]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/unit.h
Merge pull request #27244 from bluca/uphold_retry
[thirdparty/systemd.git] / src / core / unit.h
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2 #pragma once
3
4 #include <stdbool.h>
5 #include <stdlib.h>
6 #include <sys/socket.h>
7 #include <unistd.h>
8
9 #include "sd-id128.h"
10
11 #include "bpf-program.h"
12 #include "condition.h"
13 #include "emergency-action.h"
14 #include "list.h"
15 #include "show-status.h"
16 #include "set.h"
17 #include "unit-file.h"
18 #include "cgroup.h"
19
20 typedef struct UnitRef UnitRef;
21
22 typedef enum KillOperation {
23 KILL_TERMINATE,
24 KILL_TERMINATE_AND_LOG,
25 KILL_RESTART,
26 KILL_KILL,
27 KILL_WATCHDOG,
28 _KILL_OPERATION_MAX,
29 _KILL_OPERATION_INVALID = -EINVAL,
30 } KillOperation;
31
32 typedef enum CollectMode {
33 COLLECT_INACTIVE,
34 COLLECT_INACTIVE_OR_FAILED,
35 _COLLECT_MODE_MAX,
36 _COLLECT_MODE_INVALID = -EINVAL,
37 } CollectMode;
38
39 static inline bool UNIT_IS_ACTIVE_OR_RELOADING(UnitActiveState t) {
40 return IN_SET(t, UNIT_ACTIVE, UNIT_RELOADING);
41 }
42
43 static inline bool UNIT_IS_ACTIVE_OR_ACTIVATING(UnitActiveState t) {
44 return IN_SET(t, UNIT_ACTIVE, UNIT_ACTIVATING, UNIT_RELOADING);
45 }
46
47 static inline bool UNIT_IS_INACTIVE_OR_DEACTIVATING(UnitActiveState t) {
48 return IN_SET(t, UNIT_INACTIVE, UNIT_FAILED, UNIT_DEACTIVATING);
49 }
50
51 static inline bool UNIT_IS_INACTIVE_OR_FAILED(UnitActiveState t) {
52 return IN_SET(t, UNIT_INACTIVE, UNIT_FAILED);
53 }
54
55 static inline bool UNIT_IS_LOAD_COMPLETE(UnitLoadState t) {
56 return t >= 0 && t < _UNIT_LOAD_STATE_MAX && t != UNIT_STUB && t != UNIT_MERGED;
57 }
58
59 /* Stores the 'reason' a dependency was created as a bit mask, i.e. due to which configuration source it came to be. We
60 * use this so that we can selectively flush out parts of dependencies again. Note that the same dependency might be
61 * created as a result of multiple "reasons", hence the bitmask. */
62 typedef enum UnitDependencyMask {
63 /* Configured directly by the unit file, .wants/.requires symlink or drop-in, or as an immediate result of a
64 * non-dependency option configured that way. */
65 UNIT_DEPENDENCY_FILE = 1 << 0,
66
67 /* As unconditional implicit dependency (not affected by unit configuration — except by the unit name and
68 * type) */
69 UNIT_DEPENDENCY_IMPLICIT = 1 << 1,
70
71 /* A dependency effected by DefaultDependencies=yes. Note that dependencies marked this way are conceptually
72 * just a subset of UNIT_DEPENDENCY_FILE, as DefaultDependencies= is itself a unit file setting that can only
73 * be set in unit files. We make this two separate bits only to help debugging how dependencies came to be. */
74 UNIT_DEPENDENCY_DEFAULT = 1 << 2,
75
76 /* A dependency created from udev rules */
77 UNIT_DEPENDENCY_UDEV = 1 << 3,
78
79 /* A dependency created because of some unit's RequiresMountsFor= setting */
80 UNIT_DEPENDENCY_PATH = 1 << 4,
81
82 /* A dependency initially configured from the mount unit file however the dependency will be updated
83 * from /proc/self/mountinfo as soon as the kernel will make the entry for that mount available in
84 * the /proc file */
85 UNIT_DEPENDENCY_MOUNT_FILE = 1 << 5,
86
87 /* A dependency created or updated because of data read from /proc/self/mountinfo */
88 UNIT_DEPENDENCY_MOUNTINFO = 1 << 6,
89
90 /* A dependency created because of data read from /proc/swaps and no other configuration source */
91 UNIT_DEPENDENCY_PROC_SWAP = 1 << 7,
92
93 /* A dependency for units in slices assigned by directly setting Slice= */
94 UNIT_DEPENDENCY_SLICE_PROPERTY = 1 << 8,
95
96 _UNIT_DEPENDENCY_MASK_FULL = (1 << 9) - 1,
97 } UnitDependencyMask;
98
99 /* The Unit's dependencies[] hashmaps use this structure as value. It has the same size as a void pointer, and thus can
100 * be stored directly as hashmap value, without any indirection. Note that this stores two masks, as both the origin
101 * and the destination of a dependency might have created it. */
102 typedef union UnitDependencyInfo {
103 void *data;
104 struct {
105 UnitDependencyMask origin_mask:16;
106 UnitDependencyMask destination_mask:16;
107 } _packed_;
108 } UnitDependencyInfo;
109
110 /* Store information about why a unit was activated.
