]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/resolve/resolved-dns-rr.c
Merge pull request #22791 from keszybz/bootctl-invert-order
[thirdparty/systemd.git] / src / resolve / resolved-dns-rr.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #include <math.h>
4
5 #include "alloc-util.h"
6 #include "dns-domain.h"
7 #include "dns-type.h"
8 #include "escape.h"
9 #include "hexdecoct.h"
10 #include "memory-util.h"
11 #include "resolved-dns-dnssec.h"
12 #include "resolved-dns-packet.h"
13 #include "resolved-dns-rr.h"
14 #include "string-table.h"
15 #include "string-util.h"
16 #include "strv.h"
17 #include "terminal-util.h"
18
19 DnsResourceKey* dns_resource_key_new(uint16_t class, uint16_t type, const char *name) {
20 DnsResourceKey *k;
21 size_t l;
22
23 assert(name);
24
25 l = strlen(name);
26 k = malloc0(sizeof(DnsResourceKey) + l + 1);
27 if (!k)
28 return NULL;
29
30 k->n_ref = 1;
31 k->class = class;
32 k->type = type;
33
34 strcpy((char*) k + sizeof(DnsResourceKey), name);
35
36 return k;
37 }
38
39 DnsResourceKey* dns_resource_key_new_redirect(const DnsResourceKey *key, const DnsResourceRecord *cname) {
40 int r;
41
42 assert(key);
43 assert(cname);
44
45 assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME));
46
47 if (cname->key->type == DNS_TYPE_CNAME)
48 return dns_resource_key_new(key->class, key->type, cname->cname.name);
49 else {
50 _cleanup_free_ char *destination = NULL;
51 DnsResourceKey *k;
52
53 r = dns_name_change_suffix(dns_resource_key_name(key), dns_resource_key_name(cname->key), cname->dname.name, &destination);
54 if (r < 0)
55 return NULL;
56 if (r == 0)
57 return dns_resource_key_ref((DnsResourceKey*) key);
58
59 k = dns_resource_key_new_consume(key->class, key->type, destination);
60 if (!k)
61 return NULL;
62
63 TAKE_PTR(destination);
64 return k;
65 }
66 }
67
68 int dns_resource_key_new_append_suffix(DnsResourceKey **ret, DnsResourceKey *key, char *name) {
69 DnsResourceKey *new_key;
70 char *joined;
71 int r;
72
73 assert(ret);
74 assert(key);
75 assert(name);
76
77 if (dns_name_is_root(name)) {
78 *ret = dns_resource_key_ref(key);
79 return 0;
80 }
81
82 r = dns_name_concat(dns_resource_key_name(key), name, 0, &joined);
83 if (r < 0)
84 return r;
85
86 new_key = dns_resource_key_new_consume(key->class, key->type, joined);
87 if (!new_key) {
88 free(joined);
89 return -ENOMEM;
90 }
91
92 *ret = new_key;
93 return 0;
94 }
95
96 DnsResourceKey* dns_resource_key_new_consume(uint16_t class, uint16_t type, char *name) {
97 DnsResourceKey *k;
98
99 assert(name);
100
101 k = new(DnsResourceKey, 1);
102 if (!k)
103 return NULL;
104
105 *k = (DnsResourceKey) {
106 .n_ref = 1,
107 .class = class,
108 .type = type,
109 ._name = name,
110 };
111
112 return k;
113 }
114
115 DnsResourceKey* dns_resource_key_ref(DnsResourceKey *k) {
116
117 if (!k)
118 return NULL;
119
120 /* Static/const keys created with DNS_RESOURCE_KEY_CONST will
121 * set this to -1, they should not be reffed/unreffed */
122 assert(k->n_ref != UINT_MAX);
123
124 assert(k->n_ref > 0);
125 k->n_ref++;
126
127 return k;
128 }
129
130 DnsResourceKey* dns_resource_key_unref(DnsResourceKey *k) {
131 if (!k)
132 return NULL;
133
134 assert(k->n_ref != UINT_MAX);
135 assert(k->n_ref > 0);
136
137 if (k->n_ref == 1) {
138 free(k->_name);
139 free(k);
140 } else
141 k->n_ref--;
142
143 return NULL;
144 }
145
146 const char* dns_resource_key_name(const DnsResourceKey *key) {
147 const char *name;
148
149 if (!key)
150 return NULL;
151
152 if (key->_name)
153 name = key->_name;
154 else
155 name = (char*) key + sizeof(DnsResourceKey);
156
157 if (dns_name_is_root(name))
158 return ".";
159 else
160 return name;
161 }
162
163 bool dns_resource_key_is_address(const DnsResourceKey *key) {
164 assert(key);
165
166 /* Check if this is an A or AAAA resource key */
167
168 return key->class == DNS_CLASS_IN && IN_SET(key->type, DNS_TYPE_A, DNS_TYPE_AAAA);
169 }
170
171 bool dns_resource_key_is_dnssd_ptr(const DnsResourceKey *key) {
172 assert(key);
173
174 /* Check if this is a PTR resource key used in
175 Service Instance Enumeration as described in RFC6763 p4.1. */
176
177 if (key->type != DNS_TYPE_PTR)
178 return false;
179
180 return dns_name_endswith(dns_resource_key_name(key), "_tcp.local") ||
181 dns_name_endswith(dns_resource_key_name(key), "_udp.local");
182 }
183
184 int dns_resource_key_equal(const DnsResourceKey *a, const DnsResourceKey *b) {
185 int r;
186
187 if (a == b)
188 return 1;
189
190 r = dns_name_equal(dns_resource_key_name(a), dns_resource_key_name(b));
191 if (r <= 0)
192 return r;
193
194 if (a->class != b->class)
195 return 0;
196
197 if (a->type != b->type)
198 return 0;
199
200 return 1;
201 }
202
203 int dns_resource_key_match_rr(const DnsResourceKey *key, DnsResourceRecord *rr, const char *search_domain) {
204 int r;
205
206 assert(key);
207 assert(rr);
208
209 if (key == rr->key)
210 return 1;
211
212 /* Checks if an rr matches the specified key. If a search
213 * domain is specified, it will also be checked if the key
214 * with the search domain suffixed might match the RR. */
215
216 if (rr->key->class != key->class && key->class != DNS_CLASS_ANY)
217 return 0;
218
219 if (rr->key->type != key->type && key->type != DNS_TYPE_ANY)
220 return 0;
221
222 r = dns_name_equal(dns_resource_key_name(rr->key), dns_resource_key_name(key));
223 if (r != 0)
224 return r;
225
226 if (search_domain) {
227 _cleanup_free_ char *joined = NULL;
228
229 r = dns_name_concat(dns_resource_key_name(key), search_domain, 0, &joined);
230 if (r < 0)
231 return r;
232
233 return dns_name_equal(dns_resource_key_name(rr->key), joined);
234 }
235
236 return 0;
237 }
238
239 int dns_resource_key_match_cname_or_dname(const DnsResourceKey *key, const DnsResourceKey *cname, const char *search_domain) {
240 int r;
241
242 assert(key);
243 assert(cname);
244
245 if (cname->class != key->class && key->class != DNS_CLASS_ANY)
246 return 0;
247
248 if (!dns_type_may_redirect(key->type))
249 return 0;
250
251 if (cname->type == DNS_TYPE_CNAME)
252 r = dns_name_equal(dns_resource_key_name(key), dns_resource_key_name(cname));
253 else if (cname->type == DNS_TYPE_DNAME)
254 r = dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(cname));
255 else
256 return 0;
257
258 if (r != 0)
259 return r;
260
261 if (search_domain) {
