fdset_size(fds) != 1)
2306 log_warning("Got incorrect number of fds with BARRIER=1, closing them.");
2307 } else
2308 log_warning("Extra notification messages sent with BARRIER=1, ignoring everything.");
2309
2310 /* Drop the message if BARRIER=1 was found */
2311 return true;
2312 }
2313
2314 return false;
2315 }
2316
2317 static void manager_invoke_notify_message(
2318 Manager *m,
2319 Unit *u,
2320 const struct ucred *ucred,
2321 char * const *tags,
2322 FDSet *fds) {
2323
2324 assert(m);
2325 assert(u);
2326 assert(ucred);
2327 assert(tags);
2328
2329 if (u->notifygen == m->notifygen) /* Already invoked on this same unit in this same iteration? */
2330 return;
2331 u->notifygen = m->notifygen;
2332
2333 if (UNIT_VTABLE(u)->notify_message)
2334 UNIT_VTABLE(u)->notify_message(u, ucred, tags, fds);
2335
2336 else if (DEBUG_LOGGING) {
2337 _cleanup_free_ char *buf = NULL, *x = NULL, *y = NULL;
2338
2339 buf = strv_join(tags, ", ");
2340 if (buf)
2341 x = ellipsize(buf, 20, 90);
2342 if (x)
2343 y = cescape(x);
2344
2345 log_unit_debug(u, "Got notification message \"%s\", ignoring.", strnull(y));
2346 }
2347 }
2348
2349 static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
2350
2351 _cleanup_fdset_free_ FDSet *fds = NULL;
2352 Manager *m = userdata;
2353 char buf[NOTIFY_BUFFER_MAX+1];
2354 struct iovec iovec = {
2355 .iov_base = buf,
2356 .iov_len = sizeof(buf)-1,
2357 };
2358 CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(struct ucred)) +
2359 CMSG_SPACE(sizeof(int) * NOTIFY_FD_MAX)) control;
2360 struct msghdr msghdr = {
2361 .msg_iov = &iovec,
2362 .msg_iovlen = 1,
2363 .msg_control = &control,
2364 .msg_controllen = sizeof(control),
2365 };
2366
2367 struct cmsghdr *cmsg;
2368 struct ucred *ucred = NULL;
2369 _cleanup_free_ Unit **array_copy = NULL;
2370 _cleanup_strv_free_ char **tags = NULL;
2371 Unit *u1, *u2, **array;
2372 int r, *fd_array = NULL;
2373 size_t n_fds = 0;
2374 bool found = false;
2375 ssize_t n;
2376
2377 assert(m);
2378 assert(m->notify_fd == fd);
2379
2380 if (revents != EPOLLIN) {
2381 log_warning("Got unexpected poll event for notify fd.");
2382 return 0;
2383 }
2384
2385 n = recvmsg_safe(m->notify_fd, &msghdr, MSG_DONTWAIT|MSG_CMSG_CLOEXEC|MSG_TRUNC);
2386 if (IN_SET(n, -EAGAIN, -EINTR))
2387 return 0; /* Spurious wakeup, try again */
2388 if (n == -EXFULL) {
2389 log_warning("Got message with truncated control data (too many fds sent?), ignoring.");
2390 return 0;
2391 }
2392 if (n < 0)
2393 /* If this is any other, real error, then let's stop processing this socket. This of course
2394 * means we won't take notification messages anymore, but that's still better than busy
2395 * looping around this: being woken up over and over again but being unable to actually read
2396 * the message off the socket. */
2397 return log_error_errno(n, "Failed to receive notification message: %m");
2398
2399 CMSG_FOREACH(cmsg, &msghdr) {
2400 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
2401
2402 assert(!fd_array);
2403 fd_array = (int*) CMSG_DATA(cmsg);
2404 n_fds = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int);
2405
2406 } else if (cmsg->cmsg_level == SOL_SOCKET &&
2407 cmsg->cmsg_type == SCM_CREDENTIALS &&
2408 cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred))) {
2409
2410 assert(!ucred);
2411 ucred = (struct ucred*) CMSG_DATA(cmsg);
2412 }
2413 }
2414
2415 if (n_fds > 0) {
2416 assert(fd_array);
2417
2418 r = fdset_new_array(&fds, fd_array, n_fds);
2419 if (r < 0) {
2420 close_many(fd_array, n_fds);
2421 log_oom();
2422 return 0;
2423 }
2424 }
2425
2426 if (!ucred || !pid_is_valid(ucred->pid)) {
2427 log_warning("Received notify message without valid credentials. Ignoring.");
2428 return 0;
2429 }
2430
2431 if ((size_t) n >= sizeof(buf) || (msghdr.msg_flags & MSG_TRUNC)) {
2432 log_warning("Received notify message exceeded maximum size. Ignoring.");
2433 return 0;
2434 }
2435
2436 /* As extra safety check, let's make sure the string we get doesn't contain embedded NUL bytes. We permit one
2437 * trailing NUL byte in the message, but don't expect it. */
2438 if (n > 1 && memchr(buf, 0, n-1)) {
2439 log_warning("Received notify message with embedded NUL bytes. Ignoring.");
2440 return 0;
2441 }
2442
2443 /* Make sure it's NUL-terminated, then parse it to obtain the tags list */
2444 buf[n] = 0;
2445 tags = strv_split_newlines(buf);
2446 if (!tags) {
2447 log_oom();
2448 return 0;
2449 }
2450
2451 /* possibly a barrier fd, let's see */
2452 if (manager_process_barrier_fd(tags, fds))
2453 return 0;
2454
2455 /* Increase the generation counter used for filtering out duplicate unit invocations. */
2456 m->notifygen++;
2457
2458 /* Notify every unit that might be interested, which might be multiple. */
2459 u1 = manager_get_unit_by_pid_cgroup(m, ucred->pid);
2460 u2 = hashmap_get(m->watch_pids, PID_TO_PTR(ucred->pid));
2461 array = hashmap_get(m->watch_pids, PID_TO_PTR(-ucred->pid));
2462 if (array) {
2463 size_t k = 0;
2464
2465 while (array[k])
2466 k++;
2467
2468 array_copy = newdup(Unit*, array, k+1);
2469 if (!array_copy)
2470 log_oom();
2471 }
2472 /* And now invoke the per-unit callbacks. Note that manager_invoke_notify_message() will handle duplicate units
2473 * make sure we only invoke each unit's handler once. */
2474 if (u1) {
2475 manager_invoke_notify_message(m, u1, ucred, tags, fds);
2476 found = true;
2477 }
2478 if (u2) {
2479 manager_invoke_notify_message(m, u2, ucred, tags, fds);
2480 found = true;
2481 }
2482 if (array_copy)
2483 for (size_t i = 0; array_copy[i]; i++) {
2484 manager_invoke_notify_message(m, array_copy[i], ucred, tags, fds);
2485 found = true;
2486 }
2487
2488 if (!found)
2489 log_warning("Cannot find unit for notify message of PID "PID_FMT", ignoring.", ucred->pid);
2490
2491 if (fdset_size(fds) > 0)
2492 log_warning("Got extra auxiliary fds with notification message, closing them.");
2493
2494 return 0;
2495 }
2496
2497 static void manager_invoke_sigchld_event(
2498 Manager *m,
2499 Unit *u,
2500 const siginfo_t *si) {
2501
2502 assert(m);
2503 assert(u);
2504 assert(si);
2505
2506 /* Already invoked the handler of this unit in this iteration? Then don't process this again */
2507 if (u->sigchldgen == m->sigchldgen)
2508 return;
2509 u->sigchldgen = m->sigchldgen;
2510
2511 log_unit_debug(u, "Child "PID_FMT" belongs to %s.", si->si_pid, u->id);
2512 unit_unwatch_pid(u, si->si_pid);
2513
2514 if (UNIT_VTABLE(u)->sigchld_event)
2515 UNIT_VTABLE(u)->sigchld_event(u, si->si_pid, si->si_code, si->si_status);
2516 }
2517
2518 static int manager_dispatch_sigchld(sd_event_source *source, void *userdata) {
2519 Manager *m = userdata;
2520 siginfo_t si = {};
2521 int r;
2522
2523 assert(source);
2524 assert(m);
2525
2526 /* First we call waitid() for a PID and do not reap the zombie. That way we can still access /proc/$PID for it
2527 * while it is a zombie. */
2528
2529 if (waitid(P_ALL, 0, &si, WEXITED|WNOHANG|WNOWAIT) < 0) {
2530
2531 if (errno != ECHILD)
2532 log_error_errno(errno, "Failed to peek for child with waitid(), ignoring: %m");
2533
2534 goto turn_off;
2535 }
2536
2537 if (si.si_pid <= 0)
2538 goto turn_off;
2539
2540 if (IN_SET(si.si_code, CLD_EXITED, CLD_KILLED, CLD_DUMPED)) {
2541 _cleanup_free_ Unit **array_copy = NULL;
2542 _cleanup_free_ char *name = NULL;
2543 Unit *u1, *u2, **array;
2544
2545 (void) get_process_comm(si.si_pid, &name);
2546
2547 log_debug("Child "PID_FMT" (%s) died (code=%s, status=%i/%s)",
2548 si.si_pid, strna(name),
2549 sigchld_code_to_string(si.si_code),
2550 si.si_status,
2551 strna(si.si_code == CLD_EXITED
2552 ? exit_status_to_string(si.si_status, EXIT_STATUS_FULL)
2553 : signal_to_string(si.si_status)));
2554
2555 /* Increase the generation counter used for filtering out duplicate unit invocations */
2556 m->sigchldgen++;
2557
2558 /* And now figure out the unit this belongs to, it might be multiple... */
2559 u1 = manager_get_unit_by_pid_cgroup(m, si.si_pid);
2560 u2 = hashmap_get(m->watch_pids, PID_TO_PTR(si.si_pid));
2561 array = hashmap_get(m->watch_pids, PID_TO_PTR(-si.si_pid));
2562 if (array) {
2563 size_t n = 0;
2564
2565 /* Count how many entries the array has */
2566 while (array[n])
2567 n++;
2568
2569 /* Make a copy of the array so that we don't trip up on the array changing beneath us */
2570 array_copy = newdup(Unit*, array, n+1);
2571 if (!array_copy)
2572 log_oom();
2573 }
2574
2575 /* Finally, execute them all. Note that u1, u2 and the array might contain duplicates, but
2576 * that's fine, manager_invoke_sigchld_event() will ensure we only invoke the handlers once for
2577 * each iteration. */
2578 if (u1) {
2579 /* We check for oom condition, in case we got SIGCHLD before the oom notification.
