]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/resolve/resolved-dns-rr.c
Merge pull request #2495 from heftig/master
[thirdparty/systemd.git] / src / resolve / resolved-dns-rr.c
1 /***
2 This file is part of systemd.
3
4 Copyright 2014 Lennart Poettering
5
6 systemd is free software; you can redistribute it and/or modify it
7 under the terms of the GNU Lesser General Public License as published by
8 the Free Software Foundation; either version 2.1 of the License, or
9 (at your option) any later version.
10
11 systemd is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public License
17 along with systemd; If not, see <http://www.gnu.org/licenses/>.
18 ***/
19
20 #include <math.h>
21
22 #include "alloc-util.h"
23 #include "dns-domain.h"
24 #include "dns-type.h"
25 #include "hexdecoct.h"
26 #include "resolved-dns-dnssec.h"
27 #include "resolved-dns-packet.h"
28 #include "resolved-dns-rr.h"
29 #include "string-table.h"
30 #include "string-util.h"
31 #include "strv.h"
32 #include "terminal-util.h"
33
34 DnsResourceKey* dns_resource_key_new(uint16_t class, uint16_t type, const char *name) {
35 DnsResourceKey *k;
36 size_t l;
37
38 assert(name);
39
40 l = strlen(name);
41 k = malloc0(sizeof(DnsResourceKey) + l + 1);
42 if (!k)
43 return NULL;
44
45 k->n_ref = 1;
46 k->class = class;
47 k->type = type;
48
49 strcpy((char*) k + sizeof(DnsResourceKey), name);
50
51 return k;
52 }
53
54 DnsResourceKey* dns_resource_key_new_redirect(const DnsResourceKey *key, const DnsResourceRecord *cname) {
55 int r;
56
57 assert(key);
58 assert(cname);
59
60 assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME));
61
62 if (cname->key->type == DNS_TYPE_CNAME)
63 return dns_resource_key_new(key->class, key->type, cname->cname.name);
64 else {
65 DnsResourceKey *k;
66 char *destination = NULL;
67
68 r = dns_name_change_suffix(DNS_RESOURCE_KEY_NAME(key), DNS_RESOURCE_KEY_NAME(cname->key), cname->dname.name, &destination);
69 if (r < 0)
70 return NULL;
71 if (r == 0)
72 return dns_resource_key_ref((DnsResourceKey*) key);
73
74 k = dns_resource_key_new_consume(key->class, key->type, destination);
75 if (!k) {
76 free(destination);
77 return NULL;
78 }
79
80 return k;
81 }
82 }
83
84 int dns_resource_key_new_append_suffix(DnsResourceKey **ret, DnsResourceKey *key, char *name) {
85 DnsResourceKey *new_key;
86 char *joined;
87 int r;
88
89 assert(ret);
90 assert(key);
91 assert(name);
92
93 if (dns_name_is_root(name)) {
94 *ret = dns_resource_key_ref(key);
95 return 0;
96 }
97
98 r = dns_name_concat(DNS_RESOURCE_KEY_NAME(key), name, &joined);
99 if (r < 0)
100 return r;
101
102 new_key = dns_resource_key_new_consume(key->class, key->type, joined);
103 if (!new_key) {
104 free(joined);
105 return -ENOMEM;
106 }
107
108 *ret = new_key;
109 return 0;
110 }
111
112 DnsResourceKey* dns_resource_key_new_consume(uint16_t class, uint16_t type, char *name) {
113 DnsResourceKey *k;
114
115 assert(name);
116
117 k = new0(DnsResourceKey, 1);
118 if (!k)
119 return NULL;
120
121 k->n_ref = 1;
122 k->class = class;
123 k->type = type;
124 k->_name = name;
125
126 return k;
127 }
128
129 DnsResourceKey* dns_resource_key_ref(DnsResourceKey *k) {
130
131 if (!k)
132 return NULL;
133
134 /* Static/const keys created with DNS_RESOURCE_KEY_CONST will
135 * set this to -1, they should not be reffed/unreffed */
136 assert(k->n_ref != (unsigned) -1);
137
138 assert(k->n_ref > 0);
139 k->n_ref++;
140
141 return k;
142 }
143
144 DnsResourceKey* dns_resource_key_unref(DnsResourceKey *k) {
145 if (!k)
146 return NULL;
147
148 assert(k->n_ref != (unsigned) -1);
149 assert(k->n_ref > 0);
150
151 if (k->n_ref == 1) {
152 free(k->_name);
153 free(k);
154 } else
155 k->n_ref--;
156
157 return NULL;
158 }
159
160 bool dns_resource_key_is_address(const DnsResourceKey *key) {
161 assert(key);
162
163 /* Check if this is an A or AAAA resource key */
164
165 return key->class == DNS_CLASS_IN && IN_SET(key->type, DNS_TYPE_A, DNS_TYPE_AAAA);
166 }
167
168 int dns_resource_key_equal(const DnsResourceKey *a, const DnsResourceKey *b) {
169 int r;
170
171 if (a == b)
172 return 1;
173
174 r = dns_name_equal(DNS_RESOURCE_KEY_NAME(a), DNS_RESOURCE_KEY_NAME(b));
175 if (r <= 0)
176 return r;
177
178 if (a->class != b->class)
179 return 0;
180
181 if (a->type != b->type)
182 return 0;
183
184 return 1;
185 }
186
187 int dns_resource_key_match_rr(const DnsResourceKey *key, DnsResourceRecord *rr, const char *search_domain) {
188 int r;
189
190 assert(key);
191 assert(rr);
192
193 if (key == rr->key)
194 return 1;
195
196 /* Checks if an rr matches the specified key. If a search
197 * domain is specified, it will also be checked if the key
198 * with the search domain suffixed might match the RR. */
199
200 if (rr->key->class != key->class && key->class != DNS_CLASS_ANY)
201 return 0;
202
203 if (rr->key->type != key->type && key->type != DNS_TYPE_ANY)
204 return 0;
205
206 r = dns_name_equal(DNS_RESOURCE_KEY_NAME(rr->key), DNS_RESOURCE_KEY_NAME(key));