262 _cleanup_free_ char *joined = NULL;
263
264 r = dns_name_concat(dns_resource_key_name(key), search_domain, 0, &joined);
265 if (r < 0)
266 return r;
267
268 if (cname->type == DNS_TYPE_CNAME)
269 return dns_name_equal(joined, dns_resource_key_name(cname));
270 else if (cname->type == DNS_TYPE_DNAME)
271 return dns_name_endswith(joined, dns_resource_key_name(cname));
272 }
273
274 return 0;
275 }
276
277 int dns_resource_key_match_soa(const DnsResourceKey *key, const DnsResourceKey *soa) {
278 assert(soa);
279 assert(key);
280
281 /* Checks whether 'soa' is a SOA record for the specified key. */
282
283 if (soa->class != key->class)
284 return 0;
285
286 if (soa->type != DNS_TYPE_SOA)
287 return 0;
288
289 return dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(soa));
290 }
291
292 static void dns_resource_key_hash_func(const DnsResourceKey *k, struct siphash *state) {
293 assert(k);
294
295 dns_name_hash_func(dns_resource_key_name(k), state);
296 siphash24_compress(&k->class, sizeof(k->class), state);
297 siphash24_compress(&k->type, sizeof(k->type), state);
298 }
299
300 static int dns_resource_key_compare_func(const DnsResourceKey *x, const DnsResourceKey *y) {
301 int r;
302
303 r = dns_name_compare_func(dns_resource_key_name(x), dns_resource_key_name(y));
304 if (r != 0)
305 return r;
306
307 r = CMP(x->type, y->type);
308 if (r != 0)
309 return r;
310
311 return CMP(x->class, y->class);
312 }
313
314 DEFINE_HASH_OPS(dns_resource_key_hash_ops, DnsResourceKey, dns_resource_key_hash_func, dns_resource_key_compare_func);
315
316 char* dns_resource_key_to_string(const DnsResourceKey *key, char *buf, size_t buf_size) {
317 const char *c, *t;
318 char *ans = buf;
319
320 /* If we cannot convert the CLASS/TYPE into a known string,
321 use the format recommended by RFC 3597, Section 5. */
322
323 c = dns_class_to_string(key->class);
324 t = dns_type_to_string(key->type);
325
326 (void) snprintf(buf, buf_size, "%s %s%s%.0u %s%s%.0u",
327 dns_resource_key_name(key),
328 strempty(c), c ? "" : "CLASS", c ? 0 : key->class,
329 strempty(t), t ? "" : "TYPE", t ? 0 : key->type);
330
331 return ans;
332 }
333
334 bool dns_resource_key_reduce(DnsResourceKey **a, DnsResourceKey **b) {
335 assert(a);
336 assert(b);
337
338 /* Try to replace one RR key by another if they are identical, thus saving a bit of memory. Note that we do
339 * this only for RR keys, not for RRs themselves, as they carry a lot of additional metadata (where they come
340 * from, validity data, and suchlike), and cannot be replaced so easily by other RRs that have the same
341 * superficial data. */
342
343 if (!*a)
344 return false;
345 if (!*b)
346 return false;
347
348 /* We refuse merging const keys */
349 if ((*a)->n_ref == UINT_MAX)
350 return false;
351 if ((*b)->n_ref == UINT_MAX)
352 return false;
353
354 /* Already the same? */
355 if (*a == *b)
356 return true;
357
358 /* Are they really identical? */
359 if (dns_resource_key_equal(*a, *b) <= 0)
360 return false;
361
362 /* Keep the one which already has more references. */
363 if ((*a)->n_ref > (*b)->n_ref) {
364 dns_resource_key_unref(*b);
365 *b = dns_resource_key_ref(*a);
366 } else {
367 dns_resource_key_unref(*a);
368 *a = dns_resource_key_ref(*b);
369 }
370
371 return true;
372 }
373
374 DnsResourceRecord* dns_resource_record_new(DnsResourceKey *key) {
375 DnsResourceRecord *rr;
376
377 rr = new(DnsResourceRecord, 1);
378 if (!rr)
379 return NULL;
380
381 *rr = (DnsResourceRecord) {
382 .n_ref = 1,
383 .key = dns_resource_key_ref(key),
384 .expiry = USEC_INFINITY,
385 .n_skip_labels_signer = UINT8_MAX,
386 .n_skip_labels_source = UINT8_MAX,
387 };
388
389 return rr;
390 }
391
392 DnsResourceRecord* dns_resource_record_new_full(uint16_t class, uint16_t type, const char *name) {
393 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
394
395 key = dns_resource_key_new(class, type, name);
396 if (!key)
397 return NULL;
398
399 return dns_resource_record_new(key);
400 }
401
402 static DnsResourceRecord* dns_resource_record_free(DnsResourceRecord *rr) {
403 assert(rr);
404
405 if (rr->key) {
406 switch(rr->key->type) {
407
408 case DNS_TYPE_SRV:
409 free(rr->srv.name);
410 break;
411
412 case DNS_TYPE_PTR:
413 case DNS_TYPE_NS:
414 case DNS_TYPE_CNAME:
415 case DNS_TYPE_DNAME:
416 free(rr->ptr.name);
417 break;
418
419 case DNS_TYPE_HINFO:
420 free(rr->hinfo.cpu);
421 free(rr->hinfo.os);
422 break;
423
424 case DNS_TYPE_TXT:
425 case DNS_TYPE_SPF:
426 dns_txt_item_free_all(rr->txt.items);
427 break;
428
429 case DNS_TYPE_SOA:
430 free(rr->soa.mname);
431 free(rr->soa.rname);
432 break;
433
434 case DNS_TYPE_MX:
435 free(rr->mx.exchange);
436 break;
437
438 case DNS_TYPE_DS:
439 free(rr->ds.digest);
440 break;
441
442 case DNS_TYPE_SSHFP:
443 free(rr->sshfp.fingerprint);
444 break;
445
446 case DNS_TYPE_DNSKEY:
447 free(rr->dnskey.key);
448 break;
449
450 case DNS_TYPE_RRSIG:
451 free(rr->rrsig.signer);
452 free(rr->rrsig.signature);
453 break;
454
455 case DNS_TYPE_NSEC:
456 free(rr->nsec.next_domain_name);
457 bitmap_free(rr->nsec.types);
458 break;
459
460 case DNS_TYPE_NSEC3:
461 free(rr->nsec3.next_hashed_name);
462 free(rr->nsec3.salt);
463 bitmap_free(rr->nsec3.types);
464 break;
465
466 case DNS_TYPE_LOC:
467 case DNS_TYPE_A:
468 case DNS_TYPE_AAAA:
469 break;
470
471 case DNS_TYPE_TLSA:
472 free(rr->tlsa.data);
473 break;
474
475 case DNS_TYPE_CAA:
476 free(rr->caa.tag);
477 free(rr->caa.value);
478 break;
479
480 case DNS_TYPE_OPENPGPKEY:
481 default:
482 if (!rr->unparsable)
483 free(rr->generic.data);
484 }
485
486 if (rr->unparsable)
487 free(rr->generic.data);
488
489 free(rr->wire_format);
490 dns_resource_key_unref(rr->key);
491 }
492
493 free(rr->to_string);
494 return mfree(rr);
495 }
496
497 DEFINE_TRIVIAL_REF_UNREF_FUNC(DnsResourceRecord, dns_resource_record, dns_resource_record_free);
498
499 int dns_resource_record_new_reverse(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *hostname) {
500 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
501 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
502 _cleanup_free_ char *ptr = NULL;
503 int r;
504
505 assert(ret);
506 assert(address);
507 assert(hostname);
508
509 r = dns_name_reverse(family, address, &ptr);
510 if (r < 0)
511 return r;
512
513 key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, ptr);
