]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/manager.c
tree-wide: use ERRNO_IS_TRANSIENT()
[thirdparty/systemd.git] / src / core / manager.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <linux/kd.h>
6 #include <sys/epoll.h>
7 #include <sys/inotify.h>
8 #include <sys/ioctl.h>
9 #include <sys/reboot.h>
10 #include <sys/timerfd.h>
11 #include <sys/wait.h>
12 #include <unistd.h>
13
14 #if HAVE_AUDIT
15 #include <libaudit.h>
16 #endif
17
18 #include "sd-daemon.h"
19 #include "sd-messages.h"
20 #include "sd-path.h"
21
22 #include "all-units.h"
23 #include "alloc-util.h"
24 #include "audit-fd.h"
25 #include "boot-timestamps.h"
26 #include "bus-common-errors.h"
27 #include "bus-error.h"
28 #include "bus-kernel.h"
29 #include "bus-util.h"
30 #include "clean-ipc.h"
31 #include "clock-util.h"
32 #include "core-varlink.h"
33 #include "creds-util.h"
34 #include "dbus-job.h"
35 #include "dbus-manager.h"
36 #include "dbus-unit.h"
37 #include "dbus.h"
38 #include "def.h"
39 #include "dirent-util.h"
40 #include "env-util.h"
41 #include "escape.h"
42 #include "exec-util.h"
43 #include "execute.h"
44 #include "exit-status.h"
45 #include "fd-util.h"
46 #include "fileio.h"
47 #include "generator-setup.h"
48 #include "hashmap.h"
49 #include "inotify-util.h"
50 #include "install.h"
51 #include "io-util.h"
52 #include "label.h"
53 #include "load-fragment.h"
54 #include "locale-setup.h"
55 #include "log.h"
56 #include "macro.h"
57 #include "manager.h"
58 #include "manager-dump.h"
59 #include "manager-serialize.h"
60 #include "memory-util.h"
61 #include "mkdir-label.h"
62 #include "parse-util.h"
63 #include "path-lookup.h"
64 #include "path-util.h"
65 #include "process-util.h"
66 #include "ratelimit.h"
67 #include "rlimit-util.h"
68 #include "rm-rf.h"
69 #include "selinux-util.h"
70 #include "signal-util.h"
71 #include "socket-util.h"
72 #include "special.h"
73 #include "stat-util.h"
74 #include "string-table.h"
75 #include "string-util.h"
76 #include "strv.h"
77 #include "strxcpyx.h"
78 #include "sysctl-util.h"
79 #include "syslog-util.h"
80 #include "terminal-util.h"
81 #include "time-util.h"
82 #include "transaction.h"
83 #include "umask-util.h"
84 #include "unit-name.h"
85 #include "user-util.h"
86 #include "virt.h"
87 #include "watchdog.h"
88
89 #define NOTIFY_RCVBUF_SIZE (8*1024*1024)
90 #define CGROUPS_AGENT_RCVBUF_SIZE (8*1024*1024)
91
92 /* Initial delay and the interval for printing status messages about running jobs */
93 #define JOBS_IN_PROGRESS_WAIT_USEC (2*USEC_PER_SEC)
94 #define JOBS_IN_PROGRESS_QUIET_WAIT_USEC (25*USEC_PER_SEC)
95 #define JOBS_IN_PROGRESS_PERIOD_USEC (USEC_PER_SEC / 3)
96 #define JOBS_IN_PROGRESS_PERIOD_DIVISOR 3
97
98 /* If there are more than 1K bus messages queue across our API and direct buses, then let's not add more on top until
99 * the queue gets more empty. */
100 #define MANAGER_BUS_BUSY_THRESHOLD 1024LU
101
102 /* How many units and jobs to process of the bus queue before returning to the event loop. */
103 #define MANAGER_BUS_MESSAGE_BUDGET 100U
104
105 static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
106 static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
107 static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
108 static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
109 static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
110 static int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
111 static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata);
112 static int manager_dispatch_run_queue(sd_event_source *source, void *userdata);
113 static int manager_dispatch_sigchld(sd_event_source *source, void *userdata);
114 static int manager_dispatch_timezone_change(sd_event_source *source, const struct inotify_event *event, void *userdata);
115 static int manager_run_environment_generators(Manager *m);
116 static int manager_run_generators(Manager *m);
117 static void manager_vacuum(Manager *m);
118
119 static usec_t manager_watch_jobs_next_time(Manager *m) {
120 usec_t timeout;
121
122 if (MANAGER_IS_USER(m))
123 /* Let the user manager without a timeout show status quickly, so the system manager can make
124 * use of it, if it wants to. */
125 timeout = JOBS_IN_PROGRESS_WAIT_USEC * 2 / 3;
126 else if (show_status_on(m->show_status))
127 /* When status is on, just use the usual timeout. */
128 timeout = JOBS_IN_PROGRESS_WAIT_USEC;
129 else
130 timeout = JOBS_IN_PROGRESS_QUIET_WAIT_USEC;
131
132 return usec_add(now(CLOCK_MONOTONIC), timeout);
133 }
134
135 static void manager_watch_jobs_in_progress(Manager *m) {
136 usec_t next;
137 int r;
138
139 assert(m);
140
141 /* We do not want to show the cylon animation if the user
142 * needs to confirm service executions otherwise confirmation
143 * messages will be screwed by the cylon animation. */
144 if (!manager_is_confirm_spawn_disabled(m))
145 return;
146
147 if (m->jobs_in_progress_event_source)
148 return;
149
150 next = manager_watch_jobs_next_time(m);
151 r = sd_event_add_time(
152 m->event,
153 &m->jobs_in_progress_event_source,
154 CLOCK_MONOTONIC,
155 next, 0,
156 manager_dispatch_jobs_in_progress, m);
157 if (r < 0)
158 return;
159
160 (void) sd_event_source_set_description(m->jobs_in_progress_event_source, "manager-jobs-in-progress");
161 }
162
163 #define CYLON_BUFFER_EXTRA (2*STRLEN(ANSI_RED) + STRLEN(ANSI_HIGHLIGHT_RED) + 2*STRLEN(ANSI_NORMAL))
164
165 static void draw_cylon(char buffer[], size_t buflen, unsigned width, unsigned pos) {
166 char *p = buffer;
167
168 assert(buflen >= CYLON_BUFFER_EXTRA + width + 1);
169 assert(pos <= width+1); /* 0 or width+1 mean that the center light is behind the corner */
170
171 if (pos > 1) {
172 if (pos > 2)
173 p = mempset(p, ' ', pos-2);
174 if (log_get_show_color())
175 p = stpcpy(p, ANSI_RED);
176 *p++ = '*';
177 }
178
179 if (pos > 0 && pos <= width) {
180 if (log_get_show_color())
181 p = stpcpy(p, ANSI_HIGHLIGHT_RED);
182 *p++ = '*';
183 }
184
185 if (log_get_show_color())
186 p = stpcpy(p, ANSI_NORMAL);
187
188 if (pos < width) {
189 if (log_get_show_color())
190 p = stpcpy(p, ANSI_RED);
191 *p++ = '*';
192 if (pos < width-1)
193 p = mempset(p, ' ', width-1-pos);
194 if (log_get_show_color())
195 strcpy(p, ANSI_NORMAL);
196 }
197 }
198
199 static void manager_flip_auto_status(Manager *m, bool enable, const char *reason) {
200 assert(m);
201
202 if (enable) {
203 if (m->show_status == SHOW_STATUS_AUTO)
204 manager_set_show_status(m, SHOW_STATUS_TEMPORARY, reason);
205 } else {
206 if (m->show_status == SHOW_STATUS_TEMPORARY)
207 manager_set_show_status(m, SHOW_STATUS_AUTO, reason);
208 }
209 }
210
211 static void manager_print_jobs_in_progress(Manager *m) {
212 Job *j;
213 unsigned counter = 0, print_nr;
214 char cylon[6 + CYLON_BUFFER_EXTRA + 1];
215 unsigned cylon_pos;
216 uint64_t x;
217
218 assert(m);
219 assert(m->n_running_jobs > 0);
220
221 manager_flip_auto_status(m, true, "delay");
222
223 print_nr = (m->jobs_in_progress_iteration / JOBS_IN_PROGRESS_PERIOD_DIVISOR) % m->n_running_jobs;
224
225 HASHMAP_FOREACH(j, m->jobs)
226 if (j->state == JOB_RUNNING && counter++ == print_nr)
227 break;
228
229 /* m->n_running_jobs must be consistent with the contents of m->jobs,
230 * so the above loop must have succeeded in finding j. */
231 assert(counter == print_nr + 1);
232 assert(j);
233
234 cylon_pos = m->jobs_in_progress_iteration % 14;
235 if (cylon_pos >= 8)
236 cylon_pos = 14 - cylon_pos;
237 draw_cylon(cylon, sizeof(cylon), 6, cylon_pos);
238
239 m->jobs_in_progress_iteration++;
240
241 char job_of_n[STRLEN("( of ) ") + DECIMAL_STR_MAX(unsigned)*2] = "";
242 if (m->n_running_jobs > 1)
243 xsprintf(job_of_n, "(%u of %u) ", counter, m->n_running_jobs);
244
245 bool have_timeout = job_get_timeout(j, &x) > 0;
246
247 /* We want to use enough information for the user to identify previous lines talking about the same
248 * unit, but keep the message as short as possible. So if 'Starting foo.service' or 'Starting
249 * foo.service - Description' were used, 'foo.service' is enough here. On the other hand, if we used
250 * 'Starting Description' before, then we shall also use 'Description' here. So we pass NULL as the
251 * second argument to unit_status_string(). */
252 const char *ident = unit_status_string(j->unit, NULL);
253
254 const char *time = FORMAT_TIMESPAN(now(CLOCK_MONOTONIC) - j->begin_usec, 1*USEC_PER_SEC);
255 const char *limit = have_timeout ? FORMAT_TIMESPAN(x - j->begin_usec, 1*USEC_PER_SEC) : "no limit";
256
257 if (m->status_unit_format == STATUS_UNIT_FORMAT_DESCRIPTION)
258 /* When using 'Description', we effectively don't have enough space to show the nested status
259 * without ellipsization, so let's not even try. */
260 manager_status_printf(m, STATUS_TYPE_EPHEMERAL, cylon,
261 "%sA %s job is running for %s (%s / %s)",
262 job_of_n,
263 job_type_to_string(j->type),
264 ident,
265 time, limit);
266 else {
267 const char *status_text = unit_status_text(j->unit);
268
269 manager_status_printf(m, STATUS_TYPE_EPHEMERAL, cylon,
270 "%sJob %s/%s running (%s / %s)%s%s",
271 job_of_n,
272 ident,
273 job_type_to_string(j->type),
274 time, limit,
275 status_text ? ": " : "",
276 strempty(status_text));
277 }
278
279 sd_notifyf(false,
280 "STATUS=%sUser job %s/%s running (%s / %s)...",
281 job_of_n,
282 ident,
283 job_type_to_string(j->type),
284 time, limit);
285 m->status_ready = false;
286 }
287
288 static int have_ask_password(void) {
289 _cleanup_closedir_ DIR *dir = NULL;
290 struct dirent *de;
291
292 dir = opendir("/run/systemd/ask-password");
293 if (!dir) {
294 if (errno == ENOENT)
295 return false;
296 else
297 return -errno;
298 }
299
300 FOREACH_DIRENT_ALL(de, dir, return -errno) {
301 if (startswith(de->d_name, "ask."))
302 return true;
303 }
304 return false;
305 }
306
307 static int manager_dispatch_ask_password_fd(sd_event_source *source,
308 int fd, uint32_t revents, void *userdata) {
309 Manager *m = userdata;
310
311 assert(m);
312
313 (void) flush_fd(fd);
314
315 m->have_ask_password = have_ask_password();
316 if (m->have_ask_password < 0)
317 /* Log error but continue. Negative have_ask_password
318 * is treated as unknown status. */
319 log_error_errno(m->have_ask_password, "Failed to list /run/systemd/ask-password: %m");
320
321 return 0;
322 }
323
324 static void manager_close_ask_password(Manager *m) {
325 assert(m);
326
327 m->ask_password_event_source = sd_event_source_disable_unref(m->ask_password_event_source);
328 m->ask_password_inotify_fd = safe_close(m->ask_password_inotify_fd);
329 m->have_ask_password = -EINVAL;
330 }
331
332 static int manager_check_ask_password(Manager *m) {
333 int r;
334
335 assert(m);
336
337 if (!m->ask_password_event_source) {
338 assert(m->ask_password_inotify_fd < 0);
339
340 (void) mkdir_p_label("/run/systemd/ask-password", 0755);
341
342 m->ask_password_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
343 if (m->ask_password_inotify_fd < 0)
344 return log_error_errno(errno, "Failed to create inotify object: %m");
345
346 r = inotify_add_watch_and_warn(m->ask_password_inotify_fd,
347 "/run/systemd/ask-password",
348 IN_CREATE|IN_DELETE|IN_MOVE);
349 if (r < 0) {
350 manager_close_ask_password(m);
351 return r;
352 }
353
354 r = sd_event_add_io(m->event, &m->ask_password_event_source,
355 m->ask_password_inotify_fd, EPOLLIN,
356 manager_dispatch_ask_password_fd, m);
357 if (r < 0) {
358 log_error_errno(r, "Failed to add event source for /run/systemd/ask-password: %m");
359 manager_close_ask_password(m);
360 return r;
361 }
362
363 (void) sd_event_source_set_description(m->ask_password_event_source, "manager-ask-password");
364
365 /* Queries might have been added meanwhile... */
366 manager_dispatch_ask_password_fd(m->ask_password_event_source,
367 m->ask_password_inotify_fd, EPOLLIN, m);
368 }
369
370 return m->have_ask_password;
371 }
372
373 static int manager_watch_idle_pipe(Manager *m) {
374 int r;
375
376 assert(m);
377
378 if (m->idle_pipe_event_source)
379 return 0;
380
381 if (m->idle_pipe[2] < 0)
382 return 0;
383
384 r = sd_event_add_io(m->event, &m->idle_pipe_event_source, m->idle_pipe[2], EPOLLIN, manager_dispatch_idle_pipe_fd, m);
385 if (r < 0)
386 return log_error_errno(r, "Failed to watch idle pipe: %m");
387
388 (void) sd_event_source_set_description(m->idle_pipe_event_source, "manager-idle-pipe");
389
390 return 0;
391 }
392
393 static void manager_close_idle_pipe(Manager *m) {
394 assert(m);
395
396 m->idle_pipe_event_source = sd_event_source_disable_unref(m->idle_pipe_event_source);
397
398 safe_close_pair(m->idle_pipe);
399 safe_close_pair(m->idle_pipe + 2);
400 }
401
402 static int manager_setup_time_change(Manager *m) {
403 int r;
404
405 assert(m);
406
407 if (MANAGER_IS_TEST_RUN(m))
408 return 0;
409
410 m->time_change_event_source = sd_event_source_disable_unref(m->time_change_event_source);
411 m->time_change_fd = safe_close(m->time_change_fd);
412
413 m->time_change_fd = time_change_fd();
414 if (m->time_change_fd < 0)
415 return log_error_errno(m->time_change_fd, "Failed to create timer change timer fd: %m");
416
417 r = sd_event_add_io(m->event, &m->time_change_event_source, m->time_change_fd, EPOLLIN, manager_dispatch_time_change_fd, m);
418 if (r < 0)
419 return log_error_errno(r, "Failed to create time change event source: %m");
420
421 /* Schedule this slightly earlier than the .timer event sources */
422 r = sd_event_source_set_priority(m->time_change_event_source, SD_EVENT_PRIORITY_NORMAL-1);
423 if (r < 0)
424 return log_error_errno(r, "Failed to set priority of time change event sources: %m");
425
426 (void) sd_event_source_set_description(m->time_change_event_source, "manager-time-change");
427
428 log_debug("Set up TFD_TIMER_CANCEL_ON_SET timerfd.");
429
430 return 0;
431 }
432
433 static int manager_read_timezone_stat(Manager *m) {
434 struct stat st;
435 bool changed;
436
437 assert(m);
438
439 /* Read the current stat() data of /etc/localtime so that we detect changes */
440 if (lstat("/etc/localtime", &st) < 0) {
441 log_debug_errno(errno, "Failed to stat /etc/localtime, ignoring: %m");
442 changed = m->etc_localtime_accessible;
443 m->etc_localtime_accessible = false;
444 } else {
445 usec_t k;
446
447 k = timespec_load(&st.st_mtim);
448 changed = !m->etc_localtime_accessible || k != m->etc_localtime_mtime;
449
450 m->etc_localtime_mtime = k;
451 m->etc_localtime_accessible = true;
452 }
453
454 return changed;
455 }
456
457 static int manager_setup_timezone_change(Manager *m) {
458 _cleanup_(sd_event_source_unrefp) sd_event_source *new_event = NULL;
459 int r;
460
461 assert(m);
462
463 if (MANAGER_IS_TEST_RUN(m))
464 return 0;
465
466 /* We watch /etc/localtime for three events: change of the link count (which might mean removal from /etc even
467 * though another link might be kept), renames, and file close operations after writing. Note we don't bother
468 * with IN_DELETE_SELF, as that would just report when the inode is removed entirely, i.e. after the link count
469 * went to zero and all fds to it are closed.
470 *
471 * Note that we never follow symlinks here. This is a simplification, but should cover almost all cases
472 * correctly.
473 *
474 * Note that we create the new event source first here, before releasing the old one. This should optimize
475 * behaviour as this way sd-event can reuse the old watch in case the inode didn't change. */
476
477 r = sd_event_add_inotify(m->event, &new_event, "/etc/localtime",
478 IN_ATTRIB|IN_MOVE_SELF|IN_CLOSE_WRITE|IN_DONT_FOLLOW, manager_dispatch_timezone_change, m);
479 if (r == -ENOENT) {
480 /* If the file doesn't exist yet, subscribe to /etc instead, and wait until it is created either by
481 * O_CREATE or by rename() */
482
483 log_debug_errno(r, "/etc/localtime doesn't exist yet, watching /etc instead.");
484 r = sd_event_add_inotify(m->event, &new_event, "/etc",
485 IN_CREATE|IN_MOVED_TO|IN_ONLYDIR, manager_dispatch_timezone_change, m);
486 }
487 if (r < 0)
488 return log_error_errno(r, "Failed to create timezone change event source: %m");
489
490 /* Schedule this slightly earlier than the .timer event sources */
491 r = sd_event_source_set_priority(new_event, SD_EVENT_PRIORITY_NORMAL-1);
492 if (r < 0)
493 return log_error_errno(r, "Failed to set priority of timezone change event sources: %m");
494
495 sd_event_source_unref(m->timezone_change_event_source);
496 m->timezone_change_event_source = TAKE_PTR(new_event);
497
498 return 0;
499 }
500
501 static int enable_special_signals(Manager *m) {
502 _cleanup_close_ int fd = -1;
503
504 assert(m);
505
506 if (MANAGER_IS_TEST_RUN(m))
507 return 0;
508
509 /* Enable that we get SIGINT on control-alt-del. In containers
510 * this will fail with EPERM (older) or EINVAL (newer), so
511 * ignore that. */
512 if (reboot(RB_DISABLE_CAD) < 0 && !IN_SET(errno, EPERM, EINVAL))
513 log_warning_errno(errno, "Failed to enable ctrl-alt-del handling: %m");
514
515 fd = open_terminal("/dev/tty0", O_RDWR|O_NOCTTY|O_CLOEXEC);
516 if (fd < 0) {
517 /* Support systems without virtual console */
518 if (fd != -ENOENT)
519 log_warning_errno(errno, "Failed to open /dev/tty0: %m");
520 } else {
521 /* Enable that we get SIGWINCH on kbrequest */
522 if (ioctl(fd, KDSIGACCEPT, SIGWINCH) < 0)
523 log_warning_errno(errno, "Failed to enable kbrequest handling: %m");
524 }
525
526 return 0;
527 }
528
529 #define RTSIG_IF_AVAILABLE(signum) (signum <= SIGRTMAX ? signum : -1)
530
531 static int manager_setup_signals(Manager *m) {
532 struct sigaction sa = {
533 .sa_handler = SIG_DFL,
534 .sa_flags = SA_NOCLDSTOP|SA_RESTART,
535 };
536 sigset_t mask;
537 int r;
538
539 assert(m);
540
541 assert_se(sigaction(SIGCHLD, &sa, NULL) == 0);
542
543 /* We make liberal use of realtime signals here. On
544 * Linux/glibc we have 30 of them (with the exception of Linux
545 * on hppa, see below), between SIGRTMIN+0 ... SIGRTMIN+30
546 * (aka SIGRTMAX). */
547
548 assert_se(sigemptyset(&mask) == 0);
549 sigset_add_many(&mask,
550 SIGCHLD, /* Child died */
551 SIGTERM, /* Reexecute daemon */
552 SIGHUP, /* Reload configuration */
553 SIGUSR1, /* systemd: reconnect to D-Bus */
554 SIGUSR2, /* systemd: dump status */
555 SIGINT, /* Kernel sends us this on control-alt-del */
556 SIGWINCH, /* Kernel sends us this on kbrequest (alt-arrowup) */
557 SIGPWR, /* Some kernel drivers and upsd send us this on power failure */
558
559 SIGRTMIN+0, /* systemd: start default.target */
560 SIGRTMIN+1, /* systemd: isolate rescue.target */
561 SIGRTMIN+2, /* systemd: isolate emergency.target */
562 SIGRTMIN+3, /* systemd: start halt.target */
563 SIGRTMIN+4, /* systemd: start poweroff.target */
564 SIGRTMIN+5, /* systemd: start reboot.target */
565 SIGRTMIN+6, /* systemd: start kexec.target */
566
567 /* ... space for more special targets ... */
568
569 SIGRTMIN+13, /* systemd: Immediate halt */
570 SIGRTMIN+14, /* systemd: Immediate poweroff */
571 SIGRTMIN+15, /* systemd: Immediate reboot */
572 SIGRTMIN+16, /* systemd: Immediate kexec */
573
574 /* ... space for more immediate system state changes ... */
575
576 SIGRTMIN+20, /* systemd: enable status messages */
577 SIGRTMIN+21, /* systemd: disable status messages */
578 SIGRTMIN+22, /* systemd: set log level to LOG_DEBUG */
579 SIGRTMIN+23, /* systemd: set log level to LOG_INFO */
580 SIGRTMIN+24, /* systemd: Immediate exit (--user only) */
581 SIGRTMIN+25, /* systemd: reexecute manager */
582
583 /* Apparently Linux on hppa had fewer RT signals until v3.18,
584 * SIGRTMAX was SIGRTMIN+25, and then SIGRTMIN was lowered,
585 * see commit v3.17-7614-g1f25df2eff.