111 * We start with trigger units (.path/.timer), eventually it will be expanded to include more metadata. */
112 typedef struct ActivationDetails {
113 unsigned n_ref;
114 UnitType trigger_unit_type;
115 char *trigger_unit_name;
116 } ActivationDetails;
117
118 /* For casting an activation event into the various unit-specific types */
119 #define DEFINE_ACTIVATION_DETAILS_CAST(UPPERCASE, MixedCase, UNIT_TYPE) \
120 static inline MixedCase* UPPERCASE(ActivationDetails *a) { \
121 if (_unlikely_(!a || a->trigger_unit_type != UNIT_##UNIT_TYPE)) \
122 return NULL; \
123 \
124 return (MixedCase*) a; \
125 }
126
127 /* For casting the various unit types into a unit */
128 #define ACTIVATION_DETAILS(u) \
129 ({ \
130 typeof(u) _u_ = (u); \
131 ActivationDetails *_w_ = _u_ ? &(_u_)->meta : NULL; \
132 _w_; \
133 })
134
135 ActivationDetails *activation_details_new(Unit *trigger_unit);
136 ActivationDetails *activation_details_ref(ActivationDetails *p);
137 ActivationDetails *activation_details_unref(ActivationDetails *p);
138 void activation_details_serialize(ActivationDetails *p, FILE *f);
139 int activation_details_deserialize(const char *key, const char *value, ActivationDetails **info);
140 int activation_details_append_env(ActivationDetails *info, char ***strv);
141 int activation_details_append_pair(ActivationDetails *info, char ***strv);
142 DEFINE_TRIVIAL_CLEANUP_FUNC(ActivationDetails*, activation_details_unref);
143
144 typedef struct ActivationDetailsVTable {
145 /* How much memory does an object of this activation type need */
146 size_t object_size;
147
148 /* This should reset all type-specific variables. This should not allocate memory, and is called
149 * with zero-initialized data. It should hence only initialize variables that need to be set != 0. */
150 void (*init)(ActivationDetails *info, Unit *trigger_unit);
151
152 /* This should free all type-specific variables. It should be idempotent. */
153 void (*done)(ActivationDetails *info);
154
155 /* This should serialize all type-specific variables. */
156 void (*serialize)(ActivationDetails *info, FILE *f);
157
158 /* This should deserialize all type-specific variables, one at a time. */
159 int (*deserialize)(const char *key, const char *value, ActivationDetails **info);
160
161 /* This should format the type-specific variables for the env block of the spawned service,
162 * and return the number of added items. */
163 int (*append_env)(ActivationDetails *info, char ***strv);
164
165 /* This should append type-specific variables as key/value pairs for the D-Bus property of the job,
166 * and return the number of added pairs. */
167 int (*append_pair)(ActivationDetails *info, char ***strv);
168 } ActivationDetailsVTable;
169
170 extern const ActivationDetailsVTable * const activation_details_vtable[_UNIT_TYPE_MAX];
171
172 static inline const ActivationDetailsVTable* ACTIVATION_DETAILS_VTABLE(const ActivationDetails *a) {
173 assert(a);
174 assert(a->trigger_unit_type < _UNIT_TYPE_MAX);
175
176 return activation_details_vtable[a->trigger_unit_type];
177 }
178
179 /* Newer LLVM versions don't like implicit casts from large pointer types to smaller enums, hence let's add
180 * explicit type-safe helpers for that. */
181 static inline UnitDependency UNIT_DEPENDENCY_FROM_PTR(const void *p) {
182 return PTR_TO_INT(p);
183 }
184
185 static inline void* UNIT_DEPENDENCY_TO_PTR(UnitDependency d) {
186 return INT_TO_PTR(d);
187 }
188
189 #include "job.h"
190
191 struct UnitRef {
192 /* Keeps tracks of references to a unit. This is useful so
193 * that we can merge two units if necessary and correct all
194 * references to them */
195
196 Unit *source, *target;
197 LIST_FIELDS(UnitRef, refs_by_target);
198 };
199
200 typedef struct Unit {
201 Manager *manager;
202
203 UnitType type;
204 UnitLoadState load_state;
205 Unit *merged_into;
206
207 char *id; /* The one special name that we use for identification */
208 char *instance;
209
210 Set *aliases; /* All the other names. */
211
212 /* For each dependency type we can look up another Hashmap with this, whose key is a Unit* object,
213 * and whose value encodes why the dependency exists, using the UnitDependencyInfo type. i.e. a
214 * Hashmap(UnitDependency → Hashmap(Unit* → UnitDependencyInfo)) */
215 Hashmap *dependencies;
216
217 /* Similar, for RequiresMountsFor= path dependencies. The key is the path, the value the
218 * UnitDependencyInfo type */
219 Hashmap *requires_mounts_for;
220
221 char *description;
222 char **documentation;
223
224 /* The SELinux context used for checking access to this unit read off the unit file at load time (do
225 * not confuse with the selinux_context field in ExecContext which is the SELinux context we'll set
226 * for processes) */
227 char *access_selinux_context;
228
229 char *fragment_path; /* if loaded from a config file this is the primary path to it */
230 char *source_path; /* if converted, the source file */
231 char **dropin_paths;
232
233 usec_t fragment_not_found_timestamp_hash;
234 usec_t fragment_mtime;
235 usec_t source_mtime;
236 usec_t dropin_mtime;
237
238 /* If this is a transient unit we are currently writing, this is where we are writing it to */
239 FILE *transient_file;
240
241 /* Freezer state */
242 sd_bus_message *pending_freezer_invocation;
243 FreezerState freezer_state;
244
245 /* Job timeout and action to take */
246 EmergencyAction job_timeout_action;
247 usec_t job_timeout;
248 usec_t job_running_timeout;
249 char *job_timeout_reboot_arg;
250
251 /* If there is something to do with this unit, then this is the installed job for it */
252 Job *job;
253
254 /* JOB_NOP jobs are special and can be installed without disturbing the real job. */
255 Job *nop_job;
256
257 /* The slot used for watching NameOwnerChanged signals */
258 sd_bus_slot *match_bus_slot;
259 sd_bus_slot *get_name_owner_slot;
260
261 /* References to this unit from clients */
262 sd_bus_track *bus_track;
263 char **deserialized_refs;
264
265 /* References to this */
266 LIST_HEAD(UnitRef, refs_by_target);
267
268 /* Conditions to check */
269 LIST_HEAD(Condition, conditions);
270 LIST_HEAD(Condition, asserts);
271
272 dual_timestamp condition_timestamp;
273 dual_timestamp assert_timestamp;
274
275 /* Updated whenever the low-level state changes */