514 if (!key)
515 return -ENOMEM;
516
517 ptr = NULL;
518
519 rr = dns_resource_record_new(key);
520 if (!rr)
521 return -ENOMEM;
522
523 rr->ptr.name = strdup(hostname);
524 if (!rr->ptr.name)
525 return -ENOMEM;
526
527 *ret = TAKE_PTR(rr);
528
529 return 0;
530 }
531
532 int dns_resource_record_new_address(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *name) {
533 DnsResourceRecord *rr;
534
535 assert(ret);
536 assert(address);
537 assert(family);
538
539 if (family == AF_INET) {
540
541 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_A, name);
542 if (!rr)
543 return -ENOMEM;
544
545 rr->a.in_addr = address->in;
546
547 } else if (family == AF_INET6) {
548
549 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_AAAA, name);
550 if (!rr)
551 return -ENOMEM;
552
553 rr->aaaa.in6_addr = address->in6;
554 } else
555 return -EAFNOSUPPORT;
556
557 *ret = rr;
558
559 return 0;
560 }
561
562 #define FIELD_EQUAL(a, b, field) \
563 ((a).field ## _size == (b).field ## _size && \
564 memcmp_safe((a).field, (b).field, (a).field ## _size) == 0)
565
566 int dns_resource_record_payload_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
567 int r;
568
569 /* Check if a and b are the same, but don't look at their keys */
570
571 if (a->unparsable != b->unparsable)
572 return 0;
573
574 switch (a->unparsable ? _DNS_TYPE_INVALID : a->key->type) {
575
576 case DNS_TYPE_SRV:
577 r = dns_name_equal(a->srv.name, b->srv.name);
578 if (r <= 0)
579 return r;
580
581 return a->srv.priority == b->srv.priority &&
582 a->srv.weight == b->srv.weight &&
583 a->srv.port == b->srv.port;
584
585 case DNS_TYPE_PTR:
586 case DNS_TYPE_NS:
587 case DNS_TYPE_CNAME:
588 case DNS_TYPE_DNAME:
589 return dns_name_equal(a->ptr.name, b->ptr.name);
590
591 case DNS_TYPE_HINFO:
592 return strcaseeq(a->hinfo.cpu, b->hinfo.cpu) &&
593 strcaseeq(a->hinfo.os, b->hinfo.os);
594
595 case DNS_TYPE_SPF: /* exactly the same as TXT */
596 case DNS_TYPE_TXT:
597 return dns_txt_item_equal(a->txt.items, b->txt.items);
598
599 case DNS_TYPE_A:
600 return memcmp(&a->a.in_addr, &b->a.in_addr, sizeof(struct in_addr)) == 0;
601
602 case DNS_TYPE_AAAA:
603 return memcmp(&a->aaaa.in6_addr, &b->aaaa.in6_addr, sizeof(struct in6_addr)) == 0;
604
605 case DNS_TYPE_SOA:
606 r = dns_name_equal(a->soa.mname, b->soa.mname);
607 if (r <= 0)
608 return r;
609 r = dns_name_equal(a->soa.rname, b->soa.rname);
610 if (r <= 0)
611 return r;
612
613 return a->soa.serial == b->soa.serial &&
614 a->soa.refresh == b->soa.refresh &&
615 a->soa.retry == b->soa.retry &&
616 a->soa.expire == b->soa.expire &&
617 a->soa.minimum == b->soa.minimum;
618
619 case DNS_TYPE_MX:
620 if (a->mx.priority != b->mx.priority)
621 return 0;
622
623 return dns_name_equal(a->mx.exchange, b->mx.exchange);
624
625 case DNS_TYPE_LOC:
626 assert(a->loc.version == b->loc.version);
627
628 return a->loc.size == b->loc.size &&
629 a->loc.horiz_pre == b->loc.horiz_pre &&
630 a->loc.vert_pre == b->loc.vert_pre &&
631 a->loc.latitude == b->loc.latitude &&
632 a->loc.longitude == b->loc.longitude &&
633 a->loc.altitude == b->loc.altitude;
634
635 case DNS_TYPE_DS:
636 return a->ds.key_tag == b->ds.key_tag &&
637 a->ds.algorithm == b->ds.algorithm &&
638 a->ds.digest_type == b->ds.digest_type &&
639 FIELD_EQUAL(a->ds, b->ds, digest);
640
641 case DNS_TYPE_SSHFP:
642 return a->sshfp.algorithm == b->sshfp.algorithm &&
643 a->sshfp.fptype == b->sshfp.fptype &&
644 FIELD_EQUAL(a->sshfp, b->sshfp, fingerprint);
645
646 case DNS_TYPE_DNSKEY:
647 return a->dnskey.flags == b->dnskey.flags &&
648 a->dnskey.protocol == b->dnskey.protocol &&
649 a->dnskey.algorithm == b->dnskey.algorithm &&
650 FIELD_EQUAL(a->dnskey, b->dnskey, key);
651
652 case DNS_TYPE_RRSIG:
653 /* do the fast comparisons first */
654 return a->rrsig.type_covered == b->rrsig.type_covered &&
655 a->rrsig.algorithm == b->rrsig.algorithm &&
656 a->rrsig.labels == b->rrsig.labels &&
657 a->rrsig.original_ttl == b->rrsig.original_ttl &&
658 a->rrsig.expiration == b->rrsig.expiration &&
659 a->rrsig.inception == b->rrsig.inception &&
660 a->rrsig.key_tag == b->rrsig.key_tag &&
661 FIELD_EQUAL(a->rrsig, b->rrsig, signature) &&
662 dns_name_equal(a->rrsig.signer, b->rrsig.signer);
663
664 case DNS_TYPE_NSEC:
665 return dns_name_equal(a->nsec.next_domain_name, b->nsec.next_domain_name) &&
666 bitmap_equal(a->nsec.types, b->nsec.types);
667
668 case DNS_TYPE_NSEC3:
669 return a->nsec3.algorithm == b->nsec3.algorithm &&
670 a->nsec3.flags == b->nsec3.flags &&
671 a->nsec3.iterations == b->nsec3.iterations &&
672 FIELD_EQUAL(a->nsec3, b->nsec3, salt) &&
673 FIELD_EQUAL(a->nsec3, b->nsec3, next_hashed_name) &&
674 bitmap_equal(a->nsec3.types, b->nsec3.types);
675
676 case DNS_TYPE_TLSA:
677 return a->tlsa.cert_usage == b->tlsa.cert_usage &&
678 a->tlsa.selector == b->tlsa.selector &&
679 a->tlsa.matching_type == b->tlsa.matching_type &&
680 FIELD_EQUAL(a->tlsa, b->tlsa, data);
681
682 case DNS_TYPE_CAA:
683 return a->caa.flags == b->caa.flags &&
684 streq(a->caa.tag, b->caa.tag) &&
685 FIELD_EQUAL(a->caa, b->caa, value);
686
687 case DNS_TYPE_OPENPGPKEY:
688 default:
689 return FIELD_EQUAL(a->generic, b->generic, data);
690 }
691 }
692
693 int dns_resource_record_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
694 int r;
695
696 assert(a);
697 assert(b);
698
699 if (a == b)
700 return 1;
701
702 r = dns_resource_key_equal(a->key, b->key);
703 if (r <= 0)
704 return r;
705
706 return dns_resource_record_payload_equal(a, b);
707 }
708
709 static char* format_location(uint32_t latitude, uint32_t longitude, uint32_t altitude,
710 uint8_t size, uint8_t horiz_pre, uint8_t vert_pre) {
711 char *s;
712 char NS = latitude >= 1U<<31 ? 'N' : 'S';
713 char EW = longitude >= 1U<<31 ? 'E' : 'W';
714
715 int lat = latitude >= 1U<<31 ? (int) (latitude - (1U<<31)) : (int) ((1U<<31) - latitude);
716 int lon = longitude >= 1U<<31 ? (int) (longitude - (1U<<31)) : (int) ((1U<<31) - longitude);
717 double alt = altitude >= 10000000u ? altitude - 10000000u : -(double)(10000000u - altitude);
718 double siz = (size >> 4) * exp10((double) (size & 0xF));
719 double hor = (horiz_pre >> 4) * exp10((double) (horiz_pre & 0xF));
720 double ver = (vert_pre >> 4) * exp10((double) (vert_pre & 0xF));
721
722 if (asprintf(&s, "%d %d %.3f %c %d %d %.3f %c %.2fm %.2fm %.2fm %.2fm",