586 *
587 * We cannot unconditionally make use of those signals here,
588 * so let's use a runtime check. Since these commands are
589 * accessible by different means and only really a safety
590 * net, the missing functionality on hppa shouldn't matter.
591 */
592
593 RTSIG_IF_AVAILABLE(SIGRTMIN+26), /* systemd: set log target to journal-or-kmsg */
594 RTSIG_IF_AVAILABLE(SIGRTMIN+27), /* systemd: set log target to console */
595 RTSIG_IF_AVAILABLE(SIGRTMIN+28), /* systemd: set log target to kmsg */
596 RTSIG_IF_AVAILABLE(SIGRTMIN+29), /* systemd: set log target to syslog-or-kmsg (obsolete) */
597
598 /* ... one free signal here SIGRTMIN+30 ... */
599 -1);
600 assert_se(sigprocmask(SIG_SETMASK, &mask, NULL) == 0);
601
602 m->signal_fd = signalfd(-1, &mask, SFD_NONBLOCK|SFD_CLOEXEC);
603 if (m->signal_fd < 0)
604 return -errno;
605
606 r = sd_event_add_io(m->event, &m->signal_event_source, m->signal_fd, EPOLLIN, manager_dispatch_signal_fd, m);
607 if (r < 0)
608 return r;
609
610 (void) sd_event_source_set_description(m->signal_event_source, "manager-signal");
611
612 /* Process signals a bit earlier than the rest of things, but later than notify_fd processing, so that the
613 * notify processing can still figure out to which process/service a message belongs, before we reap the
614 * process. Also, process this before handling cgroup notifications, so that we always collect child exit
615 * status information before detecting that there's no process in a cgroup. */
616 r = sd_event_source_set_priority(m->signal_event_source, SD_EVENT_PRIORITY_NORMAL-6);
617 if (r < 0)
618 return r;
619
620 if (MANAGER_IS_SYSTEM(m))
621 return enable_special_signals(m);
622
623 return 0;
624 }
625
626 static char** sanitize_environment(char **l) {
627
628 /* Let's remove some environment variables that we need ourselves to communicate with our clients */
629 strv_env_unset_many(
630 l,
631 "CACHE_DIRECTORY",
632 "CONFIGURATION_DIRECTORY",
633 "CREDENTIALS_DIRECTORY",
634 "EXIT_CODE",
635 "EXIT_STATUS",
636 "INVOCATION_ID",
637 "JOURNAL_STREAM",
638 "LISTEN_FDNAMES",
639 "LISTEN_FDS",
640 "LISTEN_PID",
641 "LOGS_DIRECTORY",
642 "MAINPID",
643 "MANAGERPID",
644 "NOTIFY_SOCKET",
645 "PIDFILE",
646 "REMOTE_ADDR",
647 "REMOTE_PORT",
648 "RUNTIME_DIRECTORY",
649 "SERVICE_RESULT",
650 "STATE_DIRECTORY",
651 "WATCHDOG_PID",
652 "WATCHDOG_USEC",
653 NULL);
654
655 /* Let's order the environment alphabetically, just to make it pretty */
656 return strv_sort(l);
657 }
658
659 int manager_default_environment(Manager *m) {
660 int r;
661
662 assert(m);
663
664 m->transient_environment = strv_free(m->transient_environment);
665
666 if (MANAGER_IS_SYSTEM(m)) {
667 /* The system manager always starts with a clean
668 * environment for its children. It does not import
669 * the kernel's or the parents' exported variables.
670 *
671 * The initial passed environment is untouched to keep
672 * /proc/self/environ valid; it is used for tagging
673 * the init process inside containers. */
674 m->transient_environment = strv_new("PATH=" DEFAULT_PATH);
675 if (!m->transient_environment)
676 return log_oom();
677
678 /* Import locale variables LC_*= from configuration */
679 (void) locale_setup(&m->transient_environment);
680 } else {
681 /* The user manager passes its own environment along to its children, except for $PATH. */
682 m->transient_environment = strv_copy(environ);
683 if (!m->transient_environment)
684 return log_oom();
685
686 r = strv_env_replace_strdup(&m->transient_environment, "PATH=" DEFAULT_USER_PATH);
687 if (r < 0)
688 return log_oom();
689 }
690
691 sanitize_environment(m->transient_environment);
692
693 return 0;
694 }
695
696 static int manager_setup_prefix(Manager *m) {
697 struct table_entry {
698 uint64_t type;
699 const char *suffix;
700 };
701
702 static const struct table_entry paths_system[_EXEC_DIRECTORY_TYPE_MAX] = {
703 [EXEC_DIRECTORY_RUNTIME] = { SD_PATH_SYSTEM_RUNTIME, NULL },
704 [EXEC_DIRECTORY_STATE] = { SD_PATH_SYSTEM_STATE_PRIVATE, NULL },
705 [EXEC_DIRECTORY_CACHE] = { SD_PATH_SYSTEM_STATE_CACHE, NULL },
706 [EXEC_DIRECTORY_LOGS] = { SD_PATH_SYSTEM_STATE_LOGS, NULL },
707 [EXEC_DIRECTORY_CONFIGURATION] = { SD_PATH_SYSTEM_CONFIGURATION, NULL },
708 };
709
710 static const struct table_entry paths_user[_EXEC_DIRECTORY_TYPE_MAX] = {
711 [EXEC_DIRECTORY_RUNTIME] = { SD_PATH_USER_RUNTIME, NULL },
712 [EXEC_DIRECTORY_STATE] = { SD_PATH_USER_CONFIGURATION, NULL },
713 [EXEC_DIRECTORY_CACHE] = { SD_PATH_USER_STATE_CACHE, NULL },
714 [EXEC_DIRECTORY_LOGS] = { SD_PATH_USER_CONFIGURATION, "log" },
715 [EXEC_DIRECTORY_CONFIGURATION] = { SD_PATH_USER_CONFIGURATION, NULL },
716 };
717
718 assert(m);
719
720 const struct table_entry *p = MANAGER_IS_SYSTEM(m) ? paths_system : paths_user;
721 int r;
722
723 for (ExecDirectoryType i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++) {
724 r = sd_path_lookup(p[i].type, p[i].suffix, &m->prefix[i]);
725 if (r < 0)
726 return log_warning_errno(r, "Failed to lookup %s path: %m",
727 exec_directory_type_to_string(i));
728 }
729
730 return 0;
731 }
732
733 static void manager_free_unit_name_maps(Manager *m) {
734 m->unit_id_map = hashmap_free(m->unit_id_map);
735 m->unit_name_map = hashmap_free(m->unit_name_map);
736 m->unit_path_cache = set_free(m->unit_path_cache);
737 m->unit_cache_timestamp_hash = 0;
738 }
739
740 static int manager_setup_run_queue(Manager *m) {
741 int r;
742
743 assert(m);
744 assert(!m->run_queue_event_source);
745
746 r = sd_event_add_defer(m->event, &m->run_queue_event_source, manager_dispatch_run_queue, m);
747 if (r < 0)
748 return r;
749
750 r = sd_event_source_set_priority(m->run_queue_event_source, SD_EVENT_PRIORITY_IDLE);
751 if (r < 0)
752 return r;
753
754 r = sd_event_source_set_enabled(m->run_queue_event_source, SD_EVENT_OFF);
755 if (r < 0)
756 return r;
757
758 (void) sd_event_source_set_description(m->run_queue_event_source, "manager-run-queue");
759
760 return 0;
761 }
762
763 static int manager_setup_sigchld_event_source(Manager *m) {
764 int r;
765
766 assert(m);
767 assert(!m->sigchld_event_source);
768
769 r = sd_event_add_defer(m->event, &m->sigchld_event_source, manager_dispatch_sigchld, m);
770 if (r < 0)
771 return r;
772
773 r = sd_event_source_set_priority(m->sigchld_event_source, SD_EVENT_PRIORITY_NORMAL-7);
774 if (r < 0)
775 return r;
776
777 r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_OFF);
778 if (r < 0)
779 return r;
780
781 (void) sd_event_source_set_description(m->sigchld_event_source, "manager-sigchld");
782
783 return 0;
784 }
785
786 int manager_new(UnitFileScope scope, ManagerTestRunFlags test_run_flags, Manager **_m) {
787 _cleanup_(manager_freep) Manager *m = NULL;
788 const char *e;
789 int r;
790
791 assert(_m);
792 assert(IN_SET(scope, UNIT_FILE_SYSTEM, UNIT_FILE_USER));
793
794 m = new(Manager, 1);
795 if (!m)
796 return -ENOMEM;
797
798 *m = (Manager) {
799 .unit_file_scope = scope,
800 .objective = _MANAGER_OBJECTIVE_INVALID,
801
802 .status_unit_format = STATUS_UNIT_FORMAT_DEFAULT,
803
804 .default_timer_accuracy_usec = USEC_PER_MINUTE,
805 .default_memory_accounting = MEMORY_ACCOUNTING_DEFAULT,
806 .default_tasks_accounting = true,
807 .default_tasks_max = TASKS_MAX_UNSET,
808 .default_timeout_start_usec = DEFAULT_TIMEOUT_USEC,
809 .default_timeout_stop_usec = DEFAULT_TIMEOUT_USEC,
810 .default_restart_usec = DEFAULT_RESTART_USEC,
811
812 .original_log_level = -1,
813 .original_log_target = _LOG_TARGET_INVALID,
814
815 .watchdog_overridden[WATCHDOG_RUNTIME] = USEC_INFINITY,
816 .watchdog_overridden[WATCHDOG_REBOOT] = USEC_INFINITY,
817 .watchdog_overridden[WATCHDOG_KEXEC] = USEC_INFINITY,
818
819 .show_status_overridden = _SHOW_STATUS_INVALID,
820
821 .notify_fd = -1,
822 .cgroups_agent_fd = -1,
823 .signal_fd = -1,
824 .time_change_fd = -1,
825 .user_lookup_fds = { -1, -1 },
826 .private_listen_fd = -1,
827 .dev_autofs_fd = -1,
828 .cgroup_inotify_fd = -1,
829 .pin_cgroupfs_fd = -1,
830 .ask_password_inotify_fd = -1,
831 .idle_pipe = { -1, -1, -1, -1},
832
833 /* start as id #1, so that we can leave #0 around as "null-like" value */
834 .current_job_id = 1,
835
836 .have_ask_password = -EINVAL, /* we don't know */
837 .first_boot = -1,
838 .test_run_flags = test_run_flags,
839
840 .default_oom_policy = OOM_STOP,
841 };
842
843 #if ENABLE_EFI
844 if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0)
845 boot_timestamps(m->timestamps + MANAGER_TIMESTAMP_USERSPACE,
846 m->timestamps + MANAGER_TIMESTAMP_FIRMWARE,
847 m->timestamps + MANAGER_TIMESTAMP_LOADER);
848 #endif
849
850 /* Prepare log fields we can use for structured logging */
851 if (MANAGER_IS_SYSTEM(m)) {
852 m->unit_log_field = "UNIT=";
853 m->unit_log_format_string = "UNIT=%s";
854
855 m->invocation_log_field = "INVOCATION_ID=";
856 m->invocation_log_format_string = "INVOCATION_ID=%s";
857 } else {
858 m->unit_log_field = "USER_UNIT=";
859 m->unit_log_format_string = "USER_UNIT=%s";
860
861 m->invocation_log_field = "USER_INVOCATION_ID=";
862 m->invocation_log_format_string = "USER_INVOCATION_ID=%s";
863 }
864
865 /* Reboot immediately if the user hits C-A-D more often than 7x per 2s */
866 m->ctrl_alt_del_ratelimit = (RateLimit) { .interval = 2 * USEC_PER_SEC, .burst = 7 };
867
868 r = manager_default_environment(m);
869 if (r < 0)
870 return r;
871
872 r = hashmap_ensure_allocated(&m->units, &string_hash_ops);
873 if (r < 0)
874 return r;
875
876 r = hashmap_ensure_allocated(&m->cgroup_unit, &path_hash_ops);
877 if (r < 0)
878 return r;
879
880 r = hashmap_ensure_allocated(&m->watch_bus, &string_hash_ops);
881 if (r < 0)
882 return r;
883
884 r = prioq_ensure_allocated(&m->run_queue, compare_job_priority);
885 if (r < 0)
886 return r;
887
888 r = manager_setup_prefix(m);
889 if (r < 0)
890 return r;
891
892 r = get_credentials_dir(&e);
893 if (r >= 0) {
894 m->received_credentials = strdup(e);
895 if (!m->received_credentials)
896 return -ENOMEM;
897 }
898
899 r = sd_event_default(&m->event);
900 if (r < 0)
901 return r;
902
903 r = manager_setup_run_queue(m);
904 if (r < 0)
905 return r;
906
907 if (FLAGS_SET(test_run_flags, MANAGER_TEST_RUN_MINIMAL)) {
908 m->cgroup_root = strdup("");
909 if (!m->cgroup_root)
910 return -ENOMEM;
911 } else {
912 r = manager_setup_signals(m);
913 if (r < 0)
914 return r;
915
916 r = manager_setup_cgroup(m);
917 if (r < 0)
918 return r;
919
920 r = manager_setup_time_change(m);
921 if (r < 0)
922 return r;
923
924 r = manager_read_timezone_stat(m);
925 if (r < 0)
926 return r;
927
928 (void) manager_setup_timezone_change(m);
929
930 r = manager_setup_sigchld_event_source(m);
931 if (r < 0)
932 return r;
933
934 #if HAVE_LIBBPF
935 if (MANAGER_IS_SYSTEM(m) && lsm_bpf_supported()) {
936 r = lsm_bpf_setup(m);
937 if (r < 0)
938 return r;
939 }
940 #endif
941 }
942
943 if (test_run_flags == 0) {
944 if (MANAGER_IS_SYSTEM(m))
945 r = mkdir_label("/run/systemd/units", 0755);
946 else {
947 _cleanup_free_ char *units_path = NULL;
948 r = xdg_user_runtime_dir(&units_path, "/systemd/units");
949 if (r < 0)
950 return r;
951 r = mkdir_p_label(units_path, 0755);
952 }
953
954 if (r < 0 && r != -EEXIST)
955 return r;
956 }
957
958 m->taint_usr =
959 !in_initrd() &&
960 dir_is_empty("/usr") > 0;
961
962 /* Note that we do not set up the notify fd here. We do that after deserialization,
963 * since they might have gotten serialized across the reexec. */
964
965 *_m = TAKE_PTR(m);
966
967 return 0;
968 }
969
970 static int manager_setup_notify(Manager *m) {
971 int r;
972
973 if (MANAGER_IS_TEST_RUN(m))
974 return 0;
975
976 if (m->notify_fd < 0) {
977 _cleanup_close_ int fd = -1;
978 union sockaddr_union sa;
979 socklen_t sa_len;
980
981 /* First free all secondary fields */
982 m->notify_socket = mfree(m->notify_socket);
983 m->notify_event_source = sd_event_source_disable_unref(m->notify_event_source);
984
985 fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
986 if (fd < 0)
987 return log_error_errno(errno, "Failed to allocate notification socket: %m");
988
989 fd_inc_rcvbuf(fd, NOTIFY_RCVBUF_SIZE);
990
991 m->notify_socket = path_join(m->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/notify");
992 if (!m->notify_socket)
993 return log_oom();
994
995 r = sockaddr_un_set_path(&sa.un, m->notify_socket);
996 if (r < 0)
997 return log_error_errno(r, "Notify socket '%s' not valid for AF_UNIX socket address, refusing.",
998 m->notify_socket);
999 sa_len = r;
1000
1001 (void) mkdir_parents_label(m->notify_socket, 0755);
1002 (void) sockaddr_un_unlink(&sa.un);
1003
1004 r = mac_selinux_bind(fd, &sa.sa, sa_len);
1005 if (r < 0)
1006 return log_error_errno(r, "bind(%s) failed: %m", m->notify_socket);
1007
1008 r = setsockopt_int(fd, SOL_SOCKET, SO_PASSCRED, true);
1009 if (r < 0)
1010 return log_error_errno(r, "SO_PASSCRED failed: %m");
1011
1012 m->notify_fd = TAKE_FD(fd);
1013
1014 log_debug("Using notification socket %s", m->notify_socket);
1015 }
1016
1017 if (!m->notify_event_source) {
1018 r = sd_event_add_io(m->event, &m->notify_event_source, m->notify_fd, EPOLLIN, manager_dispatch_notify_fd, m);
1019 if (r < 0)
1020 return log_error_errno(r, "Failed to allocate notify event source: %m");
1021
1022 /* Process notification messages a bit earlier than SIGCHLD, so that we can still identify to which
1023 * service an exit message belongs. */
1024 r = sd_event_source_set_priority(m->notify_event_source, SD_EVENT_PRIORITY_NORMAL-8);
1025 if (r < 0)
1026 return log_error_errno(r, "Failed to set priority of notify event source: %m");
1027
1028 (void) sd_event_source_set_description(m->notify_event_source, "manager-notify");
1029 }
1030
1031 return 0;
1032 }
1033
1034 static int manager_setup_cgroups_agent(Manager *m) {
1035
1036 static const union sockaddr_union sa = {
1037 .un.sun_family = AF_UNIX,
1038 .un.sun_path = "/run/systemd/cgroups-agent",
1039 };
1040 int r;
1041
1042 /* This creates a listening socket we receive cgroups agent messages on. We do not use D-Bus for delivering
1043 * these messages from the cgroups agent binary to PID 1, as the cgroups agent binary is very short-living, and
1044 * each instance of it needs a new D-Bus connection. Since D-Bus connections are SOCK_STREAM/AF_UNIX, on
1045 * overloaded systems the backlog of the D-Bus socket becomes relevant, as not more than the configured number
1046 * of D-Bus connections may be queued until the kernel will start dropping further incoming connections,
1047 * possibly resulting in lost cgroups agent messages. To avoid this, we'll use a private SOCK_DGRAM/AF_UNIX
1048 * socket, where no backlog is relevant as communication may take place without an actual connect() cycle, and
1049 * we thus won't lose messages.