276 dual_timestamp state_change_timestamp;
277
278 /* Updated whenever the (high-level) active state enters or leaves the active or inactive states */
279 dual_timestamp inactive_exit_timestamp;
280 dual_timestamp active_enter_timestamp;
281 dual_timestamp active_exit_timestamp;
282 dual_timestamp inactive_enter_timestamp;
283
284 /* Per type list */
285 LIST_FIELDS(Unit, units_by_type);
286
287 /* Load queue */
288 LIST_FIELDS(Unit, load_queue);
289
290 /* D-Bus queue */
291 LIST_FIELDS(Unit, dbus_queue);
292
293 /* Cleanup queue */
294 LIST_FIELDS(Unit, cleanup_queue);
295
296 /* GC queue */
297 LIST_FIELDS(Unit, gc_queue);
298
299 /* CGroup realize members queue */
300 LIST_FIELDS(Unit, cgroup_realize_queue);
301
302 /* cgroup empty queue */
303 LIST_FIELDS(Unit, cgroup_empty_queue);
304
305 /* cgroup OOM queue */
306 LIST_FIELDS(Unit, cgroup_oom_queue);
307
308 /* Target dependencies queue */
309 LIST_FIELDS(Unit, target_deps_queue);
310
311 /* Queue of units with StopWhenUnneeded= set that shall be checked for clean-up. */
312 LIST_FIELDS(Unit, stop_when_unneeded_queue);
313
314 /* Queue of units that have an Uphold= dependency from some other unit, and should be checked for starting */
315 LIST_FIELDS(Unit, start_when_upheld_queue);
316
317 /* Queue of units that have a BindTo= dependency on some other unit, and should possibly be shut down */
318 LIST_FIELDS(Unit, stop_when_bound_queue);
319
320 /* Queue of units that should be checked if they can release resources now */
321 LIST_FIELDS(Unit, release_resources_queue);
322
323 /* PIDs we keep an eye on. Note that a unit might have many
324 * more, but these are the ones we care enough about to
325 * process SIGCHLD for */
326 Set *pids;
327
328 /* Used in SIGCHLD and sd_notify() message event invocation logic to avoid that we dispatch the same event
329 * multiple times on the same unit. */
330 unsigned sigchldgen;
331 unsigned notifygen;
332
333 /* Used during GC sweeps */
334 unsigned gc_marker;
335
336 /* Error code when we didn't manage to load the unit (negative) */
337 int load_error;
338
339 /* Put a ratelimit on unit starting */
340 RateLimit start_ratelimit;
341 EmergencyAction start_limit_action;
342
343 /* The unit has been marked for reload, restart, etc. Stored as 1u << marker1 | 1u << marker2. */
344 unsigned markers;
345
346 /* What to do on failure or success */
347 EmergencyAction success_action, failure_action;
348 int success_action_exit_status, failure_action_exit_status;
349 char *reboot_arg;
350
351 /* Make sure we never enter endless loops with the StopWhenUnneeded=, BindsTo=, Uphold= logic */
352 RateLimit auto_start_stop_ratelimit;
353 sd_event_source *auto_start_stop_event_source;
354
355 /* Reference to a specific UID/GID */
356 uid_t ref_uid;
357 gid_t ref_gid;
358
359 /* Cached unit file state and preset */
360 UnitFileState unit_file_state;
361 int unit_file_preset;
362
363 /* Where the cpu.stat or cpuacct.usage was at the time the unit was started */
364 nsec_t cpu_usage_base;
365 nsec_t cpu_usage_last; /* the most recently read value */
366
367 /* The current counter of OOM kills initiated by systemd-oomd */
368 uint64_t managed_oom_kill_last;
369
370 /* The current counter of the oom_kill field in the memory.events cgroup attribute */
371 uint64_t oom_kill_last;
372
373 /* Where the io.stat data was at the time the unit was started */
374 uint64_t io_accounting_base[_CGROUP_IO_ACCOUNTING_METRIC_MAX];
375 uint64_t io_accounting_last[_CGROUP_IO_ACCOUNTING_METRIC_MAX]; /* the most recently read value */
376
377 /* Counterparts in the cgroup filesystem */
378 char *cgroup_path;
379 uint64_t cgroup_id;
380 CGroupMask cgroup_realized_mask; /* In which hierarchies does this unit's cgroup exist? (only relevant on cgroup v1) */
381 CGroupMask cgroup_enabled_mask; /* Which controllers are enabled (or more correctly: enabled for the children) for this unit's cgroup? (only relevant on cgroup v2) */
382 CGroupMask cgroup_invalidated_mask; /* A mask specifying controllers which shall be considered invalidated, and require re-realization */
383 CGroupMask cgroup_members_mask; /* A cache for the controllers required by all children of this cgroup (only relevant for slice units) */
384
385 /* Inotify watch descriptors for watching cgroup.events and memory.events on cgroupv2 */
386 int cgroup_control_inotify_wd;
387 int cgroup_memory_inotify_wd;
388
389 /* Device Controller BPF program */
390 BPFProgram *bpf_device_control_installed;
391
392 /* IP BPF Firewalling/accounting */
393 int ip_accounting_ingress_map_fd;
394 int ip_accounting_egress_map_fd;
395 uint64_t ip_accounting_extra[_CGROUP_IP_ACCOUNTING_METRIC_MAX];
396
397 int ipv4_allow_map_fd;
398 int ipv6_allow_map_fd;
399 int ipv4_deny_map_fd;
400 int ipv6_deny_map_fd;
401 BPFProgram *ip_bpf_ingress, *ip_bpf_ingress_installed;
402 BPFProgram *ip_bpf_egress, *ip_bpf_egress_installed;
403
404 Set *ip_bpf_custom_ingress;
405 Set *ip_bpf_custom_ingress_installed;
406 Set *ip_bpf_custom_egress;
407 Set *ip_bpf_custom_egress_installed;
408
409 /* BPF programs managed (e.g. loaded to kernel) by an entity external to systemd,
410 * attached to unit cgroup by provided program fd and attach type. */
411 Hashmap *bpf_foreign_by_key;
412
413 FDSet *initial_socket_bind_link_fds;
414 #if BPF_FRAMEWORK
415 /* BPF links to BPF programs attached to cgroup/bind{4|6} hooks and
416 * responsible for allowing or denying a unit to bind(2) to a socket
417 * address. */
418 struct bpf_link *ipv4_socket_bind_link;
419 struct bpf_link *ipv6_socket_bind_link;
420 #endif
421
422 FDSet *initial_restric_ifaces_link_fds;
423 #if BPF_FRAMEWORK
424 struct bpf_link *restrict_ifaces_ingress_bpf_link;
425 struct bpf_link *restrict_ifaces_egress_bpf_link;
426 #endif
427
428 /* Low-priority event source which is used to remove watched PIDs that have gone away, and subscribe to any new
429 * ones which might have appeared. */
430 sd_event_source *rewatch_pids_event_source;
431
432 /* How to start OnSuccess=/OnFailure= units */
433 JobMode on_success_job_mode;
434 JobMode on_failure_job_mode;
435
436 /* If the job had a specific trigger that needs to be advertised (eg: a path unit), store it. */
437 ActivationDetails *activation_details;
438