723 (lat / 60000 / 60),
724 (lat / 60000) % 60,
725 (lat % 60000) / 1000.,
726 NS,
727 (lon / 60000 / 60),
728 (lon / 60000) % 60,
729 (lon % 60000) / 1000.,
730 EW,
731 alt / 100.,
732 siz / 100.,
733 hor / 100.,
734 ver / 100.) < 0)
735 return NULL;
736
737 return s;
738 }
739
740 static int format_timestamp_dns(char *buf, size_t l, time_t sec) {
741 struct tm tm;
742
743 assert(buf);
744 assert(l > STRLEN("YYYYMMDDHHmmSS"));
745
746 if (!gmtime_r(&sec, &tm))
747 return -EINVAL;
748
749 if (strftime(buf, l, "%Y%m%d%H%M%S", &tm) <= 0)
750 return -EINVAL;
751
752 return 0;
753 }
754
755 static char *format_types(Bitmap *types) {
756 _cleanup_strv_free_ char **strv = NULL;
757 _cleanup_free_ char *str = NULL;
758 unsigned type;
759 int r;
760
761 BITMAP_FOREACH(type, types) {
762 if (dns_type_to_string(type)) {
763 r = strv_extend(&strv, dns_type_to_string(type));
764 if (r < 0)
765 return NULL;
766 } else {
767 char *t;
768
769 r = asprintf(&t, "TYPE%u", type);
770 if (r < 0)
771 return NULL;
772
773 r = strv_consume(&strv, t);
774 if (r < 0)
775 return NULL;
776 }
777 }
778
779 str = strv_join(strv, " ");
780 if (!str)
781 return NULL;
782
783 return strjoin("( ", str, " )");
784 }
785
786 static char *format_txt(DnsTxtItem *first) {
787 size_t c = 1;
788 char *p, *s;
789
790 LIST_FOREACH(items, i, first)
791 c += i->length * 4 + 3;
792
793 p = s = new(char, c);
794 if (!s)
795 return NULL;
796
797 LIST_FOREACH(items, i, first) {
798 if (i != first)
799 *(p++) = ' ';
800
801 *(p++) = '"';
802
803 for (size_t j = 0; j < i->length; j++) {
804 if (i->data[j] < ' ' || i->data[j] == '"' || i->data[j] >= 127) {
805 *(p++) = '\\';
806 *(p++) = '0' + (i->data[j] / 100);
807 *(p++) = '0' + ((i->data[j] / 10) % 10);
808 *(p++) = '0' + (i->data[j] % 10);
809 } else
810 *(p++) = i->data[j];
811 }
812
813 *(p++) = '"';
814 }
815
816 *p = 0;
817 return s;
818 }
819
820 const char *dns_resource_record_to_string(DnsResourceRecord *rr) {
821 _cleanup_free_ char *s = NULL, *t = NULL;
822 char k[DNS_RESOURCE_KEY_STRING_MAX];
823 int r;
824
825 assert(rr);
826
827 if (rr->to_string)
828 return rr->to_string;
829
830 dns_resource_key_to_string(rr->key, k, sizeof(k));
831
832 switch (rr->unparsable ? _DNS_TYPE_INVALID : rr->key->type) {
833
834 case DNS_TYPE_SRV:
835 r = asprintf(&s, "%s %u %u %u %s",
836 k,
837 rr->srv.priority,
838 rr->srv.weight,
839 rr->srv.port,
840 strna(rr->srv.name));
841 if (r < 0)
842 return NULL;
843 break;
844
845 case DNS_TYPE_PTR:
846 case DNS_TYPE_NS:
847 case DNS_TYPE_CNAME:
848 case DNS_TYPE_DNAME:
849 s = strjoin(k, " ", rr->ptr.name);
850 if (!s)
851 return NULL;
852
853 break;
854
855 case DNS_TYPE_HINFO:
856 s = strjoin(k, " ", rr->hinfo.cpu, " ", rr->hinfo.os);
857 if (!s)
858 return NULL;
859 break;
860
861 case DNS_TYPE_SPF: /* exactly the same as TXT */
862 case DNS_TYPE_TXT:
863 t = format_txt(rr->txt.items);
864 if (!t)
865 return NULL;
866
867 s = strjoin(k, " ", t);
868 if (!s)
869 return NULL;
870 break;
871
872 case DNS_TYPE_A:
873 r = in_addr_to_string(AF_INET, (const union in_addr_union*) &rr->a.in_addr, &t);
874 if (r < 0)
875 return NULL;
876
877 s = strjoin(k, " ", t);
878 if (!s)
879 return NULL;
880 break;
881
882 case DNS_TYPE_AAAA:
883 r = in_addr_to_string(AF_INET6, (const union in_addr_union*) &rr->aaaa.in6_addr, &t);
884 if (r < 0)
885 return NULL;
886
887 s = strjoin(k, " ", t);
888 if (!s)
889 return NULL;
890 break;
891
892 case DNS_TYPE_SOA:
893 r = asprintf(&s, "%s %s %s %u %u %u %u %u",
894 k,
895 strna(rr->soa.mname),
896 strna(rr->soa.rname),
897 rr->soa.serial,
898 rr->soa.refresh,
899 rr->soa.retry,
900 rr->soa.expire,
901 rr->soa.minimum);
902 if (r < 0)
903 return NULL;
904 break;
905
906 case DNS_TYPE_MX:
907 r = asprintf(&s, "%s %u %s",
908 k,
909 rr->mx.priority,
910 rr->mx.exchange);
911 if (r < 0)
912 return NULL;
913 break;
914
915 case DNS_TYPE_LOC:
916 assert(rr->loc.version == 0);
917
918 t = format_location(rr->loc.latitude,
919 rr->loc.longitude,
920 rr->loc.altitude,
921 rr->loc.size,
922 rr->loc.horiz_pre,
923 rr->loc.vert_pre);
924 if (!t)
925 return NULL;
926
927 s = strjoin(k, " ", t);
928 if (!s)
929 return NULL;
930 break;
931
932 case DNS_TYPE_DS:
933 t = hexmem(rr->ds.digest, rr->ds.digest_size);
934 if (!t)
935 return NULL;
936
937 r = asprintf(&s, "%s %u %u %u %s",
938 k,
939 rr->ds.key_tag,
940 rr->ds.algorithm,
941 rr->ds.digest_type,
942 t);
943 if (r < 0)
944 return NULL;
945 break;
946
947 case DNS_TYPE_SSHFP:
948 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
949 if (!t)
950 return NULL;
951
952 r = asprintf(&s, "%s %u %u %s",
953 k,
954 rr->sshfp.algorithm,
955 rr->sshfp.fptype,
956 t);
957 if (r < 0)
958 return NULL;
959 break;
960
961 case DNS_TYPE_DNSKEY: {
962 _cleanup_free_ char *alg = NULL;
963 uint16_t key_tag;
964
965 key_tag = dnssec_keytag(rr, true);
966
967 r = dnssec_algorithm_to_string_alloc(rr->dnskey.algorithm, &alg);
968 if (r < 0)
969 return NULL;
970
971 r = asprintf(&t, "%s %u %u %s",
972 k,
973 rr->dnskey.flags,
974 rr->dnskey.protocol,
975 alg);
976 if (r < 0)
977 return NULL;
978
979 r = base64_append(&t, r,
980 rr->dnskey.key, rr->dnskey.key_size,
981 8, columns());
982 if (r < 0)
983 return NULL;
984
985 r = asprintf(&s, "%s\n"
986 " -- Flags:%s%s%s\n"
987 " -- Key tag: %u",
988 t,
989 rr->dnskey.flags & DNSKEY_FLAG_SEP ? " SEP" : "",
990 rr->dnskey.flags & DNSKEY_FLAG_REVOKE ? " REVOKE" : "",
991 rr->dnskey.flags & DNSKEY_FLAG_ZONE_KEY ? " ZONE_KEY" : "",
992 key_tag);
993 if (r < 0)
994 return NULL;
995
996 break;
997 }
998
999 case DNS_TYPE_RRSIG: {
1000 _cleanup_free_ char *alg = NULL;
1001 char expiration[STRLEN("YYYYMMDDHHmmSS") + 1], inception[STRLEN("YYYYMMDDHHmmSS") + 1];
1002 const char *type;
1003
1004 type = dns_type_to_string(rr->rrsig.type_covered);
1005
1006 r = dnssec_algorithm_to_string_alloc(rr->rrsig.algorithm, &alg);
1007 if (r < 0)
1008 return NULL;
1009
1010 r = format_timestamp_dns(expiration, sizeof(expiration), rr->rrsig.expiration);
1011 if (r < 0)
1012 return NULL;
1013
1014 r = format_timestamp_dns(inception, sizeof(inception), rr->rrsig.inception);
1015 if (r < 0)
1016 return NULL;
1017
1018 /* TYPE?? follows
1019 * http://tools.ietf.org/html/rfc3597#section-5 */
1020
1021 r = asprintf(&s, "%s %s%.*u %s %u %u %s %s %u %s",