207 if (r != 0)
208 return r;
209
210 if (search_domain) {
211 _cleanup_free_ char *joined = NULL;
212
213 r = dns_name_concat(DNS_RESOURCE_KEY_NAME(key), search_domain, &joined);
214 if (r < 0)
215 return r;
216
217 return dns_name_equal(DNS_RESOURCE_KEY_NAME(rr->key), joined);
218 }
219
220 return 0;
221 }
222
223 int dns_resource_key_match_cname_or_dname(const DnsResourceKey *key, const DnsResourceKey *cname, const char *search_domain) {
224 int r;
225
226 assert(key);
227 assert(cname);
228
229 if (cname->class != key->class && key->class != DNS_CLASS_ANY)
230 return 0;
231
232 if (cname->type == DNS_TYPE_CNAME)
233 r = dns_name_equal(DNS_RESOURCE_KEY_NAME(key), DNS_RESOURCE_KEY_NAME(cname));
234 else if (cname->type == DNS_TYPE_DNAME)
235 r = dns_name_endswith(DNS_RESOURCE_KEY_NAME(key), DNS_RESOURCE_KEY_NAME(cname));
236 else
237 return 0;
238
239 if (r != 0)
240 return r;
241
242 if (search_domain) {
243 _cleanup_free_ char *joined = NULL;
244
245 r = dns_name_concat(DNS_RESOURCE_KEY_NAME(key), search_domain, &joined);
246 if (r < 0)
247 return r;
248
249 if (cname->type == DNS_TYPE_CNAME)
250 return dns_name_equal(joined, DNS_RESOURCE_KEY_NAME(cname));
251 else if (cname->type == DNS_TYPE_DNAME)
252 return dns_name_endswith(joined, DNS_RESOURCE_KEY_NAME(cname));
253 }
254
255 return 0;
256 }
257
258 int dns_resource_key_match_soa(const DnsResourceKey *key, const DnsResourceKey *soa) {
259 assert(soa);
260 assert(key);
261
262 /* Checks whether 'soa' is a SOA record for the specified key. */
263
264 if (soa->class != key->class)
265 return 0;
266
267 if (soa->type != DNS_TYPE_SOA)
268 return 0;
269
270 return dns_name_endswith(DNS_RESOURCE_KEY_NAME(key), DNS_RESOURCE_KEY_NAME(soa));
271 }
272
273 static void dns_resource_key_hash_func(const void *i, struct siphash *state) {
274 const DnsResourceKey *k = i;
275
276 assert(k);
277
278 dns_name_hash_func(DNS_RESOURCE_KEY_NAME(k), state);
279 siphash24_compress(&k->class, sizeof(k->class), state);
280 siphash24_compress(&k->type, sizeof(k->type), state);
281 }
282
283 static int dns_resource_key_compare_func(const void *a, const void *b) {
284 const DnsResourceKey *x = a, *y = b;
285 int ret;
286
287 ret = dns_name_compare_func(DNS_RESOURCE_KEY_NAME(x), DNS_RESOURCE_KEY_NAME(y));
288 if (ret != 0)
289 return ret;
290
291 if (x->type < y->type)
292 return -1;
293 if (x->type > y->type)
294 return 1;
295
296 if (x->class < y->class)
297 return -1;
298 if (x->class > y->class)
299 return 1;
300
301 return 0;
302 }
303
304 const struct hash_ops dns_resource_key_hash_ops = {
305 .hash = dns_resource_key_hash_func,
306 .compare = dns_resource_key_compare_func
307 };
308
309 int dns_resource_key_to_string(const DnsResourceKey *key, char **ret) {
310 char cbuf[strlen("CLASS") + DECIMAL_STR_MAX(uint16_t)], tbuf[strlen("TYPE") + DECIMAL_STR_MAX(uint16_t)];
311 const char *c, *t, *n;
312 char *s;
313
314 /* If we cannot convert the CLASS/TYPE into a known string,
315 use the format recommended by RFC 3597, Section 5. */
316
317 c = dns_class_to_string(key->class);
318 if (!c) {
319 sprintf(cbuf, "CLASS%u", key->class);
320 c = cbuf;
321 }
322
323 t = dns_type_to_string(key->type);
324 if (!t){
325 sprintf(tbuf, "TYPE%u", key->type);
326 t = tbuf;
327 }
328
329 n = DNS_RESOURCE_KEY_NAME(key);
330 if (asprintf(&s, "%s%s %s %-5s", n, endswith(n, ".") ? "" : ".", c, t) < 0)
331 return -ENOMEM;
332
333 *ret = s;
334 return 0;
335 }
336
337 bool dns_resource_key_reduce(DnsResourceKey **a, DnsResourceKey **b) {
338 assert(a);
339 assert(b);
340
341 /* Try to replace one RR key by another if they are identical, thus saving a bit of memory. Note that we do
342 * this only for RR keys, not for RRs themselves, as they carry a lot of additional metadata (where they come
343 * from, validity data, and suchlike), and cannot be replaced so easily by other RRs that have the same
344 * superficial data. */
345
346 if (!*a)
347 return false;
348 if (!*b)
349 return false;
350
351 /* We refuse merging const keys */
352 if ((*a)->n_ref == (unsigned) -1)
353 return false;
354 if ((*b)->n_ref == (unsigned) -1)
355 return false;
356
357 /* Already the same? */
358 if (*a == *b)
359 return true;
360
361 /* Are they really identical? */
362 if (dns_resource_key_equal(*a, *b) <= 0)
363 return false;
364
365 /* Keep the one which already has more references. */
366 if ((*a)->n_ref > (*b)->n_ref) {
367 dns_resource_key_unref(*b);
368 *b = dns_resource_key_ref(*a);
369 } else {
370 dns_resource_key_unref(*a);
371 *a = dns_resource_key_ref(*b);
372 }
373
374 return true;
375 }
376
377 DnsResourceRecord* dns_resource_record_new(DnsResourceKey *key) {
378 DnsResourceRecord *rr;
379
380 rr = new0(DnsResourceRecord, 1);
381 if (!rr)
382 return NULL;
383
384 rr->n_ref = 1;
385 rr->key = dns_resource_key_ref(key);
386 rr->expiry = USEC_INFINITY;
387 rr->n_skip_labels_signer = rr->n_skip_labels_source = (unsigned) -1;