439 /* Tweaking the GC logic */
440 CollectMode collect_mode;
441
442 /* The current invocation ID */
443 sd_id128_t invocation_id;
444 char invocation_id_string[SD_ID128_STRING_MAX]; /* useful when logging */
445
446 /* Garbage collect us we nobody wants or requires us anymore */
447 bool stop_when_unneeded;
448
449 /* Create default dependencies */
450 bool default_dependencies;
451
452 /* Refuse manual starting, allow starting only indirectly via dependency. */
453 bool refuse_manual_start;
454
455 /* Don't allow the user to stop this unit manually, allow stopping only indirectly via dependency. */
456 bool refuse_manual_stop;
457
458 /* Allow isolation requests */
459 bool allow_isolate;
460
461 /* Ignore this unit when isolating */
462 bool ignore_on_isolate;
463
464 /* Did the last condition check succeed? */
465 bool condition_result;
466 bool assert_result;
467
468 /* Is this a transient unit? */
469 bool transient;
470
471 /* Is this a unit that is always running and cannot be stopped? */
472 bool perpetual;
473
474 /* Booleans indicating membership of this unit in the various queues */
475 bool in_load_queue:1;
476 bool in_dbus_queue:1;
477 bool in_cleanup_queue:1;
478 bool in_gc_queue:1;
479 bool in_cgroup_realize_queue:1;
480 bool in_cgroup_empty_queue:1;
481 bool in_cgroup_oom_queue:1;
482 bool in_target_deps_queue:1;
483 bool in_stop_when_unneeded_queue:1;
484 bool in_start_when_upheld_queue:1;
485 bool in_stop_when_bound_queue:1;
486 bool in_release_resources_queue:1;
487
488 bool sent_dbus_new_signal:1;
489
490 bool job_running_timeout_set:1;
491
492 bool in_audit:1;
493 bool on_console:1;
494
495 bool cgroup_realized:1;
496 bool cgroup_members_mask_valid:1;
497
498 /* Reset cgroup accounting next time we fork something off */
499 bool reset_accounting:1;
500
501 bool start_limit_hit:1;
502
503 /* Did we already invoke unit_coldplug() for this unit? */
504 bool coldplugged:1;
505
506 /* For transient units: whether to add a bus track reference after creating the unit */
507 bool bus_track_add:1;
508
509 /* Remember which unit state files we created */
510 bool exported_invocation_id:1;
511 bool exported_log_level_max:1;
512 bool exported_log_extra_fields:1;
513 bool exported_log_ratelimit_interval:1;
514 bool exported_log_ratelimit_burst:1;
515
516 /* Whether we warned about clamping the CPU quota period */
517 bool warned_clamping_cpu_quota_period:1;
518
519 /* When writing transient unit files, stores which section we stored last. If < 0, we didn't write any yet. If
520 * == 0 we are in the [Unit] section, if > 0 we are in the unit type-specific section. */
521 signed int last_section_private:2;
522 } Unit;
523
524 typedef struct UnitStatusMessageFormats {
525 const char *starting_stopping[2];
526 const char *finished_start_job[_JOB_RESULT_MAX];
527 const char *finished_stop_job[_JOB_RESULT_MAX];
528 /* If this entry is present, it'll be called to provide a context-dependent format string,
529 * or NULL to fall back to finished_{start,stop}_job; if those are NULL too, fall back to generic. */
530 const char *(*finished_job)(Unit *u, JobType t, JobResult result);
531 } UnitStatusMessageFormats;
532
533 /* Flags used when writing drop-in files or transient unit files */
534 typedef enum UnitWriteFlags {
535 /* Write a runtime unit file or drop-in (i.e. one below /run) */
536 UNIT_RUNTIME = 1 << 0,
537
538 /* Write a persistent drop-in (i.e. one below /etc) */
539 UNIT_PERSISTENT = 1 << 1,
540
541 /* Place this item in the per-unit-type private section, instead of [Unit] */
542 UNIT_PRIVATE = 1 << 2,
543
544 /* Apply specifier escaping before writing */
545 UNIT_ESCAPE_SPECIFIERS = 1 << 3,
546
547 /* Escape elements of ExecStart= syntax before writing */
548 UNIT_ESCAPE_EXEC_SYNTAX = 1 << 4,
549
550 /* Apply C escaping before writing */
551 UNIT_ESCAPE_C = 1 << 5,
552 } UnitWriteFlags;
553
554 /* Returns true if neither persistent, nor runtime storage is requested, i.e. this is a check invocation only */
555 static inline bool UNIT_WRITE_FLAGS_NOOP(UnitWriteFlags flags) {
556 return (flags & (UNIT_RUNTIME|UNIT_PERSISTENT)) == 0;
557 }
558
559 #include "kill.h"
560
561 typedef struct UnitVTable {
562 /* How much memory does an object of this unit type need */
563 size_t object_size;
564
565 /* If greater than 0, the offset into the object where
566 * ExecContext is found, if the unit type has that */
567 size_t exec_context_offset;
568
569 /* If greater than 0, the offset into the object where
570 * CGroupContext is found, if the unit type has that */
571 size_t cgroup_context_offset;
572
573 /* If greater than 0, the offset into the object where
574 * KillContext is found, if the unit type has that */
575 size_t kill_context_offset;
576
577 /* If greater than 0, the offset into the object where the
578 * pointer to ExecSharedRuntime is found, if the unit type has
579 * that */
580 size_t exec_runtime_offset;
581
582 /* The name of the configuration file section with the private settings of this unit */
583 const char *private_section;
584
585 /* Config file sections this unit type understands, separated
586 * by NUL chars */
587 const char *sections;
588
589 /* This should reset all type-specific variables. This should
590 * not allocate memory, and is called with zero-initialized
591 * data. It should hence only initialize variables that need
592 * to be set != 0. */
593 void (*init)(Unit *u);
594
595 /* This should free all type-specific variables. It should be
596 * idempotent. */
597 void (*done)(Unit *u);
598
599 /* Actually load data from disk. This may fail, and should set
600 * load_state to UNIT_LOADED, UNIT_MERGED or leave it at
601 * UNIT_STUB if no configuration could be found. */
602 int (*load)(Unit *u);
603
604 /* During deserialization we only record the intended state to return to. With coldplug() we actually put the
605 * deserialized state in effect. This is where unit_notify() should be called to start things up. Note that
606 * this callback is invoked *before* we leave the reloading state of the manager, i.e. *before* we consider the
607 * reloading to be complete. Thus, this callback should just restore the exact same state for any unit that was
608 * in effect before the reload, i.e. units should not catch up with changes happened during the reload. That's