1022 k,
1023 type ?: "TYPE",
1024 type ? 0 : 1, type ? 0u : (unsigned) rr->rrsig.type_covered,
1025 alg,
1026 rr->rrsig.labels,
1027 rr->rrsig.original_ttl,
1028 expiration,
1029 inception,
1030 rr->rrsig.key_tag,
1031 rr->rrsig.signer);
1032 if (r < 0)
1033 return NULL;
1034
1035 r = base64_append(&s, r,
1036 rr->rrsig.signature, rr->rrsig.signature_size,
1037 8, columns());
1038 if (r < 0)
1039 return NULL;
1040
1041 break;
1042 }
1043
1044 case DNS_TYPE_NSEC:
1045 t = format_types(rr->nsec.types);
1046 if (!t)
1047 return NULL;
1048
1049 r = asprintf(&s, "%s %s %s",
1050 k,
1051 rr->nsec.next_domain_name,
1052 t);
1053 if (r < 0)
1054 return NULL;
1055 break;
1056
1057 case DNS_TYPE_NSEC3: {
1058 _cleanup_free_ char *salt = NULL, *hash = NULL;
1059
1060 if (rr->nsec3.salt_size > 0) {
1061 salt = hexmem(rr->nsec3.salt, rr->nsec3.salt_size);
1062 if (!salt)
1063 return NULL;
1064 }
1065
1066 hash = base32hexmem(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, false);
1067 if (!hash)
1068 return NULL;
1069
1070 t = format_types(rr->nsec3.types);
1071 if (!t)
1072 return NULL;
1073
1074 r = asprintf(&s, "%s %"PRIu8" %"PRIu8" %"PRIu16" %s %s %s",
1075 k,
1076 rr->nsec3.algorithm,
1077 rr->nsec3.flags,
1078 rr->nsec3.iterations,
1079 rr->nsec3.salt_size > 0 ? salt : "-",
1080 hash,
1081 t);
1082 if (r < 0)
1083 return NULL;
1084
1085 break;
1086 }
1087
1088 case DNS_TYPE_TLSA: {
1089 const char *cert_usage, *selector, *matching_type;
1090
1091 cert_usage = tlsa_cert_usage_to_string(rr->tlsa.cert_usage);
1092 selector = tlsa_selector_to_string(rr->tlsa.selector);
1093 matching_type = tlsa_matching_type_to_string(rr->tlsa.matching_type);
1094
1095 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1096 if (!t)
1097 return NULL;
1098
1099 r = asprintf(&s,
1100 "%s %u %u %u %s\n"
1101 " -- Cert. usage: %s\n"
1102 " -- Selector: %s\n"
1103 " -- Matching type: %s",
1104 k,
1105 rr->tlsa.cert_usage,
1106 rr->tlsa.selector,
1107 rr->tlsa.matching_type,
1108 t,
1109 cert_usage,
1110 selector,
1111 matching_type);
1112 if (r < 0)
1113 return NULL;
1114
1115 break;
1116 }
1117
1118 case DNS_TYPE_CAA:
1119 t = octescape(rr->caa.value, rr->caa.value_size);
1120 if (!t)
1121 return NULL;
1122
1123 r = asprintf(&s, "%s %u %s \"%s\"%s%s%s%.0u",
1124 k,
1125 rr->caa.flags,
1126 rr->caa.tag,
1127 t,
1128 rr->caa.flags ? "\n -- Flags:" : "",
1129 rr->caa.flags & CAA_FLAG_CRITICAL ? " critical" : "",
1130 rr->caa.flags & ~CAA_FLAG_CRITICAL ? " " : "",
1131 rr->caa.flags & ~CAA_FLAG_CRITICAL);
1132 if (r < 0)
1133 return NULL;
1134
1135 break;
1136
1137 case DNS_TYPE_OPENPGPKEY:
1138 r = asprintf(&s, "%s", k);
1139 if (r < 0)
1140 return NULL;
1141
1142 r = base64_append(&s, r,
1143 rr->generic.data, rr->generic.data_size,
1144 8, columns());
1145 if (r < 0)
1146 return NULL;
1147 break;
1148
1149 default:
1150 t = hexmem(rr->generic.data, rr->generic.data_size);
1151 if (!t)
1152 return NULL;
1153
1154 /* Format as documented in RFC 3597, Section 5 */
1155 r = asprintf(&s, "%s \\# %zu %s", k, rr->generic.data_size, t);
1156 if (r < 0)
1157 return NULL;
1158 break;
1159 }
1160
1161 rr->to_string = s;
1162 return TAKE_PTR(s);
1163 }
1164
1165 ssize_t dns_resource_record_payload(DnsResourceRecord *rr, void **out) {
1166 assert(rr);
1167 assert(out);
1168
1169 switch(rr->unparsable ? _DNS_TYPE_INVALID : rr->key->type) {
1170 case DNS_TYPE_SRV:
1171 case DNS_TYPE_PTR:
1172 case DNS_TYPE_NS:
1173 case DNS_TYPE_CNAME:
1174 case DNS_TYPE_DNAME:
1175 case DNS_TYPE_HINFO:
1176 case DNS_TYPE_SPF:
1177 case DNS_TYPE_TXT:
1178 case DNS_TYPE_A:
1179 case DNS_TYPE_AAAA:
1180 case DNS_TYPE_SOA:
1181 case DNS_TYPE_MX:
1182 case DNS_TYPE_LOC:
1183 case DNS_TYPE_DS:
1184 case DNS_TYPE_DNSKEY:
1185 case DNS_TYPE_RRSIG:
1186 case DNS_TYPE_NSEC:
1187 case DNS_TYPE_NSEC3:
1188 return -EINVAL;
1189
1190 case DNS_TYPE_SSHFP:
1191 *out = rr->sshfp.fingerprint;
1192 return rr->sshfp.fingerprint_size;
1193
1194 case DNS_TYPE_TLSA:
1195 *out = rr->tlsa.data;
1196 return rr->tlsa.data_size;
1197
1198 case DNS_TYPE_OPENPGPKEY:
1199 default:
1200 *out = rr->generic.data;
1201 return rr->generic.data_size;
1202 }
1203 }
1204
1205 int dns_resource_record_to_wire_format(DnsResourceRecord *rr, bool canonical) {
1206
1207 DnsPacket packet = {
1208 .n_ref = 1,
1209 .protocol = DNS_PROTOCOL_DNS,
1210 .on_stack = true,
1211 .refuse_compression = true,
1212 .canonical_form = canonical,
1213 };
1214
1215 size_t start, rds;
1216 int r;
1217
1218 assert(rr);
1219
1220 /* Generates the RR in wire-format, optionally in the
1221 * canonical form as discussed in the DNSSEC RFC 4034, Section
1222 * 6.2. We allocate a throw-away DnsPacket object on the stack
1223 * here, because we need some book-keeping for memory
1224 * management, and can reuse the DnsPacket serializer, that
1225 * can generate the canonical form, too, but also knows label
1226 * compression and suchlike. */
1227
1228 if (rr->wire_format && rr->wire_format_canonical == canonical)
1229 return 0;
1230
1231 r = dns_packet_append_rr(&packet, rr, 0, &start, &rds);
1232 if (r < 0)
1233 return r;
1234
1235 assert(start == 0);
1236 assert(packet._data);
1237
1238 free(rr->wire_format);
1239 rr->wire_format = packet._data;
1240 rr->wire_format_size = packet.size;
1241 rr->wire_format_rdata_offset = rds;
1242 rr->wire_format_canonical = canonical;
1243
1244 packet._data = NULL;
1245 dns_packet_unref(&packet);
1246
1247 return 0;
1248 }
1249
1250 int dns_resource_record_signer(DnsResourceRecord *rr, const char **ret) {
1251 const char *n;
1252 int r;
1253
1254 assert(rr);
1255 assert(ret);
1256
1257 /* Returns the RRset's signer, if it is known. */
1258
1259 if (rr->n_skip_labels_signer == UINT8_MAX)
1260 return -ENODATA;
1261
1262 n = dns_resource_key_name(rr->key);
1263 r = dns_name_skip(n, rr->n_skip_labels_signer, &n);
1264 if (r < 0)
1265 return r;
1266 if (r == 0)
1267 return -EINVAL;
1268
1269 *ret = n;
1270 return 0;
1271 }
1272
1273 int dns_resource_record_source(DnsResourceRecord *rr, const char **ret) {
1274 const char *n;
1275 int r;
1276
1277 assert(rr);
1278 assert(ret);
1279
1280 /* Returns the RRset's synthesizing source, if it is known. */
1281
1282 if (rr->n_skip_labels_source == UINT8_MAX)
1283 return -ENODATA;
1284
1285 n = dns_resource_key_name(rr->key);