2580 * We only do this for the cgroup the PID belonged to. */
2581 (void) unit_check_oom(u1);
2582
2583 /* This only logs for now. In the future when the interface for kills/notifications
2584 * is more stable we can extend service results table similar to how kernel oom kills
2585 * are managed. */
2586 (void) unit_check_oomd_kill(u1);
2587
2588 manager_invoke_sigchld_event(m, u1, &si);
2589 }
2590 if (u2)
2591 manager_invoke_sigchld_event(m, u2, &si);
2592 if (array_copy)
2593 for (size_t i = 0; array_copy[i]; i++)
2594 manager_invoke_sigchld_event(m, array_copy[i], &si);
2595 }
2596
2597 /* And now, we actually reap the zombie. */
2598 if (waitid(P_PID, si.si_pid, &si, WEXITED) < 0) {
2599 log_error_errno(errno, "Failed to dequeue child, ignoring: %m");
2600 return 0;
2601 }
2602
2603 return 0;
2604
2605 turn_off:
2606 /* All children processed for now, turn off event source */
2607
2608 r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_OFF);
2609 if (r < 0)
2610 return log_error_errno(r, "Failed to disable SIGCHLD event source: %m");
2611
2612 return 0;
2613 }
2614
2615 static void manager_start_target(Manager *m, const char *name, JobMode mode) {
2616 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2617 int r;
2618
2619 log_debug("Activating special unit %s", name);
2620
2621 r = manager_add_job_by_name(m, JOB_START, name, mode, NULL, &error, NULL);
2622 if (r < 0)
2623 log_error("Failed to enqueue %s job: %s", name, bus_error_message(&error, r));
2624 }
2625
2626 static void manager_handle_ctrl_alt_del(Manager *m) {
2627 /* If the user presses C-A-D more than
2628 * 7 times within 2s, we reboot/shutdown immediately,
2629 * unless it was disabled in system.conf */
2630
2631 if (ratelimit_below(&m->ctrl_alt_del_ratelimit) || m->cad_burst_action == EMERGENCY_ACTION_NONE)
2632 manager_start_target(m, SPECIAL_CTRL_ALT_DEL_TARGET, JOB_REPLACE_IRREVERSIBLY);
2633 else
2634 emergency_action(m, m->cad_burst_action, EMERGENCY_ACTION_WARN, NULL, -1,
2635 "Ctrl-Alt-Del was pressed more than 7 times within 2s");
2636 }
2637
2638 static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
2639 Manager *m = userdata;
2640 ssize_t n;
2641 struct signalfd_siginfo sfsi;
2642 int r;
2643
2644 assert(m);
2645 assert(m->signal_fd == fd);
2646
2647 if (revents != EPOLLIN) {
2648 log_warning("Got unexpected events from signal file descriptor.");
2649 return 0;
2650 }
2651
2652 n = read(m->signal_fd, &sfsi, sizeof(sfsi));
2653 if (n != sizeof(sfsi)) {
2654 if (n >= 0) {
2655 log_warning("Truncated read from signal fd (%zu bytes), ignoring!", n);
2656 return 0;
2657 }
2658
2659 if (IN_SET(errno, EINTR, EAGAIN))
2660 return 0;
2661
2662 /* We return an error here, which will kill this handler,
2663 * to avoid a busy loop on read error. */
2664 return log_error_errno(errno, "Reading from signal fd failed: %m");
2665 }
2666
2667 log_received_signal(sfsi.ssi_signo == SIGCHLD ||
2668 (sfsi.ssi_signo == SIGTERM && MANAGER_IS_USER(m))
2669 ? LOG_DEBUG : LOG_INFO,
2670 &sfsi);
2671
2672 switch (sfsi.ssi_signo) {
2673
2674 case SIGCHLD:
2675 r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_ON);
2676 if (r < 0)
2677 log_warning_errno(r, "Failed to enable SIGCHLD event source, ignoring: %m");
2678
2679 break;
2680
2681 case SIGTERM:
2682 if (MANAGER_IS_SYSTEM(m)) {
2683 /* This is for compatibility with the original sysvinit */
2684 if (verify_run_space_and_log("Refusing to reexecute") < 0)
2685 break;
2686
2687 m->objective = MANAGER_REEXECUTE;
2688 break;
2689 }
2690
2691 _fallthrough_;
2692 case SIGINT:
2693 if (MANAGER_IS_SYSTEM(m))
2694 manager_handle_ctrl_alt_del(m);
2695 else
2696 manager_start_target(m, SPECIAL_EXIT_TARGET,
2697 JOB_REPLACE_IRREVERSIBLY);
2698 break;
2699
2700 case SIGWINCH:
2701 /* This is a nop on non-init */
2702 if (MANAGER_IS_SYSTEM(m))
2703 manager_start_target(m, SPECIAL_KBREQUEST_TARGET, JOB_REPLACE);
2704
2705 break;
2706
2707 case SIGPWR:
2708 /* This is a nop on non-init */
2709 if (MANAGER_IS_SYSTEM(m))
2710 manager_start_target(m, SPECIAL_SIGPWR_TARGET, JOB_REPLACE);
2711
2712 break;
2713
2714 case SIGUSR1:
2715 if (manager_dbus_is_running(m, false)) {
2716 log_info("Trying to reconnect to bus...");
2717
2718 (void) bus_init_api(m);
2719
2720 if (MANAGER_IS_SYSTEM(m))
2721 (void) bus_init_system(m);
2722 } else {
2723 log_info("Starting D-Bus service...");
2724 manager_start_target(m, SPECIAL_DBUS_SERVICE, JOB_REPLACE);
2725 }
2726
2727 break;
2728
2729 case SIGUSR2: {
2730 _cleanup_free_ char *dump = NULL;
2731
2732 r = manager_get_dump_string(m, &dump);
2733 if (r < 0) {
2734 log_warning_errno(errno, "Failed to acquire manager dump: %m");
2735 break;
2736 }
2737
2738 log_dump(LOG_INFO, dump);
2739 break;
2740 }
2741
2742 case SIGHUP:
2743 if (verify_run_space_and_log("Refusing to reload") < 0)
2744 break;
2745
2746 m->objective = MANAGER_RELOAD;
2747 break;
2748
2749 default: {
2750
2751 /* Starting SIGRTMIN+0 */
2752 static const struct {
2753 const char *target;
2754 JobMode mode;
2755 } target_table[] = {
2756 [0] = { SPECIAL_DEFAULT_TARGET, JOB_ISOLATE },
2757 [1] = { SPECIAL_RESCUE_TARGET, JOB_ISOLATE },
2758 [2] = { SPECIAL_EMERGENCY_TARGET, JOB_ISOLATE },
2759 [3] = { SPECIAL_HALT_TARGET, JOB_REPLACE_IRREVERSIBLY },
2760 [4] = { SPECIAL_POWEROFF_TARGET, JOB_REPLACE_IRREVERSIBLY },
2761 [5] = { SPECIAL_REBOOT_TARGET, JOB_REPLACE_IRREVERSIBLY },
2762 [6] = { SPECIAL_KEXEC_TARGET, JOB_REPLACE_IRREVERSIBLY },
2763 };
2764
2765 /* Starting SIGRTMIN+13, so that target halt and system halt are 10 apart */
2766 static const ManagerObjective objective_table[] = {
2767 [0] = MANAGER_HALT,
2768 [1] = MANAGER_POWEROFF,
2769 [2] = MANAGER_REBOOT,
2770 [3] = MANAGER_KEXEC,
2771 };
2772
2773 if ((int) sfsi.ssi_signo >= SIGRTMIN+0 &&
2774 (int) sfsi.ssi_signo < SIGRTMIN+(int) ELEMENTSOF(target_table)) {
2775 int idx = (int) sfsi.ssi_signo - SIGRTMIN;
2776 manager_start_target(m, target_table[idx].target,
2777 target_table[idx].mode);
2778 break;
2779 }
2780
2781 if ((int) sfsi.ssi_signo >= SIGRTMIN+13 &&
2782 (int) sfsi.ssi_signo < SIGRTMIN+13+(int) ELEMENTSOF(objective_table)) {
2783 m->objective = objective_table[sfsi.ssi_signo - SIGRTMIN - 13];
2784 break;
2785 }
2786
2787 switch (sfsi.ssi_signo - SIGRTMIN) {
2788
2789 case 20:
2790 manager_override_show_status(m, SHOW_STATUS_YES, "signal");
2791 break;
2792
2793 case 21:
2794 manager_override_show_status(m, SHOW_STATUS_NO, "signal");
2795 break;
2796
2797 case 22:
2798 manager_override_log_level(m, LOG_DEBUG);
2799 break;
2800
2801 case 23:
2802 manager_restore_original_log_level(m);
2803 break;
2804
2805 case 24:
2806 if (MANAGER_IS_USER(m)) {
2807 m->objective = MANAGER_EXIT;
2808 return 0;
2809 }
2810
2811 /* This is a nop on init */
2812 break;
2813
2814 case 26:
2815 case 29: /* compatibility: used to be mapped to LOG_TARGET_SYSLOG_OR_KMSG */
2816 manager_restore_original_log_target(m);
2817 break;
2818
2819 case 27:
2820 manager_override_log_target(m, LOG_TARGET_CONSOLE);
2821 break;
2822
2823 case 28:
2824 manager_override_log_target(m, LOG_TARGET_KMSG);
2825 break;
2826
2827 default:
2828 log_warning("Got unhandled signal <%s>.", signal_to_string(sfsi.ssi_signo));
2829 }
2830 }}
2831
2832 return 0;
2833 }
2834
2835 static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
2836 Manager *m = userdata;
2837 Unit *u;
2838
2839 assert(m);
2840 assert(m->time_change_fd == fd);
2841
2842 log_struct(LOG_DEBUG,
2843 "MESSAGE_ID=" SD_MESSAGE_TIME_CHANGE_STR,
2844 LOG_MESSAGE("Time has been changed"));
2845
2846 /* Restart the watch */
2847 (void) manager_setup_time_change(m);
2848
2849 HASHMAP_FOREACH(u, m->units)
2850 if (UNIT_VTABLE(u)->time_change)
2851 UNIT_VTABLE(u)->time_change(u);
2852
2853 return 0;
2854 }
2855
2856 static int manager_dispatch_timezone_change(
2857 sd_event_source *source,
2858 const struct inotify_event *e,
2859 void *userdata) {
2860
2861 Manager *m = userdata;
2862 int changed;
2863 Unit *u;
2864
2865 assert(m);
2866
2867 log_debug("inotify event for /etc/localtime");
2868
2869 changed = manager_read_timezone_stat(m);
2870 if (changed <= 0)
2871 return changed;
2872
2873 /* Something changed, restart the watch, to ensure we watch the new /etc/localtime if it changed */
2874 (void) manager_setup_timezone_change(m);
2875
2876 /* Read the new timezone */
2877 tzset();
2878
2879 log_debug("Timezone has been changed (now: %s).", tzname[daylight]);
2880
2881 HASHMAP_FOREACH(u, m->units)
2882 if (UNIT_VTABLE(u)->timezone_change)
2883 UNIT_VTABLE(u)->timezone_change(u);
2884
2885 return 0;
2886 }
2887
2888 static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
2889 Manager *m = userdata;
2890
2891 assert(m);
2892 assert(m->idle_pipe[2] == fd);
2893
2894 /* There's at least one Type=idle child that just gave up on us waiting for the boot process to complete. Let's
2895 * now turn off any further console output if there's at least one service that needs console access, so that
2896 * from now on our own output should not spill into that service's output anymore. After all, we support
2897 * Type=idle only to beautify console output and it generally is set on services that want to own the console
2898 * exclusively without our interference. */
2899 m->no_console_output = m->n_on_console > 0;
2900
2901 /* Acknowledge the child's request, and let all all other children know too that they shouldn't wait any longer
2902 * by closing the pipes towards them, which is what they are waiting for. */
2903 manager_close_idle_pipe(m);
2904
2905 return 0;
2906 }
2907
2908 static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata) {
2909 Manager *m = userdata;
2910 int r;
2911
2912 assert(m);
2913 assert(source);
2914
2915 manager_print_jobs_in_progress(m);
2916
2917 r = sd_event_source_set_time_relative(source, JOBS_IN_PROGRESS_PERIOD_USEC);
2918 if (r < 0)
2919 return r;
2920
2921 return sd_event_source_set_enabled(source, SD_EVENT_ONESHOT);
2922 }
2923
2924 int manager_loop(Manager *m) {
2925 RateLimit rl = { .interval = 1*USEC_PER_SEC, .burst = 50000 };
2926 int r;
2927
2928 assert(m);
2929 assert(m->objective == MANAGER_OK); /* Ensure manager_startup() has been called */
2930
2931 manager_check_finished(m);
2932
2933 /* There might still be some zombies hanging around from before we were exec()'ed. Let's reap them. */
2934 r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_ON);
2935 if (r < 0)
2936 return log_error_errno(r, "Failed to enable SIGCHLD event source: %m");
2937
2938 while (m->objective == MANAGER_OK) {
2939 usec_t wait_usec, watchdog_usec;
2940
2941 watchdog_usec = manager_get_watchdog(m, WATCHDOG_RUNTIME);
2942 if (m->runtime_watchdog_running)
2943 (void) watchdog_ping();
2944 else if (timestamp_is_set(watchdog_usec))
2945 manager_retry_runtime_watchdog(m);
2946
2947 if (!ratelimit_below(&rl)) {
2948 /* Yay, something is going seriously wrong, pause a little */
2949 log_warning("Looping too fast. Throttling execution a little.");
2950 sleep(1);
2951 }
2952
2953 if (manager_dispatch_load_queue(m) > 0)
2954 continue;
2955
2956 if (manager_dispatch_gc_job_queue(m) > 0)
2957 continue;
2958
2959 if (manager_dispatch_gc_unit_queue(m) > 0)
2960 continue;
2961
2962 if (manager_dispatch_cleanup_queue(m) > 0)
2963 continue;
2964
2965 if (manager_dispatch_cgroup_realize_queue(m) > 0)
2966 continue;
2967
2968 if (manager_dispatch_start_when_upheld_queue(m) > 0)
2969 continue;
2970
2971 if (manager_dispatch_stop_when_bound_queue(m) > 0)
2972 continue;
2973
2974 if (manager_dispatch_stop_when_unneeded_queue(m) > 0)
2975 continue;
2976
2977 if (manager_dispatch_dbus_queue(m) > 0)
2978 continue;
2979
2980 /* Sleep for watchdog runtime wait time */
2981 if (timestamp_is_set(watchdog_usec))
2982 wait_usec = watchdog_runtime_wait();
2983 else
2984 wait_usec = USEC_INFINITY;
2985
2986 r = sd_event_run(m->event, wait_usec);
2987 if (r < 0)
2988 return log_error_errno(r, "Failed to run event loop: %m");
2989 }
2990
2991 return m->objective;
2992 }
2993
2994 int manager_load_unit_from_dbus_path(Manager *m, const char *s, sd_bus_error *e, Unit **_u) {
2995 _cleanup_free_ char *n = NULL;
2996 sd_id128_t invocation_id;
2997 Unit *u;
2998 int r;
2999
3000 assert(m);
3001 assert(s);
3002 assert(_u);
3003
3004 r = unit_name_from_dbus_path(s, &n);
3005 if (r < 0)
3006 return r;
3007
3008 /* Permit addressing units by invocation ID: if the passed bus path is suffixed by a 128bit ID then we use it
3009 * as invocation ID. */
3010 r = sd_id128_from_string(n, &invocation_id);
3011 if (r >= 0) {
3012 u = hashmap_get(m->units_by_invocation_id, &invocation_id);
3013 if (u) {
3014 *_u = u;
3015 return 0;
3016 }
3017
3018 return sd_bus_error_setf(e, BUS_ERROR_NO_UNIT_FOR_INVOCATION_ID,
3019 "No unit with the specified invocation ID " SD_ID128_FORMAT_STR " known.",
3020 SD_ID128_FORMAT_VAL(invocation_id));
3021 }
3022
3023 /* If this didn't work, we check if this is a unit name */
3024 if (!unit_name_is_valid(n, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) {
3025 _cleanup_free_ char *nn = NULL;
3026
3027 nn = cescape(n);
3028 return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS,
3029 "Unit name %s is neither a valid invocation ID nor unit name.", strnull(nn));
3030 }
3031
3032 r = manager_load_unit(m, n, NULL, e, &u);
3033 if (r < 0)
3034 return r;
3035
3036 *_u = u;
3037 return 0;
3038 }
3039
3040 int manager_get_job_from_dbus_path(Manager *m, const char *s, Job **_j) {
3041 const char *p;
3042 unsigned id;
3043 Job *j;
3044 int r;
3045
3046 assert(m);
3047 assert(s);
3048 assert(_j);
3049
3050 p = startswith(s, "/org/freedesktop/systemd1/job/");
3051 if (!p)
3052 return -EINVAL;
3053
3054 r = safe_atou(p, &id);
3055 if (r < 0)
3056 return r;
3057
3058 j = manager_get_job(m, id);
3059 if (!j)
3060 return -ENOENT;
3061
3062 *_j = j;
3063
3064 return 0;
3065 }
3066
3067 void manager_send_unit_audit(Manager *m, Unit *u, int type, bool success) {
3068
3069 #if HAVE_AUDIT
3070 _cleanup_free_ char *p = NULL;
3071 const char *msg;
3072 int audit_fd, r;
3073
3074 if (!MANAGER_IS_SYSTEM(m))
3075 return;
3076
3077 audit_fd = get_audit_fd();
3078 if (audit_fd < 0)
3079 return;
3080
3081 /* Don't generate audit events if the service was already
3082 * started and we're just deserializing */
3083 if (MANAGER_IS_RELOADING(m))
3084 return;
3085
3086 if (u->type != UNIT_SERVICE)
3087 return;
3088
3089 r = unit_name_to_prefix_and_instance(u->id, &p);
3090 if (r < 0) {
3091 log_error_errno(r, "Failed to extract prefix and instance of unit name: %m");
3092 return;
3093 }
3094
3095 msg = strjoina("unit=", p);
3096 if (audit_log_user_comm_message(audit_fd, type, msg, "systemd", NULL, NULL, NULL, success) < 0) {
3097 if (errno == EPERM)
3098 /* We aren't allowed to send audit messages?