388
389 return rr;
390 }
391
392 DnsResourceRecord* dns_resource_record_new_full(uint16_t class, uint16_t type, const char *name) {
393 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
394
395 key = dns_resource_key_new(class, type, name);
396 if (!key)
397 return NULL;
398
399 return dns_resource_record_new(key);
400 }
401
402 DnsResourceRecord* dns_resource_record_ref(DnsResourceRecord *rr) {
403 if (!rr)
404 return NULL;
405
406 assert(rr->n_ref > 0);
407 rr->n_ref++;
408
409 return rr;
410 }
411
412 DnsResourceRecord* dns_resource_record_unref(DnsResourceRecord *rr) {
413 if (!rr)
414 return NULL;
415
416 assert(rr->n_ref > 0);
417
418 if (rr->n_ref > 1) {
419 rr->n_ref--;
420 return NULL;
421 }
422
423 if (rr->key) {
424 switch(rr->key->type) {
425
426 case DNS_TYPE_SRV:
427 free(rr->srv.name);
428 break;
429
430 case DNS_TYPE_PTR:
431 case DNS_TYPE_NS:
432 case DNS_TYPE_CNAME:
433 case DNS_TYPE_DNAME:
434 free(rr->ptr.name);
435 break;
436
437 case DNS_TYPE_HINFO:
438 free(rr->hinfo.cpu);
439 free(rr->hinfo.os);
440 break;
441
442 case DNS_TYPE_TXT:
443 case DNS_TYPE_SPF:
444 dns_txt_item_free_all(rr->txt.items);
445 break;
446
447 case DNS_TYPE_SOA:
448 free(rr->soa.mname);
449 free(rr->soa.rname);
450 break;
451
452 case DNS_TYPE_MX:
453 free(rr->mx.exchange);
454 break;
455
456 case DNS_TYPE_DS:
457 free(rr->ds.digest);
458 break;
459
460 case DNS_TYPE_SSHFP:
461 free(rr->sshfp.fingerprint);
462 break;
463
464 case DNS_TYPE_DNSKEY:
465 free(rr->dnskey.key);
466 break;
467
468 case DNS_TYPE_RRSIG:
469 free(rr->rrsig.signer);
470 free(rr->rrsig.signature);
471 break;
472
473 case DNS_TYPE_NSEC:
474 free(rr->nsec.next_domain_name);
475 bitmap_free(rr->nsec.types);
476 break;
477
478 case DNS_TYPE_NSEC3:
479 free(rr->nsec3.next_hashed_name);
480 free(rr->nsec3.salt);
481 bitmap_free(rr->nsec3.types);
482 break;
483
484 case DNS_TYPE_LOC:
485 case DNS_TYPE_A:
486 case DNS_TYPE_AAAA:
487 break;
488
489 case DNS_TYPE_TLSA:
490 free(rr->tlsa.data);
491 break;
492
493 case DNS_TYPE_OPENPGPKEY:
494 default:
495 free(rr->generic.data);
496 }
497
498 free(rr->wire_format);
499 dns_resource_key_unref(rr->key);
500 }
501
502 free(rr->to_string);
503 free(rr);
504
505 return NULL;
506 }
507
508 int dns_resource_record_new_reverse(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *hostname) {
509 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
510 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
511 _cleanup_free_ char *ptr = NULL;
512 int r;
513
514 assert(ret);
515 assert(address);
516 assert(hostname);
517
518 r = dns_name_reverse(family, address, &ptr);
519 if (r < 0)
520 return r;
521
522 key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, ptr);
523 if (!key)
524 return -ENOMEM;
525
526 ptr = NULL;
527
528 rr = dns_resource_record_new(key);
529 if (!rr)
530 return -ENOMEM;
531
532 rr->ptr.name = strdup(hostname);
533 if (!rr->ptr.name)
534 return -ENOMEM;
535
536 *ret = rr;
537 rr = NULL;
538
539 return 0;
540 }
541
542 int dns_resource_record_new_address(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *name) {
543 DnsResourceRecord *rr;
544
545 assert(ret);
546 assert(address);
547 assert(family);
548
549 if (family == AF_INET) {
550
551 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_A, name);
552 if (!rr)
553 return -ENOMEM;
554
555 rr->a.in_addr = address->in;
556
557 } else if (family == AF_INET6) {
558
559 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_AAAA, name);
560 if (!rr)
561 return -ENOMEM;
562
563 rr->aaaa.in6_addr = address->in6;
564 } else
565 return -EAFNOSUPPORT;
566
567 *ret = rr;
568
569 return 0;
570 }
571
572 #define FIELD_EQUAL(a, b, field) \
573 ((a).field ## _size == (b).field ## _size && \
574 memcmp((a).field, (b).field, (a).field ## _size) == 0)
575
576 int dns_resource_record_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
577 int r;
578
579 assert(a);
580 assert(b);
581
582 if (a == b)
583 return 1;
584
585 r = dns_resource_key_equal(a->key, b->key);
586 if (r <= 0)
587 return r;
588
589 if (a->unparseable != b->unparseable)
590 return 0;
591
592 switch (a->unparseable ? _DNS_TYPE_INVALID : a->key->type) {
593
594 case DNS_TYPE_SRV:
595 r = dns_name_equal(a->srv.name, b->srv.name);
596 if (r <= 0)
597 return r;
598
599 return a->srv.priority == b->srv.priority &&
600 a->srv.weight == b->srv.weight &&
601 a->srv.port == b->srv.port;
602
603 case DNS_TYPE_PTR:
604 case DNS_TYPE_NS:
605 case DNS_TYPE_CNAME:
606 case DNS_TYPE_DNAME:
607 return dns_name_equal(a->ptr.name, b->ptr.name);
608
609 case DNS_TYPE_HINFO:
610 return strcaseeq(a->hinfo.cpu, b->hinfo.cpu) &&
611 strcaseeq(a->hinfo.os, b->hinfo.os);
612
613 case DNS_TYPE_SPF: /* exactly the same as TXT */
614 case DNS_TYPE_TXT:
615 return dns_txt_item_equal(a->txt.items, b->txt.items);
616
617 case DNS_TYPE_A:
618 return memcmp(&a->a.in_addr, &b->a.in_addr, sizeof(struct in_addr)) == 0;
619
620 case DNS_TYPE_AAAA:
