]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/libsystemd/sd-event/sd-event.c
Merge pull request #27670 from poettering/switch-root-umount-all
[thirdparty/systemd.git] / src / libsystemd / sd-event / sd-event.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <sys/epoll.h>
4 #include <sys/timerfd.h>
5 #include <sys/wait.h>
6
7 #include "sd-daemon.h"
8 #include "sd-event.h"
9 #include "sd-id128.h"
10 #include "sd-messages.h"
11
12 #include "alloc-util.h"
13 #include "env-util.h"
14 #include "event-source.h"
15 #include "fd-util.h"
16 #include "fs-util.h"
17 #include "glyph-util.h"
18 #include "hashmap.h"
19 #include "hexdecoct.h"
20 #include "list.h"
21 #include "logarithm.h"
22 #include "macro.h"
23 #include "mallinfo-util.h"
24 #include "memory-util.h"
25 #include "missing_magic.h"
26 #include "missing_syscall.h"
27 #include "missing_threads.h"
28 #include "origin-id.h"
29 #include "path-util.h"
30 #include "prioq.h"
31 #include "process-util.h"
32 #include "psi-util.h"
33 #include "set.h"
34 #include "signal-util.h"
35 #include "socket-util.h"
36 #include "stat-util.h"
37 #include "string-table.h"
38 #include "string-util.h"
39 #include "strxcpyx.h"
40 #include "time-util.h"
41
42 #define DEFAULT_ACCURACY_USEC (250 * USEC_PER_MSEC)
43
44 static bool EVENT_SOURCE_WATCH_PIDFD(sd_event_source *s) {
45 /* Returns true if this is a PID event source and can be implemented by watching EPOLLIN */
46 return s &&
47 s->type == SOURCE_CHILD &&
48 s->child.pidfd >= 0 &&
49 s->child.options == WEXITED;
50 }
51
52 static bool event_source_is_online(sd_event_source *s) {
53 assert(s);
54 return s->enabled != SD_EVENT_OFF && !s->ratelimited;
55 }
56
57 static bool event_source_is_offline(sd_event_source *s) {
58 assert(s);
59 return s->enabled == SD_EVENT_OFF || s->ratelimited;
60 }
61
62 static const char* const event_source_type_table[_SOURCE_EVENT_SOURCE_TYPE_MAX] = {
63 [SOURCE_IO] = "io",
64 [SOURCE_TIME_REALTIME] = "realtime",
65 [SOURCE_TIME_BOOTTIME] = "bootime",
66 [SOURCE_TIME_MONOTONIC] = "monotonic",
67 [SOURCE_TIME_REALTIME_ALARM] = "realtime-alarm",
68 [SOURCE_TIME_BOOTTIME_ALARM] = "boottime-alarm",
69 [SOURCE_SIGNAL] = "signal",
70 [SOURCE_CHILD] = "child",
71 [SOURCE_DEFER] = "defer",
72 [SOURCE_POST] = "post",
73 [SOURCE_EXIT] = "exit",
74 [SOURCE_WATCHDOG] = "watchdog",
75 [SOURCE_INOTIFY] = "inotify",
76 [SOURCE_MEMORY_PRESSURE] = "memory-pressure",
77 };
78
79 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(event_source_type, int);
80
81 #define EVENT_SOURCE_IS_TIME(t) \
82 IN_SET((t), \
83 SOURCE_TIME_REALTIME, \
84 SOURCE_TIME_BOOTTIME, \
85 SOURCE_TIME_MONOTONIC, \
86 SOURCE_TIME_REALTIME_ALARM, \
87 SOURCE_TIME_BOOTTIME_ALARM)
88
89 #define EVENT_SOURCE_CAN_RATE_LIMIT(t) \
90 IN_SET((t), \
91 SOURCE_IO, \
92 SOURCE_TIME_REALTIME, \
93 SOURCE_TIME_BOOTTIME, \
94 SOURCE_TIME_MONOTONIC, \
95 SOURCE_TIME_REALTIME_ALARM, \
96 SOURCE_TIME_BOOTTIME_ALARM, \
97 SOURCE_SIGNAL, \
98 SOURCE_DEFER, \
99 SOURCE_INOTIFY, \
100 SOURCE_MEMORY_PRESSURE)
101
102 /* This is used to assert that we didn't pass an unexpected source type to event_source_time_prioq_put().
103 * Time sources and ratelimited sources can be passed, so effectively this is the same as the
104 * EVENT_SOURCE_CAN_RATE_LIMIT() macro. */
105 #define EVENT_SOURCE_USES_TIME_PRIOQ(t) EVENT_SOURCE_CAN_RATE_LIMIT(t)
106
107 struct sd_event {
108 unsigned n_ref;
109
110 int epoll_fd;
111 int watchdog_fd;
112
113 Prioq *pending;
114 Prioq *prepare;
115
116 /* timerfd_create() only supports these five clocks so far. We
117 * can add support for more clocks when the kernel learns to
118 * deal with them, too. */
119 struct clock_data realtime;
120 struct clock_data boottime;
121 struct clock_data monotonic;
122 struct clock_data realtime_alarm;
123 struct clock_data boottime_alarm;
124
125 usec_t perturb;
126
127 sd_event_source **signal_sources; /* indexed by signal number */
128 Hashmap *signal_data; /* indexed by priority */
129
130 Hashmap *child_sources;
131 unsigned n_online_child_sources;
132
133 Set *post_sources;
134
135 Prioq *exit;
136
137 Hashmap *inotify_data; /* indexed by priority */
138
139 /* A list of inode structures that still have an fd open, that we need to close before the next loop iteration */
140 LIST_HEAD(struct inode_data, inode_data_to_close_list);
141
142 /* A list of inotify objects that already have events buffered which aren't processed yet */
143 LIST_HEAD(struct inotify_data, buffered_inotify_data_list);
144
145 /* A list of memory pressure event sources that still need their subscription string written */
146 LIST_HEAD(sd_event_source, memory_pressure_write_list);
147
148 uint64_t origin_id;
149
150 uint64_t iteration;
151 triple_timestamp timestamp;
152 int state;
153
154 bool exit_requested:1;
155 bool need_process_child:1;
156 bool watchdog:1;
157 bool profile_delays:1;
158
159 int exit_code;
160
161 pid_t tid;
162 sd_event **default_event_ptr;
163
164 usec_t watchdog_last, watchdog_period;
165
166 unsigned n_sources;
167
168 struct epoll_event *event_queue;
169
170 LIST_HEAD(sd_event_source, sources);
171
172 sd_event_source *sigint_event_source, *sigterm_event_source;
173
174 usec_t last_run_usec, last_log_usec;
175 unsigned delays[sizeof(usec_t) * 8];
176 };
177
178 DEFINE_PRIVATE_ORIGIN_ID_HELPERS(sd_event, event);
179
180 static thread_local sd_event *default_event = NULL;
181
182 static void source_disconnect(sd_event_source *s);
183 static void event_gc_inode_data(sd_event *e, struct inode_data *d);
184
185 static sd_event *event_resolve(sd_event *e) {
186 return e == SD_EVENT_DEFAULT ? default_event : e;
187 }
188
189 static int pending_prioq_compare(const void *a, const void *b) {
190 const sd_event_source *x = a, *y = b;
191 int r;
192
193 assert(x->pending);
194 assert(y->pending);
195
196 /* Enabled ones first */
197 r = CMP(x->enabled == SD_EVENT_OFF, y->enabled == SD_EVENT_OFF);
198 if (r != 0)
199 return r;
200
201 /* Non rate-limited ones first. */
202 r = CMP(!!x->ratelimited, !!y->ratelimited);
203 if (r != 0)
204 return r;
205
206 /* Lower priority values first */
207 r = CMP(x->priority, y->priority);
208 if (r != 0)
209 return r;
210
211 /* Older entries first */
212 return CMP(x->pending_iteration, y->pending_iteration);
213 }
214
215 static int prepare_prioq_compare(const void *a, const void *b) {
216 const sd_event_source *x = a, *y = b;
217 int r;
218
219 assert(x->prepare);
220 assert(y->prepare);
221
222 /* Enabled ones first */
223 r = CMP(x->enabled == SD_EVENT_OFF, y->enabled == SD_EVENT_OFF);
224 if (r != 0)
225 return r;
226
227 /* Non rate-limited ones first. */
228 r = CMP(!!x->ratelimited, !!y->ratelimited);
229 if (r != 0)
230 return r;
231
232 /* Move most recently prepared ones last, so that we can stop
233 * preparing as soon as we hit one that has already been
234 * prepared in the current iteration */
235 r = CMP(x->prepare_iteration, y->prepare_iteration);
236 if (r != 0)
237 return r;
238
239 /* Lower priority values first */
240 return CMP(x->priority, y->priority);
241 }
242
243 static usec_t time_event_source_next(const sd_event_source *s) {
244 assert(s);
245
246 /* We have two kinds of event sources that have elapsation times associated with them: the actual
247 * time based ones and the ones for which a ratelimit can be in effect (where we want to be notified
248 * once the ratelimit time window ends). Let's return the next elapsing time depending on what we are
249 * looking at here. */
250
251 if (s->ratelimited) { /* If rate-limited the next elapsation is when the ratelimit time window ends */
252 assert(s->rate_limit.begin != 0);
253 assert(s->rate_limit.interval != 0);
254 return usec_add(s->rate_limit.begin, s->rate_limit.interval);
255 }
256
257 /* Otherwise this must be a time event source, if not ratelimited */
258 if (EVENT_SOURCE_IS_TIME(s->type))
259 return s->time.next;
260
261 return USEC_INFINITY;
262 }
263
264 static usec_t time_event_source_latest(const sd_event_source *s) {
265 assert(s);
266
267 if (s->ratelimited) { /* For ratelimited stuff the earliest and the latest time shall actually be the
268 * same, as we should avoid adding additional inaccuracy on an inaccuracy time
269 * window */
270 assert(s->rate_limit.begin != 0);
271 assert(s->rate_limit.interval != 0);
272 return usec_add(s->rate_limit.begin, s->rate_limit.interval);
273 }
274
275 /* Must be a time event source, if not ratelimited */
276 if (EVENT_SOURCE_IS_TIME(s->type))
277 return usec_add(s->time.next, s->time.accuracy);
278
279 return USEC_INFINITY;
280 }
281
282 static bool event_source_timer_candidate(const sd_event_source *s) {
283 assert(s);
284
285 /* Returns true for event sources that either are not pending yet (i.e. where it's worth to mark them pending)
286 * or which are currently ratelimited (i.e. where it's worth leaving the ratelimited state) */
287 return !s->pending || s->ratelimited;
288 }
289
290 static int time_prioq_compare(const void *a, const void *b, usec_t (*time_func)(const sd_event_source *s)) {
291 const sd_event_source *x = a, *y = b;
292 int r;
293
294 /* Enabled ones first */
295 r = CMP(x->enabled == SD_EVENT_OFF, y->enabled == SD_EVENT_OFF);
296 if (r != 0)
297 return r;
298
299 /* Order "non-pending OR ratelimited" before "pending AND not-ratelimited" */
300 r = CMP(!event_source_timer_candidate(x), !event_source_timer_candidate(y));
301 if (r != 0)
302 return r;
303
304 /* Order by time */
305 return CMP(time_func(x), time_func(y));
306 }
307
308 static int earliest_time_prioq_compare(const void *a, const void *b) {
309 return time_prioq_compare(a, b, time_event_source_next);
310 }
311
312 static int latest_time_prioq_compare(const void *a, const void *b) {
313 return time_prioq_compare(a, b, time_event_source_latest);
314 }
315
316 static int exit_prioq_compare(const void *a, const void *b) {
317 const sd_event_source *x = a, *y = b;
318 int r;
319
320 assert(x->type == SOURCE_EXIT);
321 assert(y->type == SOURCE_EXIT);
322
323 /* Enabled ones first */
324 r = CMP(x->enabled == SD_EVENT_OFF, y->enabled == SD_EVENT_OFF);
325 if (r != 0)
326 return r;
327
328 /* Lower priority values first */
329 return CMP(x->priority, y->priority);
330 }
331
332 static void free_clock_data(struct clock_data *d) {
333 assert(d);
334 assert(d->wakeup == WAKEUP_CLOCK_DATA);
335
336 safe_close(d->fd);
337 prioq_free(d->earliest);
338 prioq_free(d->latest);
339 }
340
341 static sd_event *event_free(sd_event *e) {
342 sd_event_source *s;
343
344 assert(e);
345
346 e->sigterm_event_source = sd_event_source_unref(e->sigterm_event_source);
347 e->sigint_event_source = sd_event_source_unref(e->sigint_event_source);
348
349 while ((s = e->sources)) {
350 assert(s->floating);
351 source_disconnect(s);
352 sd_event_source_unref(s);
353 }
354
355 assert(e->n_sources == 0);
356
357 if (e->default_event_ptr)
358 *(e->default_event_ptr) = NULL;
359
360 safe_close(e->epoll_fd);
361 safe_close(e->watchdog_fd);
362
363 free_clock_data(&e->realtime);
364 free_clock_data(&e->boottime);
365 free_clock_data(&e->monotonic);
366 free_clock_data(&e->realtime_alarm);
367 free_clock_data(&e->boottime_alarm);
368
369 prioq_free(e->pending);
370 prioq_free(e->prepare);
371 prioq_free(e->exit);
372
373 free(e->signal_sources);
374 hashmap_free(e->signal_data);
375
376 hashmap_free(e->inotify_data);
377
378 hashmap_free(e->child_sources);
379 set_free(e->post_sources);
380
381 free(e->event_queue);
382
383 return mfree(e);
384 }
385
386 _public_ int sd_event_new(sd_event** ret) {
387 sd_event *e;
388 int r;
389
390 assert_return(ret, -EINVAL);
391
392 e = new(sd_event, 1);
393 if (!e)
394 return -ENOMEM;
395
396 *e = (sd_event) {
397 .n_ref = 1,
398 .epoll_fd = -EBADF,
399 .watchdog_fd = -EBADF,
400 .realtime.wakeup = WAKEUP_CLOCK_DATA,
401 .realtime.fd = -EBADF,
402 .realtime.next = USEC_INFINITY,
403 .boottime.wakeup = WAKEUP_CLOCK_DATA,
404 .boottime.fd = -EBADF,
405 .boottime.next = USEC_INFINITY,
406 .monotonic.wakeup = WAKEUP_CLOCK_DATA,
407 .monotonic.fd = -EBADF,
408 .monotonic.next = USEC_INFINITY,
409 .realtime_alarm.wakeup = WAKEUP_CLOCK_DATA,
410 .realtime_alarm.fd = -EBADF,
411 .realtime_alarm.next = USEC_INFINITY,
412 .boottime_alarm.wakeup = WAKEUP_CLOCK_DATA,
413 .boottime_alarm.fd = -EBADF,
414 .boottime_alarm.next = USEC_INFINITY,
415 .perturb = USEC_INFINITY,
416 .origin_id = origin_id_query(),
417 };
418
419 r = prioq_ensure_allocated(&e->pending, pending_prioq_compare);
420 if (r < 0)
421 goto fail;
422
423 e->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
424 if (e->epoll_fd < 0) {
425 r = -errno;
426 goto fail;
427 }
428
429 e->epoll_fd = fd_move_above_stdio(e->epoll_fd);
430
431 if (secure_getenv("SD_EVENT_PROFILE_DELAYS")) {
432 log_debug("Event loop profiling enabled. Logarithmic histogram of event loop iterations in the range 2^0 %s 2^63 us will be logged every 5s.",
433 special_glyph(SPECIAL_GLYPH_ELLIPSIS));
434 e->profile_delays = true;
435 }
436
437 *ret = e;
438 return 0;
439
440 fail:
441 event_free(e);
442 return r;
443 }
444
445 /* Define manually so we can add the origin check */
446 _public_ sd_event *sd_event_ref(sd_event *e) {
447 if (!e)
448 return NULL;
449 if (event_origin_changed(e))
450 return NULL;
451
452 e->n_ref++;
453
454 return e;
455 }
456
457 _public_ sd_event* sd_event_unref(sd_event *e) {
458 if (!e)
459 return NULL;
460 if (event_origin_changed(e))
461 return NULL;
462
463 assert(e->n_ref > 0);
464 if (--e->n_ref > 0)
465 return NULL;
466
467 return event_free(e);
468 }
469
470 #define PROTECT_EVENT(e) \
471 _unused_ _cleanup_(sd_event_unrefp) sd_event *_ref = sd_event_ref(e);
472
473 _public_ sd_event_source* sd_event_source_disable_unref(sd_event_source *s) {
474 if (s)
475 (void) sd_event_source_set_enabled(s, SD_EVENT_OFF);
476 return sd_event_source_unref(s);
477 }
478
479 static void source_io_unregister(sd_event_source *s) {
480 assert(s);
481 assert(s->type == SOURCE_IO);
482
483 if (event_origin_changed(s->event))
484 return;
485
486 if (!s->io.registered)
487 return;
488
489 if (epoll_ctl(s->event->epoll_fd, EPOLL_CTL_DEL, s->io.fd, NULL) < 0)
490 log_debug_errno(errno, "Failed to remove source %s (type %s) from epoll, ignoring: %m",
491 strna(s->description), event_source_type_to_string(s->type));
492
493 s->io.registered = false;
494 }
495
496 static int source_io_register(
497 sd_event_source *s,
498 int enabled,
499 uint32_t events) {
500
501 assert(s);
502 assert(s->type == SOURCE_IO);
503 assert(enabled != SD_EVENT_OFF);
504
505 struct epoll_event ev = {
506 .events = events | (enabled == SD_EVENT_ONESHOT ? EPOLLONESHOT : 0),
507 .data.ptr = s,
508 };
509
510 if (epoll_ctl(s->event->epoll_fd,
511 s->io.registered ? EPOLL_CTL_MOD : EPOLL_CTL_ADD,
512 s->io.fd, &ev) < 0)
513 return -errno;
514
515 s->io.registered = true;
516
517 return 0;
518 }
519
520 static void source_child_pidfd_unregister(sd_event_source *s) {
521 assert(s);
522 assert(s->type == SOURCE_CHILD);
523
524 if (event_origin_changed(s->event))
525 return;
526
527 if (!s->child.registered)
528 return;
529
530 if (EVENT_SOURCE_WATCH_PIDFD(s))
531 if (epoll_ctl(s->event->epoll_fd, EPOLL_CTL_DEL, s->child.pidfd, NULL) < 0)
532 log_debug_errno(errno, "Failed to remove source %s (type %s) from epoll, ignoring: %m",
533 strna(s->description), event_source_type_to_string(s->type));
534
535 s->child.registered = false;
536 }
537
538 static int source_child_pidfd_register(sd_event_source *s, int enabled) {
539 assert(s);
540 assert(s->type == SOURCE_CHILD);
541 assert(enabled != SD_EVENT_OFF);
542
543 if (EVENT_SOURCE_WATCH_PIDFD(s)) {
544 struct epoll_event ev = {
545 .events = EPOLLIN | (enabled == SD_EVENT_ONESHOT ? EPOLLONESHOT : 0),
546 .data.ptr = s,
547 };
548
549 if (epoll_ctl(s->event->epoll_fd,
550 s->child.registered ? EPOLL_CTL_MOD : EPOLL_CTL_ADD,
551 s->child.pidfd, &ev) < 0)
552 return -errno;
553 }
554
555 s->child.registered = true;
556 return 0;
557 }
558
559 static void source_memory_pressure_unregister(sd_event_source *s) {
560 assert(s);
561 assert(s->type == SOURCE_MEMORY_PRESSURE);
562
563 if (event_origin_changed(s->event))
564 return;
565
566 if (!s->memory_pressure.registered)
567 return;
568
569 if (epoll_ctl(s->event->epoll_fd, EPOLL_CTL_DEL, s->memory_pressure.fd, NULL) < 0)
570 log_debug_errno(errno, "Failed to remove source %s (type %s) from epoll, ignoring: %m",
571 strna(s->description), event_source_type_to_string(s->type));
572
573 s->memory_pressure.registered = false;
574 }
575
576 static int source_memory_pressure_register(sd_event_source *s, int enabled) {
577 assert(s);
578 assert(s->type == SOURCE_MEMORY_PRESSURE);
579 assert(enabled != SD_EVENT_OFF);
580
581 struct epoll_event ev = {
582 .events = s->memory_pressure.write_buffer_size > 0 ? EPOLLOUT :
583 (s->memory_pressure.events | (enabled == SD_EVENT_ONESHOT ? EPOLLONESHOT : 0)),
584 .data.ptr = s,
585 };
586
587 if (epoll_ctl(s->event->epoll_fd,
588 s->memory_pressure.registered ? EPOLL_CTL_MOD : EPOLL_CTL_ADD,
589 s->memory_pressure.fd, &ev) < 0)
590 return -errno;
591
592 s->memory_pressure.registered = true;
593 return 0;
594 }
595
596 static void source_memory_pressure_add_to_write_list(sd_event_source *s) {
597 assert(s);
598 assert(s->type == SOURCE_MEMORY_PRESSURE);
599
600 if (s->memory_pressure.in_write_list)
601 return;
602
603 LIST_PREPEND(memory_pressure.write_list, s->event->memory_pressure_write_list, s);
604 s->memory_pressure.in_write_list = true;
605 }
606
607 static void source_memory_pressure_remove_from_write_list(sd_event_source *s) {
608 assert(s);
609 assert(s->type == SOURCE_MEMORY_PRESSURE);
610
611 if (!s->memory_pressure.in_write_list)
612 return;
613
614 LIST_REMOVE(memory_pressure.write_list, s->event->memory_pressure_write_list, s);
615 s->memory_pressure.in_write_list = false;
616 }
617
618 static clockid_t event_source_type_to_clock(EventSourceType t) {
619
620 switch (t) {
621
622 case SOURCE_TIME_REALTIME:
623 return CLOCK_REALTIME;
624
625 case SOURCE_TIME_BOOTTIME:
626 return CLOCK_BOOTTIME;
627
628 case SOURCE_TIME_MONOTONIC:
629 return CLOCK_MONOTONIC;
630
631 case SOURCE_TIME_REALTIME_ALARM:
632 return CLOCK_REALTIME_ALARM;
633
634 case SOURCE_TIME_BOOTTIME_ALARM:
635 return CLOCK_BOOTTIME_ALARM;
636
637 default:
638 return (clockid_t) -1;
639 }
640 }
641
642 static EventSourceType clock_to_event_source_type(clockid_t clock) {
643
644 switch (clock) {
645
646 case CLOCK_REALTIME:
647 return SOURCE_TIME_REALTIME;
648
649 case CLOCK_BOOTTIME:
650 return SOURCE_TIME_BOOTTIME;
651
652 case CLOCK_MONOTONIC:
653 return SOURCE_TIME_MONOTONIC;
654
655 case CLOCK_REALTIME_ALARM:
656 return SOURCE_TIME_REALTIME_ALARM;
657
658 case CLOCK_BOOTTIME_ALARM:
659 return SOURCE_TIME_BOOTTIME_ALARM;
660
661 default:
662 return _SOURCE_EVENT_SOURCE_TYPE_INVALID;
663 }
664 }
665
666 static struct clock_data* event_get_clock_data(sd_event *e, EventSourceType t) {
667 assert(e);
668
669 switch (t) {
670
671 case SOURCE_TIME_REALTIME:
672 return &e->realtime;
673
674 case SOURCE_TIME_BOOTTIME:
675 return &e->boottime;
676
677 case SOURCE_TIME_MONOTONIC:
678 return &e->monotonic;
679
680 case SOURCE_TIME_REALTIME_ALARM:
681 return &e->realtime_alarm;
682
683 case SOURCE_TIME_BOOTTIME_ALARM:
684 return &e->boottime_alarm;
685
686 default:
687 return NULL;
688 }
689 }
690
691 static void event_free_signal_data(sd_event *e, struct signal_data *d) {
692 assert(e);
693
694 if (!d)
695 return;
696
697 hashmap_remove(e->signal_data, &d->priority);
698 safe_close(d->fd);
699 free(d);
700 }
701
702 static int event_make_signal_data(
703 sd_event *e,
704 int sig,
705 struct signal_data **ret) {
706
707 struct signal_data *d;
708 bool added = false;
709 sigset_t ss_copy;
710 int64_t priority;
711 int r;
712
713 assert(e);
714
715 if (event_origin_changed(e))
716 return -ECHILD;
717
718 if (e->signal_sources && e->signal_sources[sig])
719 priority = e->signal_sources[sig]->priority;
720 else
721 priority = SD_EVENT_PRIORITY_NORMAL;
722
723 d = hashmap_get(e->signal_data, &priority);
724 if (d) {
725 if (sigismember(&d->sigset, sig) > 0) {
726 if (ret)
727 *ret = d;
728 return 0;
729 }
730 } else {
731 d = new(struct signal_data, 1);
732 if (!d)
733 return -ENOMEM;
734
735 *d = (struct signal_data) {
736 .wakeup = WAKEUP_SIGNAL_DATA,
737 .fd = -EBADF,
738 .priority = priority,
739 };
740
741 r = hashmap_ensure_put(&e->signal_data, &uint64_hash_ops, &d->priority, d);
742 if (r < 0) {
743 free(d);
744 return r;
745 }
746
747 added = true;
748 }
749
750 ss_copy = d->sigset;
751 assert_se(sigaddset(&ss_copy, sig) >= 0);
752
753 r = signalfd(d->fd >= 0 ? d->fd : -1, /* the first arg must be -1 or a valid signalfd */
754 &ss_copy,
755 SFD_NONBLOCK|SFD_CLOEXEC);
756 if (r < 0) {
757 r = -errno;
758 goto fail;
759 }
760
761 d->sigset = ss_copy;
762
763 if (d->fd >= 0) {
764 if (ret)
765 *ret = d;
766 return 0;
767 }
768
769 d->fd = fd_move_above_stdio(r);
770
771 struct epoll_event ev = {
772 .events = EPOLLIN,
773 .data.ptr = d,
774 };
775
776 if (epoll_ctl(e->epoll_fd, EPOLL_CTL_ADD, d->fd, &ev) < 0) {
777 r = -errno;
778 goto fail;
779 }
780
781 if (ret)
782 *ret = d;
783
784 return 0;
785
786 fail:
787 if (added)
788 event_free_signal_data(e, d);
789
790 return r;
791 }
792
793 static void event_unmask_signal_data(sd_event *e, struct signal_data *d, int sig) {
794 assert(e);
795 assert(d);
796
797 /* Turns off the specified signal in the signal data
798 * object. If the signal mask of the object becomes empty that
799 * way removes it. */
800
801 if (sigismember(&d->sigset, sig) == 0)
802 return;
803
804 assert_se(sigdelset(&d->sigset, sig) >= 0);
805
806 if (sigisemptyset(&d->sigset)) {
807 /* If all the mask is all-zero we can get rid of the structure */
808 event_free_signal_data(e, d);
809 return;
810 }
811
812 if (event_origin_changed(e))
813 return;
814
815 assert(d->fd >= 0);
816
817 if (signalfd(d->fd, &d->sigset, SFD_NONBLOCK|SFD_CLOEXEC) < 0)
818 log_debug_errno(errno, "Failed to unset signal bit, ignoring: %m");
819 }
820
821 static void event_gc_signal_data(sd_event *e, const int64_t *priority, int sig) {
822 struct signal_data *d;
823 static const int64_t zero_priority = 0;
824
825 assert(e);
826
827 /* Rechecks if the specified signal is still something we are interested in. If not, we'll unmask it,
828 * and possibly drop the signalfd for it. */
829
830 if (sig == SIGCHLD &&
831 e->n_online_child_sources > 0)
832 return;
833
834 if (e->signal_sources &&
835 e->signal_sources[sig] &&
836 event_source_is_online(e->signal_sources[sig]))
837 return;
838
839 /*
840 * The specified signal might be enabled in three different queues:
841 *
842 * 1) the one that belongs to the priority passed (if it is non-NULL)
843 * 2) the one that belongs to the priority of the event source of the signal (if there is one)
844 * 3) the 0 priority (to cover the SIGCHLD case)
845 *
846 * Hence, let's remove it from all three here.