3099 * Then let's not retry again. */
3100 close_audit_fd();
3101 else
3102 log_warning_errno(errno, "Failed to send audit message: %m");
3103 }
3104 #endif
3105
3106 }
3107
3108 void manager_send_unit_plymouth(Manager *m, Unit *u) {
3109 static const union sockaddr_union sa = PLYMOUTH_SOCKET;
3110 _cleanup_free_ char *message = NULL;
3111 _cleanup_close_ int fd = -1;
3112 int n = 0;
3113
3114 /* Don't generate plymouth events if the service was already
3115 * started and we're just deserializing */
3116 if (MANAGER_IS_RELOADING(m))
3117 return;
3118
3119 if (!MANAGER_IS_SYSTEM(m))
3120 return;
3121
3122 if (detect_container() > 0)
3123 return;
3124
3125 if (!IN_SET(u->type, UNIT_SERVICE, UNIT_MOUNT, UNIT_SWAP))
3126 return;
3127
3128 /* We set SOCK_NONBLOCK here so that we rather drop the
3129 * message then wait for plymouth */
3130 fd = socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
3131 if (fd < 0) {
3132 log_error_errno(errno, "socket() failed: %m");
3133 return;
3134 }
3135
3136 if (connect(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)) < 0) {
3137 if (!IN_SET(errno, EAGAIN, ENOENT) && !ERRNO_IS_DISCONNECT(errno))
3138 log_error_errno(errno, "connect() failed: %m");
3139 return;
3140 }
3141
3142 if (asprintf(&message, "U\002%c%s%n", (int) (strlen(u->id) + 1), u->id, &n) < 0) {
3143 log_oom();
3144 return;
3145 }
3146
3147 errno = 0;
3148 if (write(fd, message, n + 1) != n + 1)
3149 if (!IN_SET(errno, EAGAIN, ENOENT) && !ERRNO_IS_DISCONNECT(errno))
3150 log_error_errno(errno, "Failed to write Plymouth message: %m");
3151 }
3152
3153 int manager_open_serialization(Manager *m, FILE **_f) {
3154 _cleanup_close_ int fd = -1;
3155 FILE *f;
3156
3157 assert(_f);
3158
3159 fd = open_serialization_fd("systemd-state");
3160 if (fd < 0)
3161 return fd;
3162
3163 f = take_fdopen(&fd, "w+");
3164 if (!f)
3165 return -errno;
3166
3167 *_f = f;
3168 return 0;
3169 }
3170
3171 static bool manager_timestamp_shall_serialize(ManagerTimestamp t) {
3172
3173 if (!in_initrd())
3174 return true;
3175
3176 /* The following timestamps only apply to the host system, hence only serialize them there */
3177 return !IN_SET(t,
3178 MANAGER_TIMESTAMP_USERSPACE, MANAGER_TIMESTAMP_FINISH,
3179 MANAGER_TIMESTAMP_SECURITY_START, MANAGER_TIMESTAMP_SECURITY_FINISH,
3180 MANAGER_TIMESTAMP_GENERATORS_START, MANAGER_TIMESTAMP_GENERATORS_FINISH,
3181 MANAGER_TIMESTAMP_UNITS_LOAD_START, MANAGER_TIMESTAMP_UNITS_LOAD_FINISH);
3182 }
3183
3184 #define DESTROY_IPC_FLAG (UINT32_C(1) << 31)
3185
3186 static void manager_serialize_uid_refs_internal(
3187 FILE *f,
3188 Hashmap *uid_refs,
3189 const char *field_name) {
3190
3191 void *p, *k;
3192
3193 assert(f);
3194 assert(field_name);
3195
3196 /* Serialize the UID reference table. Or actually, just the IPC destruction flag of it, as
3197 * the actual counter of it is better rebuild after a reload/reexec. */
3198
3199 HASHMAP_FOREACH_KEY(p, k, uid_refs) {
3200 uint32_t c;
3201 uid_t uid;
3202
3203 uid = PTR_TO_UID(k);
3204 c = PTR_TO_UINT32(p);
3205
3206 if (!(c & DESTROY_IPC_FLAG))
3207 continue;
3208
3209 (void) serialize_item_format(f, field_name, UID_FMT, uid);
3210 }
3211 }
3212
3213 static void manager_serialize_uid_refs(Manager *m, FILE *f) {
3214 manager_serialize_uid_refs_internal(f, m->uid_refs, "destroy-ipc-uid");
3215 }
3216
3217 static void manager_serialize_gid_refs(Manager *m, FILE *f) {
3218 manager_serialize_uid_refs_internal(f, m->gid_refs, "destroy-ipc-gid");
3219 }
3220
3221 int manager_serialize(
3222 Manager *m,
3223 FILE *f,
3224 FDSet *fds,
3225 bool switching_root) {
3226
3227 const char *t;
3228 Unit *u;
3229 int r;
3230
3231 assert(m);
3232 assert(f);
3233 assert(fds);
3234
3235 _cleanup_(manager_reloading_stopp) _unused_ Manager *reloading = manager_reloading_start(m);
3236
3237 (void) serialize_item_format(f, "current-job-id", "%" PRIu32, m->current_job_id);
3238 (void) serialize_item_format(f, "n-installed-jobs", "%u", m->n_installed_jobs);
3239 (void) serialize_item_format(f, "n-failed-jobs", "%u", m->n_failed_jobs);
3240 (void) serialize_bool(f, "taint-usr", m->taint_usr);
3241 (void) serialize_bool(f, "ready-sent", m->ready_sent);
3242 (void) serialize_bool(f, "taint-logged", m->taint_logged);
3243 (void) serialize_bool(f, "service-watchdogs", m->service_watchdogs);
3244
3245 /* After switching root, udevd has not been started yet. So, enumeration results should not be emitted. */
3246 (void) serialize_bool(f, "honor-device-enumeration", !switching_root);
3247
3248 if (m->show_status_overridden != _SHOW_STATUS_INVALID)
3249 (void) serialize_item(f, "show-status-overridden",
3250 show_status_to_string(m->show_status_overridden));
3251
3252 if (m->log_level_overridden)
3253 (void) serialize_item_format(f, "log-level-override", "%i", log_get_max_level());
3254 if (m->log_target_overridden)
3255 (void) serialize_item(f, "log-target-override", log_target_to_string(log_get_target()));
3256
3257 (void) serialize_usec(f, "runtime-watchdog-overridden", m->watchdog_overridden[WATCHDOG_RUNTIME]);
3258 (void) serialize_usec(f, "reboot-watchdog-overridden", m->watchdog_overridden[WATCHDOG_REBOOT]);
3259 (void) serialize_usec(f, "kexec-watchdog-overridden", m->watchdog_overridden[WATCHDOG_KEXEC]);
3260
3261 for (ManagerTimestamp q = 0; q < _MANAGER_TIMESTAMP_MAX; q++) {
3262 _cleanup_free_ char *joined = NULL;
3263
3264 if (!manager_timestamp_shall_serialize(q))
3265 continue;
3266
3267 joined = strjoin(manager_timestamp_to_string(q), "-timestamp");
3268 if (!joined)
3269 return log_oom();
3270
3271 (void) serialize_dual_timestamp(f, joined, m->timestamps + q);
3272 }
3273
3274 if (!switching_root)
3275 (void) serialize_strv(f, "env", m->client_environment);
3276
3277 if (m->notify_fd >= 0) {
3278 r = serialize_fd(f, fds, "notify-fd", m->notify_fd);
3279 if (r < 0)
3280 return r;
3281
3282 (void) serialize_item(f, "notify-socket", m->notify_socket);
3283 }
3284
3285 if (m->cgroups_agent_fd >= 0) {
3286 r = serialize_fd(f, fds, "cgroups-agent-fd", m->cgroups_agent_fd);
3287 if (r < 0)
3288 return r;
3289 }
3290
3291 if (m->user_lookup_fds[0] >= 0) {
3292 int copy0, copy1;
3293
3294 copy0 = fdset_put_dup(fds, m->user_lookup_fds[0]);
3295 if (copy0 < 0)
3296 return log_error_errno(copy0, "Failed to add user lookup fd to serialization: %m");
3297
3298 copy1 = fdset_put_dup(fds, m->user_lookup_fds[1]);
3299 if (copy1 < 0)
3300 return log_error_errno(copy1, "Failed to add user lookup fd to serialization: %m");
3301
3302 (void) serialize_item_format(f, "user-lookup", "%i %i", copy0, copy1);
3303 }
3304
3305 bus_track_serialize(m->subscribed, f, "subscribed");
3306
3307 r = dynamic_user_serialize(m, f, fds);
3308 if (r < 0)
3309 return r;
3310
3311 manager_serialize_uid_refs(m, f);
3312 manager_serialize_gid_refs(m, f);
3313
3314 r = exec_runtime_serialize(m, f, fds);
3315 if (r < 0)
3316 return r;
3317
3318 (void) fputc('\n', f);
3319
3320 HASHMAP_FOREACH_KEY(u, t, m->units) {
3321 if (u->id != t)
3322 continue;
3323
3324 /* Start marker */
3325 fputs(u->id, f);
3326 fputc('\n', f);
3327
3328 r = unit_serialize(u, f, fds, !switching_root);
3329 if (r < 0)
3330 return r;
3331 }
3332
3333 r = fflush_and_check(f);
3334 if (r < 0)
3335 return log_error_errno(r, "Failed to flush serialization: %m");
3336
3337 r = bus_fdset_add_all(m, fds);
3338 if (r < 0)
3339 return log_error_errno(r, "Failed to add bus sockets to serialization: %m");
3340
3341 return 0;
3342 }
3343
3344 static int manager_deserialize_one_unit(Manager *m, const char *name, FILE *f, FDSet *fds) {
3345 Unit *u;
3346 int r;
3347
3348 r = manager_load_unit(m, name, NULL, NULL, &u);
3349 if (r < 0) {
3350 if (r == -ENOMEM)
3351 return r;
3352 return log_notice_errno(r, "Failed to load unit \"%s\", skipping deserialization: %m", name);
3353 }
3354
3355 r = unit_deserialize(u, f, fds);
3356 if (r < 0) {
3357 if (r == -ENOMEM)
3358 return r;
3359 return log_notice_errno(r, "Failed to deserialize unit \"%s\", skipping: %m", name);
3360 }
3361
3362 return 0;
3363 }
3364
3365 static int manager_deserialize_units(Manager *m, FILE *f, FDSet *fds) {
3366 const char *unit_name;
3367 int r;
3368
3369 for (;;) {
3370 _cleanup_free_ char *line = NULL;
3371 /* Start marker */
3372 r = read_line(f, LONG_LINE_MAX, &line);
3373 if (r < 0)
3374 return log_error_errno(r, "Failed to read serialization line: %m");
3375 if (r == 0)
3376 break;
3377
3378 unit_name = strstrip(line);
3379
3380 r = manager_deserialize_one_unit(m, unit_name, f, fds);
3381 if (r == -ENOMEM)
3382 return r;
3383 if (r < 0) {
3384 r = unit_deserialize_skip(f);
3385 if (r < 0)
3386 return r;
3387 }
3388 }
3389
3390 return 0;
3391 }
3392
3393 usec_t manager_get_watchdog(Manager *m, WatchdogType t) {
3394 assert(m);
3395
3396 if (MANAGER_IS_USER(m))
3397 return USEC_INFINITY;
3398
3399 if (timestamp_is_set(m->watchdog_overridden[t]))
3400 return m->watchdog_overridden[t];
3401
3402 return m->watchdog[t];
3403 }
3404
3405 void manager_set_watchdog(Manager *m, WatchdogType t, usec_t timeout) {
3406 int r = 0;
3407
3408 assert(m);
3409
3410 if (MANAGER_IS_USER(m))
3411 return;
3412
3413 if (m->watchdog[t] == timeout)
3414 return;
3415
3416 if (t == WATCHDOG_RUNTIME)
3417 if (!timestamp_is_set(m->watchdog_overridden[WATCHDOG_RUNTIME])) {
3418 if (timestamp_is_set(timeout)) {
3419 r = watchdog_set_timeout(&timeout);
3420
