]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/shared/dissect-image.c
Merge pull request #24709 from keszybz/partition-table-constants
[thirdparty/systemd.git] / src / shared / dissect-image.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #if HAVE_VALGRIND_MEMCHECK_H
4 #include <valgrind/memcheck.h>
5 #endif
6
7 #include <linux/dm-ioctl.h>
8 #include <linux/loop.h>
9 #include <sys/file.h>
10 #include <sys/mount.h>
11 #include <sys/prctl.h>
12 #include <sys/wait.h>
13 #include <sysexits.h>
14
15 #if HAVE_OPENSSL
16 #include <openssl/err.h>
17 #include <openssl/pem.h>
18 #include <openssl/x509.h>
19 #endif
20
21 #include "sd-device.h"
22 #include "sd-id128.h"
23
24 #include "architecture.h"
25 #include "ask-password-api.h"
26 #include "blkid-util.h"
27 #include "blockdev-util.h"
28 #include "chase-symlinks.h"
29 #include "conf-files.h"
30 #include "copy.h"
31 #include "cryptsetup-util.h"
32 #include "def.h"
33 #include "device-nodes.h"
34 #include "device-util.h"
35 #include "discover-image.h"
36 #include "dissect-image.h"
37 #include "dm-util.h"
38 #include "env-file.h"
39 #include "env-util.h"
40 #include "extension-release.h"
41 #include "fd-util.h"
42 #include "fileio.h"
43 #include "fs-util.h"
44 #include "fsck-util.h"
45 #include "gpt.h"
46 #include "hexdecoct.h"
47 #include "hostname-setup.h"
48 #include "id128-util.h"
49 #include "import-util.h"
50 #include "io-util.h"
51 #include "mkdir-label.h"
52 #include "mount-util.h"
53 #include "mountpoint-util.h"
54 #include "namespace-util.h"
55 #include "nulstr-util.h"
56 #include "openssl-util.h"
57 #include "os-util.h"
58 #include "path-util.h"
59 #include "process-util.h"
60 #include "raw-clone.h"
61 #include "resize-fs.h"
62 #include "signal-util.h"
63 #include "stat-util.h"
64 #include "stdio-util.h"
65 #include "string-table.h"
66 #include "string-util.h"
67 #include "strv.h"
68 #include "tmpfile-util.h"
69 #include "udev-util.h"
70 #include "user-util.h"
71 #include "xattr-util.h"
72
73 /* how many times to wait for the device nodes to appear */
74 #define N_DEVICE_NODE_LIST_ATTEMPTS 10
75
76 int probe_filesystem(const char *node, char **ret_fstype) {
77 /* Try to find device content type and return it in *ret_fstype. If nothing is found,
78 * 0/NULL will be returned. -EUCLEAN will be returned for ambiguous results, and an
79 * different error otherwise. */
80
81 #if HAVE_BLKID
82 _cleanup_(blkid_free_probep) blkid_probe b = NULL;
83 const char *fstype;
84 int r;
85
86 errno = 0;
87 b = blkid_new_probe_from_filename(node);
88 if (!b)
89 return errno_or_else(ENOMEM);
90
91 blkid_probe_enable_superblocks(b, 1);
92 blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE);
93
94 errno = 0;
95 r = blkid_do_safeprobe(b);
96 if (r == 1)
97 goto not_found;
98 if (r == -2)
99 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN),
100 "Results ambiguous for partition %s", node);
101 if (r != 0)
102 return log_debug_errno(errno_or_else(EIO), "Failed to probe partition %s: %m", node);
103
104 (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
105
106 if (fstype) {
107 char *t;
108
109 log_debug("Probed fstype '%s' on partition %s.", fstype, node);
110
111 t = strdup(fstype);
112 if (!t)
113 return -ENOMEM;
114
115 *ret_fstype = t;
116 return 1;
117 }
118
119 not_found:
120 log_debug("No type detected on partition %s", node);
121 *ret_fstype = NULL;
122 return 0;
123 #else
124 return -EOPNOTSUPP;
125 #endif
126 }
127
128 #if HAVE_BLKID
129 static void check_partition_flags(
130 const char *node,
131 unsigned long long pflags,
132 unsigned long long supported) {
133
134 assert(node);
135
136 /* Mask away all flags supported by this partition's type and the three flags the UEFI spec defines generically */
137 pflags &= ~(supported |
138 SD_GPT_FLAG_REQUIRED_PARTITION |
139 SD_GPT_FLAG_NO_BLOCK_IO_PROTOCOL |
140 SD_GPT_FLAG_LEGACY_BIOS_BOOTABLE);