621 return memcmp(&a->aaaa.in6_addr, &b->aaaa.in6_addr, sizeof(struct in6_addr)) == 0;
622
623 case DNS_TYPE_SOA:
624 r = dns_name_equal(a->soa.mname, b->soa.mname);
625 if (r <= 0)
626 return r;
627 r = dns_name_equal(a->soa.rname, b->soa.rname);
628 if (r <= 0)
629 return r;
630
631 return a->soa.serial == b->soa.serial &&
632 a->soa.refresh == b->soa.refresh &&
633 a->soa.retry == b->soa.retry &&
634 a->soa.expire == b->soa.expire &&
635 a->soa.minimum == b->soa.minimum;
636
637 case DNS_TYPE_MX:
638 if (a->mx.priority != b->mx.priority)
639 return 0;
640
641 return dns_name_equal(a->mx.exchange, b->mx.exchange);
642
643 case DNS_TYPE_LOC:
644 assert(a->loc.version == b->loc.version);
645
646 return a->loc.size == b->loc.size &&
647 a->loc.horiz_pre == b->loc.horiz_pre &&
648 a->loc.vert_pre == b->loc.vert_pre &&
649 a->loc.latitude == b->loc.latitude &&
650 a->loc.longitude == b->loc.longitude &&
651 a->loc.altitude == b->loc.altitude;
652
653 case DNS_TYPE_DS:
654 return a->ds.key_tag == b->ds.key_tag &&
655 a->ds.algorithm == b->ds.algorithm &&
656 a->ds.digest_type == b->ds.digest_type &&
657 FIELD_EQUAL(a->ds, b->ds, digest);
658
659 case DNS_TYPE_SSHFP:
660 return a->sshfp.algorithm == b->sshfp.algorithm &&
661 a->sshfp.fptype == b->sshfp.fptype &&
662 FIELD_EQUAL(a->sshfp, b->sshfp, fingerprint);
663
664 case DNS_TYPE_DNSKEY:
665 return a->dnskey.flags == b->dnskey.flags &&
666 a->dnskey.protocol == b->dnskey.protocol &&
667 a->dnskey.algorithm == b->dnskey.algorithm &&
668 FIELD_EQUAL(a->dnskey, b->dnskey, key);
669
670 case DNS_TYPE_RRSIG:
671 /* do the fast comparisons first */
672 return a->rrsig.type_covered == b->rrsig.type_covered &&
673 a->rrsig.algorithm == b->rrsig.algorithm &&
674 a->rrsig.labels == b->rrsig.labels &&
675 a->rrsig.original_ttl == b->rrsig.original_ttl &&
676 a->rrsig.expiration == b->rrsig.expiration &&
677 a->rrsig.inception == b->rrsig.inception &&
678 a->rrsig.key_tag == b->rrsig.key_tag &&
679 FIELD_EQUAL(a->rrsig, b->rrsig, signature) &&
680 dns_name_equal(a->rrsig.signer, b->rrsig.signer);
681
682 case DNS_TYPE_NSEC:
683 return dns_name_equal(a->nsec.next_domain_name, b->nsec.next_domain_name) &&
684 bitmap_equal(a->nsec.types, b->nsec.types);
685
686 case DNS_TYPE_NSEC3:
687 return a->nsec3.algorithm == b->nsec3.algorithm &&
688 a->nsec3.flags == b->nsec3.flags &&
689 a->nsec3.iterations == b->nsec3.iterations &&
690 FIELD_EQUAL(a->nsec3, b->nsec3, salt) &&
691 FIELD_EQUAL(a->nsec3, b->nsec3, next_hashed_name) &&
692 bitmap_equal(a->nsec3.types, b->nsec3.types);
693
694 case DNS_TYPE_TLSA:
695 return a->tlsa.cert_usage == b->tlsa.cert_usage &&
696 a->tlsa.selector == b->tlsa.selector &&
697 a->tlsa.matching_type == b->tlsa.matching_type &&
698 FIELD_EQUAL(a->tlsa, b->tlsa, data);
699
700 default:
701 return FIELD_EQUAL(a->generic, b->generic, data);
702 }
703 }
704
705 static char* format_location(uint32_t latitude, uint32_t longitude, uint32_t altitude,
706 uint8_t size, uint8_t horiz_pre, uint8_t vert_pre) {
707 char *s;
708 char NS = latitude >= 1U<<31 ? 'N' : 'S';
709 char EW = longitude >= 1U<<31 ? 'E' : 'W';
710
711 int lat = latitude >= 1U<<31 ? (int) (latitude - (1U<<31)) : (int) ((1U<<31) - latitude);
712 int lon = longitude >= 1U<<31 ? (int) (longitude - (1U<<31)) : (int) ((1U<<31) - longitude);
713 double alt = altitude >= 10000000u ? altitude - 10000000u : -(double)(10000000u - altitude);
714 double siz = (size >> 4) * exp10((double) (size & 0xF));
715 double hor = (horiz_pre >> 4) * exp10((double) (horiz_pre & 0xF));
716 double ver = (vert_pre >> 4) * exp10((double) (vert_pre & 0xF));
717
718 if (asprintf(&s, "%d %d %.3f %c %d %d %.3f %c %.2fm %.2fm %.2fm %.2fm",
719 (lat / 60000 / 60),
720 (lat / 60000) % 60,
721 (lat % 60000) / 1000.,
722 NS,
723 (lon / 60000 / 60),
724 (lon / 60000) % 60,
725 (lon % 60000) / 1000.,
726 EW,
727 alt / 100.,
728 siz / 100.,
729 hor / 100.,
730 ver / 100.) < 0)
731 return NULL;
732
733 return s;
734 }
735
736 static int format_timestamp_dns(char *buf, size_t l, time_t sec) {
737 struct tm tm;
738
739 assert(buf);
740 assert(l > strlen("YYYYMMDDHHmmSS"));
741
742 if (!gmtime_r(&sec, &tm))
743 return -EINVAL;
744
745 if (strftime(buf, l, "%Y%m%d%H%M%S", &tm) <= 0)
746 return -EINVAL;
747
748 return 0;
749 }
750
751 static char *format_types(Bitmap *types) {
752 _cleanup_strv_free_ char **strv = NULL;
753 _cleanup_free_ char *str = NULL;
754 Iterator i;
755 unsigned type;
756 int r;
757
758 BITMAP_FOREACH(type, types, i) {
759 if (dns_type_to_string(type)) {
760 r = strv_extend(&strv, dns_type_to_string(type));
761 if (r < 0)
762 return NULL;
763 } else {
764 char *t;
765
766 r = asprintf(&t, "TYPE%u", type);
767 if (r < 0)
768 return NULL;
769
770 r = strv_consume(&strv, t);
771 if (r < 0)
772 return NULL;
773 }
774 }
775
776 str = strv_join(strv, " ");
777 if (!str)
778 return NULL;
779
780 return strjoin("( ", str, " )", NULL);
781 }
782
783 static char *format_txt(DnsTxtItem *first) {