3421 if (r >= 0)
3422 m->runtime_watchdog_running = true;
3423 } else {
3424 watchdog_close(true);
3425 m->runtime_watchdog_running = false;
3426 }
3427 }
3428
3429 m->watchdog[t] = timeout;
3430 }
3431
3432 int manager_override_watchdog(Manager *m, WatchdogType t, usec_t timeout) {
3433 int r = 0;
3434
3435 assert(m);
3436
3437 if (MANAGER_IS_USER(m))
3438 return 0;
3439
3440 if (m->watchdog_overridden[t] == timeout)
3441 return 0;
3442
3443 if (t == WATCHDOG_RUNTIME) {
3444 usec_t *p;
3445
3446 p = timestamp_is_set(timeout) ? &timeout : &m->watchdog[t];
3447 if (timestamp_is_set(*p)) {
3448 r = watchdog_set_timeout(p);
3449
3450 if (r >= 0)
3451 m->runtime_watchdog_running = true;
3452 } else {
3453 watchdog_close(true);
3454 m->runtime_watchdog_running = false;
3455 }
3456 }
3457
3458 m->watchdog_overridden[t] = timeout;
3459
3460 return 0;
3461 }
3462
3463 void manager_retry_runtime_watchdog(Manager *m) {
3464 int r = 0;
3465
3466 assert(m);
3467
3468 if (timestamp_is_set(m->watchdog_overridden[WATCHDOG_RUNTIME]))
3469 r = watchdog_set_timeout(&m->watchdog_overridden[WATCHDOG_RUNTIME]);
3470 else
3471 r = watchdog_set_timeout(&m->watchdog[WATCHDOG_RUNTIME]);
3472
3473 if (r >= 0)
3474 m->runtime_watchdog_running = true;
3475 }
3476
3477 static void manager_deserialize_uid_refs_one_internal(
3478 Hashmap** uid_refs,
3479 const char *value) {
3480
3481 uid_t uid;
3482 uint32_t c;
3483 int r;
3484
3485 assert(uid_refs);
3486 assert(value);
3487
3488 r = parse_uid(value, &uid);
3489 if (r < 0 || uid == 0) {
3490 log_debug("Unable to parse UID/GID reference serialization: " UID_FMT, uid);
3491 return;
3492 }
3493
3494 if (hashmap_ensure_allocated(uid_refs, &trivial_hash_ops) < 0) {
3495 log_oom();
3496 return;
3497 }
3498
3499 c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid)));
3500 if (c & DESTROY_IPC_FLAG)
3501 return;
3502
3503 c |= DESTROY_IPC_FLAG;
3504
3505 r = hashmap_replace(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c));
3506 if (r < 0) {
3507 log_debug_errno(r, "Failed to add UID/GID reference entry: %m");
3508 return;
3509 }
3510 }
3511
3512 static void manager_deserialize_uid_refs_one(Manager *m, const char *value) {
3513 manager_deserialize_uid_refs_one_internal(&m->uid_refs, value);
3514 }
3515
3516 static void manager_deserialize_gid_refs_one(Manager *m, const char *value) {
3517 manager_deserialize_uid_refs_one_internal(&m->gid_refs, value);
3518 }
3519
3520 int manager_deserialize(Manager *m, FILE *f, FDSet *fds) {
3521 int r = 0;
3522
3523 assert(m);
3524 assert(f);
3525
3526 if (DEBUG_LOGGING) {
3527 if (fdset_isempty(fds))
3528 log_debug("No file descriptors passed");
3529 else {
3530 int fd;
3531
3532 FDSET_FOREACH(fd, fds) {
3533 _cleanup_free_ char *fn = NULL;
3534
3535 r = fd_get_path(fd, &fn);
3536 if (r < 0)
3537 log_debug_errno(r, "Received serialized fd %i → %m", fd);
3538 else
3539 log_debug("Received serialized fd %i → %s", fd, strna(fn));
3540 }
3541 }
3542 }
3543
3544 log_debug("Deserializing state...");
3545
3546 /* If we are not in reload mode yet, enter it now. Not that this is recursive, a caller might already have
3547 * increased it to non-zero, which is why we just increase it by one here and down again at the end of this
3548 * call. */
3549 _cleanup_(manager_reloading_stopp) _unused_ Manager *reloading = manager_reloading_start(m);
3550
3551 for (;;) {
3552 _cleanup_free_ char *line = NULL;
3553 const char *val, *l;
3554
3555 r = read_line(f, LONG_LINE_MAX, &line);
3556 if (r < 0)
3557 return log_error_errno(r, "Failed to read serialization line: %m");
3558 if (r == 0)
3559 break;
3560
3561 l = strstrip(line);
3562 if (isempty(l)) /* end marker */
3563 break;
3564
3565 if ((val = startswith(l, "current-job-id="))) {
3566 uint32_t id;
3567
3568 if (safe_atou32(val, &id) < 0)
3569 log_notice("Failed to parse current job id value '%s', ignoring.", val);
3570 else
3571 m->current_job_id = MAX(m->current_job_id, id);
3572
3573 } else if ((val = startswith(l, "n-installed-jobs="))) {
3574 uint32_t n;
3575
3576 if (safe_atou32(val, &n) < 0)
3577 log_notice("Failed to parse installed jobs counter '%s', ignoring.", val);
3578 else
3579 m->n_installed_jobs += n;
3580
3581 } else if ((val = startswith(l, "n-failed-jobs="))) {
3582 uint32_t n;
3583
3584 if (safe_atou32(val, &n) < 0)
3585 log_notice("Failed to parse failed jobs counter '%s', ignoring.", val);
3586 else
3587 m->n_failed_jobs += n;
3588
3589 } else if ((val = startswith(l, "taint-usr="))) {
3590 int b;
3591
3592 b = parse_boolean(val);
3593 if (b < 0)
3594 log_notice("Failed to parse taint /usr flag '%s', ignoring.", val);
3595 else
3596 m->taint_usr = m->taint_usr || b;
3597
3598 } else if ((val = startswith(l, "ready-sent="))) {
3599 int b;
3600
3601 b = parse_boolean(val);
3602 if (b < 0)
3603 log_notice("Failed to parse ready-sent flag '%s', ignoring.", val);
3604 else
3605 m->ready_sent = m->ready_sent || b;
3606
3607 } else if ((val = startswith(l, "taint-logged="))) {
3608 int b;
3609
3610 b = parse_boolean(val);
3611 if (b < 0)
3612 log_notice("Failed to parse taint-logged flag '%s', ignoring.", val);
3613 else
3614 m->taint_logged = m->taint_logged || b;
3615
3616 } else if ((val = startswith(l, "service-watchdogs="))) {
3617 int b;
3618
3619 b = parse_boolean(val);
3620 if (b < 0)
3621 log_notice("Failed to parse service-watchdogs flag '%s', ignoring.", val);
3622 else
3623 m->service_watchdogs = b;
3624
3625 } else if ((val = startswith(l, "honor-device-enumeration="))) {
3626 int b;
3627
3628 b = parse_boolean(val);
3629 if (b < 0)
3630 log_notice("Failed to parse honor-device-enumeration flag '%s', ignoring.", val);
3631 else
3632 m->honor_device_enumeration = b;
3633
3634 } else if ((val = startswith(l, "show-status-overridden="))) {
3635 ShowStatus s;
3636
3637 s = show_status_from_string(val);
3638 if (s < 0)
3639 log_notice("Failed to parse show-status-overridden flag '%s', ignoring.", val);
3640 else
3641 manager_override_show_status(m, s, "deserialize");
3642
3643 } else if ((val = startswith(l, "log-level-override="))) {
3644 int level;
3645
3646 level = log_level_from_string(val);
3647 if (level < 0)
3648 log_notice("Failed to parse log-level-override value '%s', ignoring.", val);
3649 else
3650 manager_override_log_level(m, level);
3651
3652 } else if ((val = startswith(l, "log-target-override="))) {
3653 LogTarget target;
3654
3655 target = log_target_from_string(val);
3656 if (target < 0)
3657 log_notice("Failed to parse log-target-override value '%s', ignoring.", val);
3658 else
3659 manager_override_log_target(m, target);
3660
3661 } else if ((val = startswith(l, "runtime-watchdog-overridden="))) {
3662 usec_t t;
3663
3664 if (deserialize_usec(val, &t) < 0)
3665 log_notice("Failed to parse runtime-watchdog-overridden value '%s', ignoring.", val);
3666 else
3667 manager_override_watchdog(m, WATCHDOG_RUNTIME, t);
3668
3669 } else if ((val = startswith(l, "reboot-watchdog-overridden="))) {
3670 usec_t t;
3671
3672 if (deserialize_usec(val, &t) < 0)
3673 log_notice("Failed to parse reboot-watchdog-overridden value '%s', ignoring.", val);
3674 else
3675 manager_override_watchdog(m, WATCHDOG_REBOOT, t);
3676
3677 } else if ((val = startswith(l, "kexec-watchdog-overridden="))) {
3678 usec_t t;
3679
3680 if (deserialize_usec(val, &t) < 0)
3681 log_notice("Failed to parse kexec-watchdog-overridden value '%s', ignoring.", val);
3682 else
3683 manager_override_watchdog(m, WATCHDOG_KEXEC, t);
3684
3685 } else if (startswith(l, "env=")) {
3686 r = deserialize_environment(l + 4, &m->client_environment);
3687 if (r < 0)
3688 log_notice_errno(r, "Failed to parse environment entry: \"%s\", ignoring: %m", l);
3689
3690 } else if ((val = startswith(l, "notify-fd="))) {
3691 int fd;
3692
3693 if (safe_atoi(val, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd))
3694 log_notice("Failed to parse notify fd, ignoring: \"%s\"", val);
3695 else {
3696 m->notify_event_source = sd_event_source_unref(m->notify_event_source);
3697 safe_close(m->notify_fd);
3698 m->notify_fd = fdset_remove(fds, fd);
3699 }
3700
3701 } else if ((val = startswith(l, "notify-socket="))) {
3702 r = free_and_strdup(&m->notify_socket, val);
3703 if (r < 0)
3704 return r;
3705
3706 } else if ((val = startswith(l, "cgroups-agent-fd="))) {
3707 int fd;
3708
3709 if (safe_atoi(val, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd))
3710 log_notice("Failed to parse cgroups agent fd, ignoring.: %s", val);
3711 else {
3712 m->cgroups_agent_event_source = sd_event_source_unref(m->cgroups_agent_event_source);
3713 safe_close(m->cgroups_agent_fd);
3714 m->cgroups_agent_fd = fdset_remove(fds, fd);
3715 }
3716
3717 } else if ((val = startswith(l, "user-lookup="))) {
3718 int fd0, fd1;
3719
3720 if (sscanf(val, "%i %i", &fd0, &fd1) != 2 || fd0 < 0 || fd1 < 0 || fd0 == fd1 || !fdset_contains(fds, fd0) || !fdset_contains(fds, fd1))
3721 log_notice("Failed to parse user lookup fd, ignoring: %s", val);
3722 else {
3723 m->user_lookup_event_source = sd_event_source_unref(m->user_lookup_event_source);
3724 safe_close_pair(m->user_lookup_fds);
3725 m->user_lookup_fds[0] = fdset_remove(fds, fd0);
3726 m->user_lookup_fds[1] = fdset_remove(fds, fd1);
3727 }
3728
3729 } else if ((val = startswith(l, "dynamic-user=")))
3730 dynamic_user_deserialize_one(m, val, fds);
3731 else if ((val = startswith(l, "destroy-ipc-uid=")))