1050 *
1051 * Note that PID 1 will forward the agent message to system bus, so that the user systemd instance may listen
1052 * to it. The system instance hence listens on this special socket, but the user instances listen on the system
1053 * bus for these messages. */
1054
1055 if (MANAGER_IS_TEST_RUN(m))
1056 return 0;
1057
1058 if (!MANAGER_IS_SYSTEM(m))
1059 return 0;
1060
1061 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
1062 if (r < 0)
1063 return log_error_errno(r, "Failed to determine whether unified cgroups hierarchy is used: %m");
1064 if (r > 0) /* We don't need this anymore on the unified hierarchy */
1065 return 0;
1066
1067 if (m->cgroups_agent_fd < 0) {
1068 _cleanup_close_ int fd = -1;
1069
1070 /* First free all secondary fields */
1071 m->cgroups_agent_event_source = sd_event_source_disable_unref(m->cgroups_agent_event_source);
1072
1073 fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
1074 if (fd < 0)
1075 return log_error_errno(errno, "Failed to allocate cgroups agent socket: %m");
1076
1077 fd_inc_rcvbuf(fd, CGROUPS_AGENT_RCVBUF_SIZE);
1078
1079 (void) sockaddr_un_unlink(&sa.un);
1080
1081 /* Only allow root to connect to this socket */
1082 RUN_WITH_UMASK(0077)
1083 r = bind(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un));
1084 if (r < 0)
1085 return log_error_errno(errno, "bind(%s) failed: %m", sa.un.sun_path);
1086
1087 m->cgroups_agent_fd = TAKE_FD(fd);
1088 }
1089
1090 if (!m->cgroups_agent_event_source) {
1091 r = sd_event_add_io(m->event, &m->cgroups_agent_event_source, m->cgroups_agent_fd, EPOLLIN, manager_dispatch_cgroups_agent_fd, m);
1092 if (r < 0)
1093 return log_error_errno(r, "Failed to allocate cgroups agent event source: %m");
1094
1095 /* Process cgroups notifications early. Note that when the agent notification is received
1096 * we'll just enqueue the unit in the cgroup empty queue, hence pick a high priority than
1097 * that. Also see handling of cgroup inotify for the unified cgroup stuff. */
1098 r = sd_event_source_set_priority(m->cgroups_agent_event_source, SD_EVENT_PRIORITY_NORMAL-9);
1099 if (r < 0)
1100 return log_error_errno(r, "Failed to set priority of cgroups agent event source: %m");
1101
1102 (void) sd_event_source_set_description(m->cgroups_agent_event_source, "manager-cgroups-agent");
1103 }
1104
1105 return 0;
1106 }
1107
1108 static int manager_setup_user_lookup_fd(Manager *m) {
1109 int r;
1110
1111 assert(m);
1112
1113 /* Set up the socket pair used for passing UID/GID resolution results from forked off processes to PID
1114 * 1. Background: we can't do name lookups (NSS) from PID 1, since it might involve IPC and thus activation,
1115 * and we might hence deadlock on ourselves. Hence we do all user/group lookups asynchronously from the forked
1116 * off processes right before executing the binaries to start. In order to be able to clean up any IPC objects
1117 * created by a unit (see RemoveIPC=) we need to know in PID 1 the used UID/GID of the executed processes,
1118 * hence we establish this communication channel so that forked off processes can pass their UID/GID
1119 * information back to PID 1. The forked off processes send their resolved UID/GID to PID 1 in a simple
1120 * datagram, along with their unit name, so that we can share one communication socket pair among all units for
1121 * this purpose.
1122 *
1123 * You might wonder why we need a communication channel for this that is independent of the usual notification
1124 * socket scheme (i.e. $NOTIFY_SOCKET). The primary difference is about trust: data sent via the $NOTIFY_SOCKET
1125 * channel is only accepted if it originates from the right unit and if reception was enabled for it. The user
1126 * lookup socket OTOH is only accessible by PID 1 and its children until they exec(), and always available.
1127 *
1128 * Note that this function is called under two circumstances: when we first initialize (in which case we
1129 * allocate both the socket pair and the event source to listen on it), and when we deserialize after a reload
1130 * (in which case the socket pair already exists but we still need to allocate the event source for it). */
1131
1132 if (m->user_lookup_fds[0] < 0) {
1133
1134 /* Free all secondary fields */
1135 safe_close_pair(m->user_lookup_fds);
1136 m->user_lookup_event_source = sd_event_source_disable_unref(m->user_lookup_event_source);
1137
1138 if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, m->user_lookup_fds) < 0)
1139 return log_error_errno(errno, "Failed to allocate user lookup socket: %m");
1140
1141 (void) fd_inc_rcvbuf(m->user_lookup_fds[0], NOTIFY_RCVBUF_SIZE);
1142 }
1143
1144 if (!m->user_lookup_event_source) {
1145 r = sd_event_add_io(m->event, &m->user_lookup_event_source, m->user_lookup_fds[0], EPOLLIN, manager_dispatch_user_lookup_fd, m);
1146 if (r < 0)
1147 return log_error_errno(errno, "Failed to allocate user lookup event source: %m");
1148
1149 /* Process even earlier than the notify event source, so that we always know first about valid UID/GID
1150 * resolutions */
1151 r = sd_event_source_set_priority(m->user_lookup_event_source, SD_EVENT_PRIORITY_NORMAL-11);
1152 if (r < 0)
1153 return log_error_errno(errno, "Failed to set priority of user lookup event source: %m");
1154
1155 (void) sd_event_source_set_description(m->user_lookup_event_source, "user-lookup");
1156 }
1157
1158 return 0;
1159 }
1160
1161 static unsigned manager_dispatch_cleanup_queue(Manager *m) {
1162 Unit *u;
1163 unsigned n = 0;
1164
1165 assert(m);
1166
1167 while ((u = m->cleanup_queue)) {
1168 assert(u->in_cleanup_queue);
1169
1170 unit_free(u);
1171 n++;
1172 }
1173
1174 return n;
1175 }
1176
1177 enum {
1178 GC_OFFSET_IN_PATH, /* This one is on the path we were traveling */
1179 GC_OFFSET_UNSURE, /* No clue */
1180 GC_OFFSET_GOOD, /* We still need this unit */
1181 GC_OFFSET_BAD, /* We don't need this unit anymore */
1182 _GC_OFFSET_MAX
1183 };
1184
1185 static void unit_gc_mark_good(Unit *u, unsigned gc_marker) {
1186 Unit *other;
1187
1188 u->gc_marker = gc_marker + GC_OFFSET_GOOD;
1189
1190 /* Recursively mark referenced units as GOOD as well */
1191 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_REFERENCES)
1192 if (other->gc_marker == gc_marker + GC_OFFSET_UNSURE)
1193 unit_gc_mark_good(other, gc_marker);
1194 }
1195
1196 static void unit_gc_sweep(Unit *u, unsigned gc_marker) {
1197 Unit *other;
1198 bool is_bad;
1199
1200 assert(u);
1201
1202 if (IN_SET(u->gc_marker - gc_marker,
1203 GC_OFFSET_GOOD, GC_OFFSET_BAD, GC_OFFSET_UNSURE, GC_OFFSET_IN_PATH))
1204 return;
1205
1206 if (u->in_cleanup_queue)
1207 goto bad;
1208
1209 if (!unit_may_gc(u))
1210 goto good;
1211
1212 u->gc_marker = gc_marker + GC_OFFSET_IN_PATH;
1213
1214 is_bad = true;
1215
1216 UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_REFERENCED_BY) {
1217 unit_gc_sweep(other, gc_marker);
1218
1219 if (other->gc_marker == gc_marker + GC_OFFSET_GOOD)
1220 goto good;
1221
1222 if (other->gc_marker != gc_marker + GC_OFFSET_BAD)
1223 is_bad = false;
1224 }
1225
1226 const UnitRef *ref;
1227 LIST_FOREACH(refs_by_target, ref, u->refs_by_target) {
1228 unit_gc_sweep(ref->source, gc_marker);
1229
1230 if (ref->source->gc_marker == gc_marker + GC_OFFSET_GOOD)
1231 goto good;
1232
1233 if (ref->source->gc_marker != gc_marker + GC_OFFSET_BAD)
1234 is_bad = false;
1235 }
1236
1237 if (is_bad)
1238 goto bad;
1239
1240 /* We were unable to find anything out about this entry, so
1241 * let's investigate it later */
1242 u->gc_marker = gc_marker + GC_OFFSET_UNSURE;
1243 unit_add_to_gc_queue(u);
1244 return;
1245
1246 bad:
1247 /* We definitely know that this one is not useful anymore, so
1248 * let's mark it for deletion */
1249 u->gc_marker = gc_marker + GC_OFFSET_BAD;
1250 unit_add_to_cleanup_queue(u);
1251 return;
1252
1253 good:
1254 unit_gc_mark_good(u, gc_marker);
1255 }
1256
1257 static unsigned manager_dispatch_gc_unit_queue(Manager *m) {
1258 unsigned n = 0, gc_marker;
1259 Unit *u;
1260
1261 assert(m);
1262
1263 /* log_debug("Running GC..."); */
1264
1265 m->gc_marker += _GC_OFFSET_MAX;
1266 if (m->gc_marker + _GC_OFFSET_MAX <= _GC_OFFSET_MAX)
1267 m->gc_marker = 1;
1268
1269 gc_marker = m->gc_marker;
1270
1271 while ((u = m->gc_unit_queue)) {
1272 assert(u->in_gc_queue);
1273
1274 unit_gc_sweep(u, gc_marker);
1275
1276 LIST_REMOVE(gc_queue, m->gc_unit_queue, u);
1277 u->in_gc_queue = false;
1278
1279 n++;
1280
1281 if (IN_SET(u->gc_marker - gc_marker,
1282 GC_OFFSET_BAD, GC_OFFSET_UNSURE)) {
1283 if (u->id)
1284 log_unit_debug(u, "Collecting.");
1285 u->gc_marker = gc_marker + GC_OFFSET_BAD;
1286 unit_add_to_cleanup_queue(u);
1287 }
1288 }
1289
1290 return n;
1291 }
1292
1293 static unsigned manager_dispatch_gc_job_queue(Manager *m) {
1294 unsigned n = 0;
1295 Job *j;
1296
1297 assert(m);
1298
1299 while ((j = m->gc_job_queue)) {
1300 assert(j->in_gc_queue);
1301
1302 LIST_REMOVE(gc_queue, m->gc_job_queue, j);
1303 j->in_gc_queue = false;
1304
1305 n++;
1306
1307 if (!job_may_gc(j))
1308 continue;
1309
1310 log_unit_debug(j->unit, "Collecting job.");
1311 (void) job_finish_and_invalidate(j, JOB_COLLECTED, false, false);
1312 }
1313
1314 return n;
1315 }
1316
1317 static unsigned manager_dispatch_stop_when_unneeded_queue(Manager *m) {
1318 unsigned n = 0;
1319 Unit *u;
1320 int r;
1321
1322 assert(m);
1323
1324 while ((u = m->stop_when_unneeded_queue)) {
1325 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1326
1327 assert(u->in_stop_when_unneeded_queue);
1328 LIST_REMOVE(stop_when_unneeded_queue, m->stop_when_unneeded_queue, u);
1329 u->in_stop_when_unneeded_queue = false;
1330
1331 n++;
1332
1333 if (!unit_is_unneeded(u))
1334 continue;
1335
1336 log_unit_debug(u, "Unit is not needed anymore.");
1337
1338 /* If stopping a unit fails continuously we might enter a stop loop here, hence stop acting on the
1339 * service being unnecessary after a while. */
1340
1341 if (!ratelimit_below(&u->auto_start_stop_ratelimit)) {
1342 log_unit_warning(u, "Unit not needed anymore, but not stopping since we tried this too often recently.");
1343 continue;
1344 }
1345
1346 /* Ok, nobody needs us anymore. Sniff. Then let's commit suicide */
1347 r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, NULL, &error, NULL);
1348 if (r < 0)
1349 log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r));
1350 }
1351
1352 return n;
1353 }
1354
1355 static unsigned manager_dispatch_start_when_upheld_queue(Manager *m) {
1356 unsigned n = 0;
1357 Unit *u;
1358 int r;
1359
1360 assert(m);
1361
1362 while ((u = m->start_when_upheld_queue)) {
1363 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1364 Unit *culprit = NULL;
1365
1366 assert(u->in_start_when_upheld_queue);
1367 LIST_REMOVE(start_when_upheld_queue, m->start_when_upheld_queue, u);
1368 u->in_start_when_upheld_queue = false;
1369
1370 n++;
1371
1372 if (!unit_is_upheld_by_active(u, &culprit))
1373 continue;
1374
1375 log_unit_debug(u, "Unit is started because upheld by active unit %s.", culprit->id);
1376
1377 /* If stopping a unit fails continuously we might enter a stop loop here, hence stop acting on the
1378 * service being unnecessary after a while. */
1379
1380 if (!ratelimit_below(&u->auto_start_stop_ratelimit)) {
1381 log_unit_warning(u, "Unit needs to be started because active unit %s upholds it, but not starting since we tried this too often recently.", culprit->id);
1382 continue;
1383 }
1384
1385 r = manager_add_job(u->manager, JOB_START, u, JOB_FAIL, NULL, &error, NULL);
1386 if (r < 0)
1387 log_unit_warning_errno(u, r, "Failed to enqueue start job, ignoring: %s", bus_error_message(&error, r));
1388 }
1389
1390 return n;
1391 }
1392
1393 static unsigned manager_dispatch_stop_when_bound_queue(Manager *m) {
1394 unsigned n = 0;
1395 Unit *u;
1396 int r;
1397
1398 assert(m);
1399
1400 while ((u = m->stop_when_bound_queue)) {
1401 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1402 Unit *culprit = NULL;
1403
1404 assert(u->in_stop_when_bound_queue);
1405 LIST_REMOVE(stop_when_bound_queue, m->stop_when_bound_queue, u);
1406 u->in_stop_when_bound_queue = false;
1407
1408 n++;
1409
1410 if (!unit_is_bound_by_inactive(u, &culprit))
1411 continue;
1412
1413 log_unit_debug(u, "Unit is stopped because bound to inactive unit %s.", culprit->id);
1414
1415 /* If stopping a unit fails continuously we might enter a stop loop here, hence stop acting on the
1416 * service being unnecessary after a while. */
1417
1418 if (!ratelimit_below(&u->auto_start_stop_ratelimit)) {
1419 log_unit_warning(u, "Unit needs to be stopped because it is bound to inactive unit %s it, but not stopping since we tried this too often recently.", culprit->id);
1420 continue;
1421 }
1422
1423 r = manager_add_job(u->manager, JOB_STOP, u, JOB_REPLACE, NULL, &error, NULL);
1424 if (r < 0)
1425 log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r));
1426 }
1427
1428 return n;
1429 }
1430
1431 static void manager_clear_jobs_and_units(Manager *m) {
1432 Unit *u;
1433
1434 assert(m);
1435
1436 while ((u = hashmap_first(m->units)))
1437 unit_free(u);
1438
1439 manager_dispatch_cleanup_queue(m);
1440
1441 assert(!m->load_queue);
1442 assert(prioq_isempty(m->run_queue));
1443 assert(!m->dbus_unit_queue);
1444 assert(!m->dbus_job_queue);
1445 assert(!m->cleanup_queue);
1446 assert(!m->gc_unit_queue);
1447 assert(!m->gc_job_queue);
1448 assert(!m->cgroup_realize_queue);
1449 assert(!m->cgroup_empty_queue);
1450 assert(!m->cgroup_oom_queue);
1451 assert(!m->target_deps_queue);
1452 assert(!m->stop_when_unneeded_queue);
1453 assert(!m->start_when_upheld_queue);
1454 assert(!m->stop_when_bound_queue);
1455
1456 assert(hashmap_isempty(m->jobs));
1457 assert(hashmap_isempty(m->units));
1458
1459 m->n_on_console = 0;
1460 m->n_running_jobs = 0;
1461 m->n_installed_jobs = 0;
1462 m->n_failed_jobs = 0;
1463 }
1464
1465 Manager* manager_free(Manager *m) {
1466 if (!m)
1467 return NULL;
1468
1469 manager_clear_jobs_and_units(m);
1470
1471 for (UnitType c = 0; c < _UNIT_TYPE_MAX; c++)
1472 if (unit_vtable[c]->shutdown)
1473 unit_vtable[c]->shutdown(m);
1474
1475 /* Keep the cgroup hierarchy in place except when we know we are going down for good */
1476 manager_shutdown_cgroup(m, IN_SET(m->objective, MANAGER_EXIT, MANAGER_REBOOT, MANAGER_POWEROFF, MANAGER_HALT, MANAGER_KEXEC));
1477
1478 lookup_paths_flush_generator(&m->lookup_paths);
1479
1480 bus_done(m);
1481 manager_varlink_done(m);
1482
1483 exec_runtime_vacuum(m);
1484 hashmap_free(m->exec_runtime_by_id);
1485
1486 dynamic_user_vacuum(m, false);
1487 hashmap_free(m->dynamic_users);
1488
1489 hashmap_free(m->units);
1490 hashmap_free(m->units_by_invocation_id);
1491 hashmap_free(m->jobs);
1492 hashmap_free(m->watch_pids);
1493 hashmap_free(m->watch_bus);
1494
1495 prioq_free(m->run_queue);
1496
1497 set_free(m->startup_units);
1498 set_free(m->failed_units);
1499
1500 sd_event_source_unref(m->signal_event_source);
1501 sd_event_source_unref(m->sigchld_event_source);
1502 sd_event_source_unref(m->notify_event_source);
1503 sd_event_source_unref(m->cgroups_agent_event_source);
1504 sd_event_source_unref(m->time_change_event_source);
1505 sd_event_source_unref(m->timezone_change_event_source);
1506 sd_event_source_unref(m->jobs_in_progress_event_source);
1507 sd_event_source_unref(m->run_queue_event_source);
1508 sd_event_source_unref(m->user_lookup_event_source);
1509
1510 safe_close(m->signal_fd);
1511 safe_close(m->notify_fd);
1512 safe_close(m->cgroups_agent_fd);
1513 safe_close(m->time_change_fd);
1514 safe_close_pair(m->user_lookup_fds);
1515
1516 manager_close_ask_password(m);
1517
1518 manager_close_idle_pipe(m);
1519
1520 sd_event_unref(m->event);
1521
1522 free(m->notify_socket);
1523
1524 lookup_paths_free(&m->lookup_paths);
1525 strv_free(m->transient_environment);
1526 strv_free(m->client_environment);
1527
1528 hashmap_free(m->cgroup_unit);
1529 manager_free_unit_name_maps(m);
1530
1531 free(m->switch_root);
1532 free(m->switch_root_init);
1533
1534 rlimit_free_all(m->rlimit);
1535
1536 assert(hashmap_isempty(m->units_requiring_mounts_for));
1537 hashmap_free(m->units_requiring_mounts_for);
1538
1539 hashmap_free(m->uid_refs);
1540 hashmap_free(m->gid_refs);
1541
1542 for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++)
1543 m->prefix[dt] = mfree(m->prefix[dt]);
1544 free(m->received_credentials);
1545
1546 #if BPF_FRAMEWORK
1547 lsm_bpf_destroy(m->restrict_fs);
1548 #endif
1549
1550 return mfree(m);
1551 }
1552
1553 static void manager_enumerate_perpetual(Manager *m) {
1554 assert(m);
1555
1556 if (FLAGS_SET(m->test_run_flags, MANAGER_TEST_RUN_MINIMAL))
1557 return;
1558
1559 /* Let's ask every type to load all units from disk/kernel that it might know */
1560 for (UnitType c = 0; c < _UNIT_TYPE_MAX; c++) {