609 * what catchup() below is for. */
610 int (*coldplug)(Unit *u);
611
612 /* This is called shortly after all units' coldplug() call was invoked, and *after* the manager left the
613 * reloading state. It's supposed to catch up with state changes due to external events we missed so far (for
614 * example because they took place while we were reloading/reexecing) */
615 void (*catchup)(Unit *u);
616
617 void (*dump)(Unit *u, FILE *f, const char *prefix);
618
619 int (*start)(Unit *u);
620 int (*stop)(Unit *u);
621 int (*reload)(Unit *u);
622
623 int (*kill)(Unit *u, KillWho w, int signo, int code, int value, sd_bus_error *error);
624
625 /* Clear out the various runtime/state/cache/logs/configuration data */
626 int (*clean)(Unit *u, ExecCleanMask m);
627
628 /* Freeze the unit */
629 int (*freeze)(Unit *u);
630 int (*thaw)(Unit *u);
631 bool (*can_freeze)(Unit *u);
632
633 /* Return which kind of data can be cleaned */
634 int (*can_clean)(Unit *u, ExecCleanMask *ret);
635
636 bool (*can_reload)(Unit *u);
637
638 /* Serialize state and file descriptors that should be carried over into the new
639 * instance after reexecution. */
640 int (*serialize)(Unit *u, FILE *f, FDSet *fds);
641
642 /* Restore one item from the serialization */
643 int (*deserialize_item)(Unit *u, const char *key, const char *data, FDSet *fds);
644
645 /* Try to match up fds with what we need for this unit */
646 void (*distribute_fds)(Unit *u, FDSet *fds);
647
648 /* Boils down the more complex internal state of this unit to
649 * a simpler one that the engine can understand */
650 UnitActiveState (*active_state)(Unit *u);
651
652 /* Returns the substate specific to this unit type as
653 * string. This is purely information so that we can give the
654 * user a more fine grained explanation in which actual state a
655 * unit is in. */
656 const char* (*sub_state_to_string)(Unit *u);
657
658 /* Additionally to UnitActiveState determine whether unit is to be restarted. */
659 bool (*will_restart)(Unit *u);
660
661 /* Return false when there is a reason to prevent this unit from being gc'ed
662 * even though nothing references it and it isn't active in any way. */
663 bool (*may_gc)(Unit *u);
664
665 /* Return true when the unit is not controlled by the manager (e.g. extrinsic mounts). */
666 bool (*is_extrinsic)(Unit *u);
667
668 /* When the unit is not running and no job for it queued we shall release its runtime resources */
669 void (*release_resources)(Unit *u);
670
671 /* Invoked on every child that died */
672 void (*sigchld_event)(Unit *u, pid_t pid, int code, int status);
673
674 /* Reset failed state if we are in failed state */
675 void (*reset_failed)(Unit *u);
676
677 /* Called whenever any of the cgroups this unit watches for ran empty */
678 void (*notify_cgroup_empty)(Unit *u);
679
680 /* Called whenever an OOM kill event on this unit was seen */
681 void (*notify_cgroup_oom)(Unit *u, bool managed_oom);
682
683 /* Called whenever a process of this unit sends us a message */
684 void (*notify_message)(Unit *u, const struct ucred *ucred, char * const *tags, FDSet *fds);
685
686 /* Called whenever a name this Unit registered for comes or goes away. */
687 void (*bus_name_owner_change)(Unit *u, const char *new_owner);
688
689 /* Called for each property that is being set */
690 int (*bus_set_property)(Unit *u, const char *name, sd_bus_message *message, UnitWriteFlags flags, sd_bus_error *error);
691
692 /* Called after at least one property got changed to apply the necessary change */
693 int (*bus_commit_properties)(Unit *u);
694
695 /* Return the unit this unit is following */
696 Unit *(*following)(Unit *u);
697
698 /* Return the set of units that are following each other */
699 int (*following_set)(Unit *u, Set **s);
700
701 /* Invoked each time a unit this unit is triggering changes
702 * state or gains/loses a job */
703 void (*trigger_notify)(Unit *u, Unit *trigger);
704
705 /* Called whenever CLOCK_REALTIME made a jump */
706 void (*time_change)(Unit *u);
707
708 /* Called whenever /etc/localtime was modified */
709 void (*timezone_change)(Unit *u);
710
711 /* Returns the next timeout of a unit */
712 int (*get_timeout)(Unit *u, usec_t *timeout);
713
714 /* Returns the main PID if there is any defined, or 0. */
715 pid_t (*main_pid)(Unit *u);
716
717 /* Returns the main PID if there is any defined, or 0. */
718 pid_t (*control_pid)(Unit *u);
719
720 /* Returns true if the unit currently needs access to the console */
721 bool (*needs_console)(Unit *u);
722
723 /* Returns the exit status to propagate in case of FailureAction=exit/SuccessAction=exit; usually returns the
724 * exit code of the "main" process of the service or similar. */
725 int (*exit_status)(Unit *u);
726
727 /* Return a copy of the status string pointer. */
728 const char* (*status_text)(Unit *u);
729
730 /* Like the enumerate() callback further down, but only enumerates the perpetual units, i.e. all units that
731 * unconditionally exist and are always active. The main reason to keep both enumeration functions separate is
732 * philosophical: the state of perpetual units should be put in place by coldplug(), while the state of those
733 * discovered through regular enumeration should be put in place by catchup(), see below. */
734 void (*enumerate_perpetual)(Manager *m);
735
736 /* This is called for each unit type and should be used to enumerate units already existing in the system
737 * internally and load them. However, everything that is loaded here should still stay in inactive state. It is
738 * the job of the catchup() call above to put the units into the discovered state. */
739 void (*enumerate)(Manager *m);
740
741 /* Type specific cleanups. */
742 void (*shutdown)(Manager *m);
743
744 /* If this function is set and returns false all jobs for units
745 * of this type will immediately fail. */
746 bool (*supported)(void);
747
748 /* If this function is set, it's invoked first as part of starting a unit to allow start rate
749 * limiting checks to occur before we do anything else. */
750 int (*can_start)(Unit *u);
751
752 /* The strings to print in status messages */
753 UnitStatusMessageFormats status_message_formats;
754
755 /* True if transient units of this type are OK */