847 */
848
849 if (priority) {
850 d = hashmap_get(e->signal_data, priority);
851 if (d)
852 event_unmask_signal_data(e, d, sig);
853 }
854
855 if (e->signal_sources && e->signal_sources[sig]) {
856 d = hashmap_get(e->signal_data, &e->signal_sources[sig]->priority);
857 if (d)
858 event_unmask_signal_data(e, d, sig);
859 }
860
861 d = hashmap_get(e->signal_data, &zero_priority);
862 if (d)
863 event_unmask_signal_data(e, d, sig);
864 }
865
866 static void event_source_pp_prioq_reshuffle(sd_event_source *s) {
867 assert(s);
868
869 /* Reshuffles the pending + prepare prioqs. Called whenever the dispatch order changes, i.e. when
870 * they are enabled/disabled or marked pending and such. */
871
872 if (s->pending)
873 prioq_reshuffle(s->event->pending, s, &s->pending_index);
874
875 if (s->prepare)
876 prioq_reshuffle(s->event->prepare, s, &s->prepare_index);
877 }
878
879 static void event_source_time_prioq_reshuffle(sd_event_source *s) {
880 struct clock_data *d;
881
882 assert(s);
883
884 /* Called whenever the event source's timer ordering properties changed, i.e. time, accuracy,
885 * pending, enable state, and ratelimiting state. Makes sure the two prioq's are ordered
886 * properly again. */
887
888 if (s->ratelimited)
889 d = &s->event->monotonic;
890 else if (EVENT_SOURCE_IS_TIME(s->type))
891 assert_se(d = event_get_clock_data(s->event, s->type));
892 else
893 return; /* no-op for an event source which is neither a timer nor ratelimited. */
894
895 prioq_reshuffle(d->earliest, s, &s->earliest_index);
896 prioq_reshuffle(d->latest, s, &s->latest_index);
897 d->needs_rearm = true;
898 }
899
900 static void event_source_time_prioq_remove(
901 sd_event_source *s,
902 struct clock_data *d) {
903
904 assert(s);
905 assert(d);
906
907 prioq_remove(d->earliest, s, &s->earliest_index);
908 prioq_remove(d->latest, s, &s->latest_index);
909 s->earliest_index = s->latest_index = PRIOQ_IDX_NULL;
910 d->needs_rearm = true;
911 }
912
913 static void source_disconnect(sd_event_source *s) {
914 sd_event *event;
915 int r;
916
917 assert(s);
918
919 if (!s->event)
920 return;
921
922 assert(s->event->n_sources > 0);
923
924 switch (s->type) {
925
926 case SOURCE_IO:
927 if (s->io.fd >= 0)
928 source_io_unregister(s);
929
930 break;
931
932 case SOURCE_TIME_REALTIME:
933 case SOURCE_TIME_BOOTTIME:
934 case SOURCE_TIME_MONOTONIC:
935 case SOURCE_TIME_REALTIME_ALARM:
936 case SOURCE_TIME_BOOTTIME_ALARM:
937 /* Only remove this event source from the time event source here if it is not ratelimited. If
938 * it is ratelimited, we'll remove it below, separately. Why? Because the clock used might
939 * differ: ratelimiting always uses CLOCK_MONOTONIC, but timer events might use any clock */
940
941 if (!s->ratelimited) {
942 struct clock_data *d;
943 assert_se(d = event_get_clock_data(s->event, s->type));
944 event_source_time_prioq_remove(s, d);
945 }
946
947 break;
948
949 case SOURCE_SIGNAL:
950 if (s->signal.sig > 0) {
951
952 if (s->event->signal_sources)
953 s->event->signal_sources[s->signal.sig] = NULL;
954
955 event_gc_signal_data(s->event, &s->priority, s->signal.sig);
956
957 if (s->signal.unblock) {
958 sigset_t new_ss;
959
960 if (sigemptyset(&new_ss) < 0)
961 log_debug_errno(errno, "Failed to reset signal set, ignoring: %m");
962 else if (sigaddset(&new_ss, s->signal.sig) < 0)
963 log_debug_errno(errno, "Failed to add signal %i to signal mask, ignoring: %m", s->signal.sig);
964 else {
965 r = pthread_sigmask(SIG_UNBLOCK, &new_ss, NULL);
966 if (r != 0)
967 log_debug_errno(r, "Failed to unblock signal %i, ignoring: %m", s->signal.sig);
968 }
969 }
970 }
971
972 break;
973
974 case SOURCE_CHILD:
975 if (event_origin_changed(s->event))
976 s->child.process_owned = false;
977
978 if (s->child.pid > 0) {
979 if (event_source_is_online(s)) {
980 assert(s->event->n_online_child_sources > 0);
981 s->event->n_online_child_sources--;
982 }
983
984 (void) hashmap_remove(s->event->child_sources, PID_TO_PTR(s->child.pid));
985 }
986
987 if (EVENT_SOURCE_WATCH_PIDFD(s))
988 source_child_pidfd_unregister(s);
989 else
990 event_gc_signal_data(s->event, &s->priority, SIGCHLD);
991
992 break;
993
994 case SOURCE_DEFER:
995 /* nothing */
996 break;
997
998 case SOURCE_POST:
999 set_remove(s->event->post_sources, s);
1000 break;
1001
1002 case SOURCE_EXIT:
1003 prioq_remove(s->event->exit, s, &s->exit.prioq_index);
1004 break;
1005
1006 case SOURCE_INOTIFY: {
1007 struct inode_data *inode_data;
1008
1009 inode_data = s->inotify.inode_data;
1010 if (inode_data) {
1011 struct inotify_data *inotify_data;
1012 assert_se(inotify_data = inode_data->inotify_data);
1013
1014 /* Detach this event source from the inode object */
1015 LIST_REMOVE(inotify.by_inode_data, inode_data->event_sources, s);
1016 s->inotify.inode_data = NULL;
1017
1018 if (s->pending) {
1019 assert(inotify_data->n_pending > 0);
1020 inotify_data->n_pending--;
1021 }
1022
1023 /* Note that we don't reduce the inotify mask for the watch descriptor here if the inode is
1024 * continued to being watched. That's because inotify doesn't really have an API for that: we
1025 * can only change watch masks with access to the original inode either by fd or by path. But
1026 * paths aren't stable, and keeping an O_PATH fd open all the time would mean wasting an fd
1027 * continuously and keeping the mount busy which we can't really do. We could reconstruct the
1028 * original inode from /proc/self/fdinfo/$INOTIFY_FD (as all watch descriptors are listed
1029 * there), but given the need for open_by_handle_at() which is privileged and not universally
1030 * available this would be quite an incomplete solution. Hence we go the other way, leave the
1031 * mask set, even if it is not minimized now, and ignore all events we aren't interested in
1032 * anymore after reception. Yes, this sucks, but … Linux … */
1033
1034 /* Maybe release the inode data (and its inotify) */
1035 event_gc_inode_data(s->event, inode_data);
1036 }
1037
1038 break;
1039 }
1040
1041 case SOURCE_MEMORY_PRESSURE:
1042 source_memory_pressure_remove_from_write_list(s);
1043 source_memory_pressure_unregister(s);
1044 break;
1045
1046 default:
1047 assert_not_reached();
1048 }
1049
1050 if (s->pending)
1051 prioq_remove(s->event->pending, s, &s->pending_index);
1052
1053 if (s->prepare)
1054 prioq_remove(s->event->prepare, s, &s->prepare_index);
1055
1056 if (s->ratelimited)
1057 event_source_time_prioq_remove(s, &s->event->monotonic);
1058
1059 event = TAKE_PTR(s->event);
1060 LIST_REMOVE(sources, event->sources, s);
1061 event->n_sources--;
1062
1063 /* Note that we don't invalidate the type here, since we still need it in order to close the fd or
1064 * pidfd associated with this event source, which we'll do only on source_free(). */
1065
1066 if (!s->floating)
1067 sd_event_unref(event);
1068 }
1069
1070 static sd_event_source* source_free(sd_event_source *s) {
1071 assert(s);
1072
1073 source_disconnect(s);
1074
1075 if (s->type == SOURCE_IO && s->io.owned)
1076 s->io.fd = safe_close(s->io.fd);
1077
1078 if (s->type == SOURCE_CHILD) {
1079 /* Eventually the kernel will do this automatically for us, but for now let's emulate this (unreliably) in userspace. */
1080
1081 if (s->child.process_owned) {
1082
1083 if (!s->child.exited) {
1084 bool sent = false;
1085
1086 if (s->child.pidfd >= 0) {
1087 if (pidfd_send_signal(s->child.pidfd, SIGKILL, NULL, 0) < 0) {
1088 if (errno == ESRCH) /* Already dead */
1089 sent = true;
1090 else if (!ERRNO_IS_NOT_SUPPORTED(errno))
1091 log_debug_errno(errno, "Failed to kill process " PID_FMT " via pidfd_send_signal(), re-trying via kill(): %m",
1092 s->child.pid);
1093 } else
1094 sent = true;
1095 }
1096
1097 if (!sent)
1098 if (kill(s->child.pid, SIGKILL) < 0)
1099 if (errno != ESRCH) /* Already dead */
1100 log_debug_errno(errno, "Failed to kill process " PID_FMT " via kill(), ignoring: %m",
1101 s->child.pid);
1102 }
1103
1104 if (!s->child.waited) {
1105 siginfo_t si = {};
1106
1107 /* Reap the child if we can */
1108 (void) waitid(P_PID, s->child.pid, &si, WEXITED);
1109 }
1110 }
1111
1112 if (s->child.pidfd_owned)
1113 s->child.pidfd = safe_close(s->child.pidfd);
1114 }
1115
1116 if (s->type == SOURCE_MEMORY_PRESSURE) {
1117 s->memory_pressure.fd = safe_close(s->memory_pressure.fd);
1118 s->memory_pressure.write_buffer = mfree(s->memory_pressure.write_buffer);
1119 }
1120
1121 if (s->destroy_callback)
1122 s->destroy_callback(s->userdata);
1123
1124 free(s->description);
1125 return mfree(s);
1126 }
1127 DEFINE_TRIVIAL_CLEANUP_FUNC(sd_event_source*, source_free);
1128
1129 static int source_set_pending(sd_event_source *s, bool b) {
1130 int r;
1131
1132 assert(s);
1133 assert(s->type != SOURCE_EXIT);
1134
1135 if (s->pending == b)
1136 return 0;
1137
1138 s->pending = b;
1139
1140 if (b) {
1141 s->pending_iteration = s->event->iteration;
1142
1143 r = prioq_put(s->event->pending, s, &s->pending_index);
1144 if (r < 0) {
1145 s->pending = false;
1146 return r;
1147 }
1148 } else
1149 assert_se(prioq_remove(s->event->pending, s, &s->pending_index));
1150
1151 if (EVENT_SOURCE_IS_TIME(s->type))
1152 event_source_time_prioq_reshuffle(s);
1153
1154 if (s->type == SOURCE_SIGNAL && !b) {
1155 struct signal_data *d;
1156
1157 d = hashmap_get(s->event->signal_data, &s->priority);
1158 if (d && d->current == s)
1159 d->current = NULL;
1160 }
1161
1162 if (s->type == SOURCE_INOTIFY) {
1163
1164 assert(s->inotify.inode_data);
1165 assert(s->inotify.inode_data->inotify_data);
1166
1167 if (b)
1168 s->inotify.inode_data->inotify_data->n_pending ++;
1169 else {
1170 assert(s->inotify.inode_data->inotify_data->n_pending > 0);
1171 s->inotify.inode_data->inotify_data->n_pending --;
1172 }
1173 }
1174
1175 return 1;
1176 }
1177
1178 static sd_event_source *source_new(sd_event *e, bool floating, EventSourceType type) {
1179
1180 /* Let's allocate exactly what we need. Note that the difference of the smallest event source
1181 * structure to the largest is 144 bytes on x86-64 at the time of writing, i.e. more than two cache
1182 * lines. */
1183 static const size_t size_table[_SOURCE_EVENT_SOURCE_TYPE_MAX] = {
1184 [SOURCE_IO] = endoffsetof_field(sd_event_source, io),
1185 [SOURCE_TIME_REALTIME] = endoffsetof_field(sd_event_source, time),
1186 [SOURCE_TIME_BOOTTIME] = endoffsetof_field(sd_event_source, time),
1187 [SOURCE_TIME_MONOTONIC] = endoffsetof_field(sd_event_source, time),
1188 [SOURCE_TIME_REALTIME_ALARM] = endoffsetof_field(sd_event_source, time),
1189 [SOURCE_TIME_BOOTTIME_ALARM] = endoffsetof_field(sd_event_source, time),
1190 [SOURCE_SIGNAL] = endoffsetof_field(sd_event_source, signal),
1191 [SOURCE_CHILD] = endoffsetof_field(sd_event_source, child),
1192 [SOURCE_DEFER] = endoffsetof_field(sd_event_source, defer),
1193 [SOURCE_POST] = endoffsetof_field(sd_event_source, post),
1194 [SOURCE_EXIT] = endoffsetof_field(sd_event_source, exit),
1195 [SOURCE_INOTIFY] = endoffsetof_field(sd_event_source, inotify),
1196 [SOURCE_MEMORY_PRESSURE] = endoffsetof_field(sd_event_source, memory_pressure),
1197 };
1198
1199 sd_event_source *s;
1200
1201 assert(e);
1202 assert(type >= 0);
1203 assert(type < _SOURCE_EVENT_SOURCE_TYPE_MAX);
1204 assert(size_table[type] > 0);
1205
1206 /* We use expand_to_usable() here to tell gcc that it should consider this an object of the full
1207 * size, even if we only allocate the initial part we need. */
1208 s = expand_to_usable(malloc0(size_table[type]), sizeof(sd_event_source));
1209 if (!s)
1210 return NULL;
1211
1212 /* Note: we cannot use compound initialization here, because sizeof(sd_event_source) is likely larger
1213 * than what we allocated here. */
1214 s->n_ref = 1;
1215 s->event = e;
1216 s->floating = floating;
1217 s->type = type;
1218 s->pending_index = PRIOQ_IDX_NULL;
1219 s->prepare_index = PRIOQ_IDX_NULL;
1220
1221 if (!floating)
1222 sd_event_ref(e);
1223
1224 LIST_PREPEND(sources, e->sources, s);
1225 e->n_sources++;
1226
1227 return s;
1228 }
1229
1230 static int io_exit_callback(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
1231 assert(s);
1232
1233 return sd_event_exit(sd_event_source_get_event(s), PTR_TO_INT(userdata));
1234 }
1235
1236 _public_ int sd_event_add_io(
1237 sd_event *e,
1238 sd_event_source **ret,
1239 int fd,
1240 uint32_t events,
1241 sd_event_io_handler_t callback,
1242 void *userdata) {
1243
1244 _cleanup_(source_freep) sd_event_source *s = NULL;
1245 int r;
1246
1247 assert_return(e, -EINVAL);
1248 assert_return(e = event_resolve(e), -ENOPKG);
1249 assert_return(fd >= 0, -EBADF);
1250 assert_return(!(events & ~(EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLPRI|EPOLLERR|EPOLLHUP|EPOLLET)), -EINVAL);
1251 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
1252 assert_return(!event_origin_changed(e), -ECHILD);
1253
1254 if (!callback)
1255 callback = io_exit_callback;
1256
1257 s = source_new(e, !ret, SOURCE_IO);
1258 if (!s)
1259 return -ENOMEM;
1260
1261 s->wakeup = WAKEUP_EVENT_SOURCE;
1262 s->io.fd = fd;
1263 s->io.events = events;
1264 s->io.callback = callback;
1265 s->userdata = userdata;
1266 s->enabled = SD_EVENT_ON;
1267
1268 r = source_io_register(s, s->enabled, events);
1269 if (r < 0)
1270 return r;
1271
1272 if (ret)
1273 *ret = s;
1274 TAKE_PTR(s);
1275
1276 return 0;
1277 }
1278
1279 static void initialize_perturb(sd_event *e) {
1280 sd_id128_t id = {};
1281
1282 /* When we sleep for longer, we try to realign the wakeup to the same time within each
1283 * minute/second/250ms, so that events all across the system can be coalesced into a single CPU
1284 * wakeup. However, let's take some system-specific randomness for this value, so that in a network
1285 * of systems with synced clocks timer events are distributed a bit. Here, we calculate a
1286 * perturbation usec offset from the boot ID (or machine ID if failed, e.g. /proc is not mounted). */
1287
1288 if (_likely_(e->perturb != USEC_INFINITY))
1289 return;
1290
1291 if (sd_id128_get_boot(&id) >= 0 || sd_id128_get_machine(&id) >= 0)
1292 e->perturb = (id.qwords[0] ^ id.qwords[1]) % USEC_PER_MINUTE;
1293 else
1294 e->perturb = 0; /* This is a super early process without /proc and /etc ?? */
1295 }
1296
1297 static int event_setup_timer_fd(
1298 sd_event *e,
1299 struct clock_data *d,
1300 clockid_t clock) {
1301
1302 assert(e);
1303 assert(d);
1304
1305 if (_likely_(d->fd >= 0))
1306 return 0;
1307
1308 _cleanup_close_ int fd = -EBADF;
1309
1310 fd = timerfd_create(clock, TFD_NONBLOCK|TFD_CLOEXEC);
1311 if (fd < 0)
1312 return -errno;
1313
1314 fd = fd_move_above_stdio(fd);
1315
1316 struct epoll_event ev = {
1317 .events = EPOLLIN,
1318 .data.ptr = d,
1319 };
1320
1321 if (epoll_ctl(e->epoll_fd, EPOLL_CTL_ADD, fd, &ev) < 0)
1322 return -errno;
1323
1324 d->fd = TAKE_FD(fd);
1325 return 0;
1326 }
1327
1328 static int time_exit_callback(sd_event_source *s, uint64_t usec, void *userdata) {
1329 assert(s);
1330
1331 return sd_event_exit(sd_event_source_get_event(s), PTR_TO_INT(userdata));
1332 }
1333
1334 static int setup_clock_data(sd_event *e, struct clock_data *d, clockid_t clock) {
1335 int r;
1336
1337 assert(d);
1338
1339 if (d->fd < 0) {
1340 r = event_setup_timer_fd(e, d, clock);
1341 if (r < 0)
1342 return r;
1343 }
1344
1345 r = prioq_ensure_allocated(&d->earliest, earliest_time_prioq_compare);
1346 if (r < 0)
1347 return r;
1348
1349 r = prioq_ensure_allocated(&d->latest, latest_time_prioq_compare);
1350 if (r < 0)
1351 return r;
1352
1353 return 0;
1354 }
1355
1356 static int event_source_time_prioq_put(
1357 sd_event_source *s,
1358 struct clock_data *d) {
1359
1360 int r;
1361
1362 assert(s);
1363 assert(d);
1364 assert(EVENT_SOURCE_USES_TIME_PRIOQ(s->type));
1365
1366 r = prioq_put(d->earliest, s, &s->earliest_index);
1367 if (r < 0)
1368 return r;
1369
1370 r = prioq_put(d->latest, s, &s->latest_index);
1371 if (r < 0) {
1372 assert_se(prioq_remove(d->earliest, s, &s->earliest_index) > 0);
1373 s->earliest_index = PRIOQ_IDX_NULL;
1374 return r;
1375 }
1376
1377 d->needs_rearm = true;
1378 return 0;
1379 }
1380
1381 _public_ int sd_event_add_time(
1382 sd_event *e,
1383 sd_event_source **ret,
1384 clockid_t clock,
1385 uint64_t usec,
1386 uint64_t accuracy,
1387 sd_event_time_handler_t callback,
1388 void *userdata) {
1389
1390 EventSourceType type;
1391 _cleanup_(source_freep) sd_event_source *s = NULL;
1392 struct clock_data *d;
1393 int r;
1394
1395 assert_return(e, -EINVAL);
1396 assert_return(e = event_resolve(e), -ENOPKG);
1397 assert_return(accuracy != UINT64_MAX, -EINVAL);
1398 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
1399 assert_return(!event_origin_changed(e), -ECHILD);
1400
1401 if (!clock_supported(clock)) /* Checks whether the kernel supports the clock */
1402 return -EOPNOTSUPP;
1403
1404 type = clock_to_event_source_type(clock); /* checks whether sd-event supports this clock */
1405 if (type < 0)
1406 return -EOPNOTSUPP;
1407
1408 if (!callback)
1409 callback = time_exit_callback;
1410
1411 assert_se(d = event_get_clock_data(e, type));
1412
1413 r = setup_clock_data(e, d, clock);
1414 if (r < 0)
1415 return r;
1416
1417 s = source_new(e, !ret, type);
1418 if (!s)
1419 return -ENOMEM;
1420
1421 s->time.next = usec;
1422 s->time.accuracy = accuracy == 0 ? DEFAULT_ACCURACY_USEC : accuracy;
1423 s->time.callback = callback;
1424 s->earliest_index = s->latest_index = PRIOQ_IDX_NULL;
1425 s->userdata = userdata;
1426 s->enabled = SD_EVENT_ONESHOT;
1427
1428 r = event_source_time_prioq_put(s, d);
1429 if (r < 0)
1430 return r;
1431
1432 if (ret)
1433 *ret = s;
1434 TAKE_PTR(s);
1435
1436 return 0;
1437 }
1438
1439 _public_ int sd_event_add_time_relative(
1440 sd_event *e,
1441 sd_event_source **ret,
1442 clockid_t clock,
1443 uint64_t usec,
1444 uint64_t accuracy,
1445 sd_event_time_handler_t callback,
1446 void *userdata) {
1447
1448 usec_t t;
1449 int r;
1450
1451 /* Same as sd_event_add_time() but operates relative to the event loop's current point in time, and
1452 * checks for overflow. */
1453
1454 r = sd_event_now(e, clock, &t);
1455 if (r < 0)
1456 return r;
1457
1458 if (usec >= USEC_INFINITY - t)
1459 return -EOVERFLOW;
1460
1461 return sd_event_add_time(e, ret, clock, t + usec, accuracy, callback, userdata);
1462 }
1463
1464 static int signal_exit_callback(sd_event_source *s, const struct signalfd_siginfo *si, void *userdata) {
1465 assert(s);
1466
1467 return sd_event_exit(sd_event_source_get_event(s), PTR_TO_INT(userdata));
1468 }
1469
1470 _public_ int sd_event_add_signal(
1471 sd_event *e,
1472 sd_event_source **ret,
1473 int sig,
1474 sd_event_signal_handler_t callback,
1475 void *userdata) {
1476
1477 _cleanup_(source_freep) sd_event_source *s = NULL;
1478 struct signal_data *d;
1479 sigset_t new_ss;
1480 bool block_it;
1481 int r;
1482
1483 assert_return(e, -EINVAL);
1484 assert_return(e = event_resolve(e), -ENOPKG);
1485 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
1486 assert_return(!event_origin_changed(e), -ECHILD);
1487
1488 /* Let's make sure our special flag stays outside of the valid signal range */
1489 assert_cc(_NSIG < SD_EVENT_SIGNAL_PROCMASK);
1490
1491 if (sig & SD_EVENT_SIGNAL_PROCMASK) {
1492 sig &= ~SD_EVENT_SIGNAL_PROCMASK;