1561 if (!unit_type_supported(c)) {
1562 log_debug("Unit type .%s is not supported on this system.", unit_type_to_string(c));
1563 continue;
1564 }
1565
1566 if (unit_vtable[c]->enumerate_perpetual)
1567 unit_vtable[c]->enumerate_perpetual(m);
1568 }
1569 }
1570
1571 static void manager_enumerate(Manager *m) {
1572 assert(m);
1573
1574 if (FLAGS_SET(m->test_run_flags, MANAGER_TEST_RUN_MINIMAL))
1575 return;
1576
1577 /* Let's ask every type to load all units from disk/kernel that it might know */
1578 for (UnitType c = 0; c < _UNIT_TYPE_MAX; c++) {
1579 if (!unit_type_supported(c)) {
1580 log_debug("Unit type .%s is not supported on this system.", unit_type_to_string(c));
1581 continue;
1582 }
1583
1584 if (unit_vtable[c]->enumerate)
1585 unit_vtable[c]->enumerate(m);
1586 }
1587
1588 manager_dispatch_load_queue(m);
1589 }
1590
1591 static void manager_coldplug(Manager *m) {
1592 Unit *u;
1593 char *k;
1594 int r;
1595
1596 assert(m);
1597
1598 log_debug("Invoking unit coldplug() handlers…");
1599
1600 /* Let's place the units back into their deserialized state */
1601 HASHMAP_FOREACH_KEY(u, k, m->units) {
1602
1603 /* ignore aliases */
1604 if (u->id != k)
1605 continue;
1606
1607 r = unit_coldplug(u);
1608 if (r < 0)
1609 log_warning_errno(r, "We couldn't coldplug %s, proceeding anyway: %m", u->id);
1610 }
1611 }
1612
1613 static void manager_catchup(Manager *m) {
1614 Unit *u;
1615 char *k;
1616
1617 assert(m);
1618
1619 log_debug("Invoking unit catchup() handlers…");
1620
1621 /* Let's catch up on any state changes that happened while we were reloading/reexecing */
1622 HASHMAP_FOREACH_KEY(u, k, m->units) {
1623
1624 /* ignore aliases */
1625 if (u->id != k)
1626 continue;
1627
1628 unit_catchup(u);
1629 }
1630 }
1631
1632 static void manager_distribute_fds(Manager *m, FDSet *fds) {
1633 Unit *u;
1634
1635 assert(m);
1636
1637 HASHMAP_FOREACH(u, m->units) {
1638
1639 if (fdset_size(fds) <= 0)
1640 break;
1641
1642 if (!UNIT_VTABLE(u)->distribute_fds)
1643 continue;
1644
1645 UNIT_VTABLE(u)->distribute_fds(u, fds);
1646 }
1647 }
1648
1649 static bool manager_dbus_is_running(Manager *m, bool deserialized) {
1650 Unit *u;
1651
1652 assert(m);
1653
1654 /* This checks whether the dbus instance we are supposed to expose our APIs on is up. We check both the socket
1655 * and the service unit. If the 'deserialized' parameter is true we'll check the deserialized state of the unit
1656 * rather than the current one. */
1657
1658 if (MANAGER_IS_TEST_RUN(m))
1659 return false;
1660
1661 u = manager_get_unit(m, SPECIAL_DBUS_SOCKET);
1662 if (!u)
1663 return false;
1664 if ((deserialized ? SOCKET(u)->deserialized_state : SOCKET(u)->state) != SOCKET_RUNNING)
1665 return false;
1666
1667 u = manager_get_unit(m, SPECIAL_DBUS_SERVICE);
1668 if (!u)
1669 return false;
1670 if (!IN_SET((deserialized ? SERVICE(u)->deserialized_state : SERVICE(u)->state), SERVICE_RUNNING, SERVICE_RELOAD))
1671 return false;
1672
1673 return true;
1674 }
1675
1676 static void manager_setup_bus(Manager *m) {
1677 assert(m);
1678
1679 /* Let's set up our private bus connection now, unconditionally */
1680 (void) bus_init_private(m);
1681
1682 /* If we are in --user mode also connect to the system bus now */
1683 if (MANAGER_IS_USER(m))
1684 (void) bus_init_system(m);
1685
1686 /* Let's connect to the bus now, but only if the unit is supposed to be up */
1687 if (manager_dbus_is_running(m, MANAGER_IS_RELOADING(m))) {
1688 (void) bus_init_api(m);
1689
1690 if (MANAGER_IS_SYSTEM(m))
1691 (void) bus_init_system(m);
1692 }
1693 }
1694
1695 static void manager_preset_all(Manager *m) {
1696 int r;
1697
1698 assert(m);
1699
1700 if (m->first_boot <= 0)
1701 return;
1702
1703 if (!MANAGER_IS_SYSTEM(m))
1704 return;
1705
1706 if (MANAGER_IS_TEST_RUN(m))
1707 return;
1708
1709 /* If this is the first boot, and we are in the host system, then preset everything */
1710 r = unit_file_preset_all(UNIT_FILE_SYSTEM, 0, NULL, UNIT_FILE_PRESET_ENABLE_ONLY, NULL, 0);
1711 if (r < 0)
1712 log_full_errno(r == -EEXIST ? LOG_NOTICE : LOG_WARNING, r,
1713 "Failed to populate /etc with preset unit settings, ignoring: %m");
1714 else
1715 log_info("Populated /etc with preset unit settings.");
1716 }
1717
1718 static void manager_ready(Manager *m) {
1719 assert(m);
1720
1721 /* After having loaded everything, do the final round of catching up with what might have changed */
1722
1723 m->objective = MANAGER_OK; /* Tell everyone we are up now */
1724
1725 /* It might be safe to log to the journal now and connect to dbus */
1726 manager_recheck_journal(m);
1727 manager_recheck_dbus(m);
1728
1729 /* Let's finally catch up with any changes that took place while we were reloading/reexecing */
1730 manager_catchup(m);
1731
1732 m->honor_device_enumeration = true;
1733 }
1734
1735 Manager* manager_reloading_start(Manager *m) {
1736 m->n_reloading++;
1737 return m;
1738 }
1739 void manager_reloading_stopp(Manager **m) {
1740 if (*m) {
1741 assert((*m)->n_reloading > 0);
1742 (*m)->n_reloading--;
1743 }
1744 }
1745
1746 int manager_startup(Manager *m, FILE *serialization, FDSet *fds, const char *root) {
1747 int r;
1748
1749 assert(m);
1750
1751 /* If we are running in test mode, we still want to run the generators,
1752 * but we should not touch the real generator directories. */
1753 r = lookup_paths_init(&m->lookup_paths, m->unit_file_scope,
1754 MANAGER_IS_TEST_RUN(m) ? LOOKUP_PATHS_TEMPORARY_GENERATED : 0,
1755 root);
1756 if (r < 0)
1757 return log_error_errno(r, "Failed to initialize path lookup table: %m");
1758
1759 dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_GENERATORS_START));
1760 r = manager_run_environment_generators(m);
1761 if (r >= 0)
1762 r = manager_run_generators(m);
1763 dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_GENERATORS_FINISH));
1764 if (r < 0)
1765 return r;
1766
1767 manager_preset_all(m);
1768
1769 lookup_paths_log(&m->lookup_paths);
1770
1771 {
1772 /* This block is (optionally) done with the reloading counter bumped */
1773 _unused_ _cleanup_(manager_reloading_stopp) Manager *reloading = NULL;
1774
1775 /* If we will deserialize make sure that during enumeration this is already known, so we increase the
1776 * counter here already */
1777 if (serialization)
1778 reloading = manager_reloading_start(m);
1779
1780 /* First, enumerate what we can from all config files */
1781 dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_UNITS_LOAD_START));
1782 manager_enumerate_perpetual(m);
1783 manager_enumerate(m);
1784 dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_UNITS_LOAD_FINISH));
1785
1786 /* Second, deserialize if there is something to deserialize */
1787 if (serialization) {
1788 r = manager_deserialize(m, serialization, fds);
1789 if (r < 0)
1790 return log_error_errno(r, "Deserialization failed: %m");
1791 }
1792
1793 /* Any fds left? Find some unit which wants them. This is useful to allow container managers to pass
1794 * some file descriptors to us pre-initialized. This enables socket-based activation of entire
1795 * containers. */
1796 manager_distribute_fds(m, fds);
1797
1798 /* We might have deserialized the notify fd, but if we didn't then let's create the bus now */
1799 r = manager_setup_notify(m);
1800 if (r < 0)
1801 /* No sense to continue without notifications, our children would fail anyway. */
1802 return r;
1803
1804 r = manager_setup_cgroups_agent(m);
1805 if (r < 0)
1806 /* Likewise, no sense to continue without empty cgroup notifications. */
1807 return r;
1808
1809 r = manager_setup_user_lookup_fd(m);
1810 if (r < 0)
1811 /* This shouldn't fail, except if things are really broken. */
1812 return r;
1813
1814 /* Connect to the bus if we are good for it */
1815 manager_setup_bus(m);
1816
1817 /* Now that we are connected to all possible buses, let's deserialize who is tracking us. */
1818 r = bus_track_coldplug(m, &m->subscribed, false, m->deserialized_subscribed);
1819 if (r < 0)
1820 log_warning_errno(r, "Failed to deserialized tracked clients, ignoring: %m");
1821 m->deserialized_subscribed = strv_free(m->deserialized_subscribed);
1822
1823 r = manager_varlink_init(m);
1824 if (r < 0)
1825 log_warning_errno(r, "Failed to set up Varlink, ignoring: %m");
1826
1827 /* Third, fire things up! */
1828 manager_coldplug(m);
1829
1830 /* Clean up runtime objects */
1831 manager_vacuum(m);
1832
1833 if (serialization)
1834 /* Let's wait for the UnitNew/JobNew messages being sent, before we notify that the
1835 * reload is finished */
1836 m->send_reloading_done = true;
1837 }
1838
1839 manager_ready(m);
1840
1841 return 0;
1842 }
1843
1844 int manager_add_job(
1845 Manager *m,
1846 JobType type,
1847 Unit *unit,
1848 JobMode mode,
1849 Set *affected_jobs,
1850 sd_bus_error *error,
1851 Job **ret) {
1852
1853 Transaction *tr;
1854 int r;
1855
1856 assert(m);
1857 assert(type < _JOB_TYPE_MAX);
1858 assert(unit);
1859 assert(mode < _JOB_MODE_MAX);
1860
1861 if (mode == JOB_ISOLATE && type != JOB_START)
1862 return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "Isolate is only valid for start.");
1863
1864 if (mode == JOB_ISOLATE && !unit->allow_isolate)
1865 return sd_bus_error_set(error, BUS_ERROR_NO_ISOLATION, "Operation refused, unit may not be isolated.");
1866
1867 if (mode == JOB_TRIGGERING && type != JOB_STOP)
1868 return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "--job-mode=triggering is only valid for stop.");
1869
1870 log_unit_debug(unit, "Trying to enqueue job %s/%s/%s", unit->id, job_type_to_string(type), job_mode_to_string(mode));
1871
1872 type = job_type_collapse(type, unit);
1873
1874 tr = transaction_new(mode == JOB_REPLACE_IRREVERSIBLY);
1875 if (!tr)
1876 return -ENOMEM;
1877
1878 r = transaction_add_job_and_dependencies(tr, type, unit, NULL, true, false,
1879 IN_SET(mode, JOB_IGNORE_DEPENDENCIES, JOB_IGNORE_REQUIREMENTS),
1880 mode == JOB_IGNORE_DEPENDENCIES, error);
1881 if (r < 0)
1882 goto tr_abort;
1883
1884 if (mode == JOB_ISOLATE) {
1885 r = transaction_add_isolate_jobs(tr, m);
1886 if (r < 0)
1887 goto tr_abort;
1888 }
1889
1890 if (mode == JOB_TRIGGERING) {
1891 r = transaction_add_triggering_jobs(tr, unit);
1892 if (r < 0)
1893 goto tr_abort;
1894 }
1895
1896 r = transaction_activate(tr, m, mode, affected_jobs, error);
1897 if (r < 0)
1898 goto tr_abort;
1899
1900 log_unit_debug(unit,
1901 "Enqueued job %s/%s as %u", unit->id,
1902 job_type_to_string(type), (unsigned) tr->anchor_job->id);
1903
1904 if (ret)
1905 *ret = tr->anchor_job;
1906
1907 transaction_free(tr);
1908 return 0;
1909
1910 tr_abort:
1911 transaction_abort(tr);
1912 transaction_free(tr);
1913 return r;
1914 }
1915
1916 int manager_add_job_by_name(Manager *m, JobType type, const char *name, JobMode mode, Set *affected_jobs, sd_bus_error *e, Job **ret) {
1917 Unit *unit = NULL; /* just to appease gcc, initialization is not really necessary */
1918 int r;
1919
1920 assert(m);
1921 assert(type < _JOB_TYPE_MAX);
1922 assert(name);
1923 assert(mode < _JOB_MODE_MAX);
1924
1925 r = manager_load_unit(m, name, NULL, NULL, &unit);
1926 if (r < 0)
1927 return r;
1928 assert(unit);
1929
1930 return manager_add_job(m, type, unit, mode, affected_jobs, e, ret);
1931 }
1932
1933 int manager_add_job_by_name_and_warn(Manager *m, JobType type, const char *name, JobMode mode, Set *affected_jobs, Job **ret) {
1934 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1935 int r;
1936
1937 assert(m);
1938 assert(type < _JOB_TYPE_MAX);
1939 assert(name);
1940 assert(mode < _JOB_MODE_MAX);
1941
1942 r = manager_add_job_by_name(m, type, name, mode, affected_jobs, &error, ret);
1943 if (r < 0)
1944 return log_warning_errno(r, "Failed to enqueue %s job for %s: %s", job_mode_to_string(mode), name, bus_error_message(&error, r));
1945
1946 return r;
1947 }
1948
1949 int manager_propagate_reload(Manager *m, Unit *unit, JobMode mode, sd_bus_error *e) {
1950 int r;
1951 Transaction *tr;
1952
1953 assert(m);
1954 assert(unit);
1955 assert(mode < _JOB_MODE_MAX);
1956 assert(mode != JOB_ISOLATE); /* Isolate is only valid for start */
1957
1958 tr = transaction_new(mode == JOB_REPLACE_IRREVERSIBLY);
1959 if (!tr)
1960 return -ENOMEM;
1961
1962 /* We need an anchor job */
1963 r = transaction_add_job_and_dependencies(tr, JOB_NOP, unit, NULL, false, false, true, true, e);
1964 if (r < 0)
1965 goto tr_abort;
1966
1967 /* Failure in adding individual dependencies is ignored, so this always succeeds. */
1968 transaction_add_propagate_reload_jobs(tr, unit, tr->anchor_job, mode == JOB_IGNORE_DEPENDENCIES, e);
1969
1970 r = transaction_activate(tr, m, mode, NULL, e);
1971 if (r < 0)
1972 goto tr_abort;
1973
1974 transaction_free(tr);
1975 return 0;
1976
1977 tr_abort:
1978 transaction_abort(tr);
1979 transaction_free(tr);
1980 return r;
1981 }
1982
1983 Job *manager_get_job(Manager *m, uint32_t id) {
1984 assert(m);
1985
1986 return hashmap_get(m->jobs, UINT32_TO_PTR(id));
1987 }
1988
1989 Unit *manager_get_unit(Manager *m, const char *name) {
1990 assert(m);
1991 assert(name);
1992
1993 return hashmap_get(m->units, name);
1994 }
1995
1996 static int manager_dispatch_target_deps_queue(Manager *m) {
1997 Unit *u;
1998 int r = 0;
1999
2000 assert(m);
2001
2002 while ((u = m->target_deps_queue)) {
2003 _cleanup_free_ Unit **targets = NULL;
2004 int n_targets;
2005
2006 assert(u->in_target_deps_queue);
2007
2008 LIST_REMOVE(target_deps_queue, u->manager->target_deps_queue, u);
2009 u->in_target_deps_queue = false;
2010
2011 /* Take an "atomic" snapshot of dependencies here, as the call below will likely modify the
2012 * dependencies, and we can't have it that hash tables we iterate through are modified while
2013 * we are iterating through them. */
2014 n_targets = unit_get_dependency_array(u, UNIT_ATOM_DEFAULT_TARGET_DEPENDENCIES, &targets);
2015 if (n_targets < 0)
2016 return n_targets;
2017
2018 for (int i = 0; i < n_targets; i++) {
2019 r = unit_add_default_target_dependency(u, targets[i]);
2020 if (r < 0)
2021 return r;
2022 }
2023 }
2024
2025 return r;
2026 }
2027
2028 unsigned manager_dispatch_load_queue(Manager *m) {
2029 Unit *u;
2030 unsigned n = 0;
2031
2032 assert(m);
2033
2034 /* Make sure we are not run recursively */
2035 if (m->dispatching_load_queue)
2036 return 0;
2037
2038 m->dispatching_load_queue = true;
2039
2040 /* Dispatches the load queue. Takes a unit from the queue and
2041 * tries to load its data until the queue is empty */
2042
2043 while ((u = m->load_queue)) {
2044 assert(u->in_load_queue);
2045
2046 unit_load(u);
2047 n++;
2048 }
2049
2050 m->dispatching_load_queue = false;
2051
2052 /* Dispatch the units waiting for their target dependencies to be added now, as all targets that we know about
2053 * should be loaded and have aliases resolved */
2054 (void) manager_dispatch_target_deps_queue(m);
2055
2056 return n;
2057 }
2058
2059 bool manager_unit_cache_should_retry_load(Unit *u) {
2060 assert(u);
2061
2062 /* Automatic reloading from disk only applies to units which were not found sometime in the past, and
2063 * the not-found stub is kept pinned in the unit graph by dependencies. For units that were
2064 * previously loaded, we don't do automatic reloading, and daemon-reload is necessary to update. */
2065 if (u->load_state != UNIT_NOT_FOUND)
2066 return false;
2067
2068 /* The cache has been updated since the last time we tried to load the unit. There might be new
2069 * fragment paths to read. */
2070 if (u->manager->unit_cache_timestamp_hash != u->fragment_not_found_timestamp_hash)
2071 return true;
2072
2073 /* The cache needs to be updated because there are modifications on disk. */
2074 return !lookup_paths_timestamp_hash_same(&u->manager->lookup_paths, u->manager->unit_cache_timestamp_hash, NULL);
2075 }
2076
2077 int manager_load_unit_prepare(
2078 Manager *m,
2079 const char *name,
2080 const char *path,
2081 sd_bus_error *e,
2082 Unit **_ret) {
2083
2084 _cleanup_(unit_freep) Unit *cleanup_ret = NULL;
2085 Unit *ret;
2086 UnitType t;
2087 int r;
2088
2089 assert(m);
2090 assert(_ret);
2091
2092 /* This will prepare the unit for loading, but not actually load anything from disk. */
2093
2094 if (path && !path_is_absolute(path))
2095 return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Path %s is not absolute.", path);
2096
2097 if (!name) {
2098 /* 'name' and 'path' must not both be null. Check here 'path' using assert_se() to
2099 * workaround a bug in gcc that generates a -Wnonnull warning when calling basename(),
2100 * but this cannot be possible in any code path (See #6119). */
2101 assert_se(path);
2102 name = basename(path);
2103 }
2104
2105 t = unit_name_to_type(name);
2106
2107 if (t == _UNIT_TYPE_INVALID || !unit_name_is_valid(name, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) {