756 bool can_transient;
757
758 /* True if cgroup delegation is permissible */
759 bool can_delegate;
760
761 /* True if the unit type triggers other units, i.e. can have a UNIT_TRIGGERS dependency */
762 bool can_trigger;
763
764 /* True if the unit type knows a failure state, and thus can be source of an OnFailure= dependency */
765 bool can_fail;
766
767 /* True if units of this type shall be startable only once and then never again */
768 bool once_only;
769
770 /* Do not serialize this unit when preparing for root switch */
771 bool exclude_from_switch_root_serialization;
772
773 /* True if queued jobs of this type should be GC'ed if no other job needs them anymore */
774 bool gc_jobs;
775
776 /* True if systemd-oomd can monitor and act on this unit's recursive children's cgroups */
777 bool can_set_managed_oom;
778 } UnitVTable;
779
780 extern const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX];
781
782 static inline const UnitVTable* UNIT_VTABLE(const Unit *u) {
783 return unit_vtable[u->type];
784 }
785
786 /* For casting a unit into the various unit types */
787 #define DEFINE_CAST(UPPERCASE, MixedCase) \
788 static inline MixedCase* UPPERCASE(Unit *u) { \
789 if (_unlikely_(!u || u->type != UNIT_##UPPERCASE)) \
790 return NULL; \
791 \
792 return (MixedCase*) u; \
793 }
794
795 /* For casting the various unit types into a unit */
796 #define UNIT(u) \
797 ({ \
798 typeof(u) _u_ = (u); \
799 Unit *_w_ = _u_ ? &(_u_)->meta : NULL; \
800 _w_; \
801 })
802
803 #define UNIT_HAS_EXEC_CONTEXT(u) (UNIT_VTABLE(u)->exec_context_offset > 0)
804 #define UNIT_HAS_CGROUP_CONTEXT(u) (UNIT_VTABLE(u)->cgroup_context_offset > 0)
805 #define UNIT_HAS_KILL_CONTEXT(u) (UNIT_VTABLE(u)->kill_context_offset > 0)
806
807 Unit* unit_has_dependency(const Unit *u, UnitDependencyAtom atom, Unit *other);
808 int unit_get_dependency_array(const Unit *u, UnitDependencyAtom atom, Unit ***ret_array);
809
810 static inline Hashmap* unit_get_dependencies(Unit *u, UnitDependency d) {
811 return hashmap_get(u->dependencies, UNIT_DEPENDENCY_TO_PTR(d));
812 }
813
814 static inline Unit* UNIT_TRIGGER(Unit *u) {
815 return unit_has_dependency(u, UNIT_ATOM_TRIGGERS, NULL);
816 }
817
818 static inline Unit* UNIT_GET_SLICE(const Unit *u) {
819 return unit_has_dependency(u, UNIT_ATOM_IN_SLICE, NULL);
820 }
821
822 Unit* unit_new(Manager *m, size_t size);
823 Unit* unit_free(Unit *u);
824 DEFINE_TRIVIAL_CLEANUP_FUNC(Unit *, unit_free);
825
826 int unit_new_for_name(Manager *m, size_t size, const char *name, Unit **ret);
827 int unit_add_name(Unit *u, const char *name);
828
829 int unit_add_dependency(Unit *u, UnitDependency d, Unit *other, bool add_reference, UnitDependencyMask mask);
830 int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference, UnitDependencyMask mask);
831
832 int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, bool add_reference, UnitDependencyMask mask);
833 int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, bool add_reference, UnitDependencyMask mask);
834
835 int unit_add_exec_dependencies(Unit *u, ExecContext *c);
836
837 int unit_choose_id(Unit *u, const char *name);
838 int unit_set_description(Unit *u, const char *description);
839
840 void unit_release_resources(Unit *u);
841
842 bool unit_may_gc(Unit *u);
843
844 static inline bool unit_is_extrinsic(Unit *u) {
845 return u->perpetual ||
846 (UNIT_VTABLE(u)->is_extrinsic && UNIT_VTABLE(u)->is_extrinsic(u));
847 }
848
849 static inline const char* unit_status_text(Unit *u) {
850 if (u && UNIT_VTABLE(u)->status_text)
851 return UNIT_VTABLE(u)->status_text(u);
852 return NULL;
853 }
854
855 void unit_add_to_load_queue(Unit *u);
856 void unit_add_to_dbus_queue(Unit *u);
857 void unit_add_to_cleanup_queue(Unit *u);
858 void unit_add_to_gc_queue(Unit *u);
859 void unit_add_to_target_deps_queue(Unit *u);
860 void unit_submit_to_stop_when_unneeded_queue(Unit *u);
861 void unit_submit_to_start_when_upheld_queue(Unit *u);
862 void unit_submit_to_stop_when_bound_queue(Unit *u);
863 void unit_submit_to_release_resources_queue(Unit *u);
864
865 int unit_merge(Unit *u, Unit *other);
866 int unit_merge_by_name(Unit *u, const char *other);
867
868 Unit *unit_follow_merge(Unit *u) _pure_;
869
870 int unit_load_fragment_and_dropin(Unit *u, bool fragment_required);
871 int unit_load(Unit *unit);
872
873 int unit_set_slice(Unit *u, Unit *slice);
874 int unit_set_default_slice(Unit *u);
875
876 const char *unit_description(Unit *u) _pure_;
877 const char *unit_status_string(Unit *u, char **combined);
878
879 bool unit_has_name(const Unit *u, const char *name);
880
881 UnitActiveState unit_active_state(Unit *u);
882 FreezerState unit_freezer_state(Unit *u);
883 int unit_freezer_state_kernel(Unit *u, FreezerState *ret);
884
885 const char* unit_sub_state_to_string(Unit *u);
886
887 bool unit_can_reload(Unit *u) _pure_;
888 bool unit_can_start(Unit *u) _pure_;
889 bool unit_can_stop(Unit *u) _pure_;
890 bool unit_can_isolate(Unit *u) _pure_;
891
892 int unit_start(Unit *u, ActivationDetails *details);
893 int unit_stop(Unit *u);
894 int unit_reload(Unit *u);
895
896 int unit_kill(Unit *u, KillWho w, int signo, int code, int value, sd_bus_error *error);
897 int unit_kill_common(Unit *u, KillWho who, int signo, int code, int value, pid_t main_pid, pid_t control_pid, sd_bus_error *error);
898
899 void unit_notify_cgroup_oom(Unit *u, bool managed_oom);
900
901 typedef enum UnitNotifyFlags {
902 UNIT_NOTIFY_RELOAD_FAILURE = 1 << 0,
903 UNIT_NOTIFY_WILL_AUTO_RESTART = 1 << 1,
904 } UnitNotifyFlags;
905
906 void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, UnitNotifyFlags flags);
907
908 int unit_watch_pid(Unit *u, pid_t pid, bool exclusive);
909 void unit_unwatch_pid(Unit *u, pid_t pid);
910 void unit_unwatch_all_pids(Unit *u);
911
912 int unit_enqueue_rewatch_pids(Unit *u);
913 void unit_dequeue_rewatch_pids(Unit *u);
914
915 int unit_install_bus_match(Unit *u, sd_bus *bus, const char *name);
916 int unit_watch_bus_name(Unit *u, const char *name);
917 void unit_unwatch_bus_name(Unit *u, const char *name);
918
919 bool unit_job_is_applicable(Unit *u, JobType j);
920
921 int set_unit_path(const char *p);
922
923 char *unit_dbus_path(Unit *u);
924 char *unit_dbus_path_invocation_id(Unit *u);