141
142 if (pflags == 0)
143 return;
144
145 /* If there are other bits set, then log about it, to make things discoverable */
146 for (unsigned i = 0; i < sizeof(pflags) * 8; i++) {
147 unsigned long long bit = 1ULL << i;
148 if (!FLAGS_SET(pflags, bit))
149 continue;
150
151 log_debug("Unexpected partition flag %llu set on %s!", bit, node);
152 }
153 }
154 #endif
155
156 #if HAVE_BLKID
157 static int dissected_image_new(const char *path, DissectedImage **ret) {
158 _cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
159 _cleanup_free_ char *name = NULL;
160 int r;
161
162 assert(ret);
163
164 if (path) {
165 _cleanup_free_ char *filename = NULL;
166
167 r = path_extract_filename(path, &filename);
168 if (r < 0)
169 return r;
170
171 r = raw_strip_suffixes(filename, &name);
172 if (r < 0)
173 return r;
174
175 if (!image_name_is_valid(name)) {
176 log_debug("Image name %s is not valid, ignoring.", strna(name));
177 name = mfree(name);
178 }
179 }
180
181 m = new(DissectedImage, 1);
182 if (!m)
183 return -ENOMEM;
184
185 *m = (DissectedImage) {
186 .has_init_system = -1,
187 .image_name = TAKE_PTR(name),
188 };
189
190 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++)
191 m->partitions[i] = DISSECTED_PARTITION_NULL;
192
193 *ret = TAKE_PTR(m);
194 return 0;
195 }
196 #endif
197
198 static void dissected_partition_done(DissectedPartition *p) {
199 assert(p);
200
201 free(p->fstype);
202 free(p->node);
203 free(p->label);
204 free(p->decrypted_fstype);
205 free(p->decrypted_node);
206 free(p->mount_options);
207
208 *p = DISSECTED_PARTITION_NULL;
209 }
210
211 #if HAVE_BLKID
212 static int make_partition_devname(
213 const char *whole_devname,
214 int nr,
215 char **ret) {
216
217 bool need_p;
218
219 assert(whole_devname);
220 assert(nr > 0);
221
222 /* Given a whole block device node name (e.g. /dev/sda or /dev/loop7) generate a partition device
223 * name (e.g. /dev/sda7 or /dev/loop7p5). The rule the kernel uses is simple: if whole block device
224 * node name ends in a digit, then suffix a 'p', followed by the partition number. Otherwise, just
225 * suffix the partition number without any 'p'. */
226
227 if (isempty(whole_devname)) /* Make sure there *is* a last char */
228 return -EINVAL;
229
230 need_p = ascii_isdigit(whole_devname[strlen(whole_devname)-1]); /* Last char a digit? */
231
232 return asprintf(ret, "%s%s%i", whole_devname, need_p ? "p" : "", nr);
233 }
234 #endif
235
236 int dissect_image(
237 int fd,
238 const char *devname,
239 const char *image_path,
240 const VeritySettings *verity,
241 const MountOptions *mount_options,
242 DissectImageFlags flags,
243 DissectedImage **ret) {
244
245 #if HAVE_BLKID
246 sd_id128_t root_uuid = SD_ID128_NULL, root_verity_uuid = SD_ID128_NULL;
247 sd_id128_t usr_uuid = SD_ID128_NULL, usr_verity_uuid = SD_ID128_NULL;
248 bool is_gpt, is_mbr, multiple_generic = false,
249 generic_rw = false, /* initialize to appease gcc */
250 generic_growfs = false;
251 _cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
252 _cleanup_(blkid_free_probep) blkid_probe b = NULL;
253 _cleanup_free_ char *generic_node = NULL;
254 sd_id128_t generic_uuid = SD_ID128_NULL;
255 const char *pttype = NULL;
256 blkid_partlist pl;
257 int r, generic_nr = -1, n_partitions;
258
259 assert(fd >= 0);
260 assert(devname);
261 assert(ret);
262 assert(!verity || verity->designator < 0 || IN_SET(verity->designator, PARTITION_ROOT, PARTITION_USR));
263 assert(!verity || verity->root_hash || verity->root_hash_size == 0);
264 assert(!verity || verity->root_hash_sig || verity->root_hash_sig_size == 0);
265 assert(!verity || (verity->root_hash || !verity->root_hash_sig));
266 assert(!((flags & DISSECT_IMAGE_GPT_ONLY) && (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)));
267
268 /* Probes a disk image, and returns information about what it found in *ret.