2108 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE))
2109 return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is missing the instance name.", name);
2110
2111 return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is not valid.", name);
2112 }
2113
2114 ret = manager_get_unit(m, name);
2115 if (ret) {
2116 /* The time-based cache allows to start new units without daemon-reload,
2117 * but if they are already referenced (because of dependencies or ordering)
2118 * then we have to force a load of the fragment. As an optimization, check
2119 * first if anything in the usual paths was modified since the last time
2120 * the cache was loaded. Also check if the last time an attempt to load the
2121 * unit was made was before the most recent cache refresh, so that we know
2122 * we need to try again — even if the cache is current, it might have been
2123 * updated in a different context before we had a chance to retry loading
2124 * this particular unit. */
2125 if (manager_unit_cache_should_retry_load(ret))
2126 ret->load_state = UNIT_STUB;
2127 else {
2128 *_ret = ret;
2129 return 1;
2130 }
2131 } else {
2132 ret = cleanup_ret = unit_new(m, unit_vtable[t]->object_size);
2133 if (!ret)
2134 return -ENOMEM;
2135 }
2136
2137 if (path) {
2138 r = free_and_strdup(&ret->fragment_path, path);
2139 if (r < 0)
2140 return r;
2141 }
2142
2143 r = unit_add_name(ret, name);
2144 if (r < 0)
2145 return r;
2146
2147 unit_add_to_load_queue(ret);
2148 unit_add_to_dbus_queue(ret);
2149 unit_add_to_gc_queue(ret);
2150
2151 *_ret = ret;
2152 cleanup_ret = NULL;
2153
2154 return 0;
2155 }
2156
2157 int manager_load_unit(
2158 Manager *m,
2159 const char *name,
2160 const char *path,
2161 sd_bus_error *e,
2162 Unit **_ret) {
2163
2164 int r;
2165
2166 assert(m);
2167 assert(_ret);
2168
2169 /* This will load the service information files, but not actually
2170 * start any services or anything. */
2171
2172 r = manager_load_unit_prepare(m, name, path, e, _ret);
2173 if (r != 0)
2174 return r;
2175
2176 manager_dispatch_load_queue(m);
2177
2178 *_ret = unit_follow_merge(*_ret);
2179 return 0;
2180 }
2181
2182 int manager_load_startable_unit_or_warn(
2183 Manager *m,
2184 const char *name,
2185 const char *path,
2186 Unit **ret) {
2187
2188 /* Load a unit, make sure it loaded fully and is not masked. */
2189
2190 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2191 Unit *unit;
2192 int r;
2193
2194 r = manager_load_unit(m, name, path, &error, &unit);
2195 if (r < 0)
2196 return log_error_errno(r, "Failed to load %s %s: %s",
2197 name ? "unit" : "unit file", name ?: path,
2198 bus_error_message(&error, r));
2199
2200 r = bus_unit_validate_load_state(unit, &error);
2201 if (r < 0)
2202 return log_error_errno(r, "%s", bus_error_message(&error, r));
2203
2204 *ret = unit;
2205 return 0;
2206 }
2207
2208 void manager_clear_jobs(Manager *m) {
2209 Job *j;
2210
2211 assert(m);
2212
2213 while ((j = hashmap_first(m->jobs)))
2214 /* No need to recurse. We're cancelling all jobs. */
2215 job_finish_and_invalidate(j, JOB_CANCELED, false, false);
2216 }
2217
2218 void manager_unwatch_pid(Manager *m, pid_t pid) {
2219 assert(m);
2220
2221 /* First let's drop the unit keyed as "pid". */
2222 (void) hashmap_remove(m->watch_pids, PID_TO_PTR(pid));
2223
2224 /* Then, let's also drop the array keyed by -pid. */
2225 free(hashmap_remove(m->watch_pids, PID_TO_PTR(-pid)));
2226 }
2227
2228 static int manager_dispatch_run_queue(sd_event_source *source, void *userdata) {
2229 Manager *m = userdata;
2230 Job *j;
2231
2232 assert(source);
2233 assert(m);
2234
2235 while ((j = prioq_peek(m->run_queue))) {
2236 assert(j->installed);
2237 assert(j->in_run_queue);
2238
2239 (void) job_run_and_invalidate(j);
2240 }
2241
2242 if (m->n_running_jobs > 0)
2243 manager_watch_jobs_in_progress(m);
2244
2245 if (m->n_on_console > 0)
2246 manager_watch_idle_pipe(m);
2247
2248 return 1;
2249 }
2250
2251 void manager_trigger_run_queue(Manager *m) {
2252 int r;
2253
2254 assert(m);
2255
2256 r = sd_event_source_set_enabled(
2257 m->run_queue_event_source,
2258 prioq_isempty(m->run_queue) ? SD_EVENT_OFF : SD_EVENT_ONESHOT);
2259 if (r < 0)
2260 log_warning_errno(r, "Failed to enable job run queue event source, ignoring: %m");
2261 }
2262
2263 static unsigned manager_dispatch_dbus_queue(Manager *m) {
2264 unsigned n = 0, budget;
2265 Unit *u;
2266 Job *j;
2267
2268 assert(m);
2269
2270 /* When we are reloading, let's not wait with generating signals, since we need to exit the manager as quickly
2271 * as we can. There's no point in throttling generation of signals in that case. */
2272 if (MANAGER_IS_RELOADING(m) || m->send_reloading_done || m->pending_reload_message)
2273 budget = UINT_MAX; /* infinite budget in this case */
2274 else {
2275 /* Anything to do at all? */
2276 if (!m->dbus_unit_queue && !m->dbus_job_queue)
2277 return 0;
2278
2279 /* Do we have overly many messages queued at the moment? If so, let's not enqueue more on top, let's
2280 * sit this cycle out, and process things in a later cycle when the queues got a bit emptier. */
2281 if (manager_bus_n_queued_write(m) > MANAGER_BUS_BUSY_THRESHOLD)
2282 return 0;
2283
2284 /* Only process a certain number of units/jobs per event loop iteration. Even if the bus queue wasn't
2285 * overly full before this call we shouldn't increase it in size too wildly in one step, and we
2286 * shouldn't monopolize CPU time with generating these messages. Note the difference in counting of
2287 * this "budget" and the "threshold" above: the "budget" is decreased only once per generated message,
2288 * regardless how many buses/direct connections it is enqueued on, while the "threshold" is applied to
2289 * each queued instance of bus message, i.e. if the same message is enqueued to five buses/direct
2290 * connections it will be counted five times. This difference in counting ("references"
2291 * vs. "instances") is primarily a result of the fact that it's easier to implement it this way,
2292 * however it also reflects the thinking that the "threshold" should put a limit on used queue memory,
2293 * i.e. space, while the "budget" should put a limit on time. Also note that the "threshold" is
2294 * currently chosen much higher than the "budget". */
2295 budget = MANAGER_BUS_MESSAGE_BUDGET;
2296 }
2297
2298 while (budget != 0 && (u = m->dbus_unit_queue)) {
2299
2300 assert(u->in_dbus_queue);
2301
2302 bus_unit_send_change_signal(u);
2303 n++;
2304
2305 if (budget != UINT_MAX)
2306 budget--;
2307 }
2308
2309 while (budget != 0 && (j = m->dbus_job_queue)) {
2310 assert(j->in_dbus_queue);
2311
2312 bus_job_send_change_signal(j);
2313 n++;
2314
2315 if (budget != UINT_MAX)
2316 budget--;
2317 }
2318
2319 if (m->send_reloading_done) {
2320 m->send_reloading_done = false;
2321 bus_manager_send_reloading(m, false);
2322 n++;
2323 }
2324
2325 if (m->pending_reload_message) {
2326 bus_send_pending_reload_message(m);
2327 n++;
2328 }
2329
2330 return n;
2331 }
2332
2333 static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
2334 Manager *m = userdata;
2335 char buf[PATH_MAX];
2336 ssize_t n;
2337
2338 n = recv(fd, buf, sizeof(buf), 0);
2339 if (n < 0)
2340 return log_error_errno(errno, "Failed to read cgroups agent message: %m");
2341 if (n == 0) {
2342 log_error("Got zero-length cgroups agent message, ignoring.");
2343 return 0;
2344 }
2345 if ((size_t) n >= sizeof(buf)) {
2346 log_error("Got overly long cgroups agent message, ignoring.");
2347 return 0;
2348 }
2349
2350 if (memchr(buf, 0, n)) {
2351 log_error("Got cgroups agent message with embedded NUL byte, ignoring.");
2352 return 0;
2353 }
2354 buf[n] = 0;
2355
2356 manager_notify_cgroup_empty(m, buf);
2357 (void) bus_forward_agent_released(m, buf);
2358
2359 return 0;
2360 }
2361
2362 static bool manager_process_barrier_fd(char * const *tags, FDSet *fds) {
2363
2364 /* nothing else must be sent when using BARRIER=1 */
2365 if (strv_contains(tags, "BARRIER=1")) {
2366 if (strv_length(tags) == 1) {
2367 if (fdset_size(fds) != 1)
2368 log_warning("Got incorrect number of fds with BARRIER=1, closing them.");
2369 } else
2370 log_warning("Extra notification messages sent with BARRIER=1, ignoring everything.");
2371
2372 /* Drop the message if BARRIER=1 was found */
2373 return true;
2374 }
2375
2376 return false;
2377 }
2378
2379 static void manager_invoke_notify_message(
2380 Manager *m,
2381 Unit *u,
2382 const struct ucred *ucred,
2383 char * const *tags,
2384 FDSet *fds) {
2385
2386 assert(m);
2387 assert(u);
2388 assert(ucred);
2389 assert(tags);
2390
2391 if (u->notifygen == m->notifygen) /* Already invoked on this same unit in this same iteration? */
2392 return;
2393 u->notifygen = m->notifygen;
2394
2395 if (UNIT_VTABLE(u)->notify_message)
2396 UNIT_VTABLE(u)->notify_message(u, ucred, tags, fds);
2397
2398 else if (DEBUG_LOGGING) {
2399 _cleanup_free_ char *buf = NULL, *x = NULL, *y = NULL;
2400
2401 buf = strv_join(tags, ", ");
2402 if (buf)
2403 x = ellipsize(buf, 20, 90);
2404 if (x)
2405 y = cescape(x);
2406
2407 log_unit_debug(u, "Got notification message \"%s\", ignoring.", strnull(y));
2408 }
2409 }
2410
2411 static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
2412
2413 _cleanup_fdset_free_ FDSet *fds = NULL;
2414 Manager *m = userdata;
2415 char buf[NOTIFY_BUFFER_MAX+1];
2416 struct iovec iovec = {
2417 .iov_base = buf,
2418 .iov_len = sizeof(buf)-1,
2419 };
2420 CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(struct ucred)) +
2421 CMSG_SPACE(sizeof(int) * NOTIFY_FD_MAX)) control;
2422 struct msghdr msghdr = {
2423 .msg_iov = &iovec,
2424 .msg_iovlen = 1,
2425 .msg_control = &control,
2426 .msg_controllen = sizeof(control),
2427 };
2428
2429 struct cmsghdr *cmsg;
2430 struct ucred *ucred = NULL;
2431 _cleanup_free_ Unit **array_copy = NULL;
2432 _cleanup_strv_free_ char **tags = NULL;
2433 Unit *u1, *u2, **array;
2434 int r, *fd_array = NULL;
2435 size_t n_fds = 0;
2436 bool found = false;
2437 ssize_t n;
2438
2439 assert(m);
2440 assert(m->notify_fd == fd);
2441
2442 if (revents != EPOLLIN) {
2443 log_warning("Got unexpected poll event for notify fd.");
2444 return 0;
2445 }
2446
2447 n = recvmsg_safe(m->notify_fd, &msghdr, MSG_DONTWAIT|MSG_CMSG_CLOEXEC|MSG_TRUNC);
2448 if (n < 0) {
2449 if (ERRNO_IS_TRANSIENT(n))
2450 return 0; /* Spurious wakeup, try again */
2451 if (n == -EXFULL) {
2452 log_warning("Got message with truncated control data (too many fds sent?), ignoring.");
2453 return 0;
2454 }
2455 /* If this is any other, real error, then let's stop processing this socket. This of course
2456 * means we won't take notification messages anymore, but that's still better than busy
2457 * looping around this: being woken up over and over again but being unable to actually read
2458 * the message off the socket. */
2459 return log_error_errno(n, "Failed to receive notification message: %m");
2460 }
2461
2462 CMSG_FOREACH(cmsg, &msghdr) {
2463 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
2464
2465 assert(!fd_array);
2466 fd_array = (int*) CMSG_DATA(cmsg);
2467 n_fds = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int);
2468
2469 } else if (cmsg->cmsg_level == SOL_SOCKET &&
2470 cmsg->cmsg_type == SCM_CREDENTIALS &&
2471 cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred))) {
2472
2473 assert(!ucred);
2474 ucred = (struct ucred*) CMSG_DATA(cmsg);
2475 }
2476 }
2477
2478 if (n_fds > 0) {
2479 assert(fd_array);
2480
2481 r = fdset_new_array(&fds, fd_array, n_fds);
2482 if (r < 0) {
2483 close_many(fd_array, n_fds);
2484 log_oom();
2485 return 0;
2486 }
2487 }
2488
2489 if (!ucred || !pid_is_valid(ucred->pid)) {
2490 log_warning("Received notify message without valid credentials. Ignoring.");
2491 return 0;
2492 }
2493
2494 if ((size_t) n >= sizeof(buf) || (msghdr.msg_flags & MSG_TRUNC)) {
2495 log_warning("Received notify message exceeded maximum size. Ignoring.");
2496 return 0;
2497 }
2498
2499 /* As extra safety check, let's make sure the string we get doesn't contain embedded NUL bytes. We permit one
2500 * trailing NUL byte in the message, but don't expect it. */
2501 if (n > 1 && memchr(buf, 0, n-1)) {
2502 log_warning("Received notify message with embedded NUL bytes. Ignoring.");
2503 return 0;
2504 }
2505
2506 /* Make sure it's NUL-terminated, then parse it to obtain the tags list */
2507 buf[n] = 0;
2508 tags = strv_split_newlines(buf);
2509 if (!tags) {
2510 log_oom();
2511 return 0;
2512 }
2513
2514 /* possibly a barrier fd, let's see */
2515 if (manager_process_barrier_fd(tags, fds))
2516 return 0;
2517
2518 /* Increase the generation counter used for filtering out duplicate unit invocations. */
2519 m->notifygen++;
2520
2521 /* Notify every unit that might be interested, which might be multiple. */
2522 u1 = manager_get_unit_by_pid_cgroup(m, ucred->pid);
2523 u2 = hashmap_get(m->watch_pids, PID_TO_PTR(ucred->pid));
2524 array = hashmap_get(m->watch_pids, PID_TO_PTR(-ucred->pid));
2525 if (array) {
2526 size_t k = 0;
2527
2528 while (array[k])
2529 k++;
2530
2531 array_copy = newdup(Unit*, array, k+1);
2532 if (!array_copy)
2533 log_oom();
2534 }
2535 /* And now invoke the per-unit callbacks. Note that manager_invoke_notify_message() will handle duplicate units
2536 * make sure we only invoke each unit's handler once. */
2537 if (u1) {
2538 manager_invoke_notify_message(m, u1, ucred, tags, fds);
2539 found = true;
2540 }
2541 if (u2) {
2542 manager_invoke_notify_message(m, u2, ucred, tags, fds);
2543 found = true;
2544 }
2545 if (array_copy)
2546 for (size_t i = 0; array_copy[i]; i++) {
2547 manager_invoke_notify_message(m, array_copy[i], ucred, tags, fds);
2548 found = true;
2549 }
2550
2551 if (!found)
2552 log_warning("Cannot find unit for notify message of PID "PID_FMT", ignoring.", ucred->pid);
2553
2554 if (fdset_size(fds) > 0)
2555 log_warning("Got extra auxiliary fds with notification message, closing them.");
2556
2557 return 0;
2558 }
2559
2560 static void manager_invoke_sigchld_event(
2561 Manager *m,
2562 Unit *u,
2563 const siginfo_t *si) {
2564
2565 assert(m);
2566 assert(u);
2567 assert(si);
2568
2569 /* Already invoked the handler of this unit in this iteration? Then don't process this again */
2570 if (u->sigchldgen == m->sigchldgen)
2571 return;
2572 u->sigchldgen = m->sigchldgen;
2573
2574 log_unit_debug(u, "Child "PID_FMT" belongs to %s.", si->si_pid, u->id);
2575 unit_unwatch_pid(u, si->si_pid);
2576
2577 if (UNIT_VTABLE(u)->sigchld_event)
2578 UNIT_VTABLE(u)->sigchld_event(u, si->si_pid, si->si_code, si->si_status);
2579 }
2580
2581 static int manager_dispatch_sigchld(sd_event_source *source, void *userdata) {
2582 Manager *m = userdata;
2583 siginfo_t si = {};
2584 int r;
2585
2586 assert(source);
2587 assert(m);
2588
2589 /* First we call waitid() for a PID and do not reap the zombie. That way we can still access /proc/$PID for it
2590 * while it is a zombie. */
2591
2592 if (waitid(P_ALL, 0, &si, WEXITED|WNOHANG|WNOWAIT) < 0) {
2593
2594 if (errno != ECHILD)
2595 log_error_errno(errno, "Failed to peek for child with waitid(), ignoring: %m");
2596
2597 goto turn_off;
2598 }
2599
2600 if (si.si_pid <= 0)
2601 goto turn_off;
2602
2603 if (IN_SET(si.si_code, CLD_EXITED, CLD_KILLED, CLD_DUMPED)) {
2604 _cleanup_free_ Unit **array_copy = NULL;
2605 _cleanup_free_ char *name = NULL;
2606 Unit *u1, *u2, **array;
2607
2608 (void) get_process_comm(si.si_pid, &name);
2609
2610 log_debug("Child "PID_FMT" (%s) died (code=%s, status=%i/%s)",
2611 si.si_pid, strna(name),
2612 sigchld_code_to_string(si.si_code),
2613 si.si_status,
2614 strna(si.si_code == CLD_EXITED
2615 ? exit_status_to_string(si.si_status, EXIT_STATUS_FULL)
2616 : signal_to_string(si.si_status)));
2617
2618 /* Increase the generation counter used for filtering out duplicate unit invocations */
2619 m->sigchldgen++;
2620
2621 /* And now figure out the unit this belongs to, it might be multiple... */
2622 u1 = manager_get_unit_by_pid_cgroup(m, si.si_pid);
2623 u2 = hashmap_get(m->watch_pids, PID_TO_PTR(si.si_pid));
2624 array = hashmap_get(m->watch_pids, PID_TO_PTR(-si.si_pid));
2625 if (array) {
2626 size_t n = 0;
2627
2628 /* Count how many entries the array has */
2629 while (array[n])
2630 n++;
2631
2632 /* Make a copy of the array so that we don't trip up on the array changing beneath us */
2633 array_copy = newdup(Unit*, array, n+1);
2634 if (!array_copy)
2635 log_oom();
2636 }
2637
2638 /* Finally, execute them all. Note that u1, u2 and the array might contain duplicates, but
2639 * that's fine, manager_invoke_sigchld_event() will ensure we only invoke the handlers once for
2640 * each iteration. */
2641 if (u1) {
2642 /* We check for oom condition, in case we got SIGCHLD before the oom notification.