925
926 int unit_load_related_unit(Unit *u, const char *type, Unit **_found);
927
928 int unit_add_node_dependency(Unit *u, const char *what, UnitDependency d, UnitDependencyMask mask);
929 int unit_add_blockdev_dependency(Unit *u, const char *what, UnitDependencyMask mask);
930
931 int unit_coldplug(Unit *u);
932 void unit_catchup(Unit *u);
933
934 void unit_status_printf(Unit *u, StatusType status_type, const char *status, const char *format, const char *ident) _printf_(4, 0);
935
936 bool unit_need_daemon_reload(Unit *u);
937
938 void unit_reset_failed(Unit *u);
939
940 Unit *unit_following(Unit *u);
941 int unit_following_set(Unit *u, Set **s);
942
943 const char *unit_slice_name(Unit *u);
944
945 bool unit_stop_pending(Unit *u) _pure_;
946 bool unit_inactive_or_pending(Unit *u) _pure_;
947 bool unit_active_or_pending(Unit *u);
948 bool unit_will_restart_default(Unit *u);
949 bool unit_will_restart(Unit *u);
950
951 int unit_add_default_target_dependency(Unit *u, Unit *target);
952
953 void unit_start_on_failure(Unit *u, const char *dependency_name, UnitDependencyAtom atom, JobMode job_mode);
954 void unit_trigger_notify(Unit *u);
955
956 UnitFileState unit_get_unit_file_state(Unit *u);
957 int unit_get_unit_file_preset(Unit *u);
958
959 Unit* unit_ref_set(UnitRef *ref, Unit *source, Unit *target);
960 void unit_ref_unset(UnitRef *ref);
961
962 #define UNIT_DEREF(ref) ((ref).target)
963 #define UNIT_ISSET(ref) (!!(ref).target)
964
965 int unit_patch_contexts(Unit *u);
966
967 ExecContext *unit_get_exec_context(const Unit *u) _pure_;
968 KillContext *unit_get_kill_context(Unit *u) _pure_;
969 CGroupContext *unit_get_cgroup_context(Unit *u) _pure_;
970
971 ExecRuntime *unit_get_exec_runtime(Unit *u) _pure_;
972
973 int unit_setup_exec_runtime(Unit *u);
974
975 const char* unit_escape_setting(const char *s, UnitWriteFlags flags, char **buf);
976 char* unit_concat_strv(char **l, UnitWriteFlags flags);
977
978 int unit_write_setting(Unit *u, UnitWriteFlags flags, const char *name, const char *data);
979 int unit_write_settingf(Unit *u, UnitWriteFlags mode, const char *name, const char *format, ...) _printf_(4,5);
980
981 int unit_kill_context(Unit *u, KillContext *c, KillOperation k, pid_t main_pid, pid_t control_pid, bool main_pid_alien);
982
983 int unit_make_transient(Unit *u);
984
985 int unit_require_mounts_for(Unit *u, const char *path, UnitDependencyMask mask);
986
987 bool unit_type_supported(UnitType t);
988
989 bool unit_is_pristine(Unit *u);
990
991 bool unit_is_unneeded(Unit *u);
992 bool unit_is_upheld_by_active(Unit *u, Unit **ret_culprit);
993 bool unit_is_bound_by_inactive(Unit *u, Unit **ret_culprit);
994
995 pid_t unit_control_pid(Unit *u);
996 pid_t unit_main_pid(Unit *u);
997
998 void unit_warn_if_dir_nonempty(Unit *u, const char* where);
999 int unit_fail_if_noncanonical(Unit *u, const char* where);
1000
1001 int unit_test_start_limit(Unit *u);
1002
1003 int unit_ref_uid_gid(Unit *u, uid_t uid, gid_t gid);
1004 void unit_unref_uid_gid(Unit *u, bool destroy_now);
1005
1006 void unit_notify_user_lookup(Unit *u, uid_t uid, gid_t gid);
1007
1008 int unit_set_invocation_id(Unit *u, sd_id128_t id);
1009 int unit_acquire_invocation_id(Unit *u);
1010
1011 bool unit_shall_confirm_spawn(Unit *u);
1012
1013 int unit_set_exec_params(Unit *s, ExecParameters *p);
1014
1015 int unit_fork_helper_process(Unit *u, const char *name, pid_t *ret);
1016 int unit_fork_and_watch_rm_rf(Unit *u, char **paths, pid_t *ret_pid);
1017
1018 void unit_remove_dependencies(Unit *u, UnitDependencyMask mask);
1019
1020 void unit_export_state_files(Unit *u);
1021 void unit_unlink_state_files(Unit *u);
1022
1023 int unit_prepare_exec(Unit *u);
1024
1025 int unit_log_leftover_process_start(pid_t pid, int sig, void *userdata);
1026 int unit_log_leftover_process_stop(pid_t pid, int sig, void *userdata);
1027 int unit_warn_leftover_processes(Unit *u, cg_kill_log_func_t log_func);
1028
1029 bool unit_needs_console(Unit *u);
1030
1031 int unit_pid_attachable(Unit *unit, pid_t pid, sd_bus_error *error);
1032
1033 static inline bool unit_has_job_type(Unit *u, JobType type) {
1034 return u && u->job && u->job->type == type;
1035 }
1036
1037 static inline bool unit_log_level_test(const Unit *u, int level) {
1038 ExecContext *ec = unit_get_exec_context(u);
1039 return !ec || ec->log_level_max < 0 || ec->log_level_max >= LOG_PRI(level);
1040 }
1041
1042 /* unit_log_skip is for cases like ExecCondition= where a unit is considered "done"
1043 * after some execution, rather than succeeded or failed. */
1044 void unit_log_skip(Unit *u, const char *result);
1045 void unit_log_success(Unit *u);
1046 void unit_log_failure(Unit *u, const char *result);
1047 static inline void unit_log_result(Unit *u, bool success, const char *result) {
1048 if (success)
1049 unit_log_success(u);
1050 else
1051 unit_log_failure(u, result);
1052 }
1053
1054 void unit_log_process_exit(Unit *u, const char *kind, const char *command, bool success, int code, int status);
1055
1056 int unit_exit_status(Unit *u);
1057 int unit_success_action_exit_status(Unit *u);
1058 int unit_failure_action_exit_status(Unit *u);
1059
1060 int unit_test_trigger_loaded(Unit *u);
1061
1062 void unit_destroy_runtime_data(Unit *u, const ExecContext *context);
1063 int unit_clean(Unit *u, ExecCleanMask mask);
1064 int unit_can_clean(Unit *u, ExecCleanMask *ret_mask);
1065
1066 bool unit_can_freeze(Unit *u);
1067 int unit_freeze(Unit *u);
1068 void unit_frozen(Unit *u);
1069
1070 int unit_thaw(Unit *u);
1071 void unit_thawed(Unit *u);
1072
1073 int unit_freeze_vtable_common(Unit *u);
1074 int unit_thaw_vtable_common(Unit *u);
1075
1076 Condition *unit_find_failed_condition(Unit *u);
1077
1078 /* Macros which append UNIT= or USER_UNIT= to the message */
1079
1080 #define log_unit_full_errno_zerook(unit, level, error, ...) \
1081 ({ \
1082 const Unit *_u = (unit); \
1083 const int _l = (level); \
1084 bool _do_log = !(log_get_max_level() < LOG_PRI(_l) || \
1085 (_u && !unit_log_level_test(_u, _l))); \
1086 const ExecContext *_c = _do_log && _u ? \
1087 unit_get_exec_context(_u) : NULL; \
1088 LOG_CONTEXT_PUSH_IOV(_c ? _c->log_extra_fields : NULL, \
1089 _c ? _c->n_log_extra_fields : 0); \
1090 !_do_log ? -ERRNO_VALUE(error) : \