1493 assert_return(SIGNAL_VALID(sig), -EINVAL);
1494
1495 block_it = true;
1496 } else {
1497 assert_return(SIGNAL_VALID(sig), -EINVAL);
1498
1499 r = signal_is_blocked(sig);
1500 if (r < 0)
1501 return r;
1502 if (r == 0)
1503 return -EBUSY;
1504
1505 block_it = false;
1506 }
1507
1508 if (!callback)
1509 callback = signal_exit_callback;
1510
1511 if (!e->signal_sources) {
1512 e->signal_sources = new0(sd_event_source*, _NSIG);
1513 if (!e->signal_sources)
1514 return -ENOMEM;
1515 } else if (e->signal_sources[sig])
1516 return -EBUSY;
1517
1518 s = source_new(e, !ret, SOURCE_SIGNAL);
1519 if (!s)
1520 return -ENOMEM;
1521
1522 s->signal.sig = sig;
1523 s->signal.callback = callback;
1524 s->userdata = userdata;
1525 s->enabled = SD_EVENT_ON;
1526
1527 e->signal_sources[sig] = s;
1528
1529 if (block_it) {
1530 sigset_t old_ss;
1531
1532 if (sigemptyset(&new_ss) < 0)
1533 return -errno;
1534
1535 if (sigaddset(&new_ss, sig) < 0)
1536 return -errno;
1537
1538 r = pthread_sigmask(SIG_BLOCK, &new_ss, &old_ss);
1539 if (r != 0)
1540 return -r;
1541
1542 r = sigismember(&old_ss, sig);
1543 if (r < 0)
1544 return -errno;
1545
1546 s->signal.unblock = !r;
1547 } else
1548 s->signal.unblock = false;
1549
1550 r = event_make_signal_data(e, sig, &d);
1551 if (r < 0) {
1552 if (s->signal.unblock)
1553 (void) pthread_sigmask(SIG_UNBLOCK, &new_ss, NULL);
1554
1555 return r;
1556 }
1557
1558 /* Use the signal name as description for the event source by default */
1559 (void) sd_event_source_set_description(s, signal_to_string(sig));
1560
1561 if (ret)
1562 *ret = s;
1563 TAKE_PTR(s);
1564
1565 return 0;
1566 }
1567
1568 static int child_exit_callback(sd_event_source *s, const siginfo_t *si, void *userdata) {
1569 assert(s);
1570
1571 return sd_event_exit(sd_event_source_get_event(s), PTR_TO_INT(userdata));
1572 }
1573
1574 static bool shall_use_pidfd(void) {
1575 /* Mostly relevant for debugging, i.e. this is used in test-event.c to test the event loop once with and once without pidfd */
1576 return getenv_bool_secure("SYSTEMD_PIDFD") != 0;
1577 }
1578
1579 _public_ int sd_event_add_child(
1580 sd_event *e,
1581 sd_event_source **ret,
1582 pid_t pid,
1583 int options,
1584 sd_event_child_handler_t callback,
1585 void *userdata) {
1586
1587 _cleanup_(source_freep) sd_event_source *s = NULL;
1588 int r;
1589
1590 assert_return(e, -EINVAL);
1591 assert_return(e = event_resolve(e), -ENOPKG);
1592 assert_return(pid > 1, -EINVAL);
1593 assert_return(!(options & ~(WEXITED|WSTOPPED|WCONTINUED)), -EINVAL);
1594 assert_return(options != 0, -EINVAL);
1595 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
1596 assert_return(!event_origin_changed(e), -ECHILD);
1597
1598 if (!callback)
1599 callback = child_exit_callback;
1600
1601 if (e->n_online_child_sources == 0) {
1602 /* Caller must block SIGCHLD before using us to watch children, even if pidfd is available,
1603 * for compatibility with pre-pidfd and because we don't want the reap the child processes
1604 * ourselves, i.e. call waitid(), and don't want Linux' default internal logic for that to
1605 * take effect.
1606 *
1607 * (As an optimization we only do this check on the first child event source created.) */
1608 r = signal_is_blocked(SIGCHLD);
1609 if (r < 0)
1610 return r;
1611 if (r == 0)
1612 return -EBUSY;
1613 }
1614
1615 r = hashmap_ensure_allocated(&e->child_sources, NULL);
1616 if (r < 0)
1617 return r;
1618
1619 if (hashmap_contains(e->child_sources, PID_TO_PTR(pid)))
1620 return -EBUSY;
1621
1622 s = source_new(e, !ret, SOURCE_CHILD);
1623 if (!s)
1624 return -ENOMEM;
1625
1626 s->wakeup = WAKEUP_EVENT_SOURCE;
1627 s->child.options = options;
1628 s->child.callback = callback;
1629 s->userdata = userdata;
1630 s->enabled = SD_EVENT_ONESHOT;
1631
1632 /* We always take a pidfd here if we can, even if we wait for anything else than WEXITED, so that we
1633 * pin the PID, and make regular waitid() handling race-free. */
1634
1635 if (shall_use_pidfd()) {
1636 s->child.pidfd = pidfd_open(pid, 0);
1637 if (s->child.pidfd < 0) {
1638 /* Propagate errors unless the syscall is not supported or blocked */
1639 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno))
1640 return -errno;
1641 } else
1642 s->child.pidfd_owned = true; /* If we allocate the pidfd we own it by default */
1643 } else
1644 s->child.pidfd = -EBADF;
1645
1646 if (EVENT_SOURCE_WATCH_PIDFD(s)) {
1647 /* We have a pidfd and we only want to watch for exit */
1648 r = source_child_pidfd_register(s, s->enabled);
1649 if (r < 0)
1650 return r;
1651
1652 } else {
1653 /* We have no pidfd or we shall wait for some other event than WEXITED */
1654 r = event_make_signal_data(e, SIGCHLD, NULL);
1655 if (r < 0)
1656 return r;
1657
1658 e->need_process_child = true;
1659 }
1660
1661 r = hashmap_put(e->child_sources, PID_TO_PTR(pid), s);
1662 if (r < 0)
1663 return r;
1664
1665 /* These must be done after everything succeeds. */
1666 s->child.pid = pid;
1667 e->n_online_child_sources++;
1668
1669 if (ret)
1670 *ret = s;
1671 TAKE_PTR(s);
1672 return 0;
1673 }
1674
1675 _public_ int sd_event_add_child_pidfd(
1676 sd_event *e,
1677 sd_event_source **ret,
1678 int pidfd,
1679 int options,
1680 sd_event_child_handler_t callback,
1681 void *userdata) {
1682
1683
1684 _cleanup_(source_freep) sd_event_source *s = NULL;
1685 pid_t pid;
1686 int r;
1687
1688 assert_return(e, -EINVAL);
1689 assert_return(e = event_resolve(e), -ENOPKG);
1690 assert_return(pidfd >= 0, -EBADF);
1691 assert_return(!(options & ~(WEXITED|WSTOPPED|WCONTINUED)), -EINVAL);
1692 assert_return(options != 0, -EINVAL);
1693 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
1694 assert_return(!event_origin_changed(e), -ECHILD);
1695
1696 if (!callback)
1697 callback = child_exit_callback;
1698
1699 if (e->n_online_child_sources == 0) {
1700 r = signal_is_blocked(SIGCHLD);
1701 if (r < 0)
1702 return r;
1703 if (r == 0)
1704 return -EBUSY;
1705 }
1706
1707 r = hashmap_ensure_allocated(&e->child_sources, NULL);
1708 if (r < 0)
1709 return r;
1710
1711 r = pidfd_get_pid(pidfd, &pid);
1712 if (r < 0)
1713 return r;
1714
1715 if (hashmap_contains(e->child_sources, PID_TO_PTR(pid)))
1716 return -EBUSY;
1717
1718 s = source_new(e, !ret, SOURCE_CHILD);
1719 if (!s)
1720 return -ENOMEM;
1721
1722 s->wakeup = WAKEUP_EVENT_SOURCE;
1723 s->child.pidfd = pidfd;
1724 s->child.pid = pid;
1725 s->child.options = options;
1726 s->child.callback = callback;
1727 s->child.pidfd_owned = false; /* If we got the pidfd passed in we don't own it by default (similar to the IO fd case) */
1728 s->userdata = userdata;
1729 s->enabled = SD_EVENT_ONESHOT;
1730
1731 r = hashmap_put(e->child_sources, PID_TO_PTR(pid), s);
1732 if (r < 0)
1733 return r;
1734
1735 if (EVENT_SOURCE_WATCH_PIDFD(s)) {
1736 /* We only want to watch for WEXITED */
1737 r = source_child_pidfd_register(s, s->enabled);
1738 if (r < 0)
1739 return r;
1740 } else {
1741 /* We shall wait for some other event than WEXITED */
1742 r = event_make_signal_data(e, SIGCHLD, NULL);
1743 if (r < 0)
1744 return r;
1745
1746 e->need_process_child = true;
1747 }
1748
1749 e->n_online_child_sources++;
1750
1751 if (ret)
1752 *ret = s;
1753 TAKE_PTR(s);
1754 return 0;
1755 }
1756
1757 static int generic_exit_callback(sd_event_source *s, void *userdata) {
1758 assert(s);
1759
1760 return sd_event_exit(sd_event_source_get_event(s), PTR_TO_INT(userdata));
1761 }
1762
1763 _public_ int sd_event_add_defer(
1764 sd_event *e,
1765 sd_event_source **ret,
1766 sd_event_handler_t callback,
1767 void *userdata) {
1768
1769 _cleanup_(source_freep) sd_event_source *s = NULL;
1770 int r;
1771
1772 assert_return(e, -EINVAL);
1773 assert_return(e = event_resolve(e), -ENOPKG);
1774 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
1775 assert_return(!event_origin_changed(e), -ECHILD);
1776
1777 if (!callback)
1778 callback = generic_exit_callback;
1779
1780 s = source_new(e, !ret, SOURCE_DEFER);
1781 if (!s)
1782 return -ENOMEM;
1783
1784 s->defer.callback = callback;
1785 s->userdata = userdata;
1786 s->enabled = SD_EVENT_ONESHOT;
1787
1788 r = source_set_pending(s, true);
1789 if (r < 0)
1790 return r;
1791
1792 if (ret)
1793 *ret = s;
1794 TAKE_PTR(s);
1795
1796 return 0;
1797 }
1798
1799 _public_ int sd_event_add_post(
1800 sd_event *e,
1801 sd_event_source **ret,
1802 sd_event_handler_t callback,
1803 void *userdata) {
1804
1805 _cleanup_(source_freep) sd_event_source *s = NULL;
1806 int r;
1807
1808 assert_return(e, -EINVAL);
1809 assert_return(e = event_resolve(e), -ENOPKG);
1810 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
1811 assert_return(!event_origin_changed(e), -ECHILD);
1812
1813 if (!callback)
1814 callback = generic_exit_callback;
1815
1816 s = source_new(e, !ret, SOURCE_POST);
1817 if (!s)
1818 return -ENOMEM;
1819
1820 s->post.callback = callback;
1821 s->userdata = userdata;
1822 s->enabled = SD_EVENT_ON;
1823
1824 r = set_ensure_put(&e->post_sources, NULL, s);
1825 if (r < 0)
1826 return r;
1827 assert(r > 0);
1828
1829 if (ret)
1830 *ret = s;
1831 TAKE_PTR(s);
1832
1833 return 0;
1834 }
1835
1836 _public_ int sd_event_add_exit(
1837 sd_event *e,
1838 sd_event_source **ret,
1839 sd_event_handler_t callback,
1840 void *userdata) {
1841
1842 _cleanup_(source_freep) sd_event_source *s = NULL;
1843 int r;
1844
1845 assert_return(e, -EINVAL);
1846 assert_return(e = event_resolve(e), -ENOPKG);
1847 assert_return(callback, -EINVAL);
1848 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
1849 assert_return(!event_origin_changed(e), -ECHILD);
1850
1851 r = prioq_ensure_allocated(&e->exit, exit_prioq_compare);
1852 if (r < 0)
1853 return r;
1854
1855 s = source_new(e, !ret, SOURCE_EXIT);
1856 if (!s)
1857 return -ENOMEM;
1858
1859 s->exit.callback = callback;
1860 s->userdata = userdata;
1861 s->exit.prioq_index = PRIOQ_IDX_NULL;
1862 s->enabled = SD_EVENT_ONESHOT;
1863
1864 r = prioq_put(s->event->exit, s, &s->exit.prioq_index);
1865 if (r < 0)
1866 return r;
1867
1868 if (ret)
1869 *ret = s;
1870 TAKE_PTR(s);
1871
1872 return 0;
1873 }
1874
1875 _public_ int sd_event_trim_memory(void) {
1876 int r;
1877
1878 /* A default implementation of a memory pressure callback. Simply releases our own allocation caches
1879 * and glibc's. This is automatically used when people call sd_event_add_memory_pressure() with a
1880 * NULL callback parameter. */
1881
1882 log_debug("Memory pressure event, trimming malloc() memory.");
1883
1884 #if HAVE_GENERIC_MALLINFO
1885 generic_mallinfo before_mallinfo = generic_mallinfo_get();
1886 #endif
1887
1888 usec_t before_timestamp = now(CLOCK_MONOTONIC);
1889 hashmap_trim_pools();
1890 r = malloc_trim(0);
1891 usec_t after_timestamp = now(CLOCK_MONOTONIC);
1892
1893 if (r > 0)
1894 log_debug("Successfully trimmed some memory.");
1895 else
1896 log_debug("Couldn't trim any memory.");
1897
1898 usec_t period = after_timestamp - before_timestamp;
1899
1900 #if HAVE_GENERIC_MALLINFO
1901 generic_mallinfo after_mallinfo = generic_mallinfo_get();
1902 size_t l = LESS_BY((size_t) before_mallinfo.hblkhd, (size_t) after_mallinfo.hblkhd) +
1903 LESS_BY((size_t) before_mallinfo.arena, (size_t) after_mallinfo.arena);
1904 log_struct(LOG_DEBUG,
1905 LOG_MESSAGE("Memory trimming took %s, returned %s to OS.",
1906 FORMAT_TIMESPAN(period, 0),
1907 FORMAT_BYTES(l)),
1908 "MESSAGE_ID=" SD_MESSAGE_MEMORY_TRIM_STR,
1909 "TRIMMED_BYTES=%zu", l,
1910 "TRIMMED_USEC=" USEC_FMT, period);
1911 #else
1912 log_struct(LOG_DEBUG,
1913 LOG_MESSAGE("Memory trimming took %s.",
1914 FORMAT_TIMESPAN(period, 0)),
1915 "MESSAGE_ID=" SD_MESSAGE_MEMORY_TRIM_STR,
1916 "TRIMMED_USEC=" USEC_FMT, period);
1917 #endif
1918
1919 return 0;
1920 }
1921
1922 static int memory_pressure_callback(sd_event_source *s, void *userdata) {
1923 assert(s);
1924
1925 sd_event_trim_memory();
1926 return 0;
1927 }
1928
1929 _public_ int sd_event_add_memory_pressure(
1930 sd_event *e,
1931 sd_event_source **ret,
1932 sd_event_handler_t callback,
1933 void *userdata) {
1934
1935 _cleanup_free_ char *w = NULL;
1936 _cleanup_(source_freep) sd_event_source *s = NULL;
1937 _cleanup_close_ int path_fd = -EBADF, fd = -EBADF;
1938 _cleanup_free_ void *write_buffer = NULL;
1939 const char *watch, *watch_fallback = NULL, *env;
1940 size_t write_buffer_size = 0;
1941 struct stat st;
1942 uint32_t events;
1943 bool locked;
1944 int r;
1945
1946 assert_return(e, -EINVAL);
1947 assert_return(e = event_resolve(e), -ENOPKG);
1948 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
1949 assert_return(!event_origin_changed(e), -ECHILD);
1950
1951 if (!callback)
1952 callback = memory_pressure_callback;
1953
1954 s = source_new(e, !ret, SOURCE_MEMORY_PRESSURE);
1955 if (!s)
1956 return -ENOMEM;
1957
1958 s->wakeup = WAKEUP_EVENT_SOURCE;
1959 s->memory_pressure.callback = callback;
1960 s->userdata = userdata;
1961 s->enabled = SD_EVENT_ON;
1962 s->memory_pressure.fd = -EBADF;
1963
1964 env = secure_getenv("MEMORY_PRESSURE_WATCH");
1965 if (env) {
1966 if (isempty(env) || path_equal(env, "/dev/null"))
1967 return log_debug_errno(SYNTHETIC_ERRNO(EHOSTDOWN),
1968 "Memory pressure logic is explicitly disabled via $MEMORY_PRESSURE_WATCH.");
1969
1970 if (!path_is_absolute(env) || !path_is_normalized(env))
1971 return log_debug_errno(SYNTHETIC_ERRNO(EBADMSG),
1972 "$MEMORY_PRESSURE_WATCH set to invalid path: %s", env);
1973
1974 watch = env;
1975
1976 env = secure_getenv("MEMORY_PRESSURE_WRITE");
1977 if (env) {
1978 r = unbase64mem(env, SIZE_MAX, &write_buffer, &write_buffer_size);
1979 if (r < 0)
1980 return r;
1981 }
1982
1983 locked = true;
1984 } else {
1985
1986 r = is_pressure_supported();
1987 if (r < 0)
1988 return r;
1989 if (r == 0)
1990 return -EOPNOTSUPP;
1991
1992 /* By default we want to watch memory pressure on the local cgroup, but we'll fall back on
1993 * the system wide pressure if for some reason we cannot (which could be: memory controller
1994 * not delegated to us, or PSI simply not available in the kernel). On legacy cgroupv1 we'll
1995 * only use the system-wide logic. */
1996 r = cg_all_unified();
1997 if (r < 0)
1998 return r;
1999 if (r == 0)
2000 watch = "/proc/pressure/memory";
2001 else {
2002 _cleanup_free_ char *cg = NULL;
2003
2004 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &cg);
2005 if (r < 0)
2006 return r;
2007
2008 w = path_join("/sys/fs/cgroup", cg, "memory.pressure");
2009 if (!w)
2010 return -ENOMEM;
2011
2012 watch = w;
2013 watch_fallback = "/proc/pressure/memory";
2014 }
2015
2016 /* Android uses three levels in its userspace low memory killer logic:
2017 * some 70000 1000000
2018 * some 100000 1000000
2019 * full 70000 1000000
2020 *
2021 * GNOME's low memory monitor uses:
2022 * some 70000 1000000
2023 * some 100000 1000000
2024 * full 100000 1000000
2025 *
2026 * We'll default to the middle level that both agree on. Except we do it on a 2s window
2027 * (i.e. 200ms per 2s, rather than 100ms per 1s), because that's the window duration the
2028 * kernel will allow us to do unprivileged, also in the future. */
2029 if (asprintf((char**) &write_buffer,
2030 "%s " USEC_FMT " " USEC_FMT,
2031 MEMORY_PRESSURE_DEFAULT_TYPE,
2032 MEMORY_PRESSURE_DEFAULT_THRESHOLD_USEC,
2033 MEMORY_PRESSURE_DEFAULT_WINDOW_USEC) < 0)
2034 return -ENOMEM;
2035
2036 write_buffer_size = strlen(write_buffer) + 1;
2037 locked = false;
2038 }
2039
2040 path_fd = open(watch, O_PATH|O_CLOEXEC);
2041 if (path_fd < 0) {
2042 if (errno != ENOENT)
2043 return -errno;
2044
2045 /* We got ENOENT. Three options now: try the fallback if we have one, or return the error as
2046 * is (if based on user/env config), or return -EOPNOTSUPP (because we picked the path, and
2047 * the PSI service apparently is not supported) */
2048 if (!watch_fallback)
2049 return locked ? -ENOENT : -EOPNOTSUPP;
2050
2051 path_fd = open(watch_fallback, O_PATH|O_CLOEXEC);
2052 if (path_fd < 0) {
2053 if (errno == ENOENT) /* PSI is not available in the kernel even under the fallback path? */
2054 return -EOPNOTSUPP;
2055 return -errno;
2056 }
2057 }
2058
2059 if (fstat(path_fd, &st) < 0)
2060 return -errno;
2061
2062 if (S_ISSOCK(st.st_mode)) {
2063 fd = socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
2064 if (fd < 0)
2065 return -errno;
2066
2067 r = connect_unix_path(fd, path_fd, NULL);
2068 if (r < 0)
2069 return r;
2070
2071 events = EPOLLIN;
2072
2073 } else if (S_ISREG(st.st_mode) || S_ISFIFO(st.st_mode) || S_ISCHR(st.st_mode)) {
2074 fd = fd_reopen(path_fd, (write_buffer_size > 0 ? O_RDWR : O_RDONLY) |O_CLOEXEC|O_NONBLOCK|O_NOCTTY);
2075 if (fd < 0)
2076 return fd;
2077
2078 if (S_ISREG(st.st_mode)) {
2079 struct statfs sfs;
2080
2081 /* If this is a regular file validate this is a procfs or cgroupfs file, where we look for EPOLLPRI */
2082
2083 if (fstatfs(fd, &sfs) < 0)
2084 return -errno;
2085
2086 if (!is_fs_type(&sfs, PROC_SUPER_MAGIC) &&
2087 !is_fs_type(&sfs, CGROUP2_SUPER_MAGIC))
2088 return -ENOTTY;
2089
2090 events = EPOLLPRI;
2091 } else
2092 /* For fifos and char devices just watch for EPOLLIN */
2093 events = EPOLLIN;
2094
2095 } else if (S_ISDIR(st.st_mode))
2096 return -EISDIR;
2097 else
2098 return -EBADF;
2099
2100 s->memory_pressure.fd = TAKE_FD(fd);
2101 s->memory_pressure.write_buffer = TAKE_PTR(write_buffer);
2102 s->memory_pressure.write_buffer_size = write_buffer_size;
2103 s->memory_pressure.events = events;
2104 s->memory_pressure.locked = locked;
2105
2106 /* So here's the thing: if we are talking to PSI we need to write the watch string before adding the
2107 * fd to epoll (if we ignore this, then the watch won't work). Hence we'll not actually register the
2108 * fd with the epoll right-away. Instead, we just add the event source to a list of memory pressure
2109 * event sources on which writes must be executed before the first event loop iteration is
2110 * executed. (We could also write the data here, right away, but we want to give the caller the
2111 * freedom to call sd_event_source_set_memory_pressure_type() and
2112 * sd_event_source_set_memory_pressure_rate() before we write it. */
2113
2114 if (s->memory_pressure.write_buffer_size > 0)
2115 source_memory_pressure_add_to_write_list(s);
2116 else {
2117 r = source_memory_pressure_register(s, s->enabled);
2118 if (r < 0)
2119 return r;
2120 }
2121
2122 if (ret)
2123 *ret = s;
2124 TAKE_PTR(s);
2125
2126 return 0;
2127 }
2128
2129 static void event_free_inotify_data(sd_event *e, struct inotify_data *d) {
2130 assert(e);
2131
2132 if (!d)
2133 return;
2134
2135 assert(hashmap_isempty(d->inodes));
2136 assert(hashmap_isempty(d->wd));
2137
2138 if (d->buffer_filled > 0)
2139 LIST_REMOVE(buffered, e->buffered_inotify_data_list, d);
2140
2141 hashmap_free(d->inodes);
2142 hashmap_free(d->wd);
2143
2144 assert_se(hashmap_remove(e->inotify_data, &d->priority) == d);
2145
2146 if (d->fd >= 0) {
2147 if (!event_origin_changed(e) &&
2148 epoll_ctl(e->epoll_fd, EPOLL_CTL_DEL, d->fd, NULL) < 0)
2149 log_debug_errno(errno, "Failed to remove inotify fd from epoll, ignoring: %m");
2150
2151 safe_close(d->fd);
2152 }
2153 free(d);
2154 }
2155
2156 static int event_make_inotify_data(
2157 sd_event *e,
2158 int64_t priority,
2159 struct inotify_data **ret) {
2160