2643 * We only do this for the cgroup the PID belonged to. */
2644 (void) unit_check_oom(u1);
2645
2646 /* This only logs for now. In the future when the interface for kills/notifications
2647 * is more stable we can extend service results table similar to how kernel oom kills
2648 * are managed. */
2649 (void) unit_check_oomd_kill(u1);
2650
2651 manager_invoke_sigchld_event(m, u1, &si);
2652 }
2653 if (u2)
2654 manager_invoke_sigchld_event(m, u2, &si);
2655 if (array_copy)
2656 for (size_t i = 0; array_copy[i]; i++)
2657 manager_invoke_sigchld_event(m, array_copy[i], &si);
2658 }
2659
2660 /* And now, we actually reap the zombie. */
2661 if (waitid(P_PID, si.si_pid, &si, WEXITED) < 0) {
2662 log_error_errno(errno, "Failed to dequeue child, ignoring: %m");
2663 return 0;
2664 }
2665
2666 return 0;
2667
2668 turn_off:
2669 /* All children processed for now, turn off event source */
2670
2671 r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_OFF);
2672 if (r < 0)
2673 return log_error_errno(r, "Failed to disable SIGCHLD event source: %m");
2674
2675 return 0;
2676 }
2677
2678 static void manager_start_special(Manager *m, const char *name, JobMode mode) {
2679 Job *job;
2680
2681 if (manager_add_job_by_name_and_warn(m, JOB_START, name, mode, NULL, &job) < 0)
2682 return;
2683
2684 const char *s = unit_status_string(job->unit, NULL);
2685
2686 log_info("Activating special unit %s...", s);
2687
2688 sd_notifyf(false,
2689 "STATUS=Activating special unit %s...", s);
2690 m->status_ready = false;
2691 }
2692
2693 static void manager_handle_ctrl_alt_del(Manager *m) {
2694 /* If the user presses C-A-D more than
2695 * 7 times within 2s, we reboot/shutdown immediately,
2696 * unless it was disabled in system.conf */
2697
2698 if (ratelimit_below(&m->ctrl_alt_del_ratelimit) || m->cad_burst_action == EMERGENCY_ACTION_NONE)
2699 manager_start_special(m, SPECIAL_CTRL_ALT_DEL_TARGET, JOB_REPLACE_IRREVERSIBLY);
2700 else
2701 emergency_action(m, m->cad_burst_action, EMERGENCY_ACTION_WARN, NULL, -1,
2702 "Ctrl-Alt-Del was pressed more than 7 times within 2s");
2703 }
2704
2705 static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
2706 Manager *m = userdata;
2707 ssize_t n;
2708 struct signalfd_siginfo sfsi;
2709 int r;
2710
2711 assert(m);
2712 assert(m->signal_fd == fd);
2713
2714 if (revents != EPOLLIN) {
2715 log_warning("Got unexpected events from signal file descriptor.");
2716 return 0;
2717 }
2718
2719 n = read(m->signal_fd, &sfsi, sizeof(sfsi));
2720 if (n < 0) {
2721 if (ERRNO_IS_TRANSIENT(errno))
2722 return 0;
2723
2724 /* We return an error here, which will kill this handler,
2725 * to avoid a busy loop on read error. */
2726 return log_error_errno(errno, "Reading from signal fd failed: %m");
2727 }
2728 if (n != sizeof(sfsi)) {
2729 log_warning("Truncated read from signal fd (%zu bytes), ignoring!", n);
2730 return 0;
2731 }
2732
2733 log_received_signal(sfsi.ssi_signo == SIGCHLD ||
2734 (sfsi.ssi_signo == SIGTERM && MANAGER_IS_USER(m))
2735 ? LOG_DEBUG : LOG_INFO,
2736 &sfsi);
2737
2738 switch (sfsi.ssi_signo) {
2739
2740 case SIGCHLD:
2741 r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_ON);
2742 if (r < 0)
2743 log_warning_errno(r, "Failed to enable SIGCHLD event source, ignoring: %m");
2744
2745 break;
2746
2747 case SIGTERM:
2748 if (MANAGER_IS_SYSTEM(m)) {
2749 /* This is for compatibility with the original sysvinit */
2750 if (verify_run_space_and_log("Refusing to reexecute") < 0)
2751 break;
2752
2753 m->objective = MANAGER_REEXECUTE;
2754 break;
2755 }
2756
2757 _fallthrough_;
2758 case SIGINT:
2759 if (MANAGER_IS_SYSTEM(m))
2760 manager_handle_ctrl_alt_del(m);
2761 else
2762 manager_start_special(m, SPECIAL_EXIT_TARGET, JOB_REPLACE_IRREVERSIBLY);
2763 break;
2764
2765 case SIGWINCH:
2766 /* This is a nop on non-init */
2767 if (MANAGER_IS_SYSTEM(m))
2768 manager_start_special(m, SPECIAL_KBREQUEST_TARGET, JOB_REPLACE);
2769
2770 break;
2771
2772 case SIGPWR:
2773 /* This is a nop on non-init */
2774 if (MANAGER_IS_SYSTEM(m))
2775 manager_start_special(m, SPECIAL_SIGPWR_TARGET, JOB_REPLACE);
2776
2777 break;
2778
2779 case SIGUSR1:
2780 if (manager_dbus_is_running(m, false)) {
2781 log_info("Trying to reconnect to bus...");
2782
2783 (void) bus_init_api(m);
2784
2785 if (MANAGER_IS_SYSTEM(m))
2786 (void) bus_init_system(m);
2787 } else
2788 manager_start_special(m, SPECIAL_DBUS_SERVICE, JOB_REPLACE);
2789
2790 break;
2791
2792 case SIGUSR2: {
2793 _cleanup_free_ char *dump = NULL;
2794
2795 r = manager_get_dump_string(m, &dump);
2796 if (r < 0) {
2797 log_warning_errno(errno, "Failed to acquire manager dump: %m");
2798 break;
2799 }
2800
2801 log_dump(LOG_INFO, dump);
2802 break;
2803 }
2804
2805 case SIGHUP:
2806 if (verify_run_space_and_log("Refusing to reload") < 0)
2807 break;
2808
2809 m->objective = MANAGER_RELOAD;
2810 break;
2811
2812 default: {
2813
2814 /* Starting SIGRTMIN+0 */
2815 static const struct {
2816 const char *target;
2817 JobMode mode;
2818 } target_table[] = {
2819 [0] = { SPECIAL_DEFAULT_TARGET, JOB_ISOLATE },
2820 [1] = { SPECIAL_RESCUE_TARGET, JOB_ISOLATE },
2821 [2] = { SPECIAL_EMERGENCY_TARGET, JOB_ISOLATE },
2822 [3] = { SPECIAL_HALT_TARGET, JOB_REPLACE_IRREVERSIBLY },
2823 [4] = { SPECIAL_POWEROFF_TARGET, JOB_REPLACE_IRREVERSIBLY },
2824 [5] = { SPECIAL_REBOOT_TARGET, JOB_REPLACE_IRREVERSIBLY },
2825 [6] = { SPECIAL_KEXEC_TARGET, JOB_REPLACE_IRREVERSIBLY },
2826 };
2827
2828 /* Starting SIGRTMIN+13, so that target halt and system halt are 10 apart */
2829 static const ManagerObjective objective_table[] = {
2830 [0] = MANAGER_HALT,
2831 [1] = MANAGER_POWEROFF,
2832 [2] = MANAGER_REBOOT,
2833 [3] = MANAGER_KEXEC,
2834 };
2835
2836 if ((int) sfsi.ssi_signo >= SIGRTMIN+0 &&
2837 (int) sfsi.ssi_signo < SIGRTMIN+(int) ELEMENTSOF(target_table)) {
2838 int idx = (int) sfsi.ssi_signo - SIGRTMIN;
2839 manager_start_special(m, target_table[idx].target, target_table[idx].mode);
2840 break;
2841 }
2842
2843 if ((int) sfsi.ssi_signo >= SIGRTMIN+13 &&
2844 (int) sfsi.ssi_signo < SIGRTMIN+13+(int) ELEMENTSOF(objective_table)) {
2845 m->objective = objective_table[sfsi.ssi_signo - SIGRTMIN - 13];
2846 break;
2847 }
2848
2849 switch (sfsi.ssi_signo - SIGRTMIN) {
2850
2851 case 20:
2852 manager_override_show_status(m, SHOW_STATUS_YES, "signal");
2853 break;
2854
2855 case 21:
2856 manager_override_show_status(m, SHOW_STATUS_NO, "signal");
2857 break;
2858
2859 case 22:
2860 manager_override_log_level(m, LOG_DEBUG);
2861 break;
2862
2863 case 23:
2864 manager_restore_original_log_level(m);
2865 break;
2866
2867 case 24:
2868 if (MANAGER_IS_USER(m)) {
2869 m->objective = MANAGER_EXIT;
2870 return 0;
2871 }
2872
2873 /* This is a nop on init */
2874 break;
2875
2876 case 25:
2877 m->objective = MANAGER_REEXECUTE;
2878 break;
2879
2880 case 26:
2881 case 29: /* compatibility: used to be mapped to LOG_TARGET_SYSLOG_OR_KMSG */
2882 manager_restore_original_log_target(m);
2883 break;
2884
2885 case 27:
2886 manager_override_log_target(m, LOG_TARGET_CONSOLE);
2887 break;
2888
2889 case 28:
2890 manager_override_log_target(m, LOG_TARGET_KMSG);
2891 break;
2892
2893 default:
2894 log_warning("Got unhandled signal <%s>.", signal_to_string(sfsi.ssi_signo));
2895 }
2896 }}
2897
2898 return 0;
2899 }
2900
2901 static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
2902 Manager *m = userdata;
2903 Unit *u;
2904
2905 assert(m);
2906 assert(m->time_change_fd == fd);
2907
2908 log_struct(LOG_DEBUG,
2909 "MESSAGE_ID=" SD_MESSAGE_TIME_CHANGE_STR,
2910 LOG_MESSAGE("Time has been changed"));
2911
2912 /* Restart the watch */
2913 (void) manager_setup_time_change(m);
2914
2915 HASHMAP_FOREACH(u, m->units)
2916 if (UNIT_VTABLE(u)->time_change)
2917 UNIT_VTABLE(u)->time_change(u);
2918
2919 return 0;
2920 }
2921
2922 static int manager_dispatch_timezone_change(
2923 sd_event_source *source,
2924 const struct inotify_event *e,
2925 void *userdata) {
2926
2927 Manager *m = userdata;
2928 int changed;
2929 Unit *u;
2930
2931 assert(m);
2932
2933 log_debug("inotify event for /etc/localtime");
2934
2935 changed = manager_read_timezone_stat(m);
2936 if (changed <= 0)
2937 return changed;
2938
2939 /* Something changed, restart the watch, to ensure we watch the new /etc/localtime if it changed */
2940 (void) manager_setup_timezone_change(m);
2941
2942 /* Read the new timezone */
2943 tzset();
2944
2945 log_debug("Timezone has been changed (now: %s).", tzname[daylight]);
2946
2947 HASHMAP_FOREACH(u, m->units)
2948 if (UNIT_VTABLE(u)->timezone_change)
2949 UNIT_VTABLE(u)->timezone_change(u);
2950
2951 return 0;
2952 }
2953
2954 static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
2955 Manager *m = userdata;
2956
2957 assert(m);
2958 assert(m->idle_pipe[2] == fd);
2959
2960 /* There's at least one Type=idle child that just gave up on us waiting for the boot process to complete. Let's
2961 * now turn off any further console output if there's at least one service that needs console access, so that
2962 * from now on our own output should not spill into that service's output anymore. After all, we support
2963 * Type=idle only to beautify console output and it generally is set on services that want to own the console
2964 * exclusively without our interference. */
2965 m->no_console_output = m->n_on_console > 0;
2966
2967 /* Acknowledge the child's request, and let all all other children know too that they shouldn't wait any longer
2968 * by closing the pipes towards them, which is what they are waiting for. */
2969 manager_close_idle_pipe(m);
2970
2971 return 0;
2972 }
2973
2974 static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata) {
2975 Manager *m = userdata;
2976 int r;
2977
2978 assert(m);
2979 assert(source);
2980
2981 manager_print_jobs_in_progress(m);
2982
2983 r = sd_event_source_set_time_relative(source, JOBS_IN_PROGRESS_PERIOD_USEC);
2984 if (r < 0)
2985 return r;
2986
2987 return sd_event_source_set_enabled(source, SD_EVENT_ONESHOT);
2988 }
2989
2990 int manager_loop(Manager *m) {
2991 RateLimit rl = { .interval = 1*USEC_PER_SEC, .burst = 50000 };
2992 int r;
2993
2994 assert(m);
2995 assert(m->objective == MANAGER_OK); /* Ensure manager_startup() has been called */
2996
2997 manager_check_finished(m);
2998
2999 /* There might still be some zombies hanging around from before we were exec()'ed. Let's reap them. */
3000 r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_ON);
3001 if (r < 0)
3002 return log_error_errno(r, "Failed to enable SIGCHLD event source: %m");
3003
3004 while (m->objective == MANAGER_OK) {
3005
3006 (void) watchdog_ping();
3007
3008 if (!ratelimit_below(&rl)) {
3009 /* Yay, something is going seriously wrong, pause a little */
3010 log_warning("Looping too fast. Throttling execution a little.");
3011 sleep(1);
3012 }
3013
3014 if (manager_dispatch_load_queue(m) > 0)
3015 continue;
3016
3017 if (manager_dispatch_gc_job_queue(m) > 0)
3018 continue;
3019
3020 if (manager_dispatch_gc_unit_queue(m) > 0)
3021 continue;
3022
3023 if (manager_dispatch_cleanup_queue(m) > 0)
3024 continue;
3025
3026 if (manager_dispatch_cgroup_realize_queue(m) > 0)
3027 continue;
3028
3029 if (manager_dispatch_start_when_upheld_queue(m) > 0)
3030 continue;
3031
3032 if (manager_dispatch_stop_when_bound_queue(m) > 0)
3033 continue;
3034
3035 if (manager_dispatch_stop_when_unneeded_queue(m) > 0)
3036 continue;
3037
3038 if (manager_dispatch_dbus_queue(m) > 0)
3039 continue;
3040
3041 /* Sleep for watchdog runtime wait time */
3042 r = sd_event_run(m->event, watchdog_runtime_wait());
3043 if (r < 0)
3044 return log_error_errno(r, "Failed to run event loop: %m");
3045 }
3046
3047 return m->objective;
3048 }
3049
3050 int manager_load_unit_from_dbus_path(Manager *m, const char *s, sd_bus_error *e, Unit **_u) {
3051 _cleanup_free_ char *n = NULL;
3052 sd_id128_t invocation_id;
3053 Unit *u;
3054 int r;
3055
3056 assert(m);
3057 assert(s);
3058 assert(_u);
3059
3060 r = unit_name_from_dbus_path(s, &n);
3061 if (r < 0)
3062 return r;
3063
3064 /* Permit addressing units by invocation ID: if the passed bus path is suffixed by a 128bit ID then we use it
3065 * as invocation ID. */
3066 r = sd_id128_from_string(n, &invocation_id);
3067 if (r >= 0) {
3068 u = hashmap_get(m->units_by_invocation_id, &invocation_id);
3069 if (u) {
3070 *_u = u;
3071 return 0;
3072 }
3073
3074 return sd_bus_error_setf(e, BUS_ERROR_NO_UNIT_FOR_INVOCATION_ID,
3075 "No unit with the specified invocation ID " SD_ID128_FORMAT_STR " known.",
3076 SD_ID128_FORMAT_VAL(invocation_id));
3077 }
3078
3079 /* If this didn't work, we check if this is a unit name */
3080 if (!unit_name_is_valid(n, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) {
3081 _cleanup_free_ char *nn = NULL;
3082
3083 nn = cescape(n);
3084 return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS,
3085 "Unit name %s is neither a valid invocation ID nor unit name.", strnull(nn));
3086 }
3087
3088 r = manager_load_unit(m, n, NULL, e, &u);
3089 if (r < 0)
3090 return r;
3091
3092 *_u = u;
3093 return 0;
3094 }
3095
3096 int manager_get_job_from_dbus_path(Manager *m, const char *s, Job **_j) {
3097 const char *p;
3098 unsigned id;
3099 Job *j;
3100 int r;
3101
3102 assert(m);
3103 assert(s);
3104 assert(_j);
3105
3106 p = startswith(s, "/org/freedesktop/systemd1/job/");
3107 if (!p)
3108 return -EINVAL;
3109
3110 r = safe_atou(p, &id);
3111 if (r < 0)
3112 return r;
3113
3114 j = manager_get_job(m, id);
3115 if (!j)
3116 return -ENOENT;
3117
3118 *_j = j;
3119
3120 return 0;
3121 }
3122
3123 void manager_send_unit_audit(Manager *m, Unit *u, int type, bool success) {
3124
3125 #if HAVE_AUDIT
3126 _cleanup_free_ char *p = NULL;
3127 const char *msg;
3128 int audit_fd, r;
3129
3130 if (!MANAGER_IS_SYSTEM(m))
3131 return;
3132
3133 audit_fd = get_audit_fd();
3134 if (audit_fd < 0)
3135 return;
3136
3137 /* Don't generate audit events if the service was already
3138 * started and we're just deserializing */
3139 if (MANAGER_IS_RELOADING(m))
3140 return;
3141
3142 if (u->type != UNIT_SERVICE)
3143 return;
3144
3145 r = unit_name_to_prefix_and_instance(u->id, &p);
3146 if (r < 0) {
3147 log_error_errno(r, "Failed to extract prefix and instance of unit name: %m");
3148 return;
3149 }
3150
3151 msg = strjoina("unit=", p);
3152 if (audit_log_user_comm_message(audit_fd, type, msg, "systemd", NULL, NULL, NULL, success) < 0) {
3153 if (errno == EPERM)
3154 /* We aren't allowed to send audit messages?
3155 * Then let's not retry again. */
3156 close_audit_fd();
3157 else
3158 log_warning_errno(errno, "Failed to send audit message: %m");
3159 }
3160 #endif
3161
3162 }
3163
3164 void manager_send_unit_plymouth(Manager *m, Unit *u) {
3165 static const union sockaddr_union sa = PLYMOUTH_SOCKET;
3166 _cleanup_free_ char *message = NULL;
3167 _cleanup_close_ int fd = -1;
3168 int n = 0;
3169
3170 /* Don't generate plymouth events if the service was already
3171 * started and we're just deserializing */
3172 if (MANAGER_IS_RELOADING(m))
3173 return;
3174
3175 if (!MANAGER_IS_SYSTEM(m))
3176 return;
3177
3178 if (detect_container() > 0)
3179 return;
3180
3181 if (!IN_SET(u->type, UNIT_SERVICE, UNIT_MOUNT, UNIT_SWAP))
3182 return;
3183
3184 /* We set SOCK_NONBLOCK here so that we rather drop the
3185 * message then wait for plymouth */
3186 fd = socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
3187 if (fd < 0) {
3188 log_error_errno(errno, "socket() failed: %m");
3189 return;
3190 }
3191
3192 if (connect(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)) < 0) {
3193 if (!IN_SET(errno, EAGAIN, ENOENT) && !ERRNO_IS_DISCONNECT(errno))
3194 log_error_errno(errno, "connect() failed: %m");
3195 return;
3196 }
3197
3198 if (asprintf(&message, "U\002%c%s%n", (int) (strlen(u->id) + 1), u->id, &n) < 0)
3199 return (void) log_oom();
3200
3201 errno = 0;
3202 if (write(fd, message, n + 1) != n + 1)
3203 if (!IN_SET(errno, EAGAIN, ENOENT) && !ERRNO_IS_DISCONNECT(errno))
3204 log_error_errno(errno, "Failed to write Plymouth message: %m");
3205 }
3206
3207 usec_t manager_get_watchdog(Manager *m, WatchdogType t) {
3208 assert(m);
3209
3210 if (MANAGER_IS_USER(m))
3211 return USEC_INFINITY;
3212
3213 if (timestamp_is_set(m->watchdog_overridden[t]))
3214 return m->watchdog_overridden[t];
3215
3216 return m->watchdog[t];
3217 }
3218
3219 void manager_set_watchdog(Manager *m, WatchdogType t, usec_t timeout) {
3220
3221 assert(m);
3222
3223 if (MANAGER_IS_USER(m))
3224 return;
3225
3226 if (m->watchdog[t] == timeout)
3227 return;
3228
3229 if (t == WATCHDOG_RUNTIME)
3230 if (!timestamp_is_set(m->watchdog_overridden[WATCHDOG_RUNTIME]))
3231 (void) watchdog_setup(timeout);
3232
3233 m->watchdog[t] = timeout;
3234 }
3235
3236 int manager_override_watchdog(Manager *m, WatchdogType t, usec_t timeout) {
3237
3238 assert(m);
3239
3240 if (MANAGER_IS_USER(m))
3241 return 0;
3242
3243 if (m->watchdog_overridden[t] == timeout)
3244 return 0;
3245
3246 if (t == WATCHDOG_RUNTIME) {
3247 usec_t usec = timestamp_is_set(timeout) ? timeout : m->watchdog[t];
3248
3249 (void) watchdog_setup(usec);
3250 }
3251
3252 m->watchdog_overridden[t] = timeout;
3253 return 0;
3254 }
3255
3256 int manager_reload(Manager *m) {
3257 _unused_ _cleanup_(manager_reloading_stopp) Manager *reloading = NULL;
3258 _cleanup_fdset_free_ FDSet *fds = NULL;
3259 _cleanup_fclose_ FILE *f = NULL;
3260 int r;
3261
3262 assert(m);
3263
3264 r = manager_open_serialization(m, &f);
3265 if (r < 0)
3266 return log_error_errno(r, "Failed to create serialization file: %m");
3267
3268 fds = fdset_new();
3269 if (!fds)
3270 return log_oom();
3271
3272 /* We are officially in reload mode from here on. */
3273 reloading = manager_reloading_start(m);
3274
3275 r = manager_serialize(m, f, fds, false);
3276 if (r < 0)
3277 return r;
3278
3279 if (fseeko(f, 0, SEEK_SET) < 0)
3280 return log_error_errno(errno, "Failed to seek to beginning of serialization: %m");
3281
3282 /* 💀 This is the point of no return, from here on there is no way back. 💀 */
3283 reloading = NULL;
3284
3285 bus_manager_send_reloading(m, true);
3286
3287 /* Start by flushing out all jobs and units, all generated units, all runtime environments, all dynamic users
3288 * and everything else that is worth flushing out. We'll get it all back from the serialization — if we need
3289 * it. */
3290
3291 manager_clear_jobs_and_units(m);
3292 lookup_paths_flush_generator(&m->lookup_paths);
3293 lookup_paths_free(&m->lookup_paths);
3294 exec_runtime_vacuum(m);
3295 dynamic_user_vacuum(m, false);
3296 m->uid_refs = hashmap_free(m->uid_refs);
3297 m->gid_refs = hashmap_free(m->gid_refs);
3298
3299 r = lookup_paths_init(&m->lookup_paths, m->unit_file_scope, 0, NULL);
3300 if (r < 0)
3301 log_warning_errno(r, "Failed to initialize path lookup table, ignoring: %m");
3302
3303 (void) manager_run_environment_generators(m);
3304 (void) manager_run_generators(m);
3305
3306 lookup_paths_log(&m->lookup_paths);
3307
3308 /* We flushed out generated files, for which we don't watch mtime, so we should flush the old map. */
3309 manager_free_unit_name_maps(m);