1091 _u ? log_object_internal(_l, error, PROJECT_FILE, __LINE__, __func__, _u->manager->unit_log_field, _u->id, _u->manager->invocation_log_field, _u->invocation_id_string, ##__VA_ARGS__) : \
1092 log_internal(_l, error, PROJECT_FILE, __LINE__, __func__, ##__VA_ARGS__); \
1093 })
1094
1095 #define log_unit_full_errno(unit, level, error, ...) \
1096 ({ \
1097 int _error = (error); \
1098 ASSERT_NON_ZERO(_error); \
1099 log_unit_full_errno_zerook(unit, level, _error, ##__VA_ARGS__); \
1100 })
1101
1102 #define log_unit_full(unit, level, ...) (void) log_unit_full_errno_zerook(unit, level, 0, __VA_ARGS__)
1103
1104 #define log_unit_debug(unit, ...) log_unit_full(unit, LOG_DEBUG, __VA_ARGS__)
1105 #define log_unit_info(unit, ...) log_unit_full(unit, LOG_INFO, __VA_ARGS__)
1106 #define log_unit_notice(unit, ...) log_unit_full(unit, LOG_NOTICE, __VA_ARGS__)
1107 #define log_unit_warning(unit, ...) log_unit_full(unit, LOG_WARNING, __VA_ARGS__)
1108 #define log_unit_error(unit, ...) log_unit_full(unit, LOG_ERR, __VA_ARGS__)
1109
1110 #define log_unit_debug_errno(unit, error, ...) log_unit_full_errno(unit, LOG_DEBUG, error, __VA_ARGS__)
1111 #define log_unit_info_errno(unit, error, ...) log_unit_full_errno(unit, LOG_INFO, error, __VA_ARGS__)
1112 #define log_unit_notice_errno(unit, error, ...) log_unit_full_errno(unit, LOG_NOTICE, error, __VA_ARGS__)
1113 #define log_unit_warning_errno(unit, error, ...) log_unit_full_errno(unit, LOG_WARNING, error, __VA_ARGS__)
1114 #define log_unit_error_errno(unit, error, ...) log_unit_full_errno(unit, LOG_ERR, error, __VA_ARGS__)
1115
1116 #if LOG_TRACE
1117 # define log_unit_trace(...) log_unit_debug(__VA_ARGS__)
1118 # define log_unit_trace_errno(...) log_unit_debug_errno(__VA_ARGS__)
1119 #else
1120 # define log_unit_trace(...) do {} while (0)
1121 # define log_unit_trace_errno(e, ...) (-ERRNO_VALUE(e))
1122 #endif
1123
1124 #define log_unit_struct_errno(unit, level, error, ...) \
1125 ({ \
1126 const Unit *_u = (unit); \
1127 const int _l = (level); \
1128 bool _do_log = unit_log_level_test(_u, _l); \
1129 const ExecContext *_c = _do_log && _u ? \
1130 unit_get_exec_context(_u) : NULL; \
1131 LOG_CONTEXT_PUSH_IOV(_c ? _c->log_extra_fields : NULL, \
1132 _c ? _c->n_log_extra_fields : 0); \
1133 _do_log ? \
1134 log_struct_errno(_l, error, __VA_ARGS__, LOG_UNIT_ID(_u)) : \
1135 -ERRNO_VALUE(error); \
1136 })
1137
1138 #define log_unit_struct(unit, level, ...) log_unit_struct_errno(unit, level, 0, __VA_ARGS__)
1139
1140 #define log_unit_struct_iovec_errno(unit, level, error, iovec, n_iovec) \
1141 ({ \
1142 const Unit *_u = (unit); \
1143 const int _l = (level); \
1144 bool _do_log = unit_log_level_test(_u, _l); \
1145 const ExecContext *_c = _do_log && _u ? \
1146 unit_get_exec_context(_u) : NULL; \
1147 LOG_CONTEXT_PUSH_IOV(_c ? _c->log_extra_fields : NULL, \
1148 _c ? _c->n_log_extra_fields : 0); \
1149 _do_log ? \
1150 log_struct_iovec_errno(_l, error, iovec, n_iovec) : \
1151 -ERRNO_VALUE(error); \
1152 })
1153
1154 #define log_unit_struct_iovec(unit, level, iovec, n_iovec) log_unit_struct_iovec_errno(unit, level, 0, iovec, n_iovec)
1155
1156 /* Like LOG_MESSAGE(), but with the unit name prefixed. */
1157 #define LOG_UNIT_MESSAGE(unit, fmt, ...) LOG_MESSAGE("%s: " fmt, (unit)->id, ##__VA_ARGS__)
1158 #define LOG_UNIT_ID(unit) (unit)->manager->unit_log_format_string, (unit)->id
1159 #define LOG_UNIT_INVOCATION_ID(unit) (unit)->manager->invocation_log_format_string, (unit)->invocation_id_string
1160
1161 const char* collect_mode_to_string(CollectMode m) _const_;
1162 CollectMode collect_mode_from_string(const char *s) _pure_;
1163
1164 typedef struct UnitForEachDependencyData {
1165 /* Stores state for the FOREACH macro below for iterating through all deps that have any of the
1166 * specified dependency atom bits set */
1167 UnitDependencyAtom match_atom;
1168 Hashmap *by_type, *by_unit;
1169 void *current_type;
1170 Iterator by_type_iterator, by_unit_iterator;
1171 Unit **current_unit;
1172 } UnitForEachDependencyData;
1173
1174 /* Iterates through all dependencies that have a specific atom in the dependency type set. This tries to be
1175 * smart: if the atom is unique, we'll directly go to right entry. Otherwise we'll iterate through the
1176 * per-dependency type hashmap and match all dep that have the right atom set. */
1177 #define _UNIT_FOREACH_DEPENDENCY(other, u, ma, data) \
1178 for (UnitForEachDependencyData data = { \
1179 .match_atom = (ma), \
1180 .by_type = (u)->dependencies, \
1181 .by_type_iterator = ITERATOR_FIRST, \
1182 .current_unit = &(other), \
1183 }; \
1184 ({ \
1185 UnitDependency _dt = _UNIT_DEPENDENCY_INVALID; \
1186 bool _found; \
1187 \
1188 if (data.by_type && ITERATOR_IS_FIRST(data.by_type_iterator)) { \
1189 _dt = unit_dependency_from_unique_atom(data.match_atom); \
1190 if (_dt >= 0) { \
1191 data.by_unit = hashmap_get(data.by_type, UNIT_DEPENDENCY_TO_PTR(_dt)); \
1192 data.current_type = UNIT_DEPENDENCY_TO_PTR(_dt); \
1193 data.by_type = NULL; \
1194 _found = !!data.by_unit; \
1195 } \
1196 } \
1197 if (_dt < 0) \
1198 _found = hashmap_iterate(data.by_type, \
1199 &data.by_type_iterator, \
1200 (void**)&(data.by_unit), \
1201 (const void**) &(data.current_type)); \
1202 _found; \
1203 }); ) \
1204 if ((unit_dependency_to_atom(UNIT_DEPENDENCY_FROM_PTR(data.current_type)) & data.match_atom) != 0) \
1205 for (data.by_unit_iterator = ITERATOR_FIRST; \
1206 hashmap_iterate(data.by_unit, \
1207 &data.by_unit_iterator, \
1208 NULL, \
1209 (const void**) data.current_unit); )
1210
1211 /* Note: this matches deps that have *any* of the atoms specified in match_atom set */
1212 #define UNIT_FOREACH_DEPENDENCY(other, u, match_atom) \
1213 _UNIT_FOREACH_DEPENDENCY(other, u, match_atom, UNIQ_T(data, UNIQ))
1214
1215 #define _LOG_CONTEXT_PUSH_UNIT(unit, u, c) \
1216 const Unit *u = (unit); \
1217 const ExecContext *c = unit_get_exec_context(u); \
1218 LOG_CONTEXT_PUSH_KEY_VALUE(u->manager->unit_log_field, u->id); \
1219 LOG_CONTEXT_PUSH_KEY_VALUE(u->manager->invocation_log_field, u->invocation_id_string); \
1220 LOG_CONTEXT_PUSH_IOV(c ? c->log_extra_fields : NULL, c ? c->n_log_extra_fields : 0)
1221
1222 #define LOG_CONTEXT_PUSH_UNIT(unit) \
1223 _LOG_CONTEXT_PUSH_UNIT(unit, UNIQ_T(u, UNIQ), UNIQ_T(c, UNIQ))