2161 _cleanup_close_ int fd = -EBADF;
2162 struct inotify_data *d;
2163 int r;
2164
2165 assert(e);
2166
2167 d = hashmap_get(e->inotify_data, &priority);
2168 if (d) {
2169 if (ret)
2170 *ret = d;
2171 return 0;
2172 }
2173
2174 fd = inotify_init1(IN_NONBLOCK|O_CLOEXEC);
2175 if (fd < 0)
2176 return -errno;
2177
2178 fd = fd_move_above_stdio(fd);
2179
2180 d = new(struct inotify_data, 1);
2181 if (!d)
2182 return -ENOMEM;
2183
2184 *d = (struct inotify_data) {
2185 .wakeup = WAKEUP_INOTIFY_DATA,
2186 .fd = TAKE_FD(fd),
2187 .priority = priority,
2188 };
2189
2190 r = hashmap_ensure_put(&e->inotify_data, &uint64_hash_ops, &d->priority, d);
2191 if (r < 0) {
2192 d->fd = safe_close(d->fd);
2193 free(d);
2194 return r;
2195 }
2196
2197 struct epoll_event ev = {
2198 .events = EPOLLIN,
2199 .data.ptr = d,
2200 };
2201
2202 if (epoll_ctl(e->epoll_fd, EPOLL_CTL_ADD, d->fd, &ev) < 0) {
2203 r = -errno;
2204 d->fd = safe_close(d->fd); /* let's close this ourselves, as event_free_inotify_data() would otherwise
2205 * remove the fd from the epoll first, which we don't want as we couldn't
2206 * add it in the first place. */
2207 event_free_inotify_data(e, d);
2208 return r;
2209 }
2210
2211 if (ret)
2212 *ret = d;
2213
2214 return 1;
2215 }
2216
2217 static int inode_data_compare(const struct inode_data *x, const struct inode_data *y) {
2218 int r;
2219
2220 assert(x);
2221 assert(y);
2222
2223 r = CMP(x->dev, y->dev);
2224 if (r != 0)
2225 return r;
2226
2227 return CMP(x->ino, y->ino);
2228 }
2229
2230 static void inode_data_hash_func(const struct inode_data *d, struct siphash *state) {
2231 assert(d);
2232
2233 siphash24_compress(&d->dev, sizeof(d->dev), state);
2234 siphash24_compress(&d->ino, sizeof(d->ino), state);
2235 }
2236
2237 DEFINE_PRIVATE_HASH_OPS(inode_data_hash_ops, struct inode_data, inode_data_hash_func, inode_data_compare);
2238
2239 static void event_free_inode_data(
2240 sd_event *e,
2241 struct inode_data *d) {
2242
2243 assert(e);
2244
2245 if (!d)
2246 return;
2247
2248 assert(!d->event_sources);
2249
2250 if (d->fd >= 0) {
2251 LIST_REMOVE(to_close, e->inode_data_to_close_list, d);
2252 safe_close(d->fd);
2253 }
2254
2255 if (d->inotify_data) {
2256
2257 if (d->wd >= 0) {
2258 if (d->inotify_data->fd >= 0 && !event_origin_changed(e)) {
2259 /* So here's a problem. At the time this runs the watch descriptor might already be
2260 * invalidated, because an IN_IGNORED event might be queued right the moment we enter
2261 * the syscall. Hence, whenever we get EINVAL, ignore it entirely, since it's a very
2262 * likely case to happen. */
2263
2264 if (inotify_rm_watch(d->inotify_data->fd, d->wd) < 0 && errno != EINVAL)
2265 log_debug_errno(errno, "Failed to remove watch descriptor %i from inotify, ignoring: %m", d->wd);
2266 }
2267
2268 assert_se(hashmap_remove(d->inotify_data->wd, INT_TO_PTR(d->wd)) == d);
2269 }
2270
2271 assert_se(hashmap_remove(d->inotify_data->inodes, d) == d);
2272 }
2273
2274 free(d);
2275 }
2276
2277 static void event_gc_inotify_data(
2278 sd_event *e,
2279 struct inotify_data *d) {
2280
2281 assert(e);
2282
2283 /* GCs the inotify data object if we don't need it anymore. That's the case if we don't want to watch
2284 * any inode with it anymore, which in turn happens if no event source of this priority is interested
2285 * in any inode any longer. That said, we maintain an extra busy counter: if non-zero we'll delay GC
2286 * (under the expectation that the GC is called again once the counter is decremented). */
2287
2288 if (!d)
2289 return;
2290
2291 if (!hashmap_isempty(d->inodes))
2292 return;
2293
2294 if (d->n_busy > 0)
2295 return;
2296
2297 event_free_inotify_data(e, d);
2298 }
2299
2300 static void event_gc_inode_data(
2301 sd_event *e,
2302 struct inode_data *d) {
2303
2304 struct inotify_data *inotify_data;
2305
2306 assert(e);
2307
2308 if (!d)
2309 return;
2310
2311 if (d->event_sources)
2312 return;
2313
2314 inotify_data = d->inotify_data;
2315 event_free_inode_data(e, d);
2316
2317 event_gc_inotify_data(e, inotify_data);
2318 }
2319
2320 static int event_make_inode_data(
2321 sd_event *e,
2322 struct inotify_data *inotify_data,
2323 dev_t dev,
2324 ino_t ino,
2325 struct inode_data **ret) {
2326
2327 struct inode_data *d, key;
2328 int r;
2329
2330 assert(e);
2331 assert(inotify_data);
2332
2333 key = (struct inode_data) {
2334 .ino = ino,
2335 .dev = dev,
2336 };
2337
2338 d = hashmap_get(inotify_data->inodes, &key);
2339 if (d) {
2340 if (ret)
2341 *ret = d;
2342
2343 return 0;
2344 }
2345
2346 r = hashmap_ensure_allocated(&inotify_data->inodes, &inode_data_hash_ops);
2347 if (r < 0)
2348 return r;
2349
2350 d = new(struct inode_data, 1);
2351 if (!d)
2352 return -ENOMEM;
2353
2354 *d = (struct inode_data) {
2355 .dev = dev,
2356 .ino = ino,
2357 .wd = -1,
2358 .fd = -EBADF,
2359 .inotify_data = inotify_data,
2360 };
2361
2362 r = hashmap_put(inotify_data->inodes, d, d);
2363 if (r < 0) {
2364 free(d);
2365 return r;
2366 }
2367
2368 if (ret)
2369 *ret = d;
2370
2371 return 1;
2372 }
2373
2374 static uint32_t inode_data_determine_mask(struct inode_data *d) {
2375 bool excl_unlink = true;
2376 uint32_t combined = 0;
2377
2378 assert(d);
2379
2380 /* Combines the watch masks of all event sources watching this inode. We generally just OR them together, but
2381 * the IN_EXCL_UNLINK flag is ANDed instead.
2382 *
2383 * Note that we add all sources to the mask here, regardless whether enabled, disabled or oneshot. That's
2384 * because we cannot change the mask anymore after the event source was created once, since the kernel has no
2385 * API for that. Hence we need to subscribe to the maximum mask we ever might be interested in, and suppress
2386 * events we don't care for client-side. */
2387
2388 LIST_FOREACH(inotify.by_inode_data, s, d->event_sources) {
2389
2390 if ((s->inotify.mask & IN_EXCL_UNLINK) == 0)
2391 excl_unlink = false;
2392
2393 combined |= s->inotify.mask;
2394 }
2395
2396 return (combined & ~(IN_ONESHOT|IN_DONT_FOLLOW|IN_ONLYDIR|IN_EXCL_UNLINK)) | (excl_unlink ? IN_EXCL_UNLINK : 0);
2397 }
2398
2399 static int inode_data_realize_watch(sd_event *e, struct inode_data *d) {
2400 uint32_t combined_mask;
2401 int wd, r;
2402
2403 assert(d);
2404 assert(d->fd >= 0);
2405
2406 combined_mask = inode_data_determine_mask(d);
2407
2408 if (d->wd >= 0 && combined_mask == d->combined_mask)
2409 return 0;
2410
2411 r = hashmap_ensure_allocated(&d->inotify_data->wd, NULL);
2412 if (r < 0)
2413 return r;
2414
2415 wd = inotify_add_watch_fd(d->inotify_data->fd, d->fd, combined_mask);
2416 if (wd < 0)
2417 return -errno;
2418
2419 if (d->wd < 0) {
2420 r = hashmap_put(d->inotify_data->wd, INT_TO_PTR(wd), d);
2421 if (r < 0) {
2422 (void) inotify_rm_watch(d->inotify_data->fd, wd);
2423 return r;
2424 }
2425
2426 d->wd = wd;
2427
2428 } else if (d->wd != wd) {
2429
2430 log_debug("Weird, the watch descriptor we already knew for this inode changed?");
2431 (void) inotify_rm_watch(d->fd, wd);
2432 return -EINVAL;
2433 }
2434
2435 d->combined_mask = combined_mask;
2436 return 1;
2437 }
2438
2439 static int inotify_exit_callback(sd_event_source *s, const struct inotify_event *event, void *userdata) {
2440 assert(s);
2441
2442 return sd_event_exit(sd_event_source_get_event(s), PTR_TO_INT(userdata));
2443 }
2444
2445 static int event_add_inotify_fd_internal(
2446 sd_event *e,
2447 sd_event_source **ret,
2448 int fd,
2449 bool donate,
2450 uint32_t mask,
2451 sd_event_inotify_handler_t callback,
2452 void *userdata) {
2453
2454 _cleanup_close_ int donated_fd = donate ? fd : -EBADF;
2455 _cleanup_(source_freep) sd_event_source *s = NULL;
2456 struct inotify_data *inotify_data = NULL;
2457 struct inode_data *inode_data = NULL;
2458 struct stat st;
2459 int r;
2460
2461 assert_return(e, -EINVAL);
2462 assert_return(e = event_resolve(e), -ENOPKG);
2463 assert_return(fd >= 0, -EBADF);
2464 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
2465 assert_return(!event_origin_changed(e), -ECHILD);
2466
2467 if (!callback)
2468 callback = inotify_exit_callback;
2469
2470 /* Refuse IN_MASK_ADD since we coalesce watches on the same inode, and hence really don't want to merge
2471 * masks. Or in other words, this whole code exists only to manage IN_MASK_ADD type operations for you, hence
2472 * the user can't use them for us. */
2473 if (mask & IN_MASK_ADD)
2474 return -EINVAL;
2475
2476 if (fstat(fd, &st) < 0)
2477 return -errno;
2478
2479 s = source_new(e, !ret, SOURCE_INOTIFY);
2480 if (!s)
2481 return -ENOMEM;
2482
2483 s->enabled = mask & IN_ONESHOT ? SD_EVENT_ONESHOT : SD_EVENT_ON;
2484 s->inotify.mask = mask;
2485 s->inotify.callback = callback;
2486 s->userdata = userdata;
2487
2488 /* Allocate an inotify object for this priority, and an inode object within it */
2489 r = event_make_inotify_data(e, SD_EVENT_PRIORITY_NORMAL, &inotify_data);
2490 if (r < 0)
2491 return r;
2492
2493 r = event_make_inode_data(e, inotify_data, st.st_dev, st.st_ino, &inode_data);
2494 if (r < 0) {
2495 event_gc_inotify_data(e, inotify_data);
2496 return r;
2497 }
2498
2499 /* Keep the O_PATH fd around until the first iteration of the loop, so that we can still change the priority of
2500 * the event source, until then, for which we need the original inode. */
2501 if (inode_data->fd < 0) {
2502 if (donated_fd >= 0)
2503 inode_data->fd = TAKE_FD(donated_fd);
2504 else {
2505 inode_data->fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
2506 if (inode_data->fd < 0) {
2507 r = -errno;
2508 event_gc_inode_data(e, inode_data);
2509 return r;
2510 }
2511 }
2512
2513 LIST_PREPEND(to_close, e->inode_data_to_close_list, inode_data);
2514 }
2515
2516 /* Link our event source to the inode data object */
2517 LIST_PREPEND(inotify.by_inode_data, inode_data->event_sources, s);
2518 s->inotify.inode_data = inode_data;
2519
2520 /* Actually realize the watch now */
2521 r = inode_data_realize_watch(e, inode_data);
2522 if (r < 0)
2523 return r;
2524
2525 if (ret)
2526 *ret = s;
2527 TAKE_PTR(s);
2528
2529 return 0;
2530 }
2531
2532 _public_ int sd_event_add_inotify_fd(
2533 sd_event *e,
2534 sd_event_source **ret,
2535 int fd,
2536 uint32_t mask,
2537 sd_event_inotify_handler_t callback,
2538 void *userdata) {
2539
2540 return event_add_inotify_fd_internal(e, ret, fd, /* donate= */ false, mask, callback, userdata);
2541 }
2542
2543 _public_ int sd_event_add_inotify(
2544 sd_event *e,
2545 sd_event_source **ret,
2546 const char *path,
2547 uint32_t mask,
2548 sd_event_inotify_handler_t callback,
2549 void *userdata) {
2550
2551 sd_event_source *s = NULL; /* avoid false maybe-uninitialized warning */
2552 int fd, r;
2553
2554 assert_return(path, -EINVAL);
2555
2556 fd = open(path, O_PATH | O_CLOEXEC |
2557 (mask & IN_ONLYDIR ? O_DIRECTORY : 0) |
2558 (mask & IN_DONT_FOLLOW ? O_NOFOLLOW : 0));
2559 if (fd < 0)
2560 return -errno;
2561
2562 r = event_add_inotify_fd_internal(e, &s, fd, /* donate= */ true, mask, callback, userdata);
2563 if (r < 0)
2564 return r;
2565
2566 (void) sd_event_source_set_description(s, path);
2567
2568 if (ret)
2569 *ret = s;
2570
2571 return r;
2572 }
2573
2574 static sd_event_source* event_source_free(sd_event_source *s) {
2575 if (!s)
2576 return NULL;
2577
2578 /* Here's a special hack: when we are called from a
2579 * dispatch handler we won't free the event source
2580 * immediately, but we will detach the fd from the
2581 * epoll. This way it is safe for the caller to unref
2582 * the event source and immediately close the fd, but
2583 * we still retain a valid event source object after
2584 * the callback. */
2585
2586 if (s->dispatching)
2587 source_disconnect(s);
2588 else
2589 source_free(s);
2590
2591 return NULL;
2592 }
2593
2594 DEFINE_PUBLIC_TRIVIAL_REF_UNREF_FUNC(sd_event_source, sd_event_source, event_source_free);
2595
2596 _public_ int sd_event_source_set_description(sd_event_source *s, const char *description) {
2597 assert_return(s, -EINVAL);
2598 assert_return(!event_origin_changed(s->event), -ECHILD);
2599
2600 return free_and_strdup(&s->description, description);
2601 }
2602
2603 _public_ int sd_event_source_get_description(sd_event_source *s, const char **description) {
2604 assert_return(s, -EINVAL);
2605 assert_return(description, -EINVAL);
2606
2607 if (!s->description)
2608 return -ENXIO;
2609
2610 *description = s->description;
2611 return 0;
2612 }
2613
2614 _public_ sd_event *sd_event_source_get_event(sd_event_source *s) {
2615 assert_return(s, NULL);
2616 assert_return(!event_origin_changed(s->event), NULL);
2617
2618 return s->event;
2619 }
2620
2621 _public_ int sd_event_source_get_pending(sd_event_source *s) {
2622 assert_return(s, -EINVAL);
2623 assert_return(s->type != SOURCE_EXIT, -EDOM);
2624 assert_return(s->event->state != SD_EVENT_FINISHED, -ESTALE);
2625 assert_return(!event_origin_changed(s->event), -ECHILD);
2626
2627 return s->pending;
2628 }
2629
2630 _public_ int sd_event_source_get_io_fd(sd_event_source *s) {
2631 assert_return(s, -EINVAL);
2632 assert_return(s->type == SOURCE_IO, -EDOM);
2633 assert_return(!event_origin_changed(s->event), -ECHILD);
2634
2635 return s->io.fd;
2636 }
2637
2638 _public_ int sd_event_source_set_io_fd(sd_event_source *s, int fd) {
2639 int r;
2640
2641 assert_return(s, -EINVAL);
2642 assert_return(fd >= 0, -EBADF);
2643 assert_return(s->type == SOURCE_IO, -EDOM);
2644 assert_return(!event_origin_changed(s->event), -ECHILD);
2645
2646 if (s->io.fd == fd)
2647 return 0;
2648
2649 if (event_source_is_offline(s)) {
2650 s->io.fd = fd;
2651 s->io.registered = false;
2652 } else {
2653 int saved_fd;
2654
2655 saved_fd = s->io.fd;
2656 assert(s->io.registered);
2657
2658 s->io.fd = fd;
2659 s->io.registered = false;
2660
2661 r = source_io_register(s, s->enabled, s->io.events);
2662 if (r < 0) {
2663 s->io.fd = saved_fd;
2664 s->io.registered = true;
2665 return r;
2666 }
2667
2668 (void) epoll_ctl(s->event->epoll_fd, EPOLL_CTL_DEL, saved_fd, NULL);
2669 }
2670
2671 return 0;
2672 }
2673
2674 _public_ int sd_event_source_get_io_fd_own(sd_event_source *s) {
2675 assert_return(s, -EINVAL);
2676 assert_return(s->type == SOURCE_IO, -EDOM);
2677 assert_return(!event_origin_changed(s->event), -ECHILD);
2678
2679 return s->io.owned;
2680 }
2681
2682 _public_ int sd_event_source_set_io_fd_own(sd_event_source *s, int own) {
2683 assert_return(s, -EINVAL);
2684 assert_return(s->type == SOURCE_IO, -EDOM);
2685 assert_return(!event_origin_changed(s->event), -ECHILD);
2686
2687 s->io.owned = own;
2688 return 0;
2689 }
2690
2691 _public_ int sd_event_source_get_io_events(sd_event_source *s, uint32_t* events) {
2692 assert_return(s, -EINVAL);
2693 assert_return(events, -EINVAL);
2694 assert_return(s->type == SOURCE_IO, -EDOM);
2695 assert_return(!event_origin_changed(s->event), -ECHILD);
2696
2697 *events = s->io.events;
2698 return 0;
2699 }
2700
2701 _public_ int sd_event_source_set_io_events(sd_event_source *s, uint32_t events) {
2702 int r;
2703
2704 assert_return(s, -EINVAL);
2705 assert_return(s->type == SOURCE_IO, -EDOM);
2706 assert_return(!(events & ~(EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLPRI|EPOLLERR|EPOLLHUP|EPOLLET)), -EINVAL);
2707 assert_return(s->event->state != SD_EVENT_FINISHED, -ESTALE);
2708 assert_return(!event_origin_changed(s->event), -ECHILD);
2709
2710 /* edge-triggered updates are never skipped, so we can reset edges */
2711 if (s->io.events == events && !(events & EPOLLET))
2712 return 0;
2713
2714 r = source_set_pending(s, false);
2715 if (r < 0)
2716 return r;
2717
2718 if (event_source_is_online(s)) {
2719 r = source_io_register(s, s->enabled, events);
2720 if (r < 0)
2721 return r;
2722 }
2723
2724 s->io.events = events;
2725
2726 return 0;
2727 }
2728
2729 _public_ int sd_event_source_get_io_revents(sd_event_source *s, uint32_t* revents) {
2730 assert_return(s, -EINVAL);
2731 assert_return(revents, -EINVAL);
2732 assert_return(s->type == SOURCE_IO, -EDOM);
2733 assert_return(s->pending, -ENODATA);
2734 assert_return(!event_origin_changed(s->event), -ECHILD);
2735
2736 *revents = s->io.revents;
2737 return 0;
2738 }
2739
2740 _public_ int sd_event_source_get_signal(sd_event_source *s) {
2741 assert_return(s, -EINVAL);
2742 assert_return(s->type == SOURCE_SIGNAL, -EDOM);
2743 assert_return(!event_origin_changed(s->event), -ECHILD);
2744
2745 return s->signal.sig;
2746 }
2747
2748 _public_ int sd_event_source_get_priority(sd_event_source *s, int64_t *priority) {
2749 assert_return(s, -EINVAL);
2750 assert_return(!event_origin_changed(s->event), -ECHILD);
2751
2752 *priority = s->priority;
2753 return 0;
2754 }
2755
2756 _public_ int sd_event_source_set_priority(sd_event_source *s, int64_t priority) {
2757 bool rm_inotify = false, rm_inode = false;
2758 struct inotify_data *new_inotify_data = NULL;
2759 struct inode_data *new_inode_data = NULL;
2760 int r;
2761
2762 assert_return(s, -EINVAL);
2763 assert_return(s->event->state != SD_EVENT_FINISHED, -ESTALE);
2764 assert_return(!event_origin_changed(s->event), -ECHILD);
2765
2766 if (s->priority == priority)
2767 return 0;
2768
2769 if (s->type == SOURCE_INOTIFY) {
2770 struct inode_data *old_inode_data;
2771
2772 assert(s->inotify.inode_data);
2773 old_inode_data = s->inotify.inode_data;
2774
2775 /* We need the original fd to change the priority. If we don't have it we can't change the priority,
2776 * anymore. Note that we close any fds when entering the next event loop iteration, i.e. for inotify
2777 * events we allow priority changes only until the first following iteration. */
2778 if (old_inode_data->fd < 0)
2779 return -EOPNOTSUPP;
2780
2781 r = event_make_inotify_data(s->event, priority, &new_inotify_data);
2782 if (r < 0)
2783 return r;
2784 rm_inotify = r > 0;
2785
2786 r = event_make_inode_data(s->event, new_inotify_data, old_inode_data->dev, old_inode_data->ino, &new_inode_data);
2787 if (r < 0)
2788 goto fail;
2789 rm_inode = r > 0;
2790
2791 if (new_inode_data->fd < 0) {
2792 /* Duplicate the fd for the new inode object if we don't have any yet */
2793 new_inode_data->fd = fcntl(old_inode_data->fd, F_DUPFD_CLOEXEC, 3);
2794 if (new_inode_data->fd < 0) {
2795 r = -errno;
2796 goto fail;
2797 }
2798
2799 LIST_PREPEND(to_close, s->event->inode_data_to_close_list, new_inode_data);
2800 }
2801
2802 /* Move the event source to the new inode data structure */
2803 LIST_REMOVE(inotify.by_inode_data, old_inode_data->event_sources, s);
2804 LIST_PREPEND(inotify.by_inode_data, new_inode_data->event_sources, s);
2805 s->inotify.inode_data = new_inode_data;
2806
2807 /* Now create the new watch */
2808 r = inode_data_realize_watch(s->event, new_inode_data);
2809 if (r < 0) {
2810 /* Move it back */
2811 LIST_REMOVE(inotify.by_inode_data, new_inode_data->event_sources, s);
2812 LIST_PREPEND(inotify.by_inode_data, old_inode_data->event_sources, s);
2813 s->inotify.inode_data = old_inode_data;
2814 goto fail;
2815 }
2816
2817 s->priority = priority;
2818
2819 event_gc_inode_data(s->event, old_inode_data);
2820
2821 } else if (s->type == SOURCE_SIGNAL && event_source_is_online(s)) {
2822 struct signal_data *old, *d;
2823
2824 /* Move us from the signalfd belonging to the old
2825 * priority to the signalfd of the new priority */