3310
3311 /* First, enumerate what we can from kernel and suchlike */
3312 manager_enumerate_perpetual(m);
3313 manager_enumerate(m);
3314
3315 /* Second, deserialize our stored data */
3316 r = manager_deserialize(m, f, fds);
3317 if (r < 0)
3318 log_warning_errno(r, "Deserialization failed, proceeding anyway: %m");
3319
3320 /* We don't need the serialization anymore */
3321 f = safe_fclose(f);
3322
3323 /* Re-register notify_fd as event source, and set up other sockets/communication channels we might need */
3324 (void) manager_setup_notify(m);
3325 (void) manager_setup_cgroups_agent(m);
3326 (void) manager_setup_user_lookup_fd(m);
3327
3328 /* Third, fire things up! */
3329 manager_coldplug(m);
3330
3331 /* Clean up runtime objects no longer referenced */
3332 manager_vacuum(m);
3333
3334 /* Clean up deserialized tracked clients */
3335 m->deserialized_subscribed = strv_free(m->deserialized_subscribed);
3336
3337 /* Consider the reload process complete now. */
3338 assert(m->n_reloading > 0);
3339 m->n_reloading--;
3340
3341 /* On manager reloading, device tag data should exists, thus, we should honor the results of device
3342 * enumeration. The flag should be always set correctly by the serialized data, but it may fail. So,
3343 * let's always set the flag here for safety. */
3344 m->honor_device_enumeration = true;
3345
3346 manager_ready(m);
3347
3348 m->send_reloading_done = true;
3349 return 0;
3350 }
3351
3352 void manager_reset_failed(Manager *m) {
3353 Unit *u;
3354
3355 assert(m);
3356
3357 HASHMAP_FOREACH(u, m->units)
3358 unit_reset_failed(u);
3359 }
3360
3361 bool manager_unit_inactive_or_pending(Manager *m, const char *name) {
3362 Unit *u;
3363
3364 assert(m);
3365 assert(name);
3366
3367 /* Returns true if the unit is inactive or going down */
3368 u = manager_get_unit(m, name);
3369 if (!u)
3370 return true;
3371
3372 return unit_inactive_or_pending(u);
3373 }
3374
3375 static void log_taint_string(Manager *m) {
3376 _cleanup_free_ char *taint = NULL;
3377
3378 assert(m);
3379
3380 if (MANAGER_IS_USER(m) || m->taint_logged)
3381 return;
3382
3383 m->taint_logged = true; /* only check for taint once */
3384
3385 taint = manager_taint_string(m);
3386 if (isempty(taint))
3387 return;
3388
3389 log_struct(LOG_NOTICE,
3390 LOG_MESSAGE("System is tainted: %s", taint),
3391 "TAINT=%s", taint,
3392 "MESSAGE_ID=" SD_MESSAGE_TAINTED_STR);
3393 }
3394
3395 static void manager_notify_finished(Manager *m) {
3396 usec_t firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec;
3397
3398 if (MANAGER_IS_TEST_RUN(m))
3399 return;
3400
3401 if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0) {
3402 char buf[FORMAT_TIMESPAN_MAX + STRLEN(" (firmware) + ") + FORMAT_TIMESPAN_MAX + STRLEN(" (loader) + ")]
3403 = {};
3404 char *p = buf;
3405 size_t size = sizeof buf;
3406
3407 /* Note that MANAGER_TIMESTAMP_KERNEL's monotonic value is always at 0, and
3408 * MANAGER_TIMESTAMP_FIRMWARE's and MANAGER_TIMESTAMP_LOADER's monotonic value should be considered
3409 * negative values. */
3410
3411 firmware_usec = m->timestamps[MANAGER_TIMESTAMP_FIRMWARE].monotonic - m->timestamps[MANAGER_TIMESTAMP_LOADER].monotonic;
3412 loader_usec = m->timestamps[MANAGER_TIMESTAMP_LOADER].monotonic - m->timestamps[MANAGER_TIMESTAMP_KERNEL].monotonic;
3413 userspace_usec = m->timestamps[MANAGER_TIMESTAMP_FINISH].monotonic - m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic;
3414 total_usec = m->timestamps[MANAGER_TIMESTAMP_FIRMWARE].monotonic + m->timestamps[MANAGER_TIMESTAMP_FINISH].monotonic;
3415
3416 if (firmware_usec > 0)
3417 size = strpcpyf(&p, size, "%s (firmware) + ", FORMAT_TIMESPAN(firmware_usec, USEC_PER_MSEC));
3418 if (loader_usec > 0)
3419 size = strpcpyf(&p, size, "%s (loader) + ", FORMAT_TIMESPAN(loader_usec, USEC_PER_MSEC));
3420
3421 if (dual_timestamp_is_set(&m->timestamps[MANAGER_TIMESTAMP_INITRD])) {
3422
3423 /* The initrd case on bare-metal */
3424 kernel_usec = m->timestamps[MANAGER_TIMESTAMP_INITRD].monotonic - m->timestamps[MANAGER_TIMESTAMP_KERNEL].monotonic;
3425 initrd_usec = m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic - m->timestamps[MANAGER_TIMESTAMP_INITRD].monotonic;
3426
3427 log_struct(LOG_INFO,
3428 "MESSAGE_ID=" SD_MESSAGE_STARTUP_FINISHED_STR,
3429 "KERNEL_USEC="USEC_FMT, kernel_usec,
3430 "INITRD_USEC="USEC_FMT, initrd_usec,
3431 "USERSPACE_USEC="USEC_FMT, userspace_usec,
3432 LOG_MESSAGE("Startup finished in %s%s (kernel) + %s (initrd) + %s (userspace) = %s.",
3433 buf,
3434 FORMAT_TIMESPAN(kernel_usec, USEC_PER_MSEC),
3435 FORMAT_TIMESPAN(initrd_usec, USEC_PER_MSEC),
3436 FORMAT_TIMESPAN(userspace_usec, USEC_PER_MSEC),
3437 FORMAT_TIMESPAN(total_usec, USEC_PER_MSEC)));
3438 } else {
3439 /* The initrd-less case on bare-metal */
3440
3441 kernel_usec = m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic - m->timestamps[MANAGER_TIMESTAMP_KERNEL].monotonic;
3442 initrd_usec = 0;
3443
3444 log_struct(LOG_INFO,
3445 "MESSAGE_ID=" SD_MESSAGE_STARTUP_FINISHED_STR,
3446 "KERNEL_USEC="USEC_FMT, kernel_usec,
3447 "USERSPACE_USEC="USEC_FMT, userspace_usec,
3448 LOG_MESSAGE("Startup finished in %s%s (kernel) + %s (userspace) = %s.",
3449 buf,
3450 FORMAT_TIMESPAN(kernel_usec, USEC_PER_MSEC),
3451 FORMAT_TIMESPAN(userspace_usec, USEC_PER_MSEC),
3452 FORMAT_TIMESPAN(total_usec, USEC_PER_MSEC)));
3453 }
3454 } else {
3455 /* The container and --user case */
3456 firmware_usec = loader_usec = initrd_usec = kernel_usec = 0;
3457 total_usec = userspace_usec = m->timestamps[MANAGER_TIMESTAMP_FINISH].monotonic - m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic;
3458
3459 log_struct(LOG_INFO,
3460 "MESSAGE_ID=" SD_MESSAGE_USER_STARTUP_FINISHED_STR,
3461 "USERSPACE_USEC="USEC_FMT, userspace_usec,
3462 LOG_MESSAGE("Startup finished in %s.",
3463 FORMAT_TIMESPAN(total_usec, USEC_PER_MSEC)));
3464 }
3465
3466 bus_manager_send_finished(m, firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec);
3467
3468 log_taint_string(m);
3469 }
3470
3471 static void user_manager_send_ready(Manager *m) {
3472 int r;
3473
3474 assert(m);
3475
3476 /* We send READY=1 on reaching basic.target only when running in --user mode. */
3477 if (!MANAGER_IS_USER(m) || m->ready_sent)
3478 return;
3479
3480 r = sd_notify(false,
3481 "READY=1\n"
3482 "STATUS=Reached " SPECIAL_BASIC_TARGET ".");
3483 if (r < 0)
3484 log_warning_errno(r, "Failed to send readiness notification, ignoring: %m");
3485
3486 m->ready_sent = true;
3487 m->status_ready = false;
3488 }
3489
3490 static void manager_send_ready(Manager *m) {
3491 int r;
3492
3493 if (m->ready_sent && m->status_ready)
3494 /* Skip the notification if nothing changed. */
3495 return;
3496
3497 r = sd_notify(false,
3498 "READY=1\n"
3499 "STATUS=Ready.");
3500 if (r < 0)
3501 log_full_errno(m->ready_sent ? LOG_DEBUG : LOG_WARNING, r,
3502 "Failed to send readiness notification, ignoring: %m");
3503
3504 m->ready_sent = m->status_ready = true;
3505 }
3506
3507 static void manager_check_basic_target(Manager *m) {
3508 Unit *u;
3509
3510 assert(m);
3511
3512 /* Small shortcut */
3513 if (m->ready_sent && m->taint_logged)
3514 return;
3515
3516 u = manager_get_unit(m, SPECIAL_BASIC_TARGET);
3517 if (!u || !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
3518 return;
3519
3520 /* For user managers, send out READY=1 as soon as we reach basic.target */
3521 user_manager_send_ready(m);
3522
3523 /* Log the taint string as soon as we reach basic.target */
3524 log_taint_string(m);
3525 }
3526
3527 void manager_check_finished(Manager *m) {
3528 assert(m);
3529
3530 if (MANAGER_IS_RELOADING(m))
3531 return;
3532
3533 /* Verify that we have entered the event loop already, and not left it again. */
3534 if (!MANAGER_IS_RUNNING(m))
3535 return;
3536
3537 manager_check_basic_target(m);
3538
3539 if (hashmap_size(m->jobs) > 0) {
3540 if (m->jobs_in_progress_event_source)
3541 /* Ignore any failure, this is only for feedback */
3542 (void) sd_event_source_set_time(m->jobs_in_progress_event_source,
3543 manager_watch_jobs_next_time(m));
3544 return;
3545 }
3546
3547 /* The jobs hashmap tends to grow a lot during boot, and then it's not reused until shutdown. Let's
3548 kill the hashmap if it is relatively large. */
3549 if (hashmap_buckets(m->jobs) > hashmap_size(m->units) / 10)
3550 m->jobs = hashmap_free(m->jobs);
3551
3552 manager_send_ready(m);
3553
3554 if (MANAGER_IS_FINISHED(m))
3555 return;
3556
3557 manager_flip_auto_status(m, false, "boot finished");
3558
3559 /* Notify Type=idle units that we are done now */
3560 manager_close_idle_pipe(m);
3561
3562 /* Turn off confirm spawn now */
3563 m->confirm_spawn = NULL;
3564
3565 /* No need to update ask password status when we're going non-interactive */
3566 manager_close_ask_password(m);
3567
3568 /* This is no longer the first boot */
3569 manager_set_first_boot(m, false);
3570
3571 dual_timestamp_get(m->timestamps + MANAGER_TIMESTAMP_FINISH);
3572
3573 manager_notify_finished(m);
3574
3575 manager_invalidate_startup_units(m);
3576 }
3577
3578 static bool generator_path_any(const char* const* paths) {
3579 char **path;
3580 bool found = false;
3581
3582 /* Optimize by skipping the whole process by not creating output directories
3583 * if no generators are found. */
3584 STRV_FOREACH(path, (char**) paths)
3585 if (access(*path, F_OK) == 0)
3586 found = true;
3587 else if (errno != ENOENT)
3588 log_warning_errno(errno, "Failed to open generator directory %s: %m", *path);
3589
3590 return found;
3591 }
3592
3593 static int manager_run_environment_generators(Manager *m) {
3594 char **tmp = NULL; /* this is only used in the forked process, no cleanup here */
3595 _cleanup_strv_free_ char **paths = NULL;
3596 void* args[] = {
3597 [STDOUT_GENERATE] = &tmp,
3598 [STDOUT_COLLECT] = &tmp,
3599 [STDOUT_CONSUME] = &m->transient_environment,
3600 };
3601 int r;
3602
3603 if (MANAGER_IS_TEST_RUN(m) && !(m->test_run_flags & MANAGER_TEST_RUN_ENV_GENERATORS))
3604 return 0;
3605
3606 paths = env_generator_binary_paths(MANAGER_IS_SYSTEM(m));
3607 if (!paths)
3608 return log_oom();
3609
3610 if (!generator_path_any((const char* const*) paths))
3611 return 0;
3612
3613 RUN_WITH_UMASK(0022)
3614 r = execute_directories((const char* const*) paths, DEFAULT_TIMEOUT_USEC, gather_environment,
3615 args, NULL, m->transient_environment,
3616 EXEC_DIR_PARALLEL | EXEC_DIR_IGNORE_ERRORS | EXEC_DIR_SET_SYSTEMD_EXEC_PID);
3617 return r;
3618 }
3619
3620 static int manager_run_generators(Manager *m) {
3621 _cleanup_strv_free_ char **paths = NULL;
3622 const char *argv[5];
3623 int r;
3624
3625 assert(m);
3626
3627 if (MANAGER_IS_TEST_RUN(m) && !(m->test_run_flags & MANAGER_TEST_RUN_GENERATORS))
3628 return 0;
3629
3630 paths = generator_binary_paths(m->unit_file_scope);
3631 if (!paths)
3632 return log_oom();
3633
3634 if (!generator_path_any((const char* const*) paths))
3635 return 0;
3636
3637 r = lookup_paths_mkdir_generator(&m->lookup_paths);
3638 if (r < 0) {
3639 log_error_errno(r, "Failed to create generator directories: %m");
3640 goto finish;
3641 }
3642
3643 argv[0] = NULL; /* Leave this empty, execute_directory() will fill something in */
3644 argv[1] = m->lookup_paths.generator;
3645 argv[2] = m->lookup_paths.generator_early;
3646 argv[3] = m->lookup_paths.generator_late;
3647 argv[4] = NULL;
3648
3649 RUN_WITH_UMASK(0022)
3650 (void) execute_directories((const char* const*) paths, DEFAULT_TIMEOUT_USEC, NULL, NULL,
3651 (char**) argv, m->transient_environment,
3652 EXEC_DIR_PARALLEL | EXEC_DIR_IGNORE_ERRORS | EXEC_DIR_SET_SYSTEMD_EXEC_PID);
3653
3654 r = 0;
3655
3656 finish:
3657 lookup_paths_trim_generator(&m->lookup_paths);
3658 return r;
3659 }
3660
3661 int manager_transient_environment_add(Manager *m, char **plus) {
3662 char **a;
3663
3664 assert(m);
3665
3666 if (strv_isempty(plus))
3667 return 0;
3668
3669 a = strv_env_merge(m->transient_environment, plus);
3670 if (!a)
3671 return log_oom();
3672
3673 sanitize_environment(a);
3674
3675 return strv_free_and_replace(m->transient_environment, a);
3676 }
3677
3678 int manager_client_environment_modify(
3679 Manager *m,
3680 char **minus,
3681 char **plus) {
3682
3683 char **a = NULL, **b = NULL, **l;
3684
3685 assert(m);
3686
3687 if (strv_isempty(minus) && strv_isempty(plus))
3688 return 0;
3689
3690 l = m->client_environment;
3691
3692 if (!strv_isempty(minus)) {
3693 a = strv_env_delete(l, 1, minus);
3694 if (!a)
3695 return -ENOMEM;
3696
3697 l = a;
3698 }
3699
3700 if (!strv_isempty(plus)) {
3701 b = strv_env_merge(l, plus);
3702 if (!b) {
3703 strv_free(a);
3704 return -ENOMEM;
3705 }
3706
3707 l = b;
3708 }
3709
3710 if (m->client_environment != l)
3711 strv_free(m->client_environment);
3712
3713 if (a != l)
3714 strv_free(a);
3715 if (b != l)
3716 strv_free(b);
3717
3718 m->client_environment = sanitize_environment(l);
3719 return 0;
3720 }
3721
3722 int manager_get_effective_environment(Manager *m, char ***ret) {
3723 char **l;
3724
3725 assert(m);
3726 assert(ret);
3727
3728 l = strv_env_merge(m->transient_environment, m->client_environment);
3729 if (!l)
3730 return -ENOMEM;
3731
3732 *ret = l;
3733 return 0;
3734 }
3735
3736 int manager_set_default_rlimits(Manager *m, struct rlimit **default_rlimit) {
3737 assert(m);
3738
3739 for (unsigned i = 0; i < _RLIMIT_MAX; i++) {
3740 m->rlimit[i] = mfree(m->rlimit[i]);
3741
3742 if (!default_rlimit[i])
3743 continue;
3744
3745 m->rlimit[i] = newdup(struct rlimit, default_rlimit[i], 1);
3746 if (!m->rlimit[i])
3747 return log_oom();
3748 }
3749
3750 return 0;
3751 }
3752
3753 void manager_recheck_dbus(Manager *m) {
3754 assert(m);
3755
3756 /* Connects to the bus if the dbus service and socket are running. If we are running in user mode this is all
3757 * it does. In system mode we'll also connect to the system bus (which will most likely just reuse the
3758 * connection of the API bus). That's because the system bus after all runs as service of the system instance,
3759 * while in the user instance we can assume it's already there. */
3760
3761 if (MANAGER_IS_RELOADING(m))
3762 return; /* don't check while we are reloading… */
3763
3764 if (manager_dbus_is_running(m, false)) {
3765 (void) bus_init_api(m);
3766
3767 if (MANAGER_IS_SYSTEM(m))
3768 (void) bus_init_system(m);
3769 } else {
3770 (void) bus_done_api(m);
3771
3772 if (MANAGER_IS_SYSTEM(m))
3773 (void) bus_done_system(m);
3774 }
3775 }
3776
3777 static bool manager_journal_is_running(Manager *m) {
3778 Unit *u;
3779
3780 assert(m);
3781
3782 if (MANAGER_IS_TEST_RUN(m))
3783 return false;
3784
3785 /* If we are the user manager we can safely assume that the journal is up */
3786 if (!MANAGER_IS_SYSTEM(m))
3787 return true;
3788
3789 /* Check that the socket is not only up, but in RUNNING state */
3790 u = manager_get_unit(m, SPECIAL_JOURNALD_SOCKET);
3791 if (!u)
3792 return false;
3793 if (SOCKET(u)->state != SOCKET_RUNNING)
3794 return false;
3795
3796 /* Similar, check if the daemon itself is fully up, too */
3797 u = manager_get_unit(m, SPECIAL_JOURNALD_SERVICE);
3798 if (!u)
3799 return false;
3800 if (!IN_SET(SERVICE(u)->state, SERVICE_RELOAD, SERVICE_RUNNING))
3801 return false;
3802
3803 return true;
3804 }
3805
3806 void disable_printk_ratelimit(void) {
3807 /* Disable kernel's printk ratelimit.
3808 *
3809 * Logging to /dev/kmsg is most useful during early boot and shutdown, where normal logging
3810 * mechanisms are not available. The semantics of this sysctl are such that any kernel command-line
3811 * setting takes precedence. */
3812 int r;
3813
3814 r = sysctl_write("kernel/printk_devkmsg", "on");
3815 if (r < 0)
3816 log_debug_errno(r, "Failed to set sysctl kernel.printk_devkmsg=on: %m");
3817 }
3818
3819 void manager_recheck_journal(Manager *m) {
3820
3821 assert(m);
3822
3823 /* Don't bother with this unless we are in the special situation of being PID 1 */
3824 if (getpid_cached() != 1)
3825 return;
3826
3827 /* Don't check this while we are reloading, things might still change */
3828 if (MANAGER_IS_RELOADING(m))
3829 return;
3830
3831 /* The journal is fully and entirely up? If so, let's permit logging to it, if that's configured. If the
3832 * journal is down, don't ever log to it, otherwise we might end up deadlocking ourselves as we might trigger
3833 * an activation ourselves we can't fulfill. */
3834 log_set_prohibit_ipc(!manager_journal_is_running(m));
3835 log_open();
3836 }
3837
3838 static ShowStatus manager_get_show_status(Manager *m) {
3839 assert(m);
3840
3841 if (MANAGER_IS_USER(m))
3842 return _SHOW_STATUS_INVALID;
3843
3844 if (m->show_status_overridden != _SHOW_STATUS_INVALID)
3845 return m->show_status_overridden;
3846
3847 return m->show_status;
3848 }
3849
3850 bool manager_get_show_status_on(Manager *m) {
3851 assert(m);
3852
3853 return show_status_on(manager_get_show_status(m));
3854 }
3855
3856 static void set_show_status_marker(bool b) {
3857 if (b)
3858 (void) touch("/run/systemd/show-status");
3859 else
3860 (void) unlink("/run/systemd/show-status");
3861 }
3862
3863 void manager_set_show_status(Manager *m, ShowStatus mode, const char *reason) {
3864 assert(m);
3865 assert(reason);
3866 assert(mode >= 0 && mode < _SHOW_STATUS_MAX);
3867
3868 if (MANAGER_IS_USER(m))
3869 return;
3870
3871 if (mode == m->show_status)
3872 return;
3873
3874 if (m->show_status_overridden == _SHOW_STATUS_INVALID) {
3875 bool enabled;
3876
3877 enabled = show_status_on(mode);
3878 log_debug("%s (%s) showing of status (%s).",
3879 enabled ? "Enabling" : "Disabling",
3880 strna(show_status_to_string(mode)),
3881 reason);
3882
3883 set_show_status_marker(enabled);
3884 }
3885
3886 m->show_status = mode;
3887 }
3888
3889 void manager_override_show_status(Manager *m, ShowStatus mode, const char *reason) {
3890 assert(m);
3891 assert(mode < _SHOW_STATUS_MAX);
3892
3893 if (MANAGER_IS_USER(m))
3894 return;
3895
3896 if (mode == m->show_status_overridden)
3897 return;
3898
3899 m->show_status_overridden = mode;
3900
3901 if (mode == _SHOW_STATUS_INVALID)
3902 mode = m->show_status;
3903
3904 log_debug("%s (%s) showing of status (%s).",
3905 m->show_status_overridden != _SHOW_STATUS_INVALID ? "Overriding" : "Restoring",
3906 strna(show_status_to_string(mode)),
3907 reason);
3908
3909 set_show_status_marker(show_status_on(mode));
3910 }
3911
3912 const char *manager_get_confirm_spawn(Manager *m) {
3913 static int last_errno = 0;
3914 struct stat st;
3915 int r;
3916
3917 assert(m);
3918
3919 /* Here's the deal: we want to test the validity of the console but don't want
3920 * PID1 to go through the whole console process which might block. But we also
3921 * want to warn the user only once if something is wrong with the console so we
3922 * cannot do the sanity checks after spawning our children. So here we simply do
3923 * really basic tests to hopefully trap common errors.
3924 *
3925 * If the console suddenly disappear at the time our children will really it
3926 * then they will simply fail to acquire it and a positive answer will be
3927 * assumed. New children will fall back to /dev/console though.