1286 r = dns_name_skip(n, rr->n_skip_labels_source, &n);
1287 if (r < 0)
1288 return r;
1289 if (r == 0)
1290 return -EINVAL;
1291
1292 *ret = n;
1293 return 0;
1294 }
1295
1296 int dns_resource_record_is_signer(DnsResourceRecord *rr, const char *zone) {
1297 const char *signer;
1298 int r;
1299
1300 assert(rr);
1301
1302 r = dns_resource_record_signer(rr, &signer);
1303 if (r < 0)
1304 return r;
1305
1306 return dns_name_equal(zone, signer);
1307 }
1308
1309 int dns_resource_record_is_synthetic(DnsResourceRecord *rr) {
1310 int r;
1311
1312 assert(rr);
1313
1314 /* Returns > 0 if the RR is generated from a wildcard, and is not the asterisk name itself */
1315
1316 if (rr->n_skip_labels_source == UINT8_MAX)
1317 return -ENODATA;
1318
1319 if (rr->n_skip_labels_source == 0)
1320 return 0;
1321
1322 if (rr->n_skip_labels_source > 1)
1323 return 1;
1324
1325 r = dns_name_startswith(dns_resource_key_name(rr->key), "*");
1326 if (r < 0)
1327 return r;
1328
1329 return !r;
1330 }
1331
1332 void dns_resource_record_hash_func(const DnsResourceRecord *rr, struct siphash *state) {
1333 assert(rr);
1334
1335 dns_resource_key_hash_func(rr->key, state);
1336
1337 switch (rr->unparsable ? _DNS_TYPE_INVALID : rr->key->type) {
1338
1339 case DNS_TYPE_SRV:
1340 siphash24_compress(&rr->srv.priority, sizeof(rr->srv.priority), state);
1341 siphash24_compress(&rr->srv.weight, sizeof(rr->srv.weight), state);
1342 siphash24_compress(&rr->srv.port, sizeof(rr->srv.port), state);
1343 dns_name_hash_func(rr->srv.name, state);
1344 break;
1345
1346 case DNS_TYPE_PTR:
1347 case DNS_TYPE_NS:
1348 case DNS_TYPE_CNAME:
1349 case DNS_TYPE_DNAME:
1350 dns_name_hash_func(rr->ptr.name, state);
1351 break;
1352
1353 case DNS_TYPE_HINFO:
1354 string_hash_func(rr->hinfo.cpu, state);
1355 string_hash_func(rr->hinfo.os, state);
1356 break;
1357
1358 case DNS_TYPE_TXT:
1359 case DNS_TYPE_SPF: {
1360 LIST_FOREACH(items, j, rr->txt.items) {
1361 siphash24_compress_safe(j->data, j->length, state);
1362
1363 /* Add an extra NUL byte, so that "a" followed by "b" doesn't result in the same hash as "ab"
1364 * followed by "". */
1365 siphash24_compress_byte(0, state);
1366 }
1367 break;
1368 }
1369
1370 case DNS_TYPE_A:
1371 siphash24_compress(&rr->a.in_addr, sizeof(rr->a.in_addr), state);
1372 break;
1373
1374 case DNS_TYPE_AAAA:
1375 siphash24_compress(&rr->aaaa.in6_addr, sizeof(rr->aaaa.in6_addr), state);
1376 break;
1377
1378 case DNS_TYPE_SOA:
1379 dns_name_hash_func(rr->soa.mname, state);
1380 dns_name_hash_func(rr->soa.rname, state);
1381 siphash24_compress(&rr->soa.serial, sizeof(rr->soa.serial), state);
1382 siphash24_compress(&rr->soa.refresh, sizeof(rr->soa.refresh), state);
1383 siphash24_compress(&rr->soa.retry, sizeof(rr->soa.retry), state);
1384 siphash24_compress(&rr->soa.expire, sizeof(rr->soa.expire), state);
1385 siphash24_compress(&rr->soa.minimum, sizeof(rr->soa.minimum), state);
1386 break;
1387
1388 case DNS_TYPE_MX:
1389 siphash24_compress(&rr->mx.priority, sizeof(rr->mx.priority), state);
1390 dns_name_hash_func(rr->mx.exchange, state);
1391 break;
1392
1393 case DNS_TYPE_LOC:
1394 siphash24_compress(&rr->loc.version, sizeof(rr->loc.version), state);
1395 siphash24_compress(&rr->loc.size, sizeof(rr->loc.size), state);
1396 siphash24_compress(&rr->loc.horiz_pre, sizeof(rr->loc.horiz_pre), state);
1397 siphash24_compress(&rr->loc.vert_pre, sizeof(rr->loc.vert_pre), state);
1398 siphash24_compress(&rr->loc.latitude, sizeof(rr->loc.latitude), state);
1399 siphash24_compress(&rr->loc.longitude, sizeof(rr->loc.longitude), state);
1400 siphash24_compress(&rr->loc.altitude, sizeof(rr->loc.altitude), state);
1401 break;
1402
1403 case DNS_TYPE_SSHFP:
1404 siphash24_compress(&rr->sshfp.algorithm, sizeof(rr->sshfp.algorithm), state);
1405 siphash24_compress(&rr->sshfp.fptype, sizeof(rr->sshfp.fptype), state);
1406 siphash24_compress_safe(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, state);
1407 break;
1408
1409 case DNS_TYPE_DNSKEY:
1410 siphash24_compress(&rr->dnskey.flags, sizeof(rr->dnskey.flags), state);
1411 siphash24_compress(&rr->dnskey.protocol, sizeof(rr->dnskey.protocol), state);
1412 siphash24_compress(&rr->dnskey.algorithm, sizeof(rr->dnskey.algorithm), state);
1413 siphash24_compress_safe(rr->dnskey.key, rr->dnskey.key_size, state);
1414 break;
1415
1416 case DNS_TYPE_RRSIG:
1417 siphash24_compress(&rr->rrsig.type_covered, sizeof(rr->rrsig.type_covered), state);
1418 siphash24_compress(&rr->rrsig.algorithm, sizeof(rr->rrsig.algorithm), state);
1419 siphash24_compress(&rr->rrsig.labels, sizeof(rr->rrsig.labels), state);
1420 siphash24_compress(&rr->rrsig.original_ttl, sizeof(rr->rrsig.original_ttl), state);
1421 siphash24_compress(&rr->rrsig.expiration, sizeof(rr->rrsig.expiration), state);
1422 siphash24_compress(&rr->rrsig.inception, sizeof(rr->rrsig.inception), state);
1423 siphash24_compress(&rr->rrsig.key_tag, sizeof(rr->rrsig.key_tag), state);
1424 dns_name_hash_func(rr->rrsig.signer, state);
1425 siphash24_compress_safe(rr->rrsig.signature, rr->rrsig.signature_size, state);
1426 break;
1427
1428 case DNS_TYPE_NSEC:
1429 dns_name_hash_func(rr->nsec.next_domain_name, state);
1430 /* FIXME: we leave out the type bitmap here. Hash
1431 * would be better if we'd take it into account
1432 * too. */
1433 break;
1434
1435 case DNS_TYPE_DS:
1436 siphash24_compress(&rr->ds.key_tag, sizeof(rr->ds.key_tag), state);
1437 siphash24_compress(&rr->ds.algorithm, sizeof(rr->ds.algorithm), state);
1438 siphash24_compress(&rr->ds.digest_type, sizeof(rr->ds.digest_type), state);
1439 siphash24_compress_safe(rr->ds.digest, rr->ds.digest_size, state);
1440 break;
1441
1442 case DNS_TYPE_NSEC3:
1443 siphash24_compress(&rr->nsec3.algorithm, sizeof(rr->nsec3.algorithm), state);
1444 siphash24_compress(&rr->nsec3.flags, sizeof(rr->nsec3.flags), state);
1445 siphash24_compress(&rr->nsec3.iterations, sizeof(rr->nsec3.iterations), state);
1446 siphash24_compress_safe(rr->nsec3.salt, rr->nsec3.salt_size, state);
1447 siphash24_compress_safe(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, state);
1448 /* FIXME: We leave the bitmaps out */
1449 break;
1450
1451 case DNS_TYPE_TLSA:
1452 siphash24_compress(&rr->tlsa.cert_usage, sizeof(rr->tlsa.cert_usage), state);
1453 siphash24_compress(&rr->tlsa.selector, sizeof(rr->tlsa.selector), state);