3732 manager_deserialize_uid_refs_one(m, val);
3733 else if ((val = startswith(l, "destroy-ipc-gid=")))
3734 manager_deserialize_gid_refs_one(m, val);
3735 else if ((val = startswith(l, "exec-runtime=")))
3736 (void) exec_runtime_deserialize_one(m, val, fds);
3737 else if ((val = startswith(l, "subscribed="))) {
3738
3739 if (strv_extend(&m->deserialized_subscribed, val) < 0)
3740 return -ENOMEM;
3741
3742 } else {
3743 ManagerTimestamp q;
3744
3745 for (q = 0; q < _MANAGER_TIMESTAMP_MAX; q++) {
3746 val = startswith(l, manager_timestamp_to_string(q));
3747 if (!val)
3748 continue;
3749
3750 val = startswith(val, "-timestamp=");
3751 if (val)
3752 break;
3753 }
3754
3755 if (q < _MANAGER_TIMESTAMP_MAX) /* found it */
3756 (void) deserialize_dual_timestamp(val, m->timestamps + q);
3757 else if (!startswith(l, "kdbus-fd=")) /* ignore kdbus */
3758 log_notice("Unknown serialization item '%s', ignoring.", l);
3759 }
3760 }
3761
3762 return manager_deserialize_units(m, f, fds);
3763 }
3764
3765 int manager_reload(Manager *m) {
3766 _cleanup_(manager_reloading_stopp) Manager *reloading = NULL;
3767 _cleanup_fdset_free_ FDSet *fds = NULL;
3768 _cleanup_fclose_ FILE *f = NULL;
3769 int r;
3770
3771 assert(m);
3772
3773 r = manager_open_serialization(m, &f);
3774 if (r < 0)
3775 return log_error_errno(r, "Failed to create serialization file: %m");
3776
3777 fds = fdset_new();
3778 if (!fds)
3779 return log_oom();
3780
3781 /* We are officially in reload mode from here on. */
3782 reloading = manager_reloading_start(m);
3783
3784 r = manager_serialize(m, f, fds, false);
3785 if (r < 0)
3786 return r;
3787
3788 if (fseeko(f, 0, SEEK_SET) < 0)
3789 return log_error_errno(errno, "Failed to seek to beginning of serialization: %m");
3790
3791 /* 💀 This is the point of no return, from here on there is no way back. 💀 */
3792 reloading = NULL;
3793
3794 bus_manager_send_reloading(m, true);
3795
3796 /* Start by flushing out all jobs and units, all generated units, all runtime environments, all dynamic users
3797 * and everything else that is worth flushing out. We'll get it all back from the serialization — if we need
3798 * it.*/
3799
3800 manager_clear_jobs_and_units(m);
3801 lookup_paths_flush_generator(&m->lookup_paths);
3802 lookup_paths_free(&m->lookup_paths);
3803 exec_runtime_vacuum(m);
3804 dynamic_user_vacuum(m, false);
3805 m->uid_refs = hashmap_free(m->uid_refs);
3806 m->gid_refs = hashmap_free(m->gid_refs);
3807
3808 r = lookup_paths_init(&m->lookup_paths, m->unit_file_scope, 0, NULL);
3809 if (r < 0)
3810 log_warning_errno(r, "Failed to initialize path lookup table, ignoring: %m");
3811
3812 (void) manager_run_environment_generators(m);
3813 (void) manager_run_generators(m);
3814
3815 lookup_paths_log(&m->lookup_paths);
3816
3817 /* We flushed out generated files, for which we don't watch mtime, so we should flush the old map. */
3818 manager_free_unit_name_maps(m);
3819
3820 /* First, enumerate what we can from kernel and suchlike */
3821 manager_enumerate_perpetual(m);
3822 manager_enumerate(m);
3823
3824 /* Second, deserialize our stored data */
3825 r = manager_deserialize(m, f, fds);
3826 if (r < 0)
3827 log_warning_errno(r, "Deserialization failed, proceeding anyway: %m");
3828
3829 /* We don't need the serialization anymore */
3830 f = safe_fclose(f);
3831
3832 /* Re-register notify_fd as event source, and set up other sockets/communication channels we might need */
3833 (void) manager_setup_notify(m);
3834 (void) manager_setup_cgroups_agent(m);
3835 (void) manager_setup_user_lookup_fd(m);
3836
3837 /* Third, fire things up! */
3838 manager_coldplug(m);
3839
3840 /* Clean up runtime objects no longer referenced */
3841 manager_vacuum(m);
3842
3843 /* Clean up deserialized tracked clients */
3844 m->deserialized_subscribed = strv_free(m->deserialized_subscribed);
3845
3846 /* Consider the reload process complete now. */
3847 assert(m->n_reloading > 0);
3848 m->n_reloading--;
3849
3850 /* On manager reloading, device tag data should exists, thus, we should honor the results of device
3851 * enumeration. The flag should be always set correctly by the serialized data, but it may fail. So,
3852 * let's always set the flag here for safety. */
3853 m->honor_device_enumeration = true;
3854
3855 manager_ready(m);
3856
3857 m->send_reloading_done = true;
3858 return 0;
3859 }
3860
3861 void manager_reset_failed(Manager *m) {
3862 Unit *u;
3863
3864 assert(m);
3865
3866 HASHMAP_FOREACH(u, m->units)
3867 unit_reset_failed(u);
3868 }
3869
3870 bool manager_unit_inactive_or_pending(Manager *m, const char *name) {
3871 Unit *u;
3872
3873 assert(m);
3874 assert(name);
3875
3876 /* Returns true if the unit is inactive or going down */
3877 u = manager_get_unit(m, name);
3878 if (!u)
3879 return true;
3880
3881 return unit_inactive_or_pending(u);
3882 }
3883
3884 static void log_taint_string(Manager *m) {
3885 _cleanup_free_ char *taint = NULL;
3886
3887 assert(m);
3888
3889 if (MANAGER_IS_USER(m) || m->taint_logged)
3890 return;
3891
3892 m->taint_logged = true; /* only check for taint once */
3893
3894 taint = manager_taint_string(m);
3895 if (isempty(taint))
3896 return;
3897
3898 log_struct(LOG_NOTICE,
3899 LOG_MESSAGE("System is tainted: %s", taint),
3900 "TAINT=%s", taint,
3901 "MESSAGE_ID=" SD_MESSAGE_TAINTED_STR);
3902 }
3903
3904 static void manager_notify_finished(Manager *m) {
3905 char userspace[FORMAT_TIMESPAN_MAX], initrd[FORMAT_TIMESPAN_MAX], kernel[FORMAT_TIMESPAN_MAX], sum[FORMAT_TIMESPAN_MAX];
3906 usec_t firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec;
3907
3908 if (MANAGER_IS_TEST_RUN(m))
3909 return;
3910
3911 if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0) {
3912 char ts[FORMAT_TIMESPAN_MAX];
3913 char buf[FORMAT_TIMESPAN_MAX + STRLEN(" (firmware) + ") + FORMAT_TIMESPAN_MAX + STRLEN(" (loader) + ")]
3914 = {};
3915 char *p = buf;
3916 size_t size = sizeof buf;
3917
3918 /* Note that MANAGER_TIMESTAMP_KERNEL's monotonic value is always at 0, and
3919 * MANAGER_TIMESTAMP_FIRMWARE's and MANAGER_TIMESTAMP_LOADER's monotonic value should be considered
3920 * negative values. */
3921
3922 firmware_usec = m->timestamps[MANAGER_TIMESTAMP_FIRMWARE].monotonic - m->timestamps[MANAGER_TIMESTAMP_LOADER].monotonic;
3923 loader_usec = m->timestamps[MANAGER_TIMESTAMP_LOADER].monotonic - m->timestamps[MANAGER_TIMESTAMP_KERNEL].monotonic;
3924 userspace_usec = m->timestamps[MANAGER_TIMESTAMP_FINISH].monotonic - m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic;
3925 total_usec = m->timestamps[MANAGER_TIMESTAMP_FIRMWARE].monotonic + m->timestamps[MANAGER_TIMESTAMP_FINISH].monotonic;
3926
3927 if (firmware_usec > 0)
3928 size = strpcpyf(&p, size, "%s (firmware) + ", format_timespan(ts, sizeof(ts), firmware_usec, USEC_PER_MSEC));
3929 if (loader_usec > 0)
3930 size = strpcpyf(&p, size, "%s (loader) + ", format_timespan(ts, sizeof(ts), loader_usec, USEC_PER_MSEC));
3931
3932 if (dual_timestamp_is_set(&m->timestamps[MANAGER_TIMESTAMP_INITRD])) {
3933
3934 /* The initrd case on bare-metal*/
3935 kernel_usec = m->timestamps[MANAGER_TIMESTAMP_INITRD].monotonic - m->timestamps[MANAGER_TIMESTAMP_KERNEL].monotonic;
3936 initrd_usec = m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic - m->timestamps[MANAGER_TIMESTAMP_INITRD].monotonic;
3937
3938 log_struct(LOG_INFO,
3939 "MESSAGE_ID=" SD_MESSAGE_STARTUP_FINISHED_STR,
3940 "KERNEL_USEC="USEC_FMT, kernel_usec,
3941 "INITRD_USEC="USEC_FMT, initrd_usec,
3942 "USERSPACE_USEC="USEC_FMT, userspace_usec,
3943 LOG_MESSAGE("Startup finished in %s%s (kernel) + %s (initrd) + %s (userspace) = %s.",
3944 buf,
3945 format_timespan(kernel, sizeof(kernel), kernel_usec, USEC_PER_MSEC),
3946 format_timespan(initrd, sizeof(initrd), initrd_usec, USEC_PER_MSEC),
3947 format_timespan(userspace, sizeof(userspace), userspace_usec, USEC_PER_MSEC),
3948 format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC)));
3949 } else {
3950 /* The initrd-less case on bare-metal*/
3951
3952 kernel_usec = m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic - m->timestamps[MANAGER_TIMESTAMP_KERNEL].monotonic;
3953 initrd_usec = 0;
3954
3955 log_struct(LOG_INFO,
3956 "MESSAGE_ID=" SD_MESSAGE_STARTUP_FINISHED_STR,
3957 "KERNEL_USEC="USEC_FMT, kernel_usec,
3958 "USERSPACE_USEC="USEC_FMT, userspace_usec,
3959 LOG_MESSAGE("Startup finished in %s%s (kernel) + %s (userspace) = %s.",
3960 buf,
3961 format_timespan(kernel, sizeof(kernel), kernel_usec, USEC_PER_MSEC),
3962 format_timespan(userspace, sizeof(userspace), userspace_usec, USEC_PER_MSEC),
3963 format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC)));
3964 }
3965 } else {
3966 /* The container and --user case */
3967 firmware_usec = loader_usec = initrd_usec = kernel_usec = 0;
3968 total_usec = userspace_usec = m->timestamps[MANAGER_TIMESTAMP_FINISH].monotonic - m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic;
3969
3970 log_struct(LOG_INFO,
3971 "MESSAGE_ID=" SD_MESSAGE_USER_STARTUP_FINISHED_STR,
3972 "USERSPACE_USEC="USEC_FMT, userspace_usec,
3973 LOG_MESSAGE("Startup finished in %s.",
3974 format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC)));
3975 }
3976
3977 bus_manager_send_finished(m, firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec);
3978
3979 sd_notifyf(false,
3980 m->ready_sent ? "STATUS=Startup finished in %s."