3928 *
3929 * Note: TTYs are devices that can come and go any time, and frequently aren't
3930 * available yet during early boot (consider a USB rs232 dongle...). If for any
3931 * reason the configured console is not ready, we fall back to the default
3932 * console. */
3933
3934 if (!m->confirm_spawn || path_equal(m->confirm_spawn, "/dev/console"))
3935 return m->confirm_spawn;
3936
3937 if (stat(m->confirm_spawn, &st) < 0) {
3938 r = -errno;
3939 goto fail;
3940 }
3941
3942 if (!S_ISCHR(st.st_mode)) {
3943 r = -ENOTTY;
3944 goto fail;
3945 }
3946
3947 last_errno = 0;
3948 return m->confirm_spawn;
3949
3950 fail:
3951 if (last_errno != r)
3952 last_errno = log_warning_errno(r, "Failed to open %s, using default console: %m", m->confirm_spawn);
3953
3954 return "/dev/console";
3955 }
3956
3957 void manager_set_first_boot(Manager *m, bool b) {
3958 assert(m);
3959
3960 if (!MANAGER_IS_SYSTEM(m))
3961 return;
3962
3963 if (m->first_boot != (int) b) {
3964 if (b)
3965 (void) touch("/run/systemd/first-boot");
3966 else
3967 (void) unlink("/run/systemd/first-boot");
3968 }
3969
3970 m->first_boot = b;
3971 }
3972
3973 void manager_disable_confirm_spawn(void) {
3974 (void) touch("/run/systemd/confirm_spawn_disabled");
3975 }
3976
3977 bool manager_is_confirm_spawn_disabled(Manager *m) {
3978 if (!m->confirm_spawn)
3979 return true;
3980
3981 return access("/run/systemd/confirm_spawn_disabled", F_OK) >= 0;
3982 }
3983
3984 static bool manager_should_show_status(Manager *m, StatusType type) {
3985 assert(m);
3986
3987 if (!MANAGER_IS_SYSTEM(m))
3988 return false;
3989
3990 if (m->no_console_output)
3991 return false;
3992
3993 if (!IN_SET(manager_state(m), MANAGER_INITIALIZING, MANAGER_STARTING, MANAGER_STOPPING))
3994 return false;
3995
3996 /* If we cannot find out the status properly, just proceed. */
3997 if (type != STATUS_TYPE_EMERGENCY && manager_check_ask_password(m) > 0)
3998 return false;
3999
4000 if (type == STATUS_TYPE_NOTICE && m->show_status != SHOW_STATUS_NO)
4001 return true;
4002
4003 return manager_get_show_status_on(m);
4004 }
4005
4006 void manager_status_printf(Manager *m, StatusType type, const char *status, const char *format, ...) {
4007 va_list ap;
4008
4009 /* If m is NULL, assume we're after shutdown and let the messages through. */
4010
4011 if (m && !manager_should_show_status(m, type))
4012 return;
4013
4014 /* XXX We should totally drop the check for ephemeral here
4015 * and thus effectively make 'Type=idle' pointless. */
4016 if (type == STATUS_TYPE_EPHEMERAL && m && m->n_on_console > 0)
4017 return;
4018
4019 va_start(ap, format);
4020 status_vprintf(status, SHOW_STATUS_ELLIPSIZE|(type == STATUS_TYPE_EPHEMERAL ? SHOW_STATUS_EPHEMERAL : 0), format, ap);
4021 va_end(ap);
4022 }
4023
4024 Set* manager_get_units_requiring_mounts_for(Manager *m, const char *path) {
4025 assert(m);
4026 assert(path);
4027
4028 if (path_equal(path, "/"))
4029 path = "";
4030
4031 return hashmap_get(m->units_requiring_mounts_for, path);
4032 }
4033
4034 int manager_update_failed_units(Manager *m, Unit *u, bool failed) {
4035 unsigned size;
4036 int r;
4037
4038 assert(m);
4039 assert(u->manager == m);
4040
4041 size = set_size(m->failed_units);
4042
4043 if (failed) {
4044 r = set_ensure_put(&m->failed_units, NULL, u);
4045 if (r < 0)
4046 return log_oom();
4047 } else
4048 (void) set_remove(m->failed_units, u);
4049
4050 if (set_size(m->failed_units) != size)
4051 bus_manager_send_change_signal(m);
4052
4053 return 0;
4054 }
4055
4056 ManagerState manager_state(Manager *m) {
4057 Unit *u;
4058
4059 assert(m);
4060
4061 /* Is the special shutdown target active or queued? If so, we are in shutdown state */
4062 u = manager_get_unit(m, SPECIAL_SHUTDOWN_TARGET);
4063 if (u && unit_active_or_pending(u))
4064 return MANAGER_STOPPING;
4065
4066 /* Did we ever finish booting? If not then we are still starting up */
4067 if (!MANAGER_IS_FINISHED(m)) {
4068
4069 u = manager_get_unit(m, SPECIAL_BASIC_TARGET);
4070 if (!u || !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
4071 return MANAGER_INITIALIZING;
4072
4073 return MANAGER_STARTING;
4074 }
4075
4076 if (MANAGER_IS_SYSTEM(m)) {
4077 /* Are the rescue or emergency targets active or queued? If so we are in maintenance state */
4078 u = manager_get_unit(m, SPECIAL_RESCUE_TARGET);
4079 if (u && unit_active_or_pending(u))
4080 return MANAGER_MAINTENANCE;
4081
4082 u = manager_get_unit(m, SPECIAL_EMERGENCY_TARGET);
4083 if (u && unit_active_or_pending(u))
4084 return MANAGER_MAINTENANCE;
4085 }
4086
4087 /* Are there any failed units? If so, we are in degraded mode */
4088 if (set_size(m->failed_units) > 0)
4089 return MANAGER_DEGRADED;
4090
4091 return MANAGER_RUNNING;
4092 }
4093
4094 static void manager_unref_uid_internal(
4095 Hashmap *uid_refs,
4096 uid_t uid,
4097 bool destroy_now,
4098 int (*_clean_ipc)(uid_t uid)) {
4099
4100 uint32_t c, n;
4101
4102 assert(uid_is_valid(uid));
4103 assert(_clean_ipc);
4104
4105 /* A generic implementation, covering both manager_unref_uid() and manager_unref_gid(), under the assumption
4106 * that uid_t and gid_t are actually defined the same way, with the same validity rules.
4107 *
4108 * We store a hashmap where the key is the UID/GID and the value is a 32bit reference counter, whose highest
4109 * bit is used as flag for marking UIDs/GIDs whose IPC objects to remove when the last reference to the UID/GID
4110 * is dropped. The flag is set to on, once at least one reference from a unit where RemoveIPC= is set is added
4111 * on a UID/GID. It is reset when the UID's/GID's reference counter drops to 0 again. */
4112
4113 assert_cc(sizeof(uid_t) == sizeof(gid_t));
4114 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
4115
4116 if (uid == 0) /* We don't keep track of root, and will never destroy it */
4117 return;
4118
4119 c = PTR_TO_UINT32(hashmap_get(uid_refs, UID_TO_PTR(uid)));
4120
4121 n = c & ~DESTROY_IPC_FLAG;
4122 assert(n > 0);
4123 n--;
4124
4125 if (destroy_now && n == 0) {
4126 hashmap_remove(uid_refs, UID_TO_PTR(uid));
4127
4128 if (c & DESTROY_IPC_FLAG) {
4129 log_debug("%s " UID_FMT " is no longer referenced, cleaning up its IPC.",
4130 _clean_ipc == clean_ipc_by_uid ? "UID" : "GID",
4131 uid);
4132 (void) _clean_ipc(uid);
4133 }
4134 } else {
4135 c = n | (c & DESTROY_IPC_FLAG);
4136 assert_se(hashmap_update(uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c)) >= 0);
4137 }
4138 }
4139
4140 void manager_unref_uid(Manager *m, uid_t uid, bool destroy_now) {
4141 manager_unref_uid_internal(m->uid_refs, uid, destroy_now, clean_ipc_by_uid);
4142 }
4143
4144 void manager_unref_gid(Manager *m, gid_t gid, bool destroy_now) {
4145 manager_unref_uid_internal(m->gid_refs, (uid_t) gid, destroy_now, clean_ipc_by_gid);
4146 }
4147
4148 static int manager_ref_uid_internal(
4149 Hashmap **uid_refs,
4150 uid_t uid,
4151 bool clean_ipc) {
4152
4153 uint32_t c, n;
4154 int r;
4155
4156 assert(uid_refs);
4157 assert(uid_is_valid(uid));
4158
4159 /* A generic implementation, covering both manager_ref_uid() and manager_ref_gid(), under the assumption
4160 * that uid_t and gid_t are actually defined the same way, with the same validity rules. */
4161
4162 assert_cc(sizeof(uid_t) == sizeof(gid_t));
4163 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
4164
4165 if (uid == 0) /* We don't keep track of root, and will never destroy it */
4166 return 0;
4167
4168 r = hashmap_ensure_allocated(uid_refs, &trivial_hash_ops);
4169 if (r < 0)
4170 return r;
4171
4172 c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid)));
4173
4174 n = c & ~DESTROY_IPC_FLAG;
4175 n++;
4176
4177 if (n & DESTROY_IPC_FLAG) /* check for overflow */
4178 return -EOVERFLOW;
4179
4180 c = n | (c & DESTROY_IPC_FLAG) | (clean_ipc ? DESTROY_IPC_FLAG : 0);
4181
4182 return hashmap_replace(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c));
4183 }
4184
4185 int manager_ref_uid(Manager *m, uid_t uid, bool clean_ipc) {
4186 return manager_ref_uid_internal(&m->uid_refs, uid, clean_ipc);
4187 }
4188
4189 int manager_ref_gid(Manager *m, gid_t gid, bool clean_ipc) {
4190 return manager_ref_uid_internal(&m->gid_refs, (uid_t) gid, clean_ipc);
4191 }
4192
4193 static void manager_vacuum_uid_refs_internal(
4194 Hashmap *uid_refs,
4195 int (*_clean_ipc)(uid_t uid)) {
4196
4197 void *p, *k;
4198
4199 assert(_clean_ipc);
4200
4201 HASHMAP_FOREACH_KEY(p, k, uid_refs) {
4202 uint32_t c, n;
4203 uid_t uid;
4204
4205 uid = PTR_TO_UID(k);
4206 c = PTR_TO_UINT32(p);
4207
4208 n = c & ~DESTROY_IPC_FLAG;
4209 if (n > 0)
4210 continue;
4211
4212 if (c & DESTROY_IPC_FLAG) {
4213 log_debug("Found unreferenced %s " UID_FMT " after reload/reexec. Cleaning up.",
4214 _clean_ipc == clean_ipc_by_uid ? "UID" : "GID",
4215 uid);
4216 (void) _clean_ipc(uid);
4217 }
4218
4219 assert_se(hashmap_remove(uid_refs, k) == p);
4220 }
4221 }
4222
4223 static void manager_vacuum_uid_refs(Manager *m) {
4224 manager_vacuum_uid_refs_internal(m->uid_refs, clean_ipc_by_uid);
4225 }
4226
4227 static void manager_vacuum_gid_refs(Manager *m) {
4228 manager_vacuum_uid_refs_internal(m->gid_refs, clean_ipc_by_gid);
4229 }
4230
4231 static void manager_vacuum(Manager *m) {
4232 assert(m);
4233
4234 /* Release any dynamic users no longer referenced */
4235 dynamic_user_vacuum(m, true);
4236
4237 /* Release any references to UIDs/GIDs no longer referenced, and destroy any IPC owned by them */
4238 manager_vacuum_uid_refs(m);
4239 manager_vacuum_gid_refs(m);
4240
4241 /* Release any runtimes no longer referenced */
4242 exec_runtime_vacuum(m);
4243 }
4244
4245 int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
4246 struct buffer {
4247 uid_t uid;
4248 gid_t gid;
4249 char unit_name[UNIT_NAME_MAX+1];
4250 } _packed_ buffer;
4251
4252 Manager *m = userdata;
4253 ssize_t l;
4254 size_t n;
4255 Unit *u;
4256
4257 assert_se(source);
4258 assert_se(m);
4259
4260 /* Invoked whenever a child process succeeded resolving its user/group to use and sent us the resulting UID/GID
4261 * in a datagram. We parse the datagram here and pass it off to the unit, so that it can add a reference to the
4262 * UID/GID so that it can destroy the UID/GID's IPC objects when the reference counter drops to 0. */
4263
4264 l = recv(fd, &buffer, sizeof(buffer), MSG_DONTWAIT);
4265 if (l < 0) {
4266 if (ERRNO_IS_TRANSIENT(errno))
4267 return 0;
4268
4269 return log_error_errno(errno, "Failed to read from user lookup fd: %m");
4270 }
4271
4272 if ((size_t) l <= offsetof(struct buffer, unit_name)) {
4273 log_warning("Received too short user lookup message, ignoring.");
4274 return 0;
4275 }
4276
4277 if ((size_t) l > offsetof(struct buffer, unit_name) + UNIT_NAME_MAX) {
4278 log_warning("Received too long user lookup message, ignoring.");
4279 return 0;
4280 }
4281
4282 if (!uid_is_valid(buffer.uid) && !gid_is_valid(buffer.gid)) {
4283 log_warning("Got user lookup message with invalid UID/GID pair, ignoring.");
4284 return 0;
4285 }
4286
4287 n = (size_t) l - offsetof(struct buffer, unit_name);
4288 if (memchr(buffer.unit_name, 0, n)) {
4289 log_warning("Received lookup message with embedded NUL character, ignoring.");
4290 return 0;
4291 }
4292
4293 buffer.unit_name[n] = 0;
4294 u = manager_get_unit(m, buffer.unit_name);
4295 if (!u) {
4296 log_debug("Got user lookup message but unit doesn't exist, ignoring.");
4297 return 0;
4298 }
4299
4300 log_unit_debug(u, "User lookup succeeded: uid=" UID_FMT " gid=" GID_FMT, buffer.uid, buffer.gid);
4301
4302 unit_notify_user_lookup(u, buffer.uid, buffer.gid);
4303 return 0;
4304 }
4305
4306 char *manager_taint_string(Manager *m) {
4307 _cleanup_free_ char *destination = NULL, *overflowuid = NULL, *overflowgid = NULL;
4308 char *buf, *e;
4309 int r;
4310
4311 /* Returns a "taint string", e.g. "local-hwclock:var-run-bad".
4312 * Only things that are detected at runtime should be tagged
4313 * here. For stuff that is set during compilation, emit a warning
4314 * in the configuration phase. */
4315
4316 assert(m);
4317
4318 buf = new(char, sizeof("split-usr:"
4319 "cgroups-missing:"
4320 "cgrousv1:"
4321 "local-hwclock:"
4322 "var-run-bad:"
4323 "overflowuid-not-65534:"
4324 "overflowgid-not-65534:"));
4325 if (!buf)
4326 return NULL;
4327
4328 e = buf;
4329 buf[0] = 0;
4330
4331 if (m->taint_usr)
4332 e = stpcpy(e, "split-usr:");
4333
4334 if (access("/proc/cgroups", F_OK) < 0)
4335 e = stpcpy(e, "cgroups-missing:");
4336
4337 if (cg_all_unified() == 0)
4338 e = stpcpy(e, "cgroupsv1:");
4339
4340 if (clock_is_localtime(NULL) > 0)
4341 e = stpcpy(e, "local-hwclock:");
4342
4343 r = readlink_malloc("/var/run", &destination);
4344 if (r < 0 || !PATH_IN_SET(destination, "../run", "/run"))
4345 e = stpcpy(e, "var-run-bad:");
4346
4347 r = read_one_line_file("/proc/sys/kernel/overflowuid", &overflowuid);
4348 if (r >= 0 && !streq(overflowuid, "65534"))
4349 e = stpcpy(e, "overflowuid-not-65534:");
4350
4351 r = read_one_line_file("/proc/sys/kernel/overflowgid", &overflowgid);
4352 if (r >= 0 && !streq(overflowgid, "65534"))
4353 e = stpcpy(e, "overflowgid-not-65534:");
4354
4355 /* remove the last ':' */
4356 if (e != buf)
4357 e[-1] = 0;
4358
4359 return buf;
4360 }
4361
4362 void manager_ref_console(Manager *m) {
4363 assert(m);
4364
4365 m->n_on_console++;
4366 }
4367
4368 void manager_unref_console(Manager *m) {
4369
4370 assert(m->n_on_console > 0);
4371 m->n_on_console--;
4372
4373 if (m->n_on_console == 0)
4374 m->no_console_output = false; /* unset no_console_output flag, since the console is definitely free now */
4375 }
4376
4377 void manager_override_log_level(Manager *m, int level) {
4378 _cleanup_free_ char *s = NULL;
4379 assert(m);
4380
4381 if (!m->log_level_overridden) {
4382 m->original_log_level = log_get_max_level();
4383 m->log_level_overridden = true;
4384 }
4385
4386 (void) log_level_to_string_alloc(level, &s);
4387 log_info("Setting log level to %s.", strna(s));
4388
4389 log_set_max_level(level);
4390 }
4391
4392 void manager_restore_original_log_level(Manager *m) {
4393 _cleanup_free_ char *s = NULL;
4394 assert(m);
4395
4396 if (!m->log_level_overridden)
4397 return;
4398
4399 (void) log_level_to_string_alloc(m->original_log_level, &s);
4400 log_info("Restoring log level to original (%s).", strna(s));
4401
4402 log_set_max_level(m->original_log_level);
4403 m->log_level_overridden = false;
4404 }
4405
4406 void manager_override_log_target(Manager *m, LogTarget target) {
4407 assert(m);
4408
4409 if (!m->log_target_overridden) {
4410 m->original_log_target = log_get_target();
4411 m->log_target_overridden = true;
4412 }
4413
4414 log_info("Setting log target to %s.", log_target_to_string(target));
4415 log_set_target(target);
4416 }
4417
4418 void manager_restore_original_log_target(Manager *m) {
4419 assert(m);
4420
4421 if (!m->log_target_overridden)
4422 return;
4423
4424 log_info("Restoring log target to original %s.", log_target_to_string(m->original_log_target));
4425
4426 log_set_target(m->original_log_target);
4427 m->log_target_overridden = false;
4428 }
4429
4430 ManagerTimestamp manager_timestamp_initrd_mangle(ManagerTimestamp s) {
4431 if (in_initrd() &&
4432 s >= MANAGER_TIMESTAMP_SECURITY_START &&
4433 s <= MANAGER_TIMESTAMP_UNITS_LOAD_FINISH)
4434 return s - MANAGER_TIMESTAMP_SECURITY_START + MANAGER_TIMESTAMP_INITRD_SECURITY_START;
4435 return s;
4436 }
4437
4438 static const char *const manager_state_table[_MANAGER_STATE_MAX] = {
4439 [MANAGER_INITIALIZING] = "initializing",
4440 [MANAGER_STARTING] = "starting",
4441 [MANAGER_RUNNING] = "running",
4442 [MANAGER_DEGRADED] = "degraded",
4443 [MANAGER_MAINTENANCE] = "maintenance",
4444 [MANAGER_STOPPING] = "stopping",
4445 };
4446
4447 DEFINE_STRING_TABLE_LOOKUP(manager_state, ManagerState);
4448
4449 static const char *const manager_timestamp_table[_MANAGER_TIMESTAMP_MAX] = {
4450 [MANAGER_TIMESTAMP_FIRMWARE] = "firmware",
4451 [MANAGER_TIMESTAMP_LOADER] = "loader",
4452 [MANAGER_TIMESTAMP_KERNEL] = "kernel",
4453 [MANAGER_TIMESTAMP_INITRD] = "initrd",
4454 [MANAGER_TIMESTAMP_USERSPACE] = "userspace",
4455 [MANAGER_TIMESTAMP_FINISH] = "finish",
4456 [MANAGER_TIMESTAMP_SECURITY_START] = "security-start",
4457 [MANAGER_TIMESTAMP_SECURITY_FINISH] = "security-finish",
4458 [MANAGER_TIMESTAMP_GENERATORS_START] = "generators-start",
4459 [MANAGER_TIMESTAMP_GENERATORS_FINISH] = "generators-finish",
4460 [MANAGER_TIMESTAMP_UNITS_LOAD_START] = "units-load-start",
4461 [MANAGER_TIMESTAMP_UNITS_LOAD_FINISH] = "units-load-finish",
4462 [MANAGER_TIMESTAMP_INITRD_SECURITY_START] = "initrd-security-start",
4463 [MANAGER_TIMESTAMP_INITRD_SECURITY_FINISH] = "initrd-security-finish",
4464 [MANAGER_TIMESTAMP_INITRD_GENERATORS_START] = "initrd-generators-start",
4465 [MANAGER_TIMESTAMP_INITRD_GENERATORS_FINISH] = "initrd-generators-finish",
4466 [MANAGER_TIMESTAMP_INITRD_UNITS_LOAD_START] = "initrd-units-load-start",
4467 [MANAGER_TIMESTAMP_INITRD_UNITS_LOAD_FINISH] = "initrd-units-load-finish",
4468 };
4469
4470 DEFINE_STRING_TABLE_LOOKUP(manager_timestamp, ManagerTimestamp);
4471
4472 static const char* const oom_policy_table[_OOM_POLICY_MAX] = {
4473 [OOM_CONTINUE] = "continue",
4474 [OOM_STOP] = "stop",
4475 [OOM_KILL] = "kill",
4476 };
4477
4478 DEFINE_STRING_TABLE_LOOKUP(oom_policy, OOMPolicy);