784 DnsTxtItem *i;
785 size_t c = 1;
786 char *p, *s;
787
788 LIST_FOREACH(items, i, first)
789 c += i->length * 4 + 3;
790
791 p = s = new(char, c);
792 if (!s)
793 return NULL;
794
795 LIST_FOREACH(items, i, first) {
796 size_t j;
797
798 if (i != first)
799 *(p++) = ' ';
800
801 *(p++) = '"';
802
803 for (j = 0; j < i->length; j++) {
804 if (i->data[j] < ' ' || i->data[j] == '"' || i->data[j] >= 127) {
805 *(p++) = '\\';
806 *(p++) = '0' + (i->data[j] / 100);
807 *(p++) = '0' + ((i->data[j] / 10) % 10);
808 *(p++) = '0' + (i->data[j] % 10);
809 } else
810 *(p++) = i->data[j];
811 }
812
813 *(p++) = '"';
814 }
815
816 *p = 0;
817 return s;
818 }
819
820 const char *dns_resource_record_to_string(DnsResourceRecord *rr) {
821 _cleanup_free_ char *k = NULL, *t = NULL;
822 char *s;
823 int r;
824
825 assert(rr);
826
827 if (rr->to_string)
828 return rr->to_string;
829
830 r = dns_resource_key_to_string(rr->key, &k);
831 if (r < 0)
832 return NULL;
833
834 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
835
836 case DNS_TYPE_SRV:
837 r = asprintf(&s, "%s %u %u %u %s",
838 k,
839 rr->srv.priority,
840 rr->srv.weight,
841 rr->srv.port,
842 strna(rr->srv.name));
843 if (r < 0)
844 return NULL;
845 break;
846
847 case DNS_TYPE_PTR:
848 case DNS_TYPE_NS:
849 case DNS_TYPE_CNAME:
850 case DNS_TYPE_DNAME:
851 s = strjoin(k, " ", rr->ptr.name, NULL);
852 if (!s)
853 return NULL;
854
855 break;
856
857 case DNS_TYPE_HINFO:
858 s = strjoin(k, " ", rr->hinfo.cpu, " ", rr->hinfo.os, NULL);
859 if (!s)
860 return NULL;
861 break;
862
863 case DNS_TYPE_SPF: /* exactly the same as TXT */
864 case DNS_TYPE_TXT:
865 t = format_txt(rr->txt.items);
866 if (!t)
867 return NULL;
868
869 s = strjoin(k, " ", t, NULL);
870 if (!s)
871 return NULL;
872 break;
873
874 case DNS_TYPE_A: {
875 _cleanup_free_ char *x = NULL;
876
877 r = in_addr_to_string(AF_INET, (const union in_addr_union*) &rr->a.in_addr, &x);
878 if (r < 0)
879 return NULL;
880
881 s = strjoin(k, " ", x, NULL);
882 if (!s)
883 return NULL;
884 break;
885 }
886
887 case DNS_TYPE_AAAA:
888 r = in_addr_to_string(AF_INET6, (const union in_addr_union*) &rr->aaaa.in6_addr, &t);
889 if (r < 0)
890 return NULL;
891
892 s = strjoin(k, " ", t, NULL);
893 if (!s)
894 return NULL;
895 break;
896
897 case DNS_TYPE_SOA:
898 r = asprintf(&s, "%s %s %s %u %u %u %u %u",
899 k,
900 strna(rr->soa.mname),
901 strna(rr->soa.rname),
902 rr->soa.serial,
903 rr->soa.refresh,
904 rr->soa.retry,
905 rr->soa.expire,
906 rr->soa.minimum);
907 if (r < 0)
908 return NULL;
909 break;
910
911 case DNS_TYPE_MX:
912 r = asprintf(&s, "%s %u %s",
913 k,
914 rr->mx.priority,
915 rr->mx.exchange);
916 if (r < 0)
917 return NULL;
918 break;
919
920 case DNS_TYPE_LOC:
921 assert(rr->loc.version == 0);
922
923 t = format_location(rr->loc.latitude,
924 rr->loc.longitude,
925 rr->loc.altitude,
926 rr->loc.size,
927 rr->loc.horiz_pre,
928 rr->loc.vert_pre);
929 if (!t)
930 return NULL;
931
932 s = strjoin(k, " ", t, NULL);
933 if (!s)
934 return NULL;
935 break;
936
937 case DNS_TYPE_DS:
938 t = hexmem(rr->ds.digest, rr->ds.digest_size);
939 if (!t)
940 return NULL;
941
942 r = asprintf(&s, "%s %u %u %u %s",
943 k,
944 rr->ds.key_tag,
945 rr->ds.algorithm,
946 rr->ds.digest_type,
947 t);
948 if (r < 0)
949 return NULL;
950 break;
951
952 case DNS_TYPE_SSHFP:
953 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
954 if (!t)
955 return NULL;
956
957 r = asprintf(&s, "%s %u %u %s",
958 k,
959 rr->sshfp.algorithm,
960 rr->sshfp.fptype,
961 t);
962 if (r < 0)
963 return NULL;
964 break;
965
966 case DNS_TYPE_DNSKEY: {
967 _cleanup_free_ char *alg = NULL;
968 char *ss;
969 int n, n1;
970 uint16_t key_tag;
971
972 key_tag = dnssec_keytag(rr, true);
973
974 r = dnssec_algorithm_to_string_alloc(rr->dnskey.algorithm, &alg);
975 if (r < 0)
976 return NULL;
977
978 r = asprintf(&s, "%s %n%u %u %s %n",
979 k,
980 &n1,
981 rr->dnskey.flags,
982 rr->dnskey.protocol,
983 alg,
984 &n);
985 if (r < 0)
986 return NULL;
987
988 r = base64_append(&s, n,
989 rr->dnskey.key, rr->dnskey.key_size,
990 8, columns());
991 if (r < 0)
992 return NULL;
993
994 r = asprintf(&ss, "%s\n"
995 "%*s-- Flags:%s%s%s\n"
996 "%*s-- Key tag: %u",
997 s,
998 n1, "",
999 rr->dnskey.flags & DNSKEY_FLAG_SEP ? " SEP" : "",
1000 rr->dnskey.flags & DNSKEY_FLAG_REVOKE ? " REVOKE" : "",
1001 rr->dnskey.flags & DNSKEY_FLAG_ZONE_KEY ? " ZONE_KEY" : "",
1002 n1, "",
1003 key_tag);
1004 if (r < 0)
1005 return NULL;
1006 free(s);
1007 s = ss;
1008
1009 break;
1010 }
1011
1012 case DNS_TYPE_RRSIG: {
1013 _cleanup_free_ char *alg = NULL;
1014 char expiration[strlen("YYYYMMDDHHmmSS") + 1], inception[strlen("YYYYMMDDHHmmSS") + 1];
1015 const char *type;
1016 int n;
1017
1018 type = dns_type_to_string(rr->rrsig.type_covered);
1019
1020 r = dnssec_algorithm_to_string_alloc(rr->rrsig.algorithm, &alg);
1021 if (r < 0)
1022 return NULL;
1023
1024 r = format_timestamp_dns(expiration, sizeof(expiration), rr->rrsig.expiration);