3981 : "READY=1\n"
3982 "STATUS=Startup finished in %s.",
3983 format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC));
3984 m->ready_sent = true;
3985
3986 log_taint_string(m);
3987 }
3988
3989 static void manager_send_ready(Manager *m) {
3990 assert(m);
3991
3992 /* We send READY=1 on reaching basic.target only when running in --user mode. */
3993 if (!MANAGER_IS_USER(m) || m->ready_sent)
3994 return;
3995
3996 m->ready_sent = true;
3997
3998 sd_notifyf(false,
3999 "READY=1\n"
4000 "STATUS=Reached " SPECIAL_BASIC_TARGET ".");
4001 }
4002
4003 static void manager_check_basic_target(Manager *m) {
4004 Unit *u;
4005
4006 assert(m);
4007
4008 /* Small shortcut */
4009 if (m->ready_sent && m->taint_logged)
4010 return;
4011
4012 u = manager_get_unit(m, SPECIAL_BASIC_TARGET);
4013 if (!u || !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
4014 return;
4015
4016 /* For user managers, send out READY=1 as soon as we reach basic.target */
4017 manager_send_ready(m);
4018
4019 /* Log the taint string as soon as we reach basic.target */
4020 log_taint_string(m);
4021 }
4022
4023 void manager_check_finished(Manager *m) {
4024 assert(m);
4025
4026 if (MANAGER_IS_RELOADING(m))
4027 return;
4028
4029 /* Verify that we have entered the event loop already, and not left it again. */
4030 if (!MANAGER_IS_RUNNING(m))
4031 return;
4032
4033 manager_check_basic_target(m);
4034
4035 if (hashmap_size(m->jobs) > 0) {
4036 if (m->jobs_in_progress_event_source)
4037 /* Ignore any failure, this is only for feedback */
4038 (void) sd_event_source_set_time(m->jobs_in_progress_event_source,
4039 manager_watch_jobs_next_time(m));
4040 return;
4041 }
4042
4043 /* The jobs hashmap tends to grow a lot during boot, and then it's not reused until shutdown. Let's
4044 kill the hashmap if it is relatively large. */
4045 if (hashmap_buckets(m->jobs) > hashmap_size(m->units) / 10)
4046 m->jobs = hashmap_free(m->jobs);
4047
4048 manager_flip_auto_status(m, false, "boot finished");
4049
4050 /* Notify Type=idle units that we are done now */
4051 manager_close_idle_pipe(m);
4052
4053 /* Turn off confirm spawn now */
4054 m->confirm_spawn = NULL;
4055
4056 /* No need to update ask password status when we're going non-interactive */
4057 manager_close_ask_password(m);
4058
4059 /* This is no longer the first boot */
4060 manager_set_first_boot(m, false);
4061
4062 if (MANAGER_IS_FINISHED(m))
4063 return;
4064
4065 dual_timestamp_get(m->timestamps + MANAGER_TIMESTAMP_FINISH);
4066
4067 manager_notify_finished(m);
4068
4069 manager_invalidate_startup_units(m);
4070 }
4071
4072 static bool generator_path_any(const char* const* paths) {
4073 char **path;
4074 bool found = false;
4075
4076 /* Optimize by skipping the whole process by not creating output directories
4077 * if no generators are found. */
4078 STRV_FOREACH(path, (char**) paths)
4079 if (access(*path, F_OK) == 0)
4080 found = true;
4081 else if (errno != ENOENT)
4082 log_warning_errno(errno, "Failed to open generator directory %s: %m", *path);
4083
4084 return found;
4085 }
4086
4087 static int manager_run_environment_generators(Manager *m) {
4088 char **tmp = NULL; /* this is only used in the forked process, no cleanup here */
4089 _cleanup_strv_free_ char **paths = NULL;
4090 void* args[] = {
4091 [STDOUT_GENERATE] = &tmp,
4092 [STDOUT_COLLECT] = &tmp,
4093 [STDOUT_CONSUME] = &m->transient_environment,
4094 };
4095 int r;
4096
4097 if (MANAGER_IS_TEST_RUN(m) && !(m->test_run_flags & MANAGER_TEST_RUN_ENV_GENERATORS))
4098 return 0;
4099
4100 paths = env_generator_binary_paths(MANAGER_IS_SYSTEM(m));
4101 if (!paths)
4102 return log_oom();
4103
4104 if (!generator_path_any((const char* const*) paths))
4105 return 0;
4106
4107 RUN_WITH_UMASK(0022)
4108 r = execute_directories((const char* const*) paths, DEFAULT_TIMEOUT_USEC, gather_environment,
4109 args, NULL, m->transient_environment,
4110 EXEC_DIR_PARALLEL | EXEC_DIR_IGNORE_ERRORS | EXEC_DIR_SET_SYSTEMD_EXEC_PID);
4111 return r;
4112 }
4113
4114 static int manager_run_generators(Manager *m) {
4115 _cleanup_strv_free_ char **paths = NULL;
4116 const char *argv[5];
4117 int r;
4118
4119 assert(m);
4120
4121 if (MANAGER_IS_TEST_RUN(m) && !(m->test_run_flags & MANAGER_TEST_RUN_GENERATORS))
4122 return 0;
4123
4124 paths = generator_binary_paths(m->unit_file_scope);
4125 if (!paths)
4126 return log_oom();
4127
4128 if (!generator_path_any((const char* const*) paths))
4129 return 0;
4130
4131 r = lookup_paths_mkdir_generator(&m->lookup_paths);
4132 if (r < 0) {
4133 log_error_errno(r, "Failed to create generator directories: %m");
4134 goto finish;
4135 }
4136
4137 argv[0] = NULL; /* Leave this empty, execute_directory() will fill something in */
4138 argv[1] = m->lookup_paths.generator;
4139 argv[2] = m->lookup_paths.generator_early;
4140 argv[3] = m->lookup_paths.generator_late;
4141 argv[4] = NULL;
4142
4143 RUN_WITH_UMASK(0022)
4144 (void) execute_directories((const char* const*) paths, DEFAULT_TIMEOUT_USEC, NULL, NULL,
4145 (char**) argv, m->transient_environment,
4146 EXEC_DIR_PARALLEL | EXEC_DIR_IGNORE_ERRORS | EXEC_DIR_SET_SYSTEMD_EXEC_PID);
4147
4148 r = 0;
4149
4150 finish:
4151 lookup_paths_trim_generator(&m->lookup_paths);
4152 return r;
4153 }
4154
4155 int manager_transient_environment_add(Manager *m, char **plus) {
4156 char **a;
4157
4158 assert(m);
4159
4160 if (strv_isempty(plus))
4161 return 0;
4162
4163 a = strv_env_merge(2, m->transient_environment, plus);
4164 if (!a)
4165 return log_oom();
4166
4167 sanitize_environment(a);
4168
4169 return strv_free_and_replace(m->transient_environment, a);
4170 }
4171
4172 int manager_client_environment_modify(
4173 Manager *m,
4174 char **minus,
4175 char **plus) {
4176
4177 char **a = NULL, **b = NULL, **l;
4178
4179 assert(m);
4180
4181 if (strv_isempty(minus) && strv_isempty(plus))
4182 return 0;
4183
4184 l = m->client_environment;
4185
4186 if (!strv_isempty(minus)) {
4187 a = strv_env_delete(l, 1, minus);
4188 if (!a)
4189 return -ENOMEM;
4190
4191 l = a;
4192 }
4193
4194 if (!strv_isempty(plus)) {
4195 b = strv_env_merge(2, l, plus);
4196 if (!b) {
4197 strv_free(a);
4198 return -ENOMEM;
4199 }
4200
4201 l = b;
4202 }
4203
4204 if (m->client_environment != l)
4205 strv_free(m->client_environment);
4206
4207 if (a != l)
4208 strv_free(a);
4209 if (b != l)
4210 strv_free(b);
4211
4212 m->client_environment = sanitize_environment(l);
4213 return 0;
4214 }
4215
4216 int manager_get_effective_environment(Manager *m, char ***ret) {
4217 char **l;
4218
4219 assert(m);
4220 assert(ret);
4221
4222 l = strv_env_merge(2, m->transient_environment, m->client_environment);
4223 if (!l)
4224 return -ENOMEM;
4225
4226 *ret = l;
4227 return 0;
4228 }
4229
4230 int manager_set_default_rlimits(Manager *m, struct rlimit **default_rlimit) {
4231 assert(m);
4232
4233 for (unsigned i = 0; i < _RLIMIT_MAX; i++) {
4234 m->rlimit[i] = mfree(m->rlimit[i]);
4235
4236 if (!default_rlimit[i])
4237 continue;
4238
4239 m->rlimit[i] = newdup(struct rlimit, default_rlimit[i], 1);
4240 if (!m->rlimit[i])
4241 return log_oom();
4242 }
4243
4244 return 0;
4245 }
4246
4247 void manager_recheck_dbus(Manager *m) {
4248 assert(m);
4249
4250 /* Connects to the bus if the dbus service and socket are running. If we are running in user mode this is all
4251 * it does. In system mode we'll also connect to the system bus (which will most likely just reuse the
4252 * connection of the API bus). That's because the system bus after all runs as service of the system instance,
4253 * while in the user instance we can assume it's already there. */
4254
4255 if (MANAGER_IS_RELOADING(m))
4256 return; /* don't check while we are reloading… */
4257
4258 if (manager_dbus_is_running(m, false)) {
4259 (void) bus_init_api(m);
4260
4261 if (MANAGER_IS_SYSTEM(m))
4262 (void) bus_init_system(m);
4263 } else {
4264 (void) bus_done_api(m);
4265
4266 if (MANAGER_IS_SYSTEM(m))
4267 (void) bus_done_system(m);
4268 }
4269 }
4270
4271 static bool manager_journal_is_running(Manager *m) {
4272 Unit *u;
4273
4274 assert(m);
4275
4276 if (MANAGER_IS_TEST_RUN(m))
4277 return false;
4278
4279 /* If we are the user manager we can safely assume that the journal is up */
4280 if (!MANAGER_IS_SYSTEM(m))
4281 return true;
4282
4283 /* Check that the socket is not only up, but in RUNNING state */
4284 u = manager_get_unit(m, SPECIAL_JOURNALD_SOCKET);
4285 if (!u)
4286 return false;
4287 if (SOCKET(u)->state != SOCKET_RUNNING)
4288 return false;
4289
4290 /* Similar, check if the daemon itself is fully up, too */
4291 u = manager_get_unit(m, SPECIAL_JOURNALD_SERVICE);
4292 if (!u)
4293 return false;
4294 if (!IN_SET(SERVICE(u)->state, SERVICE_RELOAD, SERVICE_RUNNING))
4295 return false;
4296
4297 return true;
4298 }
4299
4300 void disable_printk_ratelimit(void) {
4301 /* Disable kernel's printk ratelimit.