2826
2827 assert_se(old = hashmap_get(s->event->signal_data, &s->priority));
2828
2829 s->priority = priority;
2830
2831 r = event_make_signal_data(s->event, s->signal.sig, &d);
2832 if (r < 0) {
2833 s->priority = old->priority;
2834 return r;
2835 }
2836
2837 event_unmask_signal_data(s->event, old, s->signal.sig);
2838 } else
2839 s->priority = priority;
2840
2841 event_source_pp_prioq_reshuffle(s);
2842
2843 if (s->type == SOURCE_EXIT)
2844 prioq_reshuffle(s->event->exit, s, &s->exit.prioq_index);
2845
2846 return 0;
2847
2848 fail:
2849 if (rm_inode)
2850 event_free_inode_data(s->event, new_inode_data);
2851
2852 if (rm_inotify)
2853 event_free_inotify_data(s->event, new_inotify_data);
2854
2855 return r;
2856 }
2857
2858 _public_ int sd_event_source_get_enabled(sd_event_source *s, int *ret) {
2859 /* Quick mode: the event source doesn't exist and we only want to query boolean enablement state. */
2860 if (!s && !ret)
2861 return false;
2862
2863 assert_return(s, -EINVAL);
2864 assert_return(!event_origin_changed(s->event), -ECHILD);
2865
2866 if (ret)
2867 *ret = s->enabled;
2868
2869 return s->enabled != SD_EVENT_OFF;
2870 }
2871
2872 static int event_source_offline(
2873 sd_event_source *s,
2874 int enabled,
2875 bool ratelimited) {
2876
2877 bool was_offline;
2878 int r;
2879
2880 assert(s);
2881 assert(enabled == SD_EVENT_OFF || ratelimited);
2882
2883 /* Unset the pending flag when this event source is disabled */
2884 if (s->enabled != SD_EVENT_OFF &&
2885 enabled == SD_EVENT_OFF &&
2886 !IN_SET(s->type, SOURCE_DEFER, SOURCE_EXIT)) {
2887 r = source_set_pending(s, false);
2888 if (r < 0)
2889 return r;
2890 }
2891
2892 was_offline = event_source_is_offline(s);
2893 s->enabled = enabled;
2894 s->ratelimited = ratelimited;
2895
2896 switch (s->type) {
2897
2898 case SOURCE_IO:
2899 source_io_unregister(s);
2900 break;
2901
2902 case SOURCE_SIGNAL:
2903 event_gc_signal_data(s->event, &s->priority, s->signal.sig);
2904 break;
2905
2906 case SOURCE_CHILD:
2907 if (!was_offline) {
2908 assert(s->event->n_online_child_sources > 0);
2909 s->event->n_online_child_sources--;
2910 }
2911
2912 if (EVENT_SOURCE_WATCH_PIDFD(s))
2913 source_child_pidfd_unregister(s);
2914 else
2915 event_gc_signal_data(s->event, &s->priority, SIGCHLD);
2916 break;
2917
2918 case SOURCE_EXIT:
2919 prioq_reshuffle(s->event->exit, s, &s->exit.prioq_index);
2920 break;
2921
2922 case SOURCE_MEMORY_PRESSURE:
2923 source_memory_pressure_unregister(s);
2924 break;
2925
2926 case SOURCE_TIME_REALTIME:
2927 case SOURCE_TIME_BOOTTIME:
2928 case SOURCE_TIME_MONOTONIC:
2929 case SOURCE_TIME_REALTIME_ALARM:
2930 case SOURCE_TIME_BOOTTIME_ALARM:
2931 case SOURCE_DEFER:
2932 case SOURCE_POST:
2933 case SOURCE_INOTIFY:
2934 break;
2935
2936 default:
2937 assert_not_reached();
2938 }
2939
2940 /* Always reshuffle time prioq, as the ratelimited flag may be changed. */
2941 event_source_time_prioq_reshuffle(s);
2942
2943 return 1;
2944 }
2945
2946 static int event_source_online(
2947 sd_event_source *s,
2948 int enabled,
2949 bool ratelimited) {
2950
2951 bool was_online;
2952 int r;
2953
2954 assert(s);
2955 assert(enabled != SD_EVENT_OFF || !ratelimited);
2956
2957 /* Unset the pending flag when this event source is enabled */
2958 if (s->enabled == SD_EVENT_OFF &&
2959 enabled != SD_EVENT_OFF &&
2960 !IN_SET(s->type, SOURCE_DEFER, SOURCE_EXIT)) {
2961 r = source_set_pending(s, false);
2962 if (r < 0)
2963 return r;
2964 }
2965
2966 /* Are we really ready for onlining? */
2967 if (enabled == SD_EVENT_OFF || ratelimited) {
2968 /* Nope, we are not ready for onlining, then just update the precise state and exit */
2969 s->enabled = enabled;
2970 s->ratelimited = ratelimited;
2971 return 0;
2972 }
2973
2974 was_online = event_source_is_online(s);
2975
2976 switch (s->type) {
2977 case SOURCE_IO:
2978 r = source_io_register(s, enabled, s->io.events);
2979 if (r < 0)
2980 return r;
2981 break;
2982
2983 case SOURCE_SIGNAL:
2984 r = event_make_signal_data(s->event, s->signal.sig, NULL);
2985 if (r < 0) {
2986 event_gc_signal_data(s->event, &s->priority, s->signal.sig);
2987 return r;
2988 }
2989
2990 break;
2991
2992 case SOURCE_CHILD:
2993 if (EVENT_SOURCE_WATCH_PIDFD(s)) {
2994 /* yes, we have pidfd */
2995
2996 r = source_child_pidfd_register(s, enabled);
2997 if (r < 0)
2998 return r;
2999 } else {
3000 /* no pidfd, or something other to watch for than WEXITED */
3001
3002 r = event_make_signal_data(s->event, SIGCHLD, NULL);
3003 if (r < 0) {
3004 event_gc_signal_data(s->event, &s->priority, SIGCHLD);
3005 return r;
3006 }
3007 }
3008
3009 if (!was_online)
3010 s->event->n_online_child_sources++;
3011 break;
3012
3013 case SOURCE_MEMORY_PRESSURE:
3014 r = source_memory_pressure_register(s, enabled);
3015 if (r < 0)
3016 return r;
3017
3018 break;
3019
3020 case SOURCE_TIME_REALTIME:
3021 case SOURCE_TIME_BOOTTIME:
3022 case SOURCE_TIME_MONOTONIC:
3023 case SOURCE_TIME_REALTIME_ALARM:
3024 case SOURCE_TIME_BOOTTIME_ALARM:
3025 case SOURCE_EXIT:
3026 case SOURCE_DEFER:
3027 case SOURCE_POST:
3028 case SOURCE_INOTIFY:
3029 break;
3030
3031 default:
3032 assert_not_reached();
3033 }
3034
3035 s->enabled = enabled;
3036 s->ratelimited = ratelimited;
3037
3038 /* Non-failing operations below */
3039 if (s->type == SOURCE_EXIT)
3040 prioq_reshuffle(s->event->exit, s, &s->exit.prioq_index);
3041
3042 /* Always reshuffle time prioq, as the ratelimited flag may be changed. */
3043 event_source_time_prioq_reshuffle(s);
3044
3045 return 1;
3046 }
3047
3048 _public_ int sd_event_source_set_enabled(sd_event_source *s, int m) {
3049 int r;
3050
3051 assert_return(IN_SET(m, SD_EVENT_OFF, SD_EVENT_ON, SD_EVENT_ONESHOT), -EINVAL);
3052
3053 /* Quick mode: if the source doesn't exist, SD_EVENT_OFF is a noop. */
3054 if (m == SD_EVENT_OFF && !s)
3055 return 0;
3056
3057 assert_return(s, -EINVAL);
3058 assert_return(!event_origin_changed(s->event), -ECHILD);
3059
3060 /* If we are dead anyway, we are fine with turning off sources, but everything else needs to fail. */
3061 if (s->event->state == SD_EVENT_FINISHED)
3062 return m == SD_EVENT_OFF ? 0 : -ESTALE;
3063
3064 if (s->enabled == m) /* No change? */
3065 return 0;
3066
3067 if (m == SD_EVENT_OFF)
3068 r = event_source_offline(s, m, s->ratelimited);
3069 else {
3070 if (s->enabled != SD_EVENT_OFF) {
3071 /* Switching from "on" to "oneshot" or back? If that's the case, we can take a shortcut, the
3072 * event source is already enabled after all. */
3073 s->enabled = m;
3074 return 0;
3075 }
3076
3077 r = event_source_online(s, m, s->ratelimited);
3078 }
3079 if (r < 0)
3080 return r;
3081
3082 event_source_pp_prioq_reshuffle(s);
3083 return 0;
3084 }
3085
3086 _public_ int sd_event_source_get_time(sd_event_source *s, uint64_t *usec) {
3087 assert_return(s, -EINVAL);
3088 assert_return(usec, -EINVAL);
3089 assert_return(EVENT_SOURCE_IS_TIME(s->type), -EDOM);
3090 assert_return(!event_origin_changed(s->event), -ECHILD);
3091
3092 *usec = s->time.next;
3093 return 0;
3094 }
3095
3096 _public_ int sd_event_source_set_time(sd_event_source *s, uint64_t usec) {
3097 int r;
3098
3099 assert_return(s, -EINVAL);
3100 assert_return(EVENT_SOURCE_IS_TIME(s->type), -EDOM);
3101 assert_return(s->event->state != SD_EVENT_FINISHED, -ESTALE);
3102 assert_return(!event_origin_changed(s->event), -ECHILD);
3103
3104 r = source_set_pending(s, false);
3105 if (r < 0)
3106 return r;
3107
3108 s->time.next = usec;
3109
3110 event_source_time_prioq_reshuffle(s);
3111 return 0;
3112 }
3113
3114 _public_ int sd_event_source_set_time_relative(sd_event_source *s, uint64_t usec) {
3115 usec_t t;
3116 int r;
3117
3118 assert_return(s, -EINVAL);
3119 assert_return(EVENT_SOURCE_IS_TIME(s->type), -EDOM);
3120 assert_return(!event_origin_changed(s->event), -ECHILD);
3121
3122 if (usec == USEC_INFINITY)
3123 return sd_event_source_set_time(s, USEC_INFINITY);
3124
3125 r = sd_event_now(s->event, event_source_type_to_clock(s->type), &t);
3126 if (r < 0)
3127 return r;
3128
3129 usec = usec_add(t, usec);
3130 if (usec == USEC_INFINITY)
3131 return -EOVERFLOW;
3132
3133 return sd_event_source_set_time(s, usec);
3134 }
3135
3136 _public_ int sd_event_source_get_time_accuracy(sd_event_source *s, uint64_t *usec) {
3137 assert_return(s, -EINVAL);
3138 assert_return(usec, -EINVAL);
3139 assert_return(EVENT_SOURCE_IS_TIME(s->type), -EDOM);
3140 assert_return(!event_origin_changed(s->event), -ECHILD);
3141
3142 *usec = s->time.accuracy;
3143 return 0;
3144 }
3145
3146 _public_ int sd_event_source_set_time_accuracy(sd_event_source *s, uint64_t usec) {
3147 int r;
3148
3149 assert_return(s, -EINVAL);
3150 assert_return(usec != UINT64_MAX, -EINVAL);
3151 assert_return(EVENT_SOURCE_IS_TIME(s->type), -EDOM);
3152 assert_return(s->event->state != SD_EVENT_FINISHED, -ESTALE);
3153 assert_return(!event_origin_changed(s->event), -ECHILD);
3154
3155 r = source_set_pending(s, false);
3156 if (r < 0)
3157 return r;
3158
3159 if (usec == 0)
3160 usec = DEFAULT_ACCURACY_USEC;
3161
3162 s->time.accuracy = usec;
3163
3164 event_source_time_prioq_reshuffle(s);
3165 return 0;
3166 }
3167
3168 _public_ int sd_event_source_get_time_clock(sd_event_source *s, clockid_t *clock) {
3169 assert_return(s, -EINVAL);
3170 assert_return(clock, -EINVAL);
3171 assert_return(EVENT_SOURCE_IS_TIME(s->type), -EDOM);
3172 assert_return(!event_origin_changed(s->event), -ECHILD);
3173
3174 *clock = event_source_type_to_clock(s->type);
3175 return 0;
3176 }
3177
3178 _public_ int sd_event_source_get_child_pid(sd_event_source *s, pid_t *pid) {
3179 assert_return(s, -EINVAL);
3180 assert_return(pid, -EINVAL);
3181 assert_return(s->type == SOURCE_CHILD, -EDOM);
3182 assert_return(!event_origin_changed(s->event), -ECHILD);
3183
3184 *pid = s->child.pid;
3185 return 0;
3186 }
3187
3188 _public_ int sd_event_source_get_child_pidfd(sd_event_source *s) {
3189 assert_return(s, -EINVAL);
3190 assert_return(s->type == SOURCE_CHILD, -EDOM);
3191 assert_return(!event_origin_changed(s->event), -ECHILD);
3192
3193 if (s->child.pidfd < 0)
3194 return -EOPNOTSUPP;
3195
3196 return s->child.pidfd;
3197 }
3198
3199 _public_ int sd_event_source_send_child_signal(sd_event_source *s, int sig, const siginfo_t *si, unsigned flags) {
3200 assert_return(s, -EINVAL);
3201 assert_return(s->type == SOURCE_CHILD, -EDOM);
3202 assert_return(!event_origin_changed(s->event), -ECHILD);
3203 assert_return(SIGNAL_VALID(sig), -EINVAL);
3204
3205 /* If we already have seen indication the process exited refuse sending a signal early. This way we
3206 * can be sure we don't accidentally kill the wrong process on PID reuse when pidfds are not
3207 * available. */
3208 if (s->child.exited)
3209 return -ESRCH;
3210
3211 if (s->child.pidfd >= 0) {
3212 siginfo_t copy;
3213
3214 /* pidfd_send_signal() changes the siginfo_t argument. This is weird, let's hence copy the
3215 * structure here */
3216 if (si)
3217 copy = *si;
3218
3219 if (pidfd_send_signal(s->child.pidfd, sig, si ? &copy : NULL, 0) < 0) {
3220 /* Let's propagate the error only if the system call is not implemented or prohibited */
3221 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno))
3222 return -errno;
3223 } else
3224 return 0;
3225 }
3226
3227 /* Flags are only supported for pidfd_send_signal(), not for rt_sigqueueinfo(), hence let's refuse
3228 * this here. */
3229 if (flags != 0)
3230 return -EOPNOTSUPP;
3231
3232 if (si) {
3233 /* We use rt_sigqueueinfo() only if siginfo_t is specified. */
3234 siginfo_t copy = *si;
3235
3236 if (rt_sigqueueinfo(s->child.pid, sig, &copy) < 0)
3237 return -errno;
3238 } else if (kill(s->child.pid, sig) < 0)
3239 return -errno;
3240
3241 return 0;
3242 }
3243
3244 _public_ int sd_event_source_get_child_pidfd_own(sd_event_source *s) {
3245 assert_return(s, -EINVAL);
3246 assert_return(s->type == SOURCE_CHILD, -EDOM);
3247 assert_return(!event_origin_changed(s->event), -ECHILD);
3248
3249 if (s->child.pidfd < 0)
3250 return -EOPNOTSUPP;
3251
3252 return s->child.pidfd_owned;
3253 }
3254
3255 _public_ int sd_event_source_set_child_pidfd_own(sd_event_source *s, int own) {
3256 assert_return(s, -EINVAL);
3257 assert_return(s->type == SOURCE_CHILD, -EDOM);
3258 assert_return(!event_origin_changed(s->event), -ECHILD);
3259
3260 if (s->child.pidfd < 0)
3261 return -EOPNOTSUPP;
3262
3263 s->child.pidfd_owned = own;
3264 return 0;
3265 }
3266
3267 _public_ int sd_event_source_get_child_process_own(sd_event_source *s) {
3268 assert_return(s, -EINVAL);
3269 assert_return(s->type == SOURCE_CHILD, -EDOM);
3270 assert_return(!event_origin_changed(s->event), -ECHILD);
3271
3272 return s->child.process_owned;
3273 }
3274
3275 _public_ int sd_event_source_set_child_process_own(sd_event_source *s, int own) {
3276 assert_return(s, -EINVAL);
3277 assert_return(s->type == SOURCE_CHILD, -EDOM);
3278 assert_return(!event_origin_changed(s->event), -ECHILD);
3279
3280 s->child.process_owned = own;
3281 return 0;
3282 }
3283
3284 _public_ int sd_event_source_get_inotify_mask(sd_event_source *s, uint32_t *mask) {
3285 assert_return(s, -EINVAL);
3286 assert_return(mask, -EINVAL);
3287 assert_return(s->type == SOURCE_INOTIFY, -EDOM);
3288 assert_return(!event_origin_changed(s->event), -ECHILD);
3289
3290 *mask = s->inotify.mask;
3291 return 0;
3292 }
3293
3294 _public_ int sd_event_source_set_prepare(sd_event_source *s, sd_event_handler_t callback) {
3295 int r;
3296
3297 assert_return(s, -EINVAL);
3298 assert_return(s->type != SOURCE_EXIT, -EDOM);
3299 assert_return(s->event->state != SD_EVENT_FINISHED, -ESTALE);
3300 assert_return(!event_origin_changed(s->event), -ECHILD);
3301
3302 if (s->prepare == callback)
3303 return 0;
3304
3305 if (callback && s->prepare) {
3306 s->prepare = callback;
3307 return 0;
3308 }
3309
3310 r = prioq_ensure_allocated(&s->event->prepare, prepare_prioq_compare);
3311 if (r < 0)
3312 return r;
3313
3314 s->prepare = callback;
3315
3316 if (callback) {
3317 r = prioq_put(s->event->prepare, s, &s->prepare_index);
3318 if (r < 0)
3319 return r;
3320 } else
3321 prioq_remove(s->event->prepare, s, &s->prepare_index);
3322
3323 return 0;
3324 }
3325
3326 _public_ void* sd_event_source_get_userdata(sd_event_source *s) {
3327 assert_return(s, NULL);
3328 assert_return(!event_origin_changed(s->event), NULL);
3329
3330 return s->userdata;
3331 }
3332
3333 _public_ void *sd_event_source_set_userdata(sd_event_source *s, void *userdata) {
3334 void *ret;
3335
3336 assert_return(s, NULL);
3337 assert_return(!event_origin_changed(s->event), NULL);
3338
3339 ret = s->userdata;
3340 s->userdata = userdata;
3341
3342 return ret;
3343 }
3344
3345 static int event_source_enter_ratelimited(sd_event_source *s) {
3346 int r;
3347
3348 assert(s);
3349
3350 /* When an event source becomes ratelimited, we place it in the CLOCK_MONOTONIC priority queue, with
3351 * the end of the rate limit time window, much as if it was a timer event source. */
3352
3353 if (s->ratelimited)
3354 return 0; /* Already ratelimited, this is a NOP hence */
3355
3356 /* Make sure we can install a CLOCK_MONOTONIC event further down. */
3357 r = setup_clock_data(s->event, &s->event->monotonic, CLOCK_MONOTONIC);
3358 if (r < 0)
3359 return r;
3360
3361 /* Timer event sources are already using the earliest/latest queues for the timer scheduling. Let's
3362 * first remove them from the prioq appropriate for their own clock, so that we can use the prioq
3363 * fields of the event source then for adding it to the CLOCK_MONOTONIC prioq instead. */
3364 if (EVENT_SOURCE_IS_TIME(s->type))
3365 event_source_time_prioq_remove(s, event_get_clock_data(s->event, s->type));
3366
3367 /* Now, let's add the event source to the monotonic clock instead */
3368 r = event_source_time_prioq_put(s, &s->event->monotonic);
3369 if (r < 0)
3370 goto fail;
3371
3372 /* And let's take the event source officially offline */
3373 r = event_source_offline(s, s->enabled, /* ratelimited= */ true);
3374 if (r < 0) {
3375 event_source_time_prioq_remove(s, &s->event->monotonic);
3376 goto fail;
3377 }
3378
3379 event_source_pp_prioq_reshuffle(s);
3380
3381 log_debug("Event source %p (%s) entered rate limit state.", s, strna(s->description));
3382 return 0;
3383
3384 fail:
3385 /* Reinstall time event sources in the priority queue as before. This shouldn't fail, since the queue
3386 * space for it should already be allocated. */
3387 if (EVENT_SOURCE_IS_TIME(s->type))
3388 assert_se(event_source_time_prioq_put(s, event_get_clock_data(s->event, s->type)) >= 0);
3389
3390 return r;
3391 }
3392
3393 static int event_source_leave_ratelimit(sd_event_source *s, bool run_callback) {
3394 int r;
3395
3396 assert(s);
3397
3398 if (!s->ratelimited)
3399 return 0;
3400
3401 /* Let's take the event source out of the monotonic prioq first. */
3402 event_source_time_prioq_remove(s, &s->event->monotonic);
3403
3404 /* Let's then add the event source to its native clock prioq again — if this is a timer event source */
3405 if (EVENT_SOURCE_IS_TIME(s->type)) {
3406 r = event_source_time_prioq_put(s, event_get_clock_data(s->event, s->type));
3407 if (r < 0)
3408 goto fail;
3409 }
3410
3411 /* Let's try to take it online again. */
3412 r = event_source_online(s, s->enabled, /* ratelimited= */ false);
3413 if (r < 0) {
3414 /* Do something roughly sensible when this failed: undo the two prioq ops above */
3415 if (EVENT_SOURCE_IS_TIME(s->type))
3416 event_source_time_prioq_remove(s, event_get_clock_data(s->event, s->type));
3417
3418 goto fail;
3419 }
3420
3421 event_source_pp_prioq_reshuffle(s);
3422 ratelimit_reset(&s->rate_limit);
3423
3424 log_debug("Event source %p (%s) left rate limit state.", s, strna(s->description));
3425
3426 if (run_callback && s->ratelimit_expire_callback) {
3427 s->dispatching = true;
3428 r = s->ratelimit_expire_callback(s, s->userdata);
3429 s->dispatching = false;
3430
3431 if (r < 0) {
3432 log_debug_errno(r, "Ratelimit expiry callback of event source %s (type %s) returned error, %s: %m",
3433 strna(s->description),
3434 event_source_type_to_string(s->type),
3435 s->exit_on_failure ? "exiting" : "disabling");
3436
3437 if (s->exit_on_failure)
3438 (void) sd_event_exit(s->event, r);
3439 }
3440
3441 if (s->n_ref == 0)
3442 source_free(s);
3443 else if (r < 0)
3444 assert_se(sd_event_source_set_enabled(s, SD_EVENT_OFF) >= 0);
3445
3446 return 1;
3447 }
3448
3449 return 0;
3450
3451 fail:
3452 /* Do something somewhat reasonable when we cannot move an event sources out of ratelimited mode:
3453 * simply put it back in it, maybe we can then process it more successfully next iteration. */
3454 assert_se(event_source_time_prioq_put(s, &s->event->monotonic) >= 0);
3455
3456 return r;
3457 }
3458
3459 static usec_t sleep_between(sd_event *e, usec_t a, usec_t b) {
3460 usec_t c;
3461 assert(e);
3462 assert(a <= b);
3463
3464 if (a <= 0)
3465 return 0;
3466 if (a >= USEC_INFINITY)
3467 return USEC_INFINITY;
3468
3469 if (b <= a + 1)
3470 return a;
3471
3472 initialize_perturb(e);
3473
3474 /*
3475 Find a good time to wake up again between times a and b. We
3476 have two goals here:
3477
3478 a) We want to wake up as seldom as possible, hence prefer
3479 later times over earlier times.