1025 if (r < 0)
1026 return NULL;
1027
1028 r = format_timestamp_dns(inception, sizeof(inception), rr->rrsig.inception);
1029 if (r < 0)
1030 return NULL;
1031
1032 /* TYPE?? follows
1033 * http://tools.ietf.org/html/rfc3597#section-5 */
1034
1035 r = asprintf(&s, "%s %s%.*u %s %u %u %s %s %u %s %n",
1036 k,
1037 type ?: "TYPE",
1038 type ? 0 : 1, type ? 0u : (unsigned) rr->rrsig.type_covered,
1039 alg,
1040 rr->rrsig.labels,
1041 rr->rrsig.original_ttl,
1042 expiration,
1043 inception,
1044 rr->rrsig.key_tag,
1045 rr->rrsig.signer,
1046 &n);
1047 if (r < 0)
1048 return NULL;
1049
1050 r = base64_append(&s, n,
1051 rr->rrsig.signature, rr->rrsig.signature_size,
1052 8, columns());
1053 if (r < 0)
1054 return NULL;
1055
1056 break;
1057 }
1058
1059 case DNS_TYPE_NSEC:
1060 t = format_types(rr->nsec.types);
1061 if (!t)
1062 return NULL;
1063
1064 r = asprintf(&s, "%s %s %s",
1065 k,
1066 rr->nsec.next_domain_name,
1067 t);
1068 if (r < 0)
1069 return NULL;
1070 break;
1071
1072 case DNS_TYPE_NSEC3: {
1073 _cleanup_free_ char *salt = NULL, *hash = NULL;
1074
1075 if (rr->nsec3.salt_size > 0) {
1076 salt = hexmem(rr->nsec3.salt, rr->nsec3.salt_size);
1077 if (!salt)
1078 return NULL;
1079 }
1080
1081 hash = base32hexmem(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, false);
1082 if (!hash)
1083 return NULL;
1084
1085 t = format_types(rr->nsec3.types);
1086 if (!t)
1087 return NULL;
1088
1089 r = asprintf(&s, "%s %"PRIu8" %"PRIu8" %"PRIu16" %s %s %s",
1090 k,
1091 rr->nsec3.algorithm,
1092 rr->nsec3.flags,
1093 rr->nsec3.iterations,
1094 rr->nsec3.salt_size > 0 ? salt : "-",
1095 hash,
1096 t);
1097 if (r < 0)
1098 return NULL;
1099
1100 break;
1101 }
1102
1103 case DNS_TYPE_TLSA: {
1104 const char *cert_usage, *selector, *matching_type;
1105 char *ss;
1106 int n;
1107
1108 cert_usage = tlsa_cert_usage_to_string(rr->tlsa.cert_usage);
1109 selector = tlsa_selector_to_string(rr->tlsa.selector);
1110 matching_type = tlsa_matching_type_to_string(rr->tlsa.matching_type);
1111
1112 r = asprintf(&s, "%s %u %u %u %n",
1113 k,
1114 rr->tlsa.cert_usage,
1115 rr->tlsa.selector,
1116 rr->tlsa.matching_type,
1117 &n);
1118 if (r < 0)
1119 return NULL;
1120
1121 r = base64_append(&s, n,
1122 rr->tlsa.data, rr->tlsa.data_size,
1123 8, columns());
1124 if (r < 0)
1125 return NULL;
1126
1127 r = asprintf(&ss, "%s\n"
1128 "%*s-- Cert. usage: %s\n"
1129 "%*s-- Selector: %s\n"
1130 "%*s-- Matching type: %s",
1131 s,
1132 n - 6, "", cert_usage,
1133 n - 6, "", selector,
1134 n - 6, "", matching_type);
1135 if (r < 0)
1136 return NULL;
1137 free(s);
1138 s = ss;
1139
1140 break;
1141 }
1142
1143 case DNS_TYPE_OPENPGPKEY: {
1144 int n;
1145
1146 r = asprintf(&s, "%s %n",
1147 k,
1148 &n);
1149 if (r < 0)
1150 return NULL;
1151
1152 r = base64_append(&s, n,
1153 rr->generic.data, rr->generic.data_size,
1154 8, columns());
1155 if (r < 0)
1156 return NULL;
1157 break;
1158 }
1159
1160 default:
1161 t = hexmem(rr->generic.data, rr->generic.data_size);
1162 if (!t)
1163 return NULL;
1164
1165 /* Format as documented in RFC 3597, Section 5 */
1166 r = asprintf(&s, "%s \\# %zu %s", k, rr->generic.data_size, t);
1167 if (r < 0)
1168 return NULL;
1169 break;
1170 }
1171
1172 rr->to_string = s;
1173 return s;
1174 }
1175
1176 int dns_resource_record_to_wire_format(DnsResourceRecord *rr, bool canonical) {
1177
1178 DnsPacket packet = {
1179 .n_ref = 1,
1180 .protocol = DNS_PROTOCOL_DNS,
1181 .on_stack = true,
1182 .refuse_compression = true,
1183 .canonical_form = canonical,
1184 };
1185
1186 size_t start, rds;
1187 int r;
1188
1189 assert(rr);
1190
1191 /* Generates the RR in wire-format, optionally in the
1192 * canonical form as discussed in the DNSSEC RFC 4034, Section
1193 * 6.2. We allocate a throw-away DnsPacket object on the stack
1194 * here, because we need some book-keeping for memory
1195 * management, and can reuse the DnsPacket serializer, that
1196 * can generate the canonical form, too, but also knows label
1197 * compression and suchlike. */
1198
1199 if (rr->wire_format && rr->wire_format_canonical == canonical)
1200 return 0;
1201
1202 r = dns_packet_append_rr(&packet, rr, &start, &rds);
1203 if (r < 0)
1204 return r;
1205
1206 assert(start == 0);
1207 assert(packet._data);
1208
1209 free(rr->wire_format);
1210 rr->wire_format = packet._data;
1211 rr->wire_format_size = packet.size;
1212 rr->wire_format_rdata_offset = rds;
1213 rr->wire_format_canonical = canonical;
1214
1215 packet._data = NULL;
1216 dns_packet_unref(&packet);
1217
1218 return 0;
1219 }
1220
1221 int dns_resource_record_signer(DnsResourceRecord *rr, const char **ret) {
1222 const char *n;
1223 int r;
1224
1225 assert(rr);
1226 assert(ret);
1227
1228 /* Returns the RRset's signer, if it is known. */
1229
1230 if (rr->n_skip_labels_signer == (unsigned) -1)
1231 return -ENODATA;
1232
1233 n = DNS_RESOURCE_KEY_NAME(rr->key);
1234 r = dns_name_skip(n, rr->n_skip_labels_signer, &n);