4302 *
4303 * Logging to /dev/kmsg is most useful during early boot and shutdown, where normal logging
4304 * mechanisms are not available. The semantics of this sysctl are such that any kernel command-line
4305 * setting takes precedence. */
4306 int r;
4307
4308 r = sysctl_write("kernel/printk_devkmsg", "on");
4309 if (r < 0)
4310 log_debug_errno(r, "Failed to set sysctl kernel.printk_devkmsg=on: %m");
4311 }
4312
4313 void manager_recheck_journal(Manager *m) {
4314
4315 assert(m);
4316
4317 /* Don't bother with this unless we are in the special situation of being PID 1 */
4318 if (getpid_cached() != 1)
4319 return;
4320
4321 /* Don't check this while we are reloading, things might still change */
4322 if (MANAGER_IS_RELOADING(m))
4323 return;
4324
4325 /* The journal is fully and entirely up? If so, let's permit logging to it, if that's configured. If the
4326 * journal is down, don't ever log to it, otherwise we might end up deadlocking ourselves as we might trigger
4327 * an activation ourselves we can't fulfill. */
4328 log_set_prohibit_ipc(!manager_journal_is_running(m));
4329 log_open();
4330 }
4331
4332 static ShowStatus manager_get_show_status(Manager *m) {
4333 assert(m);
4334
4335 if (MANAGER_IS_USER(m))
4336 return _SHOW_STATUS_INVALID;
4337
4338 if (m->show_status_overridden != _SHOW_STATUS_INVALID)
4339 return m->show_status_overridden;
4340
4341 return m->show_status;
4342 }
4343
4344 bool manager_get_show_status_on(Manager *m) {
4345 assert(m);
4346
4347 return show_status_on(manager_get_show_status(m));
4348 }
4349
4350 static void set_show_status_marker(bool b) {
4351 if (b)
4352 (void) touch("/run/systemd/show-status");
4353 else
4354 (void) unlink("/run/systemd/show-status");
4355 }
4356
4357 void manager_set_show_status(Manager *m, ShowStatus mode, const char *reason) {
4358 assert(m);
4359 assert(reason);
4360 assert(mode >= 0 && mode < _SHOW_STATUS_MAX);
4361
4362 if (MANAGER_IS_USER(m))
4363 return;
4364
4365 if (mode == m->show_status)
4366 return;
4367
4368 if (m->show_status_overridden == _SHOW_STATUS_INVALID) {
4369 bool enabled;
4370
4371 enabled = show_status_on(mode);
4372 log_debug("%s (%s) showing of status (%s).",
4373 enabled ? "Enabling" : "Disabling",
4374 strna(show_status_to_string(mode)),
4375 reason);
4376
4377 set_show_status_marker(enabled);
4378 }
4379
4380 m->show_status = mode;
4381 }
4382
4383 void manager_override_show_status(Manager *m, ShowStatus mode, const char *reason) {
4384 assert(m);
4385 assert(mode < _SHOW_STATUS_MAX);
4386
4387 if (MANAGER_IS_USER(m))
4388 return;
4389
4390 if (mode == m->show_status_overridden)
4391 return;
4392
4393 m->show_status_overridden = mode;
4394
4395 if (mode == _SHOW_STATUS_INVALID)
4396 mode = m->show_status;
4397
4398 log_debug("%s (%s) showing of status (%s).",
4399 m->show_status_overridden != _SHOW_STATUS_INVALID ? "Overriding" : "Restoring",
4400 strna(show_status_to_string(mode)),
4401 reason);
4402
4403 set_show_status_marker(show_status_on(mode));
4404 }
4405
4406 const char *manager_get_confirm_spawn(Manager *m) {
4407 static int last_errno = 0;
4408 struct stat st;
4409 int r;
4410
4411 assert(m);
4412
4413 /* Here's the deal: we want to test the validity of the console but don't want
4414 * PID1 to go through the whole console process which might block. But we also
4415 * want to warn the user only once if something is wrong with the console so we
4416 * cannot do the sanity checks after spawning our children. So here we simply do
4417 * really basic tests to hopefully trap common errors.
4418 *
4419 * If the console suddenly disappear at the time our children will really it
4420 * then they will simply fail to acquire it and a positive answer will be
4421 * assumed. New children will fall back to /dev/console though.
4422 *
4423 * Note: TTYs are devices that can come and go any time, and frequently aren't
4424 * available yet during early boot (consider a USB rs232 dongle...). If for any
4425 * reason the configured console is not ready, we fall back to the default
4426 * console. */
4427
4428 if (!m->confirm_spawn || path_equal(m->confirm_spawn, "/dev/console"))
4429 return m->confirm_spawn;
4430
4431 if (stat(m->confirm_spawn, &st) < 0) {
4432 r = -errno;
4433 goto fail;
4434 }
4435
4436 if (!S_ISCHR(st.st_mode)) {
4437 r = -ENOTTY;
4438 goto fail;
4439 }
4440
4441 last_errno = 0;
4442 return m->confirm_spawn;
4443
4444 fail:
4445 if (last_errno != r)
4446 last_errno = log_warning_errno(r, "Failed to open %s, using default console: %m", m->confirm_spawn);
4447
4448 return "/dev/console";
4449 }
4450
4451 void manager_set_first_boot(Manager *m, bool b) {
4452 assert(m);
4453
4454 if (!MANAGER_IS_SYSTEM(m))
4455 return;
4456
4457 if (m->first_boot != (int) b) {
4458 if (b)
4459 (void) touch("/run/systemd/first-boot");
4460 else
4461 (void) unlink("/run/systemd/first-boot");
4462 }
4463
4464 m->first_boot = b;
4465 }
4466
4467 void manager_disable_confirm_spawn(void) {
4468 (void) touch("/run/systemd/confirm_spawn_disabled");
4469 }
4470
4471 bool manager_is_confirm_spawn_disabled(Manager *m) {
4472 if (!m->confirm_spawn)
4473 return true;
4474
4475 return access("/run/systemd/confirm_spawn_disabled", F_OK) >= 0;
4476 }
4477
4478 static bool manager_should_show_status(Manager *m, StatusType type) {
4479 assert(m);
4480
4481 if (!MANAGER_IS_SYSTEM(m))
4482 return false;
4483
4484 if (m->no_console_output)
4485 return false;
4486
4487 if (!IN_SET(manager_state(m), MANAGER_INITIALIZING, MANAGER_STARTING, MANAGER_STOPPING))
4488 return false;
4489
4490 /* If we cannot find out the status properly, just proceed. */
4491 if (type != STATUS_TYPE_EMERGENCY && manager_check_ask_password(m) > 0)
4492 return false;
4493
4494 if (type == STATUS_TYPE_NOTICE && m->show_status != SHOW_STATUS_NO)
4495 return true;
4496
4497 return manager_get_show_status_on(m);
4498 }
4499
4500 void manager_status_printf(Manager *m, StatusType type, const char *status, const char *format, ...) {
4501 va_list ap;
4502
4503 /* If m is NULL, assume we're after shutdown and let the messages through. */
4504
4505 if (m && !manager_should_show_status(m, type))
4506 return;
4507
4508 /* XXX We should totally drop the check for ephemeral here
4509 * and thus effectively make 'Type=idle' pointless. */
4510 if (type == STATUS_TYPE_EPHEMERAL && m && m->n_on_console > 0)
4511 return;
4512
4513 va_start(ap, format);
4514 status_vprintf(status, SHOW_STATUS_ELLIPSIZE|(type == STATUS_TYPE_EPHEMERAL ? SHOW_STATUS_EPHEMERAL : 0), format, ap);
4515 va_end(ap);
4516 }
4517
4518 Set *manager_get_units_requiring_mounts_for(Manager *m, const char *path) {
4519 char p[strlen(path)+1];
4520
4521 assert(m);
4522 assert(path);
4523
4524 strcpy(p, path);
4525 path_simplify(p);
4526
4527 return hashmap_get(m->units_requiring_mounts_for, streq(p, "/") ? "" : p);
4528 }
4529
4530 int manager_update_failed_units(Manager *m, Unit *u, bool failed) {
4531 unsigned size;
4532 int r;
4533
4534 assert(m);
4535 assert(u->manager == m);
4536
4537 size = set_size(m->failed_units);
4538
4539 if (failed) {
4540 r = set_ensure_put(&m->failed_units, NULL, u);
4541 if (r < 0)
4542 return log_oom();
4543 } else
4544 (void) set_remove(m->failed_units, u);
4545
4546 if (set_size(m->failed_units) != size)
4547 bus_manager_send_change_signal(m);
4548
4549 return 0;
4550 }
4551
4552 ManagerState manager_state(Manager *m) {
4553 Unit *u;
4554
4555 assert(m);
4556
4557 /* Is the special shutdown target active or queued? If so, we are in shutdown state */
4558 u = manager_get_unit(m, SPECIAL_SHUTDOWN_TARGET);
4559 if (u && unit_active_or_pending(u))
4560 return MANAGER_STOPPING;
4561
4562 /* Did we ever finish booting? If not then we are still starting up */
4563 if (!MANAGER_IS_FINISHED(m)) {
4564
4565 u = manager_get_unit(m, SPECIAL_BASIC_TARGET);
4566 if (!u || !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
4567 return MANAGER_INITIALIZING;
4568
4569 return MANAGER_STARTING;
4570 }
4571
4572 if (MANAGER_IS_SYSTEM(m)) {
4573 /* Are the rescue or emergency targets active or queued? If so we are in maintenance state */
4574 u = manager_get_unit(m, SPECIAL_RESCUE_TARGET);
4575 if (u && unit_active_or_pending(u))
4576 return MANAGER_MAINTENANCE;
4577
4578 u = manager_get_unit(m, SPECIAL_EMERGENCY_TARGET);
4579 if (u && unit_active_or_pending(u))
4580 return MANAGER_MAINTENANCE;
4581 }
4582
4583 /* Are there any failed units? If so, we are in degraded mode */
4584 if (set_size(m->failed_units) > 0)
4585 return MANAGER_DEGRADED;
4586
4587 return MANAGER_RUNNING;
4588 }
4589
4590 static void manager_unref_uid_internal(
4591 Hashmap *uid_refs,
4592 uid_t uid,
4593 bool destroy_now,
4594 int (*_clean_ipc)(uid_t uid)) {
4595
4596 uint32_t c, n;
4597
4598 assert(uid_is_valid(uid));
4599 assert(_clean_ipc);
4600
4601 /* A generic implementation, covering both manager_unref_uid() and manager_unref_gid(), under the assumption
4602 * that uid_t and gid_t are actually defined the same way, with the same validity rules.