3480
3481 b) But if we have to wake up, then let's make sure to
3482 dispatch as much as possible on the entire system.
3483
3484 We implement this by waking up everywhere at the same time
3485 within any given minute if we can, synchronised via the
3486 perturbation value determined from the boot ID. If we can't,
3487 then we try to find the same spot in every 10s, then 1s and
3488 then 250ms step. Otherwise, we pick the last possible time
3489 to wake up.
3490 */
3491
3492 c = (b / USEC_PER_MINUTE) * USEC_PER_MINUTE + e->perturb;
3493 if (c >= b) {
3494 if (_unlikely_(c < USEC_PER_MINUTE))
3495 return b;
3496
3497 c -= USEC_PER_MINUTE;
3498 }
3499
3500 if (c >= a)
3501 return c;
3502
3503 c = (b / (USEC_PER_SEC*10)) * (USEC_PER_SEC*10) + (e->perturb % (USEC_PER_SEC*10));
3504 if (c >= b) {
3505 if (_unlikely_(c < USEC_PER_SEC*10))
3506 return b;
3507
3508 c -= USEC_PER_SEC*10;
3509 }
3510
3511 if (c >= a)
3512 return c;
3513
3514 c = (b / USEC_PER_SEC) * USEC_PER_SEC + (e->perturb % USEC_PER_SEC);
3515 if (c >= b) {
3516 if (_unlikely_(c < USEC_PER_SEC))
3517 return b;
3518
3519 c -= USEC_PER_SEC;
3520 }
3521
3522 if (c >= a)
3523 return c;
3524
3525 c = (b / (USEC_PER_MSEC*250)) * (USEC_PER_MSEC*250) + (e->perturb % (USEC_PER_MSEC*250));
3526 if (c >= b) {
3527 if (_unlikely_(c < USEC_PER_MSEC*250))
3528 return b;
3529
3530 c -= USEC_PER_MSEC*250;
3531 }
3532
3533 if (c >= a)
3534 return c;
3535
3536 return b;
3537 }
3538
3539 static int event_arm_timer(
3540 sd_event *e,
3541 struct clock_data *d) {
3542
3543 struct itimerspec its = {};
3544 sd_event_source *a, *b;
3545 usec_t t;
3546
3547 assert(e);
3548 assert(d);
3549
3550 if (!d->needs_rearm)
3551 return 0;
3552
3553 d->needs_rearm = false;
3554
3555 a = prioq_peek(d->earliest);
3556 assert(!a || EVENT_SOURCE_USES_TIME_PRIOQ(a->type));
3557 if (!a || a->enabled == SD_EVENT_OFF || time_event_source_next(a) == USEC_INFINITY) {
3558
3559 if (d->fd < 0)
3560 return 0;
3561
3562 if (d->next == USEC_INFINITY)
3563 return 0;
3564
3565 /* disarm */
3566 if (timerfd_settime(d->fd, TFD_TIMER_ABSTIME, &its, NULL) < 0)
3567 return -errno;
3568
3569 d->next = USEC_INFINITY;
3570 return 0;
3571 }
3572
3573 b = prioq_peek(d->latest);
3574 assert(!b || EVENT_SOURCE_USES_TIME_PRIOQ(b->type));
3575 assert(b && b->enabled != SD_EVENT_OFF);
3576
3577 t = sleep_between(e, time_event_source_next(a), time_event_source_latest(b));
3578 if (d->next == t)
3579 return 0;
3580
3581 assert_se(d->fd >= 0);
3582
3583 if (t == 0) {
3584 /* We don't want to disarm here, just mean some time looooong ago. */
3585 its.it_value.tv_sec = 0;
3586 its.it_value.tv_nsec = 1;
3587 } else
3588 timespec_store(&its.it_value, t);
3589
3590 if (timerfd_settime(d->fd, TFD_TIMER_ABSTIME, &its, NULL) < 0)
3591 return -errno;
3592
3593 d->next = t;
3594 return 0;
3595 }
3596
3597 static int process_io(sd_event *e, sd_event_source *s, uint32_t revents) {
3598 assert(e);
3599 assert(s);
3600 assert(s->type == SOURCE_IO);
3601
3602 /* If the event source was already pending, we just OR in the
3603 * new revents, otherwise we reset the value. The ORing is
3604 * necessary to handle EPOLLONESHOT events properly where
3605 * readability might happen independently of writability, and
3606 * we need to keep track of both */
3607
3608 if (s->pending)
3609 s->io.revents |= revents;
3610 else
3611 s->io.revents = revents;
3612
3613 return source_set_pending(s, true);
3614 }
3615
3616 static int flush_timer(sd_event *e, int fd, uint32_t events, usec_t *next) {
3617 uint64_t x;
3618 ssize_t ss;
3619
3620 assert(e);
3621 assert(fd >= 0);
3622
3623 assert_return(events == EPOLLIN, -EIO);
3624
3625 ss = read(fd, &x, sizeof(x));
3626 if (ss < 0) {
3627 if (ERRNO_IS_TRANSIENT(errno))
3628 return 0;
3629
3630 return -errno;
3631 }
3632
3633 if (_unlikely_(ss != sizeof(x)))
3634 return -EIO;
3635
3636 if (next)
3637 *next = USEC_INFINITY;
3638
3639 return 0;
3640 }
3641
3642 static int process_timer(
3643 sd_event *e,
3644 usec_t n,
3645 struct clock_data *d) {
3646
3647 sd_event_source *s;
3648 bool callback_invoked = false;
3649 int r;
3650
3651 assert(e);
3652 assert(d);
3653
3654 for (;;) {
3655 s = prioq_peek(d->earliest);
3656 assert(!s || EVENT_SOURCE_USES_TIME_PRIOQ(s->type));
3657
3658 if (!s || time_event_source_next(s) > n)
3659 break;
3660
3661 if (s->ratelimited) {
3662 /* This is an event sources whose ratelimit window has ended. Let's turn it on
3663 * again. */
3664 assert(s->ratelimited);
3665
3666 r = event_source_leave_ratelimit(s, /* run_callback */ true);
3667 if (r < 0)
3668 return r;
3669 else if (r == 1)
3670 callback_invoked = true;
3671
3672 continue;
3673 }
3674
3675 if (s->enabled == SD_EVENT_OFF || s->pending)
3676 break;
3677
3678 r = source_set_pending(s, true);
3679 if (r < 0)
3680 return r;
3681
3682 event_source_time_prioq_reshuffle(s);
3683 }
3684
3685 return callback_invoked;
3686 }
3687
3688 static int process_child(sd_event *e, int64_t threshold, int64_t *ret_min_priority) {
3689 int64_t min_priority = threshold;
3690 bool something_new = false;
3691 sd_event_source *s;
3692 int r;
3693
3694 assert(e);
3695 assert(ret_min_priority);
3696
3697 if (!e->need_process_child) {
3698 *ret_min_priority = min_priority;
3699 return 0;
3700 }
3701
3702 e->need_process_child = false;
3703
3704 /* So, this is ugly. We iteratively invoke waitid() with P_PID + WNOHANG for each PID we wait
3705 * for, instead of using P_ALL. This is because we only want to get child information of very
3706 * specific child processes, and not all of them. We might not have processed the SIGCHLD event
3707 * of a previous invocation and we don't want to maintain a unbounded *per-child* event queue,
3708 * hence we really don't want anything flushed out of the kernel's queue that we don't care
3709 * about. Since this is O(n) this means that if you have a lot of processes you probably want
3710 * to handle SIGCHLD yourself.
3711 *
3712 * We do not reap the children here (by using WNOWAIT), this is only done after the event
3713 * source is dispatched so that the callback still sees the process as a zombie. */
3714
3715 HASHMAP_FOREACH(s, e->child_sources) {
3716 assert(s->type == SOURCE_CHILD);
3717
3718 if (s->priority > threshold)
3719 continue;
3720
3721 if (s->pending)
3722 continue;
3723
3724 if (event_source_is_offline(s))
3725 continue;
3726
3727 if (s->child.exited)
3728 continue;
3729
3730 if (EVENT_SOURCE_WATCH_PIDFD(s))
3731 /* There's a usable pidfd known for this event source? Then don't waitid() for
3732 * it here */
3733 continue;
3734
3735 zero(s->child.siginfo);
3736 if (waitid(P_PID, s->child.pid, &s->child.siginfo,
3737 WNOHANG | (s->child.options & WEXITED ? WNOWAIT : 0) | s->child.options) < 0)
3738 return negative_errno();
3739
3740 if (s->child.siginfo.si_pid != 0) {
3741 bool zombie = IN_SET(s->child.siginfo.si_code, CLD_EXITED, CLD_KILLED, CLD_DUMPED);
3742
3743 if (zombie)
3744 s->child.exited = true;
3745
3746 if (!zombie && (s->child.options & WEXITED)) {
3747 /* If the child isn't dead then let's immediately remove the state
3748 * change from the queue, since there's no benefit in leaving it
3749 * queued. */
3750
3751 assert(s->child.options & (WSTOPPED|WCONTINUED));
3752 (void) waitid(P_PID, s->child.pid, &s->child.siginfo, WNOHANG|(s->child.options & (WSTOPPED|WCONTINUED)));
3753 }
3754
3755 r = source_set_pending(s, true);
3756 if (r < 0)
3757 return r;
3758 if (r > 0) {
3759 something_new = true;
3760 min_priority = MIN(min_priority, s->priority);
3761 }
3762 }
3763 }
3764
3765 *ret_min_priority = min_priority;
3766 return something_new;
3767 }
3768
3769 static int process_pidfd(sd_event *e, sd_event_source *s, uint32_t revents) {
3770 assert(e);
3771 assert(s);
3772 assert(s->type == SOURCE_CHILD);
3773
3774 if (s->pending)
3775 return 0;
3776
3777 if (event_source_is_offline(s))
3778 return 0;
3779
3780 if (!EVENT_SOURCE_WATCH_PIDFD(s))
3781 return 0;
3782
3783 zero(s->child.siginfo);
3784 if (waitid(P_PID, s->child.pid, &s->child.siginfo, WNOHANG | WNOWAIT | s->child.options) < 0)
3785 return -errno;
3786
3787 if (s->child.siginfo.si_pid == 0)
3788 return 0;
3789
3790 if (IN_SET(s->child.siginfo.si_code, CLD_EXITED, CLD_KILLED, CLD_DUMPED))
3791 s->child.exited = true;
3792
3793 return source_set_pending(s, true);
3794 }
3795
3796 static int process_signal(sd_event *e, struct signal_data *d, uint32_t events, int64_t *min_priority) {
3797 int r;
3798
3799 assert(e);
3800 assert(d);
3801 assert_return(events == EPOLLIN, -EIO);
3802 assert(min_priority);
3803
3804 /* If there's a signal queued on this priority and SIGCHLD is on this priority too, then make
3805 * sure to recheck the children we watch. This is because we only ever dequeue the first signal
3806 * per priority, and if we dequeue one, and SIGCHLD might be enqueued later we wouldn't know,
3807 * but we might have higher priority children we care about hence we need to check that
3808 * explicitly. */
3809
3810 if (sigismember(&d->sigset, SIGCHLD))
3811 e->need_process_child = true;
3812
3813 /* If there's already an event source pending for this priority we don't read another */
3814 if (d->current)
3815 return 0;
3816
3817 for (;;) {
3818 struct signalfd_siginfo si;
3819 ssize_t n;
3820 sd_event_source *s = NULL;
3821
3822 n = read(d->fd, &si, sizeof(si));
3823 if (n < 0) {
3824 if (ERRNO_IS_TRANSIENT(errno))
3825 return 0;
3826
3827 return -errno;
3828 }
3829
3830 if (_unlikely_(n != sizeof(si)))
3831 return -EIO;
3832
3833 assert(SIGNAL_VALID(si.ssi_signo));
3834
3835 if (e->signal_sources)
3836 s = e->signal_sources[si.ssi_signo];
3837 if (!s)
3838 continue;
3839 if (s->pending)
3840 continue;
3841
3842 s->signal.siginfo = si;
3843 d->current = s;
3844
3845 r = source_set_pending(s, true);
3846 if (r < 0)
3847 return r;
3848 if (r > 0 && *min_priority >= s->priority) {
3849 *min_priority = s->priority;
3850 return 1; /* an event source with smaller priority is queued. */
3851 }
3852
3853 return 0;
3854 }
3855 }
3856
3857 static int event_inotify_data_read(sd_event *e, struct inotify_data *d, uint32_t revents, int64_t threshold) {
3858 ssize_t n;
3859
3860 assert(e);
3861 assert(d);
3862
3863 assert_return(revents == EPOLLIN, -EIO);
3864
3865 /* If there's already an event source pending for this priority, don't read another */
3866 if (d->n_pending > 0)
3867 return 0;
3868
3869 /* Is the read buffer non-empty? If so, let's not read more */
3870 if (d->buffer_filled > 0)
3871 return 0;
3872
3873 if (d->priority > threshold)
3874 return 0;
3875
3876 n = read(d->fd, &d->buffer, sizeof(d->buffer));
3877 if (n < 0) {
3878 if (ERRNO_IS_TRANSIENT(errno))
3879 return 0;
3880
3881 return -errno;
3882 }
3883
3884 assert(n > 0);
3885 d->buffer_filled = (size_t) n;
3886 LIST_PREPEND(buffered, e->buffered_inotify_data_list, d);
3887
3888 return 1;
3889 }
3890
3891 static void event_inotify_data_drop(sd_event *e, struct inotify_data *d, size_t sz) {
3892 assert(e);
3893 assert(d);
3894 assert(sz <= d->buffer_filled);
3895
3896 if (sz == 0)
3897 return;
3898
3899 /* Move the rest to the buffer to the front, in order to get things properly aligned again */
3900 memmove(d->buffer.raw, d->buffer.raw + sz, d->buffer_filled - sz);
3901 d->buffer_filled -= sz;
3902
3903 if (d->buffer_filled == 0)
3904 LIST_REMOVE(buffered, e->buffered_inotify_data_list, d);
3905 }
3906
3907 static int event_inotify_data_process(sd_event *e, struct inotify_data *d) {
3908 int r;
3909
3910 assert(e);
3911 assert(d);
3912
3913 /* If there's already an event source pending for this priority, don't read another */
3914 if (d->n_pending > 0)
3915 return 0;
3916
3917 while (d->buffer_filled > 0) {
3918 size_t sz;
3919
3920 /* Let's validate that the event structures are complete */
3921 if (d->buffer_filled < offsetof(struct inotify_event, name))
3922 return -EIO;
3923
3924 sz = offsetof(struct inotify_event, name) + d->buffer.ev.len;
3925 if (d->buffer_filled < sz)
3926 return -EIO;
3927
3928 if (d->buffer.ev.mask & IN_Q_OVERFLOW) {
3929 struct inode_data *inode_data;
3930
3931 /* The queue overran, let's pass this event to all event sources connected to this inotify
3932 * object */
3933
3934 HASHMAP_FOREACH(inode_data, d->inodes)
3935 LIST_FOREACH(inotify.by_inode_data, s, inode_data->event_sources) {
3936
3937 if (event_source_is_offline(s))
3938 continue;
3939
3940 r = source_set_pending(s, true);
3941 if (r < 0)
3942 return r;
3943 }
3944 } else {
3945 struct inode_data *inode_data;
3946
3947 /* Find the inode object for this watch descriptor. If IN_IGNORED is set we also remove it from
3948 * our watch descriptor table. */
3949 if (d->buffer.ev.mask & IN_IGNORED) {
3950
3951 inode_data = hashmap_remove(d->wd, INT_TO_PTR(d->buffer.ev.wd));
3952 if (!inode_data) {
3953 event_inotify_data_drop(e, d, sz);
3954 continue;
3955 }
3956
3957 /* The watch descriptor was removed by the kernel, let's drop it here too */
3958 inode_data->wd = -1;
3959 } else {
3960 inode_data = hashmap_get(d->wd, INT_TO_PTR(d->buffer.ev.wd));
3961 if (!inode_data) {
3962 event_inotify_data_drop(e, d, sz);
3963 continue;
3964 }
3965 }
3966
3967 /* Trigger all event sources that are interested in these events. Also trigger all event
3968 * sources if IN_IGNORED or IN_UNMOUNT is set. */
3969 LIST_FOREACH(inotify.by_inode_data, s, inode_data->event_sources) {
3970
3971 if (event_source_is_offline(s))
3972 continue;
3973
3974 if ((d->buffer.ev.mask & (IN_IGNORED|IN_UNMOUNT)) == 0 &&
3975 (s->inotify.mask & d->buffer.ev.mask & IN_ALL_EVENTS) == 0)
3976 continue;
3977
3978 r = source_set_pending(s, true);
3979 if (r < 0)
3980 return r;
3981 }
3982 }
3983
3984 /* Something pending now? If so, let's finish, otherwise let's read more. */
3985 if (d->n_pending > 0)
3986 return 1;
3987 }
3988
3989 return 0;
3990 }
3991
3992 static int process_inotify(sd_event *e) {
3993 int r, done = 0;
3994
3995 assert(e);
3996
3997 LIST_FOREACH(buffered, d, e->buffered_inotify_data_list) {
3998 r = event_inotify_data_process(e, d);
3999 if (r < 0)
4000 return r;
4001 if (r > 0)
4002 done ++;
4003 }
4004
4005 return done;
4006 }
4007
4008 static int process_memory_pressure(sd_event_source *s, uint32_t revents) {
4009 assert(s);
4010 assert(s->type == SOURCE_MEMORY_PRESSURE);
4011
4012 if (s->pending)
4013 s->memory_pressure.revents |= revents;
4014 else
4015 s->memory_pressure.revents = revents;
4016
4017 return source_set_pending(s, true);
4018 }
4019
4020 static int source_memory_pressure_write(sd_event_source *s) {
4021 ssize_t n;
4022 int r;
4023
4024 assert(s);
4025 assert(s->type == SOURCE_MEMORY_PRESSURE);
4026
4027 /* once we start writing, the buffer is locked, we allow no further changes. */
4028 s->memory_pressure.locked = true;
4029
4030 if (s->memory_pressure.write_buffer_size > 0) {
4031 n = write(s->memory_pressure.fd, s->memory_pressure.write_buffer, s->memory_pressure.write_buffer_size);
4032 if (n < 0) {
4033 if (!ERRNO_IS_TRANSIENT(errno)) {
4034 /* If kernel is built with CONFIG_PSI_DEFAULT_DISABLED it will expose PSI
4035 * files, but then generates EOPNOSUPP on read() and write() (instead of on
4036 * open()!). This sucks hard, since we can only detect this kind of failure
4037 * so late. Let's make the best of it, and turn off the event source like we
4038 * do for failed event source handlers. */
4039
4040 log_debug_errno(errno, "Writing memory pressure settings to kernel failed, disabling memory pressure event source: %m");
4041 assert_se(sd_event_source_set_enabled(s, SD_EVENT_OFF) >= 0);
4042 return 0;
4043 }
4044
4045 n = 0;
4046 }
4047 } else
4048 n = 0;
4049
4050 assert(n >= 0);
4051
4052 if ((size_t) n == s->memory_pressure.write_buffer_size) {
4053 s->memory_pressure.write_buffer = mfree(s->memory_pressure.write_buffer);
4054
4055 if (n > 0) {
4056 s->memory_pressure.write_buffer_size = 0;
4057
4058 /* Update epoll events mask, since we have now written everything and don't care for EPOLLOUT anymore */
4059 r = source_memory_pressure_register(s, s->enabled);
4060 if (r < 0)
4061 return r;
4062 }
4063 } else if (n > 0) {
4064 _cleanup_free_ void *c = NULL;
4065
4066 assert((size_t) n < s->memory_pressure.write_buffer_size);
4067
4068 c = memdup((uint8_t*) s->memory_pressure.write_buffer + n, s->memory_pressure.write_buffer_size - n);
4069 if (!c)
4070 return -ENOMEM;
4071
4072 free_and_replace(s->memory_pressure.write_buffer, c);
4073 s->memory_pressure.write_buffer_size -= n;
4074 return 1;
4075 }
4076
4077 return 0;
4078 }
4079
4080 static int source_memory_pressure_initiate_dispatch(sd_event_source *s) {
4081 int r;
4082
4083 assert(s);
4084 assert(s->type == SOURCE_MEMORY_PRESSURE);
4085
4086 r = source_memory_pressure_write(s);
4087 if (r < 0)
4088 return r;
4089 if (r > 0)
4090 return 1; /* if we wrote something, then don't continue with dispatching user dispatch
4091 * function. Instead, shortcut it so that we wait for next EPOLLOUT immediately. */
4092
4093 /* No pending incoming IO? Then let's not continue further */
4094 if ((s->memory_pressure.revents & (EPOLLIN|EPOLLPRI)) == 0) {
4095
4096 /* Treat IO errors on the notifier the same ways errors returned from a callback */
4097 if ((s->memory_pressure.revents & (EPOLLHUP|EPOLLERR|EPOLLRDHUP)) != 0)
4098 return -EIO;
4099
4100 return 1; /* leave dispatch, we already processed everything */
4101 }
4102
4103 if (s->memory_pressure.revents & EPOLLIN) {
4104 uint8_t pipe_buf[PIPE_BUF];
4105 ssize_t n;
4106
4107 /* If the fd is readable, then flush out anything that might be queued */
4108
4109 n = read(s->memory_pressure.fd, pipe_buf, sizeof(pipe_buf));
4110 if (n < 0 && !ERRNO_IS_TRANSIENT(errno))
4111 return -errno;
4112 }
4113
4114 return 0; /* go on, dispatch to user callback */
4115 }
4116
4117 static int source_dispatch(sd_event_source *s) {
4118 EventSourceType saved_type;
4119 sd_event *saved_event;
4120 int r = 0;
4121
4122 assert(s);
4123 assert(s->pending || s->type == SOURCE_EXIT);
4124