1235 if (r < 0)
1236 return r;
1237 if (r == 0)
1238 return -EINVAL;
1239
1240 *ret = n;
1241 return 0;
1242 }
1243
1244 int dns_resource_record_source(DnsResourceRecord *rr, const char **ret) {
1245 const char *n;
1246 int r;
1247
1248 assert(rr);
1249 assert(ret);
1250
1251 /* Returns the RRset's synthesizing source, if it is known. */
1252
1253 if (rr->n_skip_labels_source == (unsigned) -1)
1254 return -ENODATA;
1255
1256 n = DNS_RESOURCE_KEY_NAME(rr->key);
1257 r = dns_name_skip(n, rr->n_skip_labels_source, &n);
1258 if (r < 0)
1259 return r;
1260 if (r == 0)
1261 return -EINVAL;
1262
1263 *ret = n;
1264 return 0;
1265 }
1266
1267 int dns_resource_record_is_signer(DnsResourceRecord *rr, const char *zone) {
1268 const char *signer;
1269 int r;
1270
1271 assert(rr);
1272
1273 r = dns_resource_record_signer(rr, &signer);
1274 if (r < 0)
1275 return r;
1276
1277 return dns_name_equal(zone, signer);
1278 }
1279
1280 int dns_resource_record_is_synthetic(DnsResourceRecord *rr) {
1281 int r;
1282
1283 assert(rr);
1284
1285 /* Returns > 0 if the RR is generated from a wildcard, and is not the asterisk name itself */
1286
1287 if (rr->n_skip_labels_source == (unsigned) -1)
1288 return -ENODATA;
1289
1290 if (rr->n_skip_labels_source == 0)
1291 return 0;
1292
1293 if (rr->n_skip_labels_source > 1)
1294 return 1;
1295
1296 r = dns_name_startswith(DNS_RESOURCE_KEY_NAME(rr->key), "*");
1297 if (r < 0)
1298 return r;
1299
1300 return !r;
1301 }
1302
1303 static void dns_resource_record_hash_func(const void *i, struct siphash *state) {
1304 const DnsResourceRecord *rr = i;
1305
1306 assert(rr);
1307
1308 dns_resource_key_hash_func(rr->key, state);
1309
1310 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1311
1312 case DNS_TYPE_SRV:
1313 siphash24_compress(&rr->srv.priority, sizeof(rr->srv.priority), state);
1314 siphash24_compress(&rr->srv.weight, sizeof(rr->srv.weight), state);
1315 siphash24_compress(&rr->srv.port, sizeof(rr->srv.port), state);
1316 dns_name_hash_func(rr->srv.name, state);
1317 break;
1318
1319 case DNS_TYPE_PTR:
1320 case DNS_TYPE_NS:
1321 case DNS_TYPE_CNAME:
1322 case DNS_TYPE_DNAME:
1323 dns_name_hash_func(rr->ptr.name, state);
1324 break;
1325
1326 case DNS_TYPE_HINFO:
1327 string_hash_func(rr->hinfo.cpu, state);
1328 string_hash_func(rr->hinfo.os, state);
1329 break;
1330
1331 case DNS_TYPE_TXT:
1332 case DNS_TYPE_SPF: {
1333 DnsTxtItem *j;
1334
1335 LIST_FOREACH(items, j, rr->txt.items) {
1336 siphash24_compress(j->data, j->length, state);
1337
1338 /* Add an extra NUL byte, so that "a" followed by "b" doesn't result in the same hash as "ab"
1339 * followed by "". */
1340 siphash24_compress_byte(0, state);
1341 }
1342 break;
1343 }
1344
1345 case DNS_TYPE_A:
1346 siphash24_compress(&rr->a.in_addr, sizeof(rr->a.in_addr), state);
1347 break;
1348
1349 case DNS_TYPE_AAAA:
1350 siphash24_compress(&rr->aaaa.in6_addr, sizeof(rr->aaaa.in6_addr), state);
1351 break;
1352
1353 case DNS_TYPE_SOA:
1354 dns_name_hash_func(rr->soa.mname, state);
1355 dns_name_hash_func(rr->soa.rname, state);
1356 siphash24_compress(&rr->soa.serial, sizeof(rr->soa.serial), state);
1357 siphash24_compress(&rr->soa.refresh, sizeof(rr->soa.refresh), state);
1358 siphash24_compress(&rr->soa.retry, sizeof(rr->soa.retry), state);
1359 siphash24_compress(&rr->soa.expire, sizeof(rr->soa.expire), state);
1360 siphash24_compress(&rr->soa.minimum, sizeof(rr->soa.minimum), state);
1361 break;
1362
1363 case DNS_TYPE_MX:
1364 siphash24_compress(&rr->mx.priority, sizeof(rr->mx.priority), state);
1365 dns_name_hash_func(rr->mx.exchange, state);
1366 break;
1367
1368 case DNS_TYPE_LOC:
1369 siphash24_compress(&rr->loc.version, sizeof(rr->loc.version), state);
1370 siphash24_compress(&rr->loc.size, sizeof(rr->loc.size), state);
1371 siphash24_compress(&rr->loc.horiz_pre, sizeof(rr->loc.horiz_pre), state);
1372 siphash24_compress(&rr->loc.vert_pre, sizeof(rr->loc.vert_pre), state);
1373 siphash24_compress(&rr->loc.latitude, sizeof(rr->loc.latitude), state);
1374 siphash24_compress(&rr->loc.longitude, sizeof(rr->loc.longitude), state);
1375 siphash24_compress(&rr->loc.altitude, sizeof(rr->loc.altitude), state);
1376 break;
1377
1378 case DNS_TYPE_SSHFP:
1379 siphash24_compress(&rr->sshfp.algorithm, sizeof(rr->sshfp.algorithm), state);
1380 siphash24_compress(&rr->sshfp.fptype, sizeof(rr->sshfp.fptype), state);
1381 siphash24_compress(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, state);
1382 break;
1383
1384 case DNS_TYPE_DNSKEY:
1385 siphash24_compress(&rr->dnskey.flags, sizeof(rr->dnskey.flags), state);
1386 siphash24_compress(&rr->dnskey.protocol, sizeof(rr->dnskey.protocol), state);
1387 siphash24_compress(&rr->dnskey.algorithm, sizeof(rr->dnskey.algorithm), state);
1388 siphash24_compress(rr->dnskey.key, rr->dnskey.key_size, state);
1389 break;
1390
1391 case DNS_TYPE_RRSIG:
1392 siphash24_compress(&rr->rrsig.type_covered, sizeof(rr->rrsig.type_covered), state);