4603 *
4604 * We store a hashmap where the UID/GID is they key and the value is a 32bit reference counter, whose highest
4605 * bit is used as flag for marking UIDs/GIDs whose IPC objects to remove when the last reference to the UID/GID
4606 * is dropped. The flag is set to on, once at least one reference from a unit where RemoveIPC= is set is added
4607 * on a UID/GID. It is reset when the UID's/GID's reference counter drops to 0 again. */
4608
4609 assert_cc(sizeof(uid_t) == sizeof(gid_t));
4610 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
4611
4612 if (uid == 0) /* We don't keep track of root, and will never destroy it */
4613 return;
4614
4615 c = PTR_TO_UINT32(hashmap_get(uid_refs, UID_TO_PTR(uid)));
4616
4617 n = c & ~DESTROY_IPC_FLAG;
4618 assert(n > 0);
4619 n--;
4620
4621 if (destroy_now && n == 0) {
4622 hashmap_remove(uid_refs, UID_TO_PTR(uid));
4623
4624 if (c & DESTROY_IPC_FLAG) {
4625 log_debug("%s " UID_FMT " is no longer referenced, cleaning up its IPC.",
4626 _clean_ipc == clean_ipc_by_uid ? "UID" : "GID",
4627 uid);
4628 (void) _clean_ipc(uid);
4629 }
4630 } else {
4631 c = n | (c & DESTROY_IPC_FLAG);
4632 assert_se(hashmap_update(uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c)) >= 0);
4633 }
4634 }
4635
4636 void manager_unref_uid(Manager *m, uid_t uid, bool destroy_now) {
4637 manager_unref_uid_internal(m->uid_refs, uid, destroy_now, clean_ipc_by_uid);
4638 }
4639
4640 void manager_unref_gid(Manager *m, gid_t gid, bool destroy_now) {
4641 manager_unref_uid_internal(m->gid_refs, (uid_t) gid, destroy_now, clean_ipc_by_gid);
4642 }
4643
4644 static int manager_ref_uid_internal(
4645 Hashmap **uid_refs,
4646 uid_t uid,
4647 bool clean_ipc) {
4648
4649 uint32_t c, n;
4650 int r;
4651
4652 assert(uid_refs);
4653 assert(uid_is_valid(uid));
4654
4655 /* A generic implementation, covering both manager_ref_uid() and manager_ref_gid(), under the assumption
4656 * that uid_t and gid_t are actually defined the same way, with the same validity rules. */
4657
4658 assert_cc(sizeof(uid_t) == sizeof(gid_t));
4659 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
4660
4661 if (uid == 0) /* We don't keep track of root, and will never destroy it */
4662 return 0;
4663
4664 r = hashmap_ensure_allocated(uid_refs, &trivial_hash_ops);
4665 if (r < 0)
4666 return r;
4667
4668 c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid)));
4669
4670 n = c & ~DESTROY_IPC_FLAG;
4671 n++;
4672
4673 if (n & DESTROY_IPC_FLAG) /* check for overflow */
4674 return -EOVERFLOW;
4675
4676 c = n | (c & DESTROY_IPC_FLAG) | (clean_ipc ? DESTROY_IPC_FLAG : 0);
4677
4678 return hashmap_replace(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c));
4679 }
4680
4681 int manager_ref_uid(Manager *m, uid_t uid, bool clean_ipc) {
4682 return manager_ref_uid_internal(&m->uid_refs, uid, clean_ipc);
4683 }
4684
4685 int manager_ref_gid(Manager *m, gid_t gid, bool clean_ipc) {
4686 return manager_ref_uid_internal(&m->gid_refs, (uid_t) gid, clean_ipc);
4687 }
4688
4689 static void manager_vacuum_uid_refs_internal(
4690 Hashmap *uid_refs,
4691 int (*_clean_ipc)(uid_t uid)) {
4692
4693 void *p, *k;
4694
4695 assert(_clean_ipc);
4696
4697 HASHMAP_FOREACH_KEY(p, k, uid_refs) {
4698 uint32_t c, n;
4699 uid_t uid;
4700
4701 uid = PTR_TO_UID(k);
4702 c = PTR_TO_UINT32(p);
4703
4704 n = c & ~DESTROY_IPC_FLAG;
4705 if (n > 0)
4706 continue;
4707
4708 if (c & DESTROY_IPC_FLAG) {
4709 log_debug("Found unreferenced %s " UID_FMT " after reload/reexec. Cleaning up.",
4710 _clean_ipc == clean_ipc_by_uid ? "UID" : "GID",
4711 uid);
4712 (void) _clean_ipc(uid);
4713 }
4714
4715 assert_se(hashmap_remove(uid_refs, k) == p);
4716 }
4717 }
4718
4719 static void manager_vacuum_uid_refs(Manager *m) {
4720 manager_vacuum_uid_refs_internal(m->uid_refs, clean_ipc_by_uid);
4721 }
4722
4723 static void manager_vacuum_gid_refs(Manager *m) {
4724 manager_vacuum_uid_refs_internal(m->gid_refs, clean_ipc_by_gid);
4725 }
4726
4727 static void manager_vacuum(Manager *m) {
4728 assert(m);
4729
4730 /* Release any dynamic users no longer referenced */
4731 dynamic_user_vacuum(m, true);
4732
4733 /* Release any references to UIDs/GIDs no longer referenced, and destroy any IPC owned by them */
4734 manager_vacuum_uid_refs(m);
4735 manager_vacuum_gid_refs(m);
4736
4737 /* Release any runtimes no longer referenced */
4738 exec_runtime_vacuum(m);
4739 }
4740
4741 int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
4742 struct buffer {
4743 uid_t uid;
4744 gid_t gid;
4745 char unit_name[UNIT_NAME_MAX+1];
4746 } _packed_ buffer;
4747
4748 Manager *m = userdata;
4749 ssize_t l;
4750 size_t n;
4751 Unit *u;
4752
4753 assert_se(source);
4754 assert_se(m);
4755
4756 /* Invoked whenever a child process succeeded resolving its user/group to use and sent us the resulting UID/GID
4757 * in a datagram. We parse the datagram here and pass it off to the unit, so that it can add a reference to the
4758 * UID/GID so that it can destroy the UID/GID's IPC objects when the reference counter drops to 0. */
4759
4760 l = recv(fd, &buffer, sizeof(buffer), MSG_DONTWAIT);
4761 if (l < 0) {
4762 if (IN_SET(errno, EINTR, EAGAIN))
4763 return 0;
4764
4765 return log_error_errno(errno, "Failed to read from user lookup fd: %m");
4766 }
4767
4768 if ((size_t) l <= offsetof(struct buffer, unit_name)) {
4769 log_warning("Received too short user lookup message, ignoring.");
4770 return 0;
4771 }
4772
4773 if ((size_t) l > offsetof(struct buffer, unit_name) + UNIT_NAME_MAX) {
4774 log_warning("Received too long user lookup message, ignoring.");
4775 return 0;
4776 }
4777
4778 if (!uid_is_valid(buffer.uid) && !gid_is_valid(buffer.gid)) {
4779 log_warning("Got user lookup message with invalid UID/GID pair, ignoring.");
4780 return 0;
4781 }
4782
4783 n = (size_t) l - offsetof(struct buffer, unit_name);
4784 if (memchr(buffer.unit_name, 0, n)) {
4785 log_warning("Received lookup message with embedded NUL character, ignoring.");
4786 return 0;
4787 }
4788
4789 buffer.unit_name[n] = 0;
4790 u = manager_get_unit(m, buffer.unit_name);
4791 if (!u) {
4792 log_debug("Got user lookup message but unit doesn't exist, ignoring.");
4793 return 0;
4794 }
4795
4796 log_unit_debug(u, "User lookup succeeded: uid=" UID_FMT " gid=" GID_FMT, buffer.uid, buffer.gid);
4797
4798 unit_notify_user_lookup(u, buffer.uid, buffer.gid);
4799 return 0;
4800 }
4801
4802 char *manager_taint_string(Manager *m) {
4803 _cleanup_free_ char *destination = NULL, *overflowuid = NULL, *overflowgid = NULL;
4804 char *buf, *e;
4805 int r;
4806
4807 /* Returns a "taint string", e.g. "local-hwclock:var-run-bad".
4808 * Only things that are detected at runtime should be tagged
4809 * here. For stuff that is set during compilation, emit a warning
4810 * in the configuration phase. */
4811
4812 assert(m);
4813
4814 buf = new(char, sizeof("split-usr:"
4815 "cgroups-missing:"
4816 "cgrousv1:"
4817 "local-hwclock:"
4818 "var-run-bad:"
4819 "overflowuid-not-65534:"
4820 "overflowgid-not-65534:"));
4821 if (!buf)
4822 return NULL;
4823
4824 e = buf;
4825 buf[0] = 0;
4826
4827 if (m->taint_usr)
4828 e = stpcpy(e, "split-usr:");
4829
4830 if (access("/proc/cgroups", F_OK) < 0)
4831 e = stpcpy(e, "cgroups-missing:");
4832
4833 if (cg_all_unified() == 0)
4834 e = stpcpy(e, "cgroupsv1:");
4835
4836 if (clock_is_localtime(NULL) > 0)
4837 e = stpcpy(e, "local-hwclock:");
4838
4839 r = readlink_malloc("/var/run", &destination);
4840 if (r < 0 || !PATH_IN_SET(destination, "../run", "/run"))
4841 e = stpcpy(e, "var-run-bad:");
4842
4843 r = read_one_line_file("/proc/sys/kernel/overflowuid", &overflowuid);
4844 if (r >= 0 && !streq(overflowuid, "65534"))
4845 e = stpcpy(e, "overflowuid-not-65534:");
4846
4847 r = read_one_line_file("/proc/sys/kernel/overflowgid", &overflowgid);
4848 if (r >= 0 && !streq(overflowgid, "65534"))
4849 e = stpcpy(e, "overflowgid-not-65534:");
4850
4851 /* remove the last ':' */
4852 if (e != buf)
4853 e[-1] = 0;
4854
4855 return buf;
4856 }
4857
4858 void manager_ref_console(Manager *m) {
4859 assert(m);
4860
4861 m->n_on_console++;
4862 }
4863
4864 void manager_unref_console(Manager *m) {
4865
4866 assert(m->n_on_console > 0);
4867 m->n_on_console--;
4868
4869 if (m->n_on_console == 0)
4870 m->no_console_output = false; /* unset no_console_output flag, since the console is definitely free now */
4871 }
4872
4873 void manager_override_log_level(Manager *m, int level) {
4874 _cleanup_free_ char *s = NULL;
4875 assert(m);
4876
4877 if (!m->log_level_overridden) {
4878 m->original_log_level = log_get_max_level();
4879 m->log_level_overridden = true;
4880 }
4881
4882 (void) log_level_to_string_alloc(level, &s);
4883 log_info("Setting log level to %s.", strna(s));
4884
4885 log_set_max_level(level);
4886 }
4887
4888 void manager_restore_original_log_level(Manager *m) {
4889 _cleanup_free_ char *s = NULL;
4890 assert(m);
4891
4892 if (!m->log_level_overridden)
4893 return;
4894
4895 (void) log_level_to_string_alloc(m->original_log_level, &s);
4896 log_info("Restoring log level to original (%s).", strna(s));
4897
4898 log_set_max_level(m->original_log_level);
4899 m->log_level_overridden = false;
4900 }
4901
4902 void manager_override_log_target(Manager *m, LogTarget target) {
4903 assert(m);
4904
4905 if (!m->log_target_overridden) {
4906 m->original_log_target = log_get_target();
4907 m->log_target_overridden = true;
4908 }
4909
4910 log_info("Setting log target to %s.", log_target_to_string(target));
4911 log_set_target(target);
4912 }
4913
4914 void manager_restore_original_log_target(Manager *m) {
4915 assert(m);
4916
4917 if (!m->log_target_overridden)
4918 return;
4919
4920 log_info("Restoring log target to original %s.", log_target_to_string(m->original_log_target));
4921
4922 log_set_target(m->original_log_target);
4923 m->log_target_overridden = false;
4924 }
4925
4926 ManagerTimestamp manager_timestamp_initrd_mangle(ManagerTimestamp s) {
4927 if (in_initrd() &&
4928 s >= MANAGER_TIMESTAMP_SECURITY_START &&
4929 s <= MANAGER_TIMESTAMP_UNITS_LOAD_FINISH)
4930 return s - MANAGER_TIMESTAMP_SECURITY_START + MANAGER_TIMESTAMP_INITRD_SECURITY_START;
4931 return s;
4932 }
4933
4934 static const char *const manager_state_table[_MANAGER_STATE_MAX] = {
4935 [MANAGER_INITIALIZING] = "initializing",
4936 [MANAGER_STARTING] = "starting",
4937 [MANAGER_RUNNING] = "running",
4938 [MANAGER_DEGRADED] = "degraded",
4939 [MANAGER_MAINTENANCE] = "maintenance",
4940 [MANAGER_STOPPING] = "stopping",
4941 };
4942
4943 DEFINE_STRING_TABLE_LOOKUP(manager_state, ManagerState);
4944
4945 static const char *const manager_timestamp_table[_MANAGER_TIMESTAMP_MAX] = {
4946 [MANAGER_TIMESTAMP_FIRMWARE] = "firmware",
4947 [MANAGER_TIMESTAMP_LOADER] = "loader",
4948 [MANAGER_TIMESTAMP_KERNEL] = "kernel",
4949 [MANAGER_TIMESTAMP_INITRD] = "initrd",
4950 [MANAGER_TIMESTAMP_USERSPACE] = "userspace",
4951 [MANAGER_TIMESTAMP_FINISH] = "finish",
4952 [MANAGER_TIMESTAMP_SECURITY_START] = "security-start",
4953 [MANAGER_TIMESTAMP_SECURITY_FINISH] = "security-finish",
4954 [MANAGER_TIMESTAMP_GENERATORS_START] = "generators-start",
4955 [MANAGER_TIMESTAMP_GENERATORS_FINISH] = "generators-finish",
4956 [MANAGER_TIMESTAMP_UNITS_LOAD_START] = "units-load-start",
4957 [MANAGER_TIMESTAMP_UNITS_LOAD_FINISH] = "units-load-finish",
4958 [MANAGER_TIMESTAMP_INITRD_SECURITY_START] = "initrd-security-start",
4959 [MANAGER_TIMESTAMP_INITRD_SECURITY_FINISH] = "initrd-security-finish",
4960 [MANAGER_TIMESTAMP_INITRD_GENERATORS_START] = "initrd-generators-start",
4961 [MANAGER_TIMESTAMP_INITRD_GENERATORS_FINISH] = "initrd-generators-finish",
4962 [MANAGER_TIMESTAMP_INITRD_UNITS_LOAD_START] = "initrd-units-load-start",
4963 [MANAGER_TIMESTAMP_INITRD_UNITS_LOAD_FINISH] = "initrd-units-load-finish",
4964 };
4965
4966 DEFINE_STRING_TABLE_LOOKUP(manager_timestamp, ManagerTimestamp);
4967
4968 static const char* const oom_policy_table[_OOM_POLICY_MAX] = {
4969 [OOM_CONTINUE] = "continue",
4970 [OOM_STOP] = "stop",
4971 [OOM_KILL] = "kill",
4972 };
4973
4974 DEFINE_STRING_TABLE_LOOKUP(oom_policy, OOMPolicy);