4125 /* Save the event source type, here, so that we still know it after the event callback which might
4126 * invalidate the event. */
4127 saved_type = s->type;
4128
4129 /* Similarly, store a reference to the event loop object, so that we can still access it after the
4130 * callback might have invalidated/disconnected the event source. */
4131 saved_event = s->event;
4132 PROTECT_EVENT(saved_event);
4133
4134 /* Check if we hit the ratelimit for this event source, and if so, let's disable it. */
4135 assert(!s->ratelimited);
4136 if (!ratelimit_below(&s->rate_limit)) {
4137 r = event_source_enter_ratelimited(s);
4138 if (r < 0)
4139 return r;
4140
4141 return 1;
4142 }
4143
4144 if (!IN_SET(s->type, SOURCE_DEFER, SOURCE_EXIT)) {
4145 r = source_set_pending(s, false);
4146 if (r < 0)
4147 return r;
4148 }
4149
4150 if (s->type != SOURCE_POST) {
4151 sd_event_source *z;
4152
4153 /* If we execute a non-post source, let's mark all post sources as pending. */
4154
4155 SET_FOREACH(z, s->event->post_sources) {
4156 if (event_source_is_offline(z))
4157 continue;
4158
4159 r = source_set_pending(z, true);
4160 if (r < 0)
4161 return r;
4162 }
4163 }
4164
4165 if (s->type == SOURCE_MEMORY_PRESSURE) {
4166 r = source_memory_pressure_initiate_dispatch(s);
4167 if (r == -EIO) /* handle EIO errors similar to callback errors */
4168 goto finish;
4169 if (r < 0)
4170 return r;
4171 if (r > 0) /* already handled */
4172 return 1;
4173 }
4174
4175 if (s->enabled == SD_EVENT_ONESHOT) {
4176 r = sd_event_source_set_enabled(s, SD_EVENT_OFF);
4177 if (r < 0)
4178 return r;
4179 }
4180
4181 s->dispatching = true;
4182
4183 switch (s->type) {
4184
4185 case SOURCE_IO:
4186 r = s->io.callback(s, s->io.fd, s->io.revents, s->userdata);
4187 break;
4188
4189 case SOURCE_TIME_REALTIME:
4190 case SOURCE_TIME_BOOTTIME:
4191 case SOURCE_TIME_MONOTONIC:
4192 case SOURCE_TIME_REALTIME_ALARM:
4193 case SOURCE_TIME_BOOTTIME_ALARM:
4194 r = s->time.callback(s, s->time.next, s->userdata);
4195 break;
4196
4197 case SOURCE_SIGNAL:
4198 r = s->signal.callback(s, &s->signal.siginfo, s->userdata);
4199 break;
4200
4201 case SOURCE_CHILD: {
4202 bool zombie;
4203
4204 zombie = IN_SET(s->child.siginfo.si_code, CLD_EXITED, CLD_KILLED, CLD_DUMPED);
4205
4206 r = s->child.callback(s, &s->child.siginfo, s->userdata);
4207
4208 /* Now, reap the PID for good. */
4209 if (zombie) {
4210 (void) waitid(P_PID, s->child.pid, &s->child.siginfo, WNOHANG|WEXITED);
4211 s->child.waited = true;
4212 }
4213
4214 break;
4215 }
4216
4217 case SOURCE_DEFER:
4218 r = s->defer.callback(s, s->userdata);
4219 break;
4220
4221 case SOURCE_POST:
4222 r = s->post.callback(s, s->userdata);
4223 break;
4224
4225 case SOURCE_EXIT:
4226 r = s->exit.callback(s, s->userdata);
4227 break;
4228
4229 case SOURCE_INOTIFY: {
4230 struct sd_event *e = s->event;
4231 struct inotify_data *d;
4232 size_t sz;
4233
4234 assert(s->inotify.inode_data);
4235 assert_se(d = s->inotify.inode_data->inotify_data);
4236
4237 assert(d->buffer_filled >= offsetof(struct inotify_event, name));
4238 sz = offsetof(struct inotify_event, name) + d->buffer.ev.len;
4239 assert(d->buffer_filled >= sz);
4240
4241 /* If the inotify callback destroys the event source then this likely means we don't need to
4242 * watch the inode anymore, and thus also won't need the inotify object anymore. But if we'd
4243 * free it immediately, then we couldn't drop the event from the inotify event queue without
4244 * memory corruption anymore, as below. Hence, let's not free it immediately, but mark it
4245 * "busy" with a counter (which will ensure it's not GC'ed away prematurely). Let's then
4246 * explicitly GC it after we are done dropping the inotify event from the buffer. */
4247 d->n_busy++;
4248 r = s->inotify.callback(s, &d->buffer.ev, s->userdata);
4249 d->n_busy--;
4250
4251 /* When no event is pending anymore on this inotify object, then let's drop the event from
4252 * the inotify event queue buffer. */
4253 if (d->n_pending == 0)
4254 event_inotify_data_drop(e, d, sz);
4255
4256 /* Now we don't want to access 'd' anymore, it's OK to GC now. */
4257 event_gc_inotify_data(e, d);
4258 break;
4259 }
4260
4261 case SOURCE_MEMORY_PRESSURE:
4262 r = s->memory_pressure.callback(s, s->userdata);
4263 break;
4264
4265 case SOURCE_WATCHDOG:
4266 case _SOURCE_EVENT_SOURCE_TYPE_MAX:
4267 case _SOURCE_EVENT_SOURCE_TYPE_INVALID:
4268 assert_not_reached();
4269 }
4270
4271 s->dispatching = false;
4272
4273 finish:
4274 if (r < 0) {
4275 log_debug_errno(r, "Event source %s (type %s) returned error, %s: %m",
4276 strna(s->description),
4277 event_source_type_to_string(saved_type),
4278 s->exit_on_failure ? "exiting" : "disabling");
4279
4280 if (s->exit_on_failure)
4281 (void) sd_event_exit(saved_event, r);
4282 }
4283
4284 if (s->n_ref == 0)
4285 source_free(s);
4286 else if (r < 0)
4287 assert_se(sd_event_source_set_enabled(s, SD_EVENT_OFF) >= 0);
4288
4289 return 1;
4290 }
4291
4292 static int event_prepare(sd_event *e) {
4293 int r;
4294
4295 assert(e);
4296
4297 for (;;) {
4298 sd_event_source *s;
4299
4300 s = prioq_peek(e->prepare);
4301 if (!s || s->prepare_iteration == e->iteration || event_source_is_offline(s))
4302 break;
4303
4304 s->prepare_iteration = e->iteration;
4305 prioq_reshuffle(e->prepare, s, &s->prepare_index);
4306
4307 assert(s->prepare);
4308 s->dispatching = true;
4309 r = s->prepare(s, s->userdata);
4310 s->dispatching = false;
4311
4312 if (r < 0) {
4313 log_debug_errno(r, "Prepare callback of event source %s (type %s) returned error, %s: %m",
4314 strna(s->description),
4315 event_source_type_to_string(s->type),
4316 s->exit_on_failure ? "exiting" : "disabling");
4317
4318 if (s->exit_on_failure)
4319 (void) sd_event_exit(e, r);
4320 }
4321
4322 if (s->n_ref == 0)
4323 source_free(s);
4324 else if (r < 0)
4325 assert_se(sd_event_source_set_enabled(s, SD_EVENT_OFF) >= 0);
4326 }
4327
4328 return 0;
4329 }
4330
4331 static int dispatch_exit(sd_event *e) {
4332 sd_event_source *p;
4333 int r;
4334
4335 assert(e);
4336
4337 p = prioq_peek(e->exit);
4338 assert(!p || p->type == SOURCE_EXIT);
4339
4340 if (!p || event_source_is_offline(p)) {
4341 e->state = SD_EVENT_FINISHED;
4342 return 0;
4343 }
4344
4345 PROTECT_EVENT(e);
4346 e->iteration++;
4347 e->state = SD_EVENT_EXITING;
4348 r = source_dispatch(p);
4349 e->state = SD_EVENT_INITIAL;
4350 return r;
4351 }
4352
4353 static sd_event_source* event_next_pending(sd_event *e) {
4354 sd_event_source *p;
4355
4356 assert(e);
4357
4358 p = prioq_peek(e->pending);
4359 if (!p)
4360 return NULL;
4361
4362 if (event_source_is_offline(p))
4363 return NULL;
4364
4365 return p;
4366 }
4367
4368 static int arm_watchdog(sd_event *e) {
4369 struct itimerspec its = {};
4370 usec_t t;
4371
4372 assert(e);
4373 assert(e->watchdog_fd >= 0);
4374
4375 t = sleep_between(e,
4376 usec_add(e->watchdog_last, (e->watchdog_period / 2)),
4377 usec_add(e->watchdog_last, (e->watchdog_period * 3 / 4)));
4378
4379 timespec_store(&its.it_value, t);
4380
4381 /* Make sure we never set the watchdog to 0, which tells the
4382 * kernel to disable it. */
4383 if (its.it_value.tv_sec == 0 && its.it_value.tv_nsec == 0)
4384 its.it_value.tv_nsec = 1;
4385
4386 return RET_NERRNO(timerfd_settime(e->watchdog_fd, TFD_TIMER_ABSTIME, &its, NULL));
4387 }
4388
4389 static int process_watchdog(sd_event *e) {
4390 assert(e);
4391
4392 if (!e->watchdog)
4393 return 0;
4394
4395 /* Don't notify watchdog too often */
4396 if (e->watchdog_last + e->watchdog_period / 4 > e->timestamp.monotonic)
4397 return 0;
4398
4399 sd_notify(false, "WATCHDOG=1");
4400 e->watchdog_last = e->timestamp.monotonic;
4401
4402 return arm_watchdog(e);
4403 }
4404
4405 static void event_close_inode_data_fds(sd_event *e) {
4406 struct inode_data *d;
4407
4408 assert(e);
4409
4410 /* Close the fds pointing to the inodes to watch now. We need to close them as they might otherwise pin
4411 * filesystems. But we can't close them right-away as we need them as long as the user still wants to make
4412 * adjustments to the event source, such as changing the priority (which requires us to remove and re-add a watch
4413 * for the inode). Hence, let's close them when entering the first iteration after they were added, as a
4414 * compromise. */
4415
4416 while ((d = e->inode_data_to_close_list)) {
4417 assert(d->fd >= 0);
4418 d->fd = safe_close(d->fd);
4419
4420 LIST_REMOVE(to_close, e->inode_data_to_close_list, d);
4421 }
4422 }
4423
4424 static int event_memory_pressure_write_list(sd_event *e) {
4425 int r;
4426
4427 assert(e);
4428
4429 for (;;) {
4430 sd_event_source *s;
4431
4432 s = LIST_POP(memory_pressure.write_list, e->memory_pressure_write_list);
4433 if (!s)
4434 break;
4435
4436 assert(s->type == SOURCE_MEMORY_PRESSURE);
4437 assert(s->memory_pressure.write_buffer_size > 0);
4438 s->memory_pressure.in_write_list = false;
4439
4440 r = source_memory_pressure_write(s);
4441 if (r < 0)
4442 return r;
4443 }
4444
4445 return 0;
4446 }
4447
4448 _public_ int sd_event_prepare(sd_event *e) {
4449 int r;
4450
4451 assert_return(e, -EINVAL);
4452 assert_return(e = event_resolve(e), -ENOPKG);
4453 assert_return(!event_origin_changed(e), -ECHILD);
4454 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
4455 assert_return(e->state == SD_EVENT_INITIAL, -EBUSY);
4456
4457 /* Let's check that if we are a default event loop we are executed in the correct thread. We only do
4458 * this check here once, since gettid() is typically not cached, and thus want to minimize
4459 * syscalls */
4460 assert_return(!e->default_event_ptr || e->tid == gettid(), -EREMOTEIO);
4461
4462 /* Make sure that none of the preparation callbacks ends up freeing the event source under our feet */
4463 PROTECT_EVENT(e);
4464
4465 if (e->exit_requested)
4466 goto pending;
4467
4468 e->iteration++;
4469
4470 e->state = SD_EVENT_PREPARING;
4471 r = event_prepare(e);
4472 e->state = SD_EVENT_INITIAL;
4473 if (r < 0)
4474 return r;
4475
4476 r = event_memory_pressure_write_list(e);
4477 if (r < 0)
4478 return r;
4479
4480 r = event_arm_timer(e, &e->realtime);
4481 if (r < 0)
4482 return r;
4483
4484 r = event_arm_timer(e, &e->boottime);
4485 if (r < 0)
4486 return r;
4487
4488 r = event_arm_timer(e, &e->monotonic);
4489 if (r < 0)
4490 return r;
4491
4492 r = event_arm_timer(e, &e->realtime_alarm);
4493 if (r < 0)
4494 return r;
4495
4496 r = event_arm_timer(e, &e->boottime_alarm);
4497 if (r < 0)
4498 return r;
4499
4500 event_close_inode_data_fds(e);
4501
4502 if (event_next_pending(e) || e->need_process_child || e->buffered_inotify_data_list)
4503 goto pending;
4504
4505 e->state = SD_EVENT_ARMED;
4506
4507 return 0;
4508
4509 pending:
4510 e->state = SD_EVENT_ARMED;
4511 r = sd_event_wait(e, 0);
4512 if (r == 0)
4513 e->state = SD_EVENT_ARMED;
4514
4515 return r;
4516 }
4517
4518 static int epoll_wait_usec(
4519 int fd,
4520 struct epoll_event *events,
4521 int maxevents,
4522 usec_t timeout) {
4523
4524 int msec;
4525 /* A wrapper that uses epoll_pwait2() if available, and falls back to epoll_wait() if not. */
4526
4527 #if HAVE_EPOLL_PWAIT2
4528 static bool epoll_pwait2_absent = false;
4529 int r;
4530
4531 /* epoll_pwait2() was added to Linux 5.11 (2021-02-14) and to glibc in 2.35 (2022-02-03). In contrast
4532 * to other syscalls we don't bother with our own fallback syscall wrappers on old libcs, since this
4533 * is not that obvious to implement given the libc and kernel definitions differ in the last
4534 * argument. Moreover, the only reason to use it is the more accurate time-outs (which is not a
4535 * biggie), let's hence rely on glibc's definitions, and fallback to epoll_pwait() when that's
4536 * missing. */
4537
4538 if (!epoll_pwait2_absent && timeout != USEC_INFINITY) {
4539 r = epoll_pwait2(fd,
4540 events,
4541 maxevents,
4542 TIMESPEC_STORE(timeout),
4543 NULL);
4544 if (r >= 0)
4545 return r;
4546 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno))
4547 return -errno; /* Only fallback to old epoll_wait() if the syscall is masked or not
4548 * supported. */
4549
4550 epoll_pwait2_absent = true;
4551 }
4552 #endif
4553
4554 if (timeout == USEC_INFINITY)
4555 msec = -1;
4556 else {
4557 usec_t k;
4558
4559 k = DIV_ROUND_UP(timeout, USEC_PER_MSEC);
4560 if (k >= INT_MAX)
4561 msec = INT_MAX; /* Saturate */
4562 else
4563 msec = (int) k;
4564 }
4565
4566 return RET_NERRNO(epoll_wait(fd, events, maxevents, msec));
4567 }
4568
4569 static int process_epoll(sd_event *e, usec_t timeout, int64_t threshold, int64_t *ret_min_priority) {
4570 size_t n_event_queue, m, n_event_max;
4571 int64_t min_priority = threshold;
4572 bool something_new = false;
4573 int r;
4574
4575 assert(e);
4576 assert(ret_min_priority);
4577
4578 n_event_queue = MAX(e->n_sources, 1u);
4579 if (!GREEDY_REALLOC(e->event_queue, n_event_queue))
4580 return -ENOMEM;
4581
4582 n_event_max = MALLOC_ELEMENTSOF(e->event_queue);
4583
4584 /* If we still have inotify data buffered, then query the other fds, but don't wait on it */
4585 if (e->buffered_inotify_data_list)
4586 timeout = 0;
4587
4588 for (;;) {
4589 r = epoll_wait_usec(
4590 e->epoll_fd,
4591 e->event_queue,
4592 n_event_max,
4593 timeout);
4594 if (r < 0)
4595 return r;
4596
4597 m = (size_t) r;
4598
4599 if (m < n_event_max)
4600 break;
4601
4602 if (n_event_max >= n_event_queue * 10)
4603 break;
4604
4605 if (!GREEDY_REALLOC(e->event_queue, n_event_max + n_event_queue))
4606 return -ENOMEM;
4607
4608 n_event_max = MALLOC_ELEMENTSOF(e->event_queue);
4609 timeout = 0;
4610 }
4611
4612 /* Set timestamp only when this is called first time. */
4613 if (threshold == INT64_MAX)
4614 triple_timestamp_get(&e->timestamp);
4615
4616 for (size_t i = 0; i < m; i++) {
4617
4618 if (e->event_queue[i].data.ptr == INT_TO_PTR(SOURCE_WATCHDOG))
4619 r = flush_timer(e, e->watchdog_fd, e->event_queue[i].events, NULL);
4620 else {
4621 WakeupType *t = e->event_queue[i].data.ptr;
4622
4623 switch (*t) {
4624
4625 case WAKEUP_EVENT_SOURCE: {
4626 sd_event_source *s = e->event_queue[i].data.ptr;
4627
4628 assert(s);
4629
4630 if (s->priority > threshold)
4631 continue;
4632
4633 min_priority = MIN(min_priority, s->priority);
4634
4635 switch (s->type) {
4636
4637 case SOURCE_IO:
4638 r = process_io(e, s, e->event_queue[i].events);
4639 break;
4640
4641 case SOURCE_CHILD:
4642 r = process_pidfd(e, s, e->event_queue[i].events);
4643 break;
4644
4645 case SOURCE_MEMORY_PRESSURE:
4646 r = process_memory_pressure(s, e->event_queue[i].events);
4647 break;
4648
4649 default:
4650 assert_not_reached();
4651 }
4652
4653 break;
4654 }
4655
4656 case WAKEUP_CLOCK_DATA: {
4657 struct clock_data *d = e->event_queue[i].data.ptr;
4658
4659 assert(d);
4660
4661 r = flush_timer(e, d->fd, e->event_queue[i].events, &d->next);
4662 break;
4663 }
4664
4665 case WAKEUP_SIGNAL_DATA:
4666 r = process_signal(e, e->event_queue[i].data.ptr, e->event_queue[i].events, &min_priority);
4667 break;
4668
4669 case WAKEUP_INOTIFY_DATA:
4670 r = event_inotify_data_read(e, e->event_queue[i].data.ptr, e->event_queue[i].events, threshold);
4671 break;
4672
4673 default:
4674 assert_not_reached();
4675 }
4676 }
4677 if (r < 0)
4678 return r;
4679 if (r > 0)
4680 something_new = true;
4681 }
4682
4683 *ret_min_priority = min_priority;
4684 return something_new;
4685 }
4686
4687 _public_ int sd_event_wait(sd_event *e, uint64_t timeout) {
4688 int r;
4689
4690 assert_return(e, -EINVAL);
4691 assert_return(e = event_resolve(e), -ENOPKG);
4692 assert_return(!event_origin_changed(e), -ECHILD);
4693 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
4694 assert_return(e->state == SD_EVENT_ARMED, -EBUSY);
4695
4696 if (e->exit_requested) {
4697 e->state = SD_EVENT_PENDING;
4698 return 1;
4699 }
4700
4701 for (int64_t threshold = INT64_MAX; ; threshold--) {
4702 int64_t epoll_min_priority, child_min_priority;
4703
4704 /* There may be a possibility that new epoll (especially IO) and child events are
4705 * triggered just after process_epoll() call but before process_child(), and the new IO
4706 * events may have higher priority than the child events. To salvage these events,
4707 * let's call epoll_wait() again, but accepts only events with higher priority than the
4708 * previous. See issue https://github.com/systemd/systemd/issues/18190 and comments
4709 * https://github.com/systemd/systemd/pull/18750#issuecomment-785801085
4710 * https://github.com/systemd/systemd/pull/18922#issuecomment-792825226 */
4711
4712 r = process_epoll(e, timeout, threshold, &epoll_min_priority);
4713 if (r == -EINTR) {
4714 e->state = SD_EVENT_PENDING;
4715 return 1;
4716 }
4717 if (r < 0)
4718 goto finish;
4719 if (r == 0 && threshold < INT64_MAX)
4720 /* No new epoll event. */
4721 break;
4722
4723 r = process_child(e, threshold, &child_min_priority);
4724 if (r < 0)
4725 goto finish;
4726 if (r == 0)
4727 /* No new child event. */
4728 break;
4729
4730 threshold = MIN(epoll_min_priority, child_min_priority);
4731 if (threshold == INT64_MIN)
4732 break;
4733
4734 timeout = 0;
4735 }
4736
4737 r = process_watchdog(e);
4738 if (r < 0)
4739 goto finish;
4740
4741 r = process_inotify(e);
4742 if (r < 0)
4743 goto finish;
4744
4745 r = process_timer(e, e->timestamp.realtime, &e->realtime);
4746 if (r < 0)
4747 goto finish;
4748
4749 r = process_timer(e, e->timestamp.boottime, &e->boottime);
4750 if (r < 0)
4751 goto finish;
4752
4753 r = process_timer(e, e->timestamp.realtime, &e->realtime_alarm);
4754 if (r < 0)
4755 goto finish;
4756
4757 r = process_timer(e, e->timestamp.boottime, &e->boottime_alarm);
4758 if (r < 0)
4759 goto finish;
4760
4761 r = process_timer(e, e->timestamp.monotonic, &e->monotonic);
4762 if (r < 0)
4763 goto finish;
4764 else if (r == 1) {
4765 /* Ratelimit expiry callback was called. Let's postpone processing pending sources and
4766 * put loop in the initial state in order to evaluate (in the next iteration) also sources
4767 * there were potentially re-enabled by the callback.