1393 siphash24_compress(&rr->rrsig.algorithm, sizeof(rr->rrsig.algorithm), state);
1394 siphash24_compress(&rr->rrsig.labels, sizeof(rr->rrsig.labels), state);
1395 siphash24_compress(&rr->rrsig.original_ttl, sizeof(rr->rrsig.original_ttl), state);
1396 siphash24_compress(&rr->rrsig.expiration, sizeof(rr->rrsig.expiration), state);
1397 siphash24_compress(&rr->rrsig.inception, sizeof(rr->rrsig.inception), state);
1398 siphash24_compress(&rr->rrsig.key_tag, sizeof(rr->rrsig.key_tag), state);
1399 dns_name_hash_func(rr->rrsig.signer, state);
1400 siphash24_compress(rr->rrsig.signature, rr->rrsig.signature_size, state);
1401 break;
1402
1403 case DNS_TYPE_NSEC:
1404 dns_name_hash_func(rr->nsec.next_domain_name, state);
1405 /* FIXME: we leave out the type bitmap here. Hash
1406 * would be better if we'd take it into account
1407 * too. */
1408 break;
1409
1410 case DNS_TYPE_DS:
1411 siphash24_compress(&rr->ds.key_tag, sizeof(rr->ds.key_tag), state);
1412 siphash24_compress(&rr->ds.algorithm, sizeof(rr->ds.algorithm), state);
1413 siphash24_compress(&rr->ds.digest_type, sizeof(rr->ds.digest_type), state);
1414 siphash24_compress(rr->ds.digest, rr->ds.digest_size, state);
1415 break;
1416
1417 case DNS_TYPE_NSEC3:
1418 siphash24_compress(&rr->nsec3.algorithm, sizeof(rr->nsec3.algorithm), state);
1419 siphash24_compress(&rr->nsec3.flags, sizeof(rr->nsec3.flags), state);
1420 siphash24_compress(&rr->nsec3.iterations, sizeof(rr->nsec3.iterations), state);
1421 siphash24_compress(rr->nsec3.salt, rr->nsec3.salt_size, state);
1422 siphash24_compress(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, state);
1423 /* FIXME: We leave the bitmaps out */
1424 break;
1425
1426 case DNS_TYPE_TLSA:
1427 siphash24_compress(&rr->tlsa.cert_usage, sizeof(rr->tlsa.cert_usage), state);
1428 siphash24_compress(&rr->tlsa.selector, sizeof(rr->tlsa.selector), state);
1429 siphash24_compress(&rr->tlsa.matching_type, sizeof(rr->tlsa.matching_type), state);
1430 siphash24_compress(&rr->tlsa.data, rr->tlsa.data_size, state);
1431 break;
1432
1433 case DNS_TYPE_OPENPGPKEY:
1434 default:
1435 siphash24_compress(rr->generic.data, rr->generic.data_size, state);
1436 break;
1437 }
1438 }
1439
1440 static int dns_resource_record_compare_func(const void *a, const void *b) {
1441 const DnsResourceRecord *x = a, *y = b;
1442 int ret;
1443
1444 ret = dns_resource_key_compare_func(x->key, y->key);
1445 if (ret != 0)
1446 return ret;
1447
1448 if (dns_resource_record_equal(x, y))
1449 return 0;
1450
1451 /* This is a bit dirty, we don't implement proper ordering, but
1452 * the hashtable doesn't need ordering anyway, hence we don't
1453 * care. */
1454 return x < y ? -1 : 1;
1455 }
1456
1457 const struct hash_ops dns_resource_record_hash_ops = {
1458 .hash = dns_resource_record_hash_func,
1459 .compare = dns_resource_record_compare_func,
1460 };
1461
1462 DnsTxtItem *dns_txt_item_free_all(DnsTxtItem *i) {
1463 DnsTxtItem *n;
1464
1465 if (!i)
1466 return NULL;
1467
1468 n = i->items_next;
1469
1470 free(i);
1471 return dns_txt_item_free_all(n);
1472 }
1473
1474 bool dns_txt_item_equal(DnsTxtItem *a, DnsTxtItem *b) {
1475
1476 if (a == b)
1477 return true;
1478
1479 if (!a != !b)
1480 return false;
1481
1482 if (!a)
1483 return true;
1484
1485 if (a->length != b->length)
1486 return false;
1487
1488 if (memcmp(a->data, b->data, a->length) != 0)
1489 return false;
1490
1491 return dns_txt_item_equal(a->items_next, b->items_next);
1492 }
1493
1494 static const char* const dnssec_algorithm_table[_DNSSEC_ALGORITHM_MAX_DEFINED] = {
1495 /* Mnemonics as listed on https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
1496 [DNSSEC_ALGORITHM_RSAMD5] = "RSAMD5",
1497 [DNSSEC_ALGORITHM_DH] = "DH",
1498 [DNSSEC_ALGORITHM_DSA] = "DSA",
1499 [DNSSEC_ALGORITHM_ECC] = "ECC",
1500 [DNSSEC_ALGORITHM_RSASHA1] = "RSASHA1",
1501 [DNSSEC_ALGORITHM_DSA_NSEC3_SHA1] = "DSA-NSEC3-SHA1",
1502 [DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1] = "RSASHA1-NSEC3-SHA1",
1503 [DNSSEC_ALGORITHM_RSASHA256] = "RSASHA256",
1504 [DNSSEC_ALGORITHM_RSASHA512] = "RSASHA512",
1505 [DNSSEC_ALGORITHM_ECC_GOST] = "ECC-GOST",
1506 [DNSSEC_ALGORITHM_ECDSAP256SHA256] = "ECDSAP256SHA256",
1507 [DNSSEC_ALGORITHM_ECDSAP384SHA384] = "ECDSAP384SHA384",
1508 [DNSSEC_ALGORITHM_INDIRECT] = "INDIRECT",
1509 [DNSSEC_ALGORITHM_PRIVATEDNS] = "PRIVATEDNS",
1510 [DNSSEC_ALGORITHM_PRIVATEOID] = "PRIVATEOID",
1511 };
1512 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_algorithm, int, 255);
1513
1514 static const char* const dnssec_digest_table[_DNSSEC_DIGEST_MAX_DEFINED] = {
1515 /* Names as listed on https://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
1516 [DNSSEC_DIGEST_SHA1] = "SHA-1",
1517 [DNSSEC_DIGEST_SHA256] = "SHA-256",
1518 [DNSSEC_DIGEST_GOST_R_34_11_94] = "GOST_R_34.11-94",
1519 [DNSSEC_DIGEST_SHA384] = "SHA-384",
1520 };
1521 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_digest, int, 255);