269 *
270 * Returns -ENOPKG if no suitable partition table or file system could be found.
271 * Returns -EADDRNOTAVAIL if a root hash was specified but no matching root/verity partitions found.
272 * Returns -ENXIO if we couldn't find any partition suitable as root or /usr partition
273 * Returns -ENOTUNIQ if we only found multiple generic partitions and thus don't know what to do with that */
274
275 if (verity && verity->root_hash) {
276 sd_id128_t fsuuid, vuuid;
277
278 /* If a root hash is supplied, then we use the root partition that has a UUID that match the
279 * first 128bit of the root hash. And we use the verity partition that has a UUID that match
280 * the final 128bit. */
281
282 if (verity->root_hash_size < sizeof(sd_id128_t))
283 return -EINVAL;
284
285 memcpy(&fsuuid, verity->root_hash, sizeof(sd_id128_t));
286 memcpy(&vuuid, (const uint8_t*) verity->root_hash + verity->root_hash_size - sizeof(sd_id128_t), sizeof(sd_id128_t));
287
288 if (sd_id128_is_null(fsuuid))
289 return -EINVAL;
290 if (sd_id128_is_null(vuuid))
291 return -EINVAL;
292
293 /* If the verity data declares it's for the /usr partition, then search for that, in all
294 * other cases assume it's for the root partition. */
295 if (verity->designator == PARTITION_USR) {
296 usr_uuid = fsuuid;
297 usr_verity_uuid = vuuid;
298 } else {
299 root_uuid = fsuuid;
300 root_verity_uuid = vuuid;
301 }
302 }
303
304 b = blkid_new_probe();
305 if (!b)
306 return -ENOMEM;
307
308 errno = 0;
309 r = blkid_probe_set_device(b, fd, 0, 0);
310 if (r != 0)
311 return errno_or_else(ENOMEM);
312
313 if ((flags & DISSECT_IMAGE_GPT_ONLY) == 0) {
314 /* Look for file system superblocks, unless we only shall look for GPT partition tables */
315 blkid_probe_enable_superblocks(b, 1);
316 blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE|BLKID_SUBLKS_USAGE);
317 }
318
319 blkid_probe_enable_partitions(b, 1);
320 blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS);
321
322 errno = 0;
323 r = blkid_do_safeprobe(b);
324 if (IN_SET(r, -2, 1))
325 return log_debug_errno(SYNTHETIC_ERRNO(ENOPKG), "Failed to identify any partition table.");
326 if (r != 0)
327 return errno_or_else(EIO);
328
329 r = dissected_image_new(image_path, &m);
330 if (r < 0)
331 return r;
332
333 if ((!(flags & DISSECT_IMAGE_GPT_ONLY) &&
334 (flags & DISSECT_IMAGE_GENERIC_ROOT)) ||
335 (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)) {
336 const char *usage = NULL;
337
338 /* If flags permit this, also allow using non-partitioned single-filesystem images */
339
340 (void) blkid_probe_lookup_value(b, "USAGE", &usage, NULL);
341 if (STRPTR_IN_SET(usage, "filesystem", "crypto")) {
342 _cleanup_free_ char *t = NULL, *n = NULL, *o = NULL;
343 const char *fstype = NULL, *options = NULL;
344
345 /* OK, we have found a file system, that's our root partition then. */
346 (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
347
348 if (fstype) {
349 t = strdup(fstype);
350 if (!t)
351 return -ENOMEM;
352 }
353
354 n = strdup(devname);
355 if (!n)
356 return -ENOMEM;
357
358 m->single_file_system = true;
359 m->encrypted = streq_ptr(fstype, "crypto_LUKS");
360
361 m->has_verity = verity && verity->data_path;
362 m->verity_ready = m->has_verity &&
363 verity->root_hash &&
364 (verity->designator < 0 || verity->designator == PARTITION_ROOT