4768 *
4769 * Wondering why we treat only this invocation of process_timer() differently? Once event
4770 * source is ratelimited we essentially transform it into CLOCK_MONOTONIC timer hence
4771 * ratelimit expiry callback is never called for any other timer type. */
4772 r = 0;
4773 goto finish;
4774 }
4775
4776 if (event_next_pending(e)) {
4777 e->state = SD_EVENT_PENDING;
4778 return 1;
4779 }
4780
4781 r = 0;
4782
4783 finish:
4784 e->state = SD_EVENT_INITIAL;
4785
4786 return r;
4787 }
4788
4789 _public_ int sd_event_dispatch(sd_event *e) {
4790 sd_event_source *p;
4791 int r;
4792
4793 assert_return(e, -EINVAL);
4794 assert_return(e = event_resolve(e), -ENOPKG);
4795 assert_return(!event_origin_changed(e), -ECHILD);
4796 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
4797 assert_return(e->state == SD_EVENT_PENDING, -EBUSY);
4798
4799 if (e->exit_requested)
4800 return dispatch_exit(e);
4801
4802 p = event_next_pending(e);
4803 if (p) {
4804 PROTECT_EVENT(e);
4805
4806 e->state = SD_EVENT_RUNNING;
4807 r = source_dispatch(p);
4808 e->state = SD_EVENT_INITIAL;
4809 return r;
4810 }
4811
4812 e->state = SD_EVENT_INITIAL;
4813
4814 return 1;
4815 }
4816
4817 static void event_log_delays(sd_event *e) {
4818 char b[ELEMENTSOF(e->delays) * DECIMAL_STR_MAX(unsigned) + 1], *p;
4819 size_t l, i;
4820
4821 p = b;
4822 l = sizeof(b);
4823 for (i = 0; i < ELEMENTSOF(e->delays); i++) {
4824 l = strpcpyf(&p, l, "%u ", e->delays[i]);
4825 e->delays[i] = 0;
4826 }
4827 log_debug("Event loop iterations: %s", b);
4828 }
4829
4830 _public_ int sd_event_run(sd_event *e, uint64_t timeout) {
4831 int r;
4832
4833 assert_return(e, -EINVAL);
4834 assert_return(e = event_resolve(e), -ENOPKG);
4835 assert_return(!event_origin_changed(e), -ECHILD);
4836 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
4837 assert_return(e->state == SD_EVENT_INITIAL, -EBUSY);
4838
4839 if (e->profile_delays && e->last_run_usec != 0) {
4840 usec_t this_run;
4841 unsigned l;
4842
4843 this_run = now(CLOCK_MONOTONIC);
4844
4845 l = log2u64(this_run - e->last_run_usec);
4846 assert(l < ELEMENTSOF(e->delays));
4847 e->delays[l]++;
4848
4849 if (this_run - e->last_log_usec >= 5*USEC_PER_SEC) {
4850 event_log_delays(e);
4851 e->last_log_usec = this_run;
4852 }
4853 }
4854
4855 /* Make sure that none of the preparation callbacks ends up freeing the event source under our feet */
4856 PROTECT_EVENT(e);
4857
4858 r = sd_event_prepare(e);
4859 if (r == 0)
4860 /* There was nothing? Then wait... */
4861 r = sd_event_wait(e, timeout);
4862
4863 if (e->profile_delays)
4864 e->last_run_usec = now(CLOCK_MONOTONIC);
4865
4866 if (r > 0) {
4867 /* There's something now, then let's dispatch it */
4868 r = sd_event_dispatch(e);
4869 if (r < 0)
4870 return r;
4871
4872 return 1;
4873 }
4874
4875 return r;
4876 }
4877
4878 _public_ int sd_event_loop(sd_event *e) {
4879 int r;
4880
4881 assert_return(e, -EINVAL);
4882 assert_return(e = event_resolve(e), -ENOPKG);
4883 assert_return(!event_origin_changed(e), -ECHILD);
4884 assert_return(e->state == SD_EVENT_INITIAL, -EBUSY);
4885
4886
4887 PROTECT_EVENT(e);
4888
4889 while (e->state != SD_EVENT_FINISHED) {
4890 r = sd_event_run(e, UINT64_MAX);
4891 if (r < 0)
4892 return r;
4893 }
4894
4895 return e->exit_code;
4896 }
4897
4898 _public_ int sd_event_get_fd(sd_event *e) {
4899 assert_return(e, -EINVAL);
4900 assert_return(e = event_resolve(e), -ENOPKG);
4901 assert_return(!event_origin_changed(e), -ECHILD);
4902
4903 return e->epoll_fd;
4904 }
4905
4906 _public_ int sd_event_get_state(sd_event *e) {
4907 assert_return(e, -EINVAL);
4908 assert_return(e = event_resolve(e), -ENOPKG);
4909 assert_return(!event_origin_changed(e), -ECHILD);
4910
4911 return e->state;
4912 }
4913
4914 _public_ int sd_event_get_exit_code(sd_event *e, int *code) {
4915 assert_return(e, -EINVAL);
4916 assert_return(e = event_resolve(e), -ENOPKG);
4917 assert_return(code, -EINVAL);
4918 assert_return(!event_origin_changed(e), -ECHILD);
4919
4920 if (!e->exit_requested)
4921 return -ENODATA;
4922
4923 *code = e->exit_code;
4924 return 0;
4925 }
4926
4927 _public_ int sd_event_exit(sd_event *e, int code) {
4928 assert_return(e, -EINVAL);
4929 assert_return(e = event_resolve(e), -ENOPKG);
4930 assert_return(e->state != SD_EVENT_FINISHED, -ESTALE);
4931 assert_return(!event_origin_changed(e), -ECHILD);
4932
4933 e->exit_requested = true;
4934 e->exit_code = code;
4935
4936 return 0;
4937 }
4938
4939 _public_ int sd_event_now(sd_event *e, clockid_t clock, uint64_t *usec) {
4940 assert_return(e, -EINVAL);
4941 assert_return(e = event_resolve(e), -ENOPKG);
4942 assert_return(usec, -EINVAL);
4943 assert_return(!event_origin_changed(e), -ECHILD);
4944
4945 if (!TRIPLE_TIMESTAMP_HAS_CLOCK(clock))
4946 return -EOPNOTSUPP;
4947
4948 if (!triple_timestamp_is_set(&e->timestamp)) {
4949 /* Implicitly fall back to now() if we never ran before and thus have no cached time. */
4950 *usec = now(clock);
4951 return 1;
4952 }
4953
4954 *usec = triple_timestamp_by_clock(&e->timestamp, clock);
4955 return 0;
4956 }
4957
4958 _public_ int sd_event_default(sd_event **ret) {
4959 sd_event *e = NULL;
4960 int r;
4961
4962 if (!ret)
4963 return !!default_event;
4964
4965 if (default_event) {
4966 *ret = sd_event_ref(default_event);
4967 return 0;
4968 }
4969
4970 r = sd_event_new(&e);
4971 if (r < 0)
4972 return r;
4973
4974 e->default_event_ptr = &default_event;
4975 e->tid = gettid();
4976 default_event = e;
4977
4978 *ret = e;
4979 return 1;
4980 }
4981
4982 _public_ int sd_event_get_tid(sd_event *e, pid_t *tid) {
4983 assert_return(e, -EINVAL);
4984 assert_return(e = event_resolve(e), -ENOPKG);
4985 assert_return(tid, -EINVAL);
4986 assert_return(!event_origin_changed(e), -ECHILD);
4987
4988 if (e->tid != 0) {
4989 *tid = e->tid;
4990 return 0;
4991 }
4992
4993 return -ENXIO;
4994 }
4995
4996 _public_ int sd_event_set_watchdog(sd_event *e, int b) {
4997 int r;
4998
4999 assert_return(e, -EINVAL);
5000 assert_return(e = event_resolve(e), -ENOPKG);
5001 assert_return(!event_origin_changed(e), -ECHILD);
5002
5003 if (e->watchdog == !!b)
5004 return e->watchdog;
5005
5006 if (b) {
5007 r = sd_watchdog_enabled(false, &e->watchdog_period);
5008 if (r <= 0)
5009 return r;
5010
5011 /* Issue first ping immediately */
5012 sd_notify(false, "WATCHDOG=1");
5013 e->watchdog_last = now(CLOCK_MONOTONIC);
5014
5015 e->watchdog_fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK|TFD_CLOEXEC);
5016 if (e->watchdog_fd < 0)
5017 return -errno;
5018
5019 r = arm_watchdog(e);
5020 if (r < 0)
5021 goto fail;
5022
5023 struct epoll_event ev = {
5024 .events = EPOLLIN,
5025 .data.ptr = INT_TO_PTR(SOURCE_WATCHDOG),
5026 };
5027
5028 if (epoll_ctl(e->epoll_fd, EPOLL_CTL_ADD, e->watchdog_fd, &ev) < 0) {
5029 r = -errno;
5030 goto fail;
5031 }
5032
5033 } else {
5034 if (e->watchdog_fd >= 0) {
5035 (void) epoll_ctl(e->epoll_fd, EPOLL_CTL_DEL, e->watchdog_fd, NULL);
5036 e->watchdog_fd = safe_close(e->watchdog_fd);
5037 }
5038 }
5039
5040 e->watchdog = !!b;
5041 return e->watchdog;
5042
5043 fail:
5044 e->watchdog_fd = safe_close(e->watchdog_fd);
5045 return r;
5046 }
5047
5048 _public_ int sd_event_get_watchdog(sd_event *e) {
5049 assert_return(e, -EINVAL);
5050 assert_return(e = event_resolve(e), -ENOPKG);
5051 assert_return(!event_origin_changed(e), -ECHILD);
5052
5053 return e->watchdog;
5054 }
5055
5056 _public_ int sd_event_get_iteration(sd_event *e, uint64_t *ret) {
5057 assert_return(e, -EINVAL);
5058 assert_return(e = event_resolve(e), -ENOPKG);
5059 assert_return(!event_origin_changed(e), -ECHILD);
5060
5061 *ret = e->iteration;
5062 return 0;
5063 }
5064
5065 _public_ int sd_event_source_set_destroy_callback(sd_event_source *s, sd_event_destroy_t callback) {
5066 assert_return(s, -EINVAL);
5067 assert_return(s->event, -EINVAL);
5068 assert_return(!event_origin_changed(s->event), -ECHILD);
5069
5070 s->destroy_callback = callback;
5071 return 0;
5072 }
5073
5074 _public_ int sd_event_source_get_destroy_callback(sd_event_source *s, sd_event_destroy_t *ret) {
5075 assert_return(s, -EINVAL);
5076 assert_return(!event_origin_changed(s->event), -ECHILD);
5077
5078 if (ret)
5079 *ret = s->destroy_callback;
5080
5081 return !!s->destroy_callback;
5082 }
5083
5084 _public_ int sd_event_source_get_floating(sd_event_source *s) {
5085 assert_return(s, -EINVAL);
5086 assert_return(!event_origin_changed(s->event), -ECHILD);
5087
5088 return s->floating;
5089 }
5090
5091 _public_ int sd_event_source_set_floating(sd_event_source *s, int b) {
5092 assert_return(s, -EINVAL);
5093 assert_return(!event_origin_changed(s->event), -ECHILD);
5094
5095 if (s->floating == !!b)
5096 return 0;
5097
5098 if (!s->event) /* Already disconnected */
5099 return -ESTALE;
5100
5101 s->floating = b;
5102
5103 if (b) {
5104 sd_event_source_ref(s);
5105 sd_event_unref(s->event);
5106 } else {
5107 sd_event_ref(s->event);
5108 sd_event_source_unref(s);
5109 }
5110
5111 return 1;
5112 }
5113
5114 _public_ int sd_event_source_get_exit_on_failure(sd_event_source *s) {
5115 assert_return(s, -EINVAL);
5116 assert_return(s->type != SOURCE_EXIT, -EDOM);
5117 assert_return(!event_origin_changed(s->event), -ECHILD);
5118
5119 return s->exit_on_failure;
5120 }
5121
5122 _public_ int sd_event_source_set_exit_on_failure(sd_event_source *s, int b) {
5123 assert_return(s, -EINVAL);
5124 assert_return(s->type != SOURCE_EXIT, -EDOM);
5125 assert_return(!event_origin_changed(s->event), -ECHILD);
5126
5127 if (s->exit_on_failure == !!b)
5128 return 0;
5129
5130 s->exit_on_failure = b;
5131 return 1;
5132 }
5133
5134 _public_ int sd_event_source_set_ratelimit(sd_event_source *s, uint64_t interval, unsigned burst) {
5135 int r;
5136
5137 assert_return(s, -EINVAL);
5138 assert_return(!event_origin_changed(s->event), -ECHILD);
5139
5140 /* Turning on ratelimiting on event source types that don't support it, is a loggable offense. Doing
5141 * so is a programming error. */
5142 assert_return(EVENT_SOURCE_CAN_RATE_LIMIT(s->type), -EDOM);
5143
5144 /* When ratelimiting is configured we'll always reset the rate limit state first and start fresh,
5145 * non-ratelimited. */
5146 r = event_source_leave_ratelimit(s, /* run_callback */ false);
5147 if (r < 0)
5148 return r;
5149
5150 s->rate_limit = (RateLimit) { interval, burst };
5151 return 0;
5152 }
5153
5154 _public_ int sd_event_source_set_ratelimit_expire_callback(sd_event_source *s, sd_event_handler_t callback) {
5155 assert_return(s, -EINVAL);
5156 assert_return(!event_origin_changed(s->event), -ECHILD);
5157
5158 s->ratelimit_expire_callback = callback;
5159 return 0;
5160 }
5161
5162 _public_ int sd_event_source_get_ratelimit(sd_event_source *s, uint64_t *ret_interval, unsigned *ret_burst) {
5163 assert_return(s, -EINVAL);
5164 assert_return(!event_origin_changed(s->event), -ECHILD);
5165
5166 /* Querying whether an event source has ratelimiting configured is not a loggable offense, hence
5167 * don't use assert_return(). Unlike turning on ratelimiting it's not really a programming error. */
5168 if (!EVENT_SOURCE_CAN_RATE_LIMIT(s->type))
5169 return -EDOM;
5170
5171 if (!ratelimit_configured(&s->rate_limit))
5172 return -ENOEXEC;
5173
5174 if (ret_interval)
5175 *ret_interval = s->rate_limit.interval;
5176 if (ret_burst)
5177 *ret_burst = s->rate_limit.burst;
5178
5179 return 0;
5180 }
5181
5182 _public_ int sd_event_source_is_ratelimited(sd_event_source *s) {
5183 assert_return(s, -EINVAL);
5184 assert_return(!event_origin_changed(s->event), -ECHILD);
5185
5186 if (!EVENT_SOURCE_CAN_RATE_LIMIT(s->type))
5187 return false;
5188
5189 if (!ratelimit_configured(&s->rate_limit))
5190 return false;
5191
5192 return s->ratelimited;
5193 }
5194
5195 _public_ int sd_event_set_signal_exit(sd_event *e, int b) {
5196 bool change = false;
5197 int r;
5198
5199 assert_return(e, -EINVAL);
5200
5201 if (b) {
5202 /* We want to maintain pointers to these event sources, so that we can destroy them when told
5203 * so. But we also don't want them to pin the event loop itself. Hence we mark them as
5204 * floating after creation (and undo this before deleting them again). */
5205
5206 if (!e->sigint_event_source) {
5207 r = sd_event_add_signal(e, &e->sigint_event_source, SIGINT | SD_EVENT_SIGNAL_PROCMASK, NULL, NULL);
5208 if (r < 0)
5209 return r;
5210
5211 assert(sd_event_source_set_floating(e->sigint_event_source, true) >= 0);
5212 change = true;
5213 }
5214
5215 if (!e->sigterm_event_source) {
5216 r = sd_event_add_signal(e, &e->sigterm_event_source, SIGTERM | SD_EVENT_SIGNAL_PROCMASK, NULL, NULL);
5217 if (r < 0) {
5218 if (change) {
5219 assert(sd_event_source_set_floating(e->sigint_event_source, false) >= 0);
5220 e->sigint_event_source = sd_event_source_unref(e->sigint_event_source);
5221 }
5222
5223 return r;
5224 }
5225
5226 assert(sd_event_source_set_floating(e->sigterm_event_source, true) >= 0);
5227 change = true;
5228 }
5229
5230 } else {
5231 if (e->sigint_event_source) {
5232 assert(sd_event_source_set_floating(e->sigint_event_source, false) >= 0);
5233 e->sigint_event_source = sd_event_source_unref(e->sigint_event_source);
5234 change = true;
5235 }
5236
5237 if (e->sigterm_event_source) {
5238 assert(sd_event_source_set_floating(e->sigterm_event_source, false) >= 0);
5239 e->sigterm_event_source = sd_event_source_unref(e->sigterm_event_source);
5240 change = true;
5241 }
5242 }
5243
5244 return change;
5245 }
5246
5247 _public_ int sd_event_source_set_memory_pressure_type(sd_event_source *s, const char *ty) {
5248 _cleanup_free_ char *b = NULL;
5249 _cleanup_free_ void *w = NULL;
5250
5251 assert_return(s, -EINVAL);
5252 assert_return(s->type == SOURCE_MEMORY_PRESSURE, -EDOM);
5253 assert_return(ty, -EINVAL);
5254 assert_return(!event_origin_changed(s->event), -ECHILD);
5255
5256 if (!STR_IN_SET(ty, "some", "full"))
5257 return -EINVAL;
5258
5259 if (s->memory_pressure.locked) /* Refuse adjusting parameters, if caller told us how to watch for events */
5260 return -EBUSY;
5261
5262 char* space = memchr(s->memory_pressure.write_buffer, ' ', s->memory_pressure.write_buffer_size);
5263 if (!space)
5264 return -EINVAL;
5265
5266 size_t l = (char*) space - (char*) s->memory_pressure.write_buffer;
5267 b = memdup_suffix0(s->memory_pressure.write_buffer, l);
5268 if (!b)
5269 return -ENOMEM;
5270 if (!STR_IN_SET(b, "some", "full"))
5271 return -EINVAL;
5272
5273 if (streq(b, ty))
5274 return 0;
5275
5276 size_t nl = strlen(ty) + (s->memory_pressure.write_buffer_size - l);
5277 w = new(char, nl);
5278 if (!w)
5279 return -ENOMEM;
5280
5281 memcpy(stpcpy(w, ty), space, (s->memory_pressure.write_buffer_size - l));
5282
5283 free_and_replace(s->memory_pressure.write_buffer, w);
5284 s->memory_pressure.write_buffer_size = nl;
5285 s->memory_pressure.locked = false;
5286
5287 return 1;
5288 }
5289
5290 _public_ int sd_event_source_set_memory_pressure_period(sd_event_source *s, uint64_t threshold_usec, uint64_t window_usec) {
5291 _cleanup_free_ char *b = NULL;
5292 _cleanup_free_ void *w = NULL;
5293
5294 assert_return(s, -EINVAL);
5295 assert_return(s->type == SOURCE_MEMORY_PRESSURE, -EDOM);
5296 assert_return(!event_origin_changed(s->event), -ECHILD);
5297
5298 if (threshold_usec <= 0 || threshold_usec >= UINT64_MAX)
5299 return -ERANGE;
5300 if (window_usec <= 0 || window_usec >= UINT64_MAX)
5301 return -ERANGE;
5302 if (threshold_usec > window_usec)
5303 return -EINVAL;
5304
5305 if (s->memory_pressure.locked) /* Refuse adjusting parameters, if caller told us how to watch for events */
5306 return -EBUSY;
5307
5308 char* space = memchr(s->memory_pressure.write_buffer, ' ', s->memory_pressure.write_buffer_size);
5309 if (!space)
5310 return -EINVAL;
5311
5312 size_t l = (char*) space - (char*) s->memory_pressure.write_buffer;
5313 b = memdup_suffix0(s->memory_pressure.write_buffer, l);
5314 if (!b)
5315 return -ENOMEM;
5316 if (!STR_IN_SET(b, "some", "full"))
5317 return -EINVAL;
5318
5319 if (asprintf((char**) &w,
5320 "%s " USEC_FMT " " USEC_FMT "",
5321 b,
5322 threshold_usec,
5323 window_usec) < 0)
5324 return -EINVAL;
5325
5326 l = strlen(w) + 1;
5327 if (memcmp_nn(s->memory_pressure.write_buffer, s->memory_pressure.write_buffer_size, w, l) == 0)
5328 return 0;
5329
5330 free_and_replace(s->memory_pressure.write_buffer, w);
5331 s->memory_pressure.write_buffer_size = l;
5332 s->memory_pressure.locked = false;
5333
5334 return 1;
5335 }