1454 siphash24_compress(&rr->tlsa.matching_type, sizeof(rr->tlsa.matching_type), state);
1455 siphash24_compress_safe(rr->tlsa.data, rr->tlsa.data_size, state);
1456 break;
1457
1458 case DNS_TYPE_CAA:
1459 siphash24_compress(&rr->caa.flags, sizeof(rr->caa.flags), state);
1460 string_hash_func(rr->caa.tag, state);
1461 siphash24_compress_safe(rr->caa.value, rr->caa.value_size, state);
1462 break;
1463
1464 case DNS_TYPE_OPENPGPKEY:
1465 default:
1466 siphash24_compress_safe(rr->generic.data, rr->generic.data_size, state);
1467 break;
1468 }
1469 }
1470
1471 int dns_resource_record_compare_func(const DnsResourceRecord *x, const DnsResourceRecord *y) {
1472 int r;
1473
1474 r = dns_resource_key_compare_func(x->key, y->key);
1475 if (r != 0)
1476 return r;
1477
1478 if (dns_resource_record_payload_equal(x, y) > 0)
1479 return 0;
1480
1481 /* We still use CMP() here, even though don't implement proper
1482 * ordering, since the hashtable doesn't need ordering anyway. */
1483 return CMP(x, y);
1484 }
1485
1486 DEFINE_HASH_OPS(dns_resource_record_hash_ops, DnsResourceRecord, dns_resource_record_hash_func, dns_resource_record_compare_func);
1487
1488 DnsResourceRecord *dns_resource_record_copy(DnsResourceRecord *rr) {
1489 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *copy = NULL;
1490 DnsResourceRecord *t;
1491
1492 assert(rr);
1493
1494 copy = dns_resource_record_new(rr->key);
1495 if (!copy)
1496 return NULL;
1497
1498 copy->ttl = rr->ttl;
1499 copy->expiry = rr->expiry;
1500 copy->n_skip_labels_signer = rr->n_skip_labels_signer;
1501 copy->n_skip_labels_source = rr->n_skip_labels_source;
1502 copy->unparsable = rr->unparsable;
1503
1504 switch (rr->unparsable ? _DNS_TYPE_INVALID : rr->key->type) {
1505
1506 case DNS_TYPE_SRV:
1507 copy->srv.priority = rr->srv.priority;
1508 copy->srv.weight = rr->srv.weight;
1509 copy->srv.port = rr->srv.port;
1510 copy->srv.name = strdup(rr->srv.name);
1511 if (!copy->srv.name)
1512 return NULL;
1513 break;
1514
1515 case DNS_TYPE_PTR:
1516 case DNS_TYPE_NS:
1517 case DNS_TYPE_CNAME:
1518 case DNS_TYPE_DNAME:
1519 copy->ptr.name = strdup(rr->ptr.name);
1520 if (!copy->ptr.name)
1521 return NULL;
1522 break;
1523
1524 case DNS_TYPE_HINFO:
1525 copy->hinfo.cpu = strdup(rr->hinfo.cpu);
1526 if (!copy->hinfo.cpu)
1527 return NULL;
1528
1529 copy->hinfo.os = strdup(rr->hinfo.os);
1530 if (!copy->hinfo.os)
1531 return NULL;
1532 break;
1533
1534 case DNS_TYPE_TXT:
1535 case DNS_TYPE_SPF:
1536 copy->txt.items = dns_txt_item_copy(rr->txt.items);
1537 if (!copy->txt.items)
1538 return NULL;
1539 break;
1540
1541 case DNS_TYPE_A:
1542 copy->a = rr->a;
1543 break;
1544
1545 case DNS_TYPE_AAAA:
1546 copy->aaaa = rr->aaaa;
1547 break;
1548
1549 case DNS_TYPE_SOA:
1550 copy->soa.mname = strdup(rr->soa.mname);
1551 if (!copy->soa.mname)
1552 return NULL;
1553 copy->soa.rname = strdup(rr->soa.rname);
1554 if (!copy->soa.rname)
1555 return NULL;
1556 copy->soa.serial = rr->soa.serial;
1557 copy->soa.refresh = rr->soa.refresh;
1558 copy->soa.retry = rr->soa.retry;
1559 copy->soa.expire = rr->soa.expire;
1560 copy->soa.minimum = rr->soa.minimum;
1561 break;
1562
1563 case DNS_TYPE_MX:
1564 copy->mx.priority = rr->mx.priority;
1565 copy->mx.exchange = strdup(rr->mx.exchange);
1566 if (!copy->mx.exchange)
1567 return NULL;
1568 break;
1569
1570 case DNS_TYPE_LOC:
1571 copy->loc = rr->loc;
1572 break;
1573
1574 case DNS_TYPE_SSHFP:
1575 copy->sshfp.algorithm = rr->sshfp.algorithm;
1576 copy->sshfp.fptype = rr->sshfp.fptype;
1577 copy->sshfp.fingerprint = memdup(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1578 if (!copy->sshfp.fingerprint)
1579 return NULL;
1580 copy->sshfp.fingerprint_size = rr->sshfp.fingerprint_size;
1581 break;
1582
1583 case DNS_TYPE_DNSKEY:
1584 copy->dnskey.flags = rr->dnskey.flags;
1585 copy->dnskey.protocol = rr->dnskey.protocol;
1586 copy->dnskey.algorithm = rr->dnskey.algorithm;
1587 copy->dnskey.key = memdup(rr->dnskey.key, rr->dnskey.key_size);
1588 if (!copy->dnskey.key)
1589 return NULL;
1590 copy->dnskey.key_size = rr->dnskey.key_size;
1591 break;
1592
1593 case DNS_TYPE_RRSIG:
1594 copy->rrsig.type_covered = rr->rrsig.type_covered;
1595 copy->rrsig.algorithm = rr->rrsig.algorithm;
1596 copy->rrsig.labels = rr->rrsig.labels;
1597 copy->rrsig.original_ttl = rr->rrsig.original_ttl;
1598 copy->rrsig.expiration = rr->rrsig.expiration;
1599 copy->rrsig.inception = rr->rrsig.inception;
1600 copy->rrsig.key_tag = rr->rrsig.key_tag;
1601 copy->rrsig.signer = strdup(rr->rrsig.signer);
1602 if (!copy->rrsig.signer)
1603 return NULL;
1604 copy->rrsig.signature = memdup(rr->rrsig.signature, rr->rrsig.signature_size);
1605 if (!copy->rrsig.signature)
1606 return NULL;
1607 copy->rrsig.signature_size = rr->rrsig.signature_size;
1608 break;
1609
1610 case DNS_TYPE_NSEC:
1611 copy->nsec.next_domain_name = strdup(rr->nsec.next_domain_name);
1612 if (!copy->nsec.next_domain_name)
1613 return NULL;
1614 if (rr->nsec.types) {
1615 copy->nsec.types = bitmap_copy(rr->nsec.types);
1616 if (!copy->nsec.types)
1617 return NULL;
1618 }
1619 break;
1620
1621 case DNS_TYPE_DS:
1622 copy->ds.key_tag = rr->ds.key_tag;
1623 copy->ds.algorithm = rr->ds.algorithm;
1624 copy->ds.digest_type = rr->ds.digest_type;
1625 copy->ds.digest = memdup(rr->ds.digest, rr->ds.digest_size);
1626 if (!copy->ds.digest)
1627 return NULL;
1628 copy->ds.digest_size = rr->ds.digest_size;
1629 break;
1630
1631 case DNS_TYPE_NSEC3:
1632 copy->nsec3.algorithm = rr->nsec3.algorithm;
1633 copy->nsec3.flags = rr->nsec3.flags;
1634 copy->nsec3.iterations = rr->nsec3.iterations;
1635 copy->nsec3.salt = memdup(rr->nsec3.salt, rr->nsec3.salt_size);
1636 if (!copy->nsec3.salt)
1637 return NULL;
1638 copy->nsec3.salt_size = rr->nsec3.salt_size;
1639 copy->nsec3.next_hashed_name = memdup(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size);
1640 if (!copy->nsec3.next_hashed_name)
1641 return NULL;
1642 copy->nsec3.next_hashed_name_size = rr->nsec3.next_hashed_name_size;
1643 if (rr->nsec3.types) {
1644 copy->nsec3.types = bitmap_copy(rr->nsec3.types);
1645 if (!copy->nsec3.types)
1646 return NULL;
1647 }
1648 break;
1649
1650 case DNS_TYPE_TLSA:
1651 copy->tlsa.cert_usage = rr->tlsa.cert_usage;
1652 copy->tlsa.selector = rr->tlsa.selector;
1653 copy->tlsa.matching_type = rr->tlsa.matching_type;
1654 copy->tlsa.data = memdup(rr->tlsa.data, rr->tlsa.data_size);
1655 if (!copy->tlsa.data)
1656 return NULL;
1657 copy->tlsa.data_size = rr->tlsa.data_size;
1658 break;
1659
1660 case DNS_TYPE_CAA:
1661 copy->caa.flags = rr->caa.flags;
1662 copy->caa.tag = strdup(rr->caa.tag);
1663 if (!copy->caa.tag)
1664 return NULL;
1665 copy->caa.value = memdup(rr->caa.value, rr->caa.value_size);
1666 if (!copy->caa.value)
1667 return NULL;
1668 copy->caa.value_size = rr->caa.value_size;
1669 break;
1670
1671 case DNS_TYPE_OPT:
1672 default:
1673 copy->generic.data = memdup(rr->generic.data, rr->generic.data_size);
1674 if (!copy->generic.data)
1675 return NULL;
1676 copy->generic.data_size = rr->generic.data_size;
1677 break;
1678 }
1679
1680 t = TAKE_PTR(copy);
1681
1682 return t;
1683 }
1684
1685 int dns_resource_record_clamp_ttl(DnsResourceRecord **rr, uint32_t max_ttl) {
1686 DnsResourceRecord *old_rr, *new_rr;
1687 uint32_t new_ttl;
1688
1689 assert(rr);
1690 old_rr = *rr;
1691
1692 if (old_rr->key->type == DNS_TYPE_OPT)
1693 return -EINVAL;
1694
1695 new_ttl = MIN(old_rr->ttl, max_ttl);
1696 if (new_ttl == old_rr->ttl)
1697 return 0;
1698
1699 if (old_rr->n_ref == 1) {
1700 /* Patch in place */
1701 old_rr->ttl = new_ttl;
1702 return 1;
1703 }
1704
1705 new_rr = dns_resource_record_copy(old_rr);
1706 if (!new_rr)
1707 return -ENOMEM;
1708
1709 new_rr->ttl = new_ttl;
1710
1711 dns_resource_record_unref(*rr);
1712 *rr = new_rr;
1713
1714 return 1;
1715 }
1716
1717 bool dns_resource_record_is_link_local_address(DnsResourceRecord *rr) {
1718 assert(rr);
1719
1720 if (rr->key->class != DNS_CLASS_IN)
1721 return false;
1722
1723 if (rr->key->type == DNS_TYPE_A)
1724 return in4_addr_is_link_local(&rr->a.in_addr);
1725
1726 if (rr->key->type == DNS_TYPE_AAAA)
1727 return in6_addr_is_link_local(&rr->aaaa.in6_addr);
1728
1729 return false;
1730 }
1731
1732 int dns_resource_record_get_cname_target(DnsResourceKey *key, DnsResourceRecord *cname, char **ret) {
1733 _cleanup_free_ char *d = NULL;
1734 int r;
1735
1736 assert(key);
1737 assert(cname);
1738
1739 /* Checks if the RR `cname` is a CNAME/DNAME RR that matches the specified `key`. If so, returns the
1740 * target domain. If not, returns -EUNATCH */
1741
1742 if (key->class != cname->key->class && key->class != DNS_CLASS_ANY)
1743 return -EUNATCH;
1744
1745 if (!dns_type_may_redirect(key->type)) /* This key type is not subject to CNAME/DNAME redirection?
1746 * Then let's refuse right-away */
1747 return -EUNATCH;
1748
1749 if (cname->key->type == DNS_TYPE_CNAME) {
1750 r = dns_name_equal(dns_resource_key_name(key),
1751 dns_resource_key_name(cname->key));
1752 if (r < 0)
1753 return r;
1754 if (r == 0)
1755 return -EUNATCH; /* CNAME RR key doesn't actually match the original key */
1756
1757 d = strdup(cname->cname.name);
1758 if (!d)
1759 return -ENOMEM;
1760
1761 } else if (cname->key->type == DNS_TYPE_DNAME) {
1762
1763 r = dns_name_change_suffix(
1764 dns_resource_key_name(key),
1765 dns_resource_key_name(cname->key),
1766 cname->dname.name,
1767 &d);
1768 if (r < 0)
1769 return r;
1770 if (r == 0)
1771 return -EUNATCH; /* DNAME RR key doesn't actually match the original key */
1772
1773 } else
1774 return -EUNATCH; /* Not a CNAME/DNAME RR, hence doesn't match the proposition either */
1775
1776 *ret = TAKE_PTR(d);
1777 return 0;
1778 }
1779
1780 DnsTxtItem *dns_txt_item_free_all(DnsTxtItem *i) {
1781 DnsTxtItem *n;
1782
1783 if (!i)
1784 return NULL;
1785
1786 n = i->items_next;
1787
1788 free(i);
1789 return dns_txt_item_free_all(n);
1790 }
1791
1792 bool dns_txt_item_equal(DnsTxtItem *a, DnsTxtItem *b) {
1793
1794 if (a == b)
1795 return true;
1796
1797 if (!a != !b)
1798 return false;
1799
1800 if (!a)
1801 return true;
1802
1803 if (a->length != b->length)
1804 return false;
1805
1806 if (memcmp(a->data, b->data, a->length) != 0)
1807 return false;
1808
1809 return dns_txt_item_equal(a->items_next, b->items_next);
1810 }
1811
1812 DnsTxtItem *dns_txt_item_copy(DnsTxtItem *first) {
1813 DnsTxtItem *copy = NULL, *end = NULL;
1814
1815 LIST_FOREACH(items, i, first) {
1816 DnsTxtItem *j;
1817
1818 j = memdup(i, offsetof(DnsTxtItem, data) + i->length + 1);
1819 if (!j) {
1820 dns_txt_item_free_all(copy);
1821 return NULL;
1822 }
1823
1824 LIST_INSERT_AFTER(items, copy, end, j);
1825 end = j;
1826 }
1827
1828 return copy;
1829 }
1830
1831 int dns_txt_item_new_empty(DnsTxtItem **ret) {
1832 DnsTxtItem *i;
1833
1834 /* RFC 6763, section 6.1 suggests to treat
1835 * empty TXT RRs as equivalent to a TXT record
1836 * with a single empty string. */
1837
1838 i = malloc0(offsetof(DnsTxtItem, data) + 1); /* for safety reasons we add an extra NUL byte */
1839 if (!i)
1840 return -ENOMEM;
1841
1842 *ret = i;
1843
1844 return 0;
1845 }
1846
1847 static const char* const dnssec_algorithm_table[_DNSSEC_ALGORITHM_MAX_DEFINED] = {
1848 /* Mnemonics as listed on https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
1849 [DNSSEC_ALGORITHM_RSAMD5] = "RSAMD5",
1850 [DNSSEC_ALGORITHM_DH] = "DH",
1851 [DNSSEC_ALGORITHM_DSA] = "DSA",
1852 [DNSSEC_ALGORITHM_ECC] = "ECC",
1853 [DNSSEC_ALGORITHM_RSASHA1] = "RSASHA1",
1854 [DNSSEC_ALGORITHM_DSA_NSEC3_SHA1] = "DSA-NSEC3-SHA1",
1855 [DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1] = "RSASHA1-NSEC3-SHA1",
1856 [DNSSEC_ALGORITHM_RSASHA256] = "RSASHA256",
1857 [DNSSEC_ALGORITHM_RSASHA512] = "RSASHA512",
1858 [DNSSEC_ALGORITHM_ECC_GOST] = "ECC-GOST",
1859 [DNSSEC_ALGORITHM_ECDSAP256SHA256] = "ECDSAP256SHA256",
1860 [DNSSEC_ALGORITHM_ECDSAP384SHA384] = "ECDSAP384SHA384",
1861 [DNSSEC_ALGORITHM_ED25519] = "ED25519",
1862 [DNSSEC_ALGORITHM_ED448] = "ED448",
1863 [DNSSEC_ALGORITHM_INDIRECT] = "INDIRECT",
1864 [DNSSEC_ALGORITHM_PRIVATEDNS] = "PRIVATEDNS",
1865 [DNSSEC_ALGORITHM_PRIVATEOID] = "PRIVATEOID",
1866 };
1867 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_algorithm, int, 255);
1868
1869 static const char* const dnssec_digest_table[_DNSSEC_DIGEST_MAX_DEFINED] = {
1870 /* Names as listed on https://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
1871 [DNSSEC_DIGEST_SHA1] = "SHA-1",
1872 [DNSSEC_DIGEST_SHA256] = "SHA-256",
1873 [DNSSEC_DIGEST_GOST_R_34_11_94] = "GOST_R_34.11-94",
1874 [DNSSEC_DIGEST_SHA384] = "SHA-384",
1875 };
1876 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_digest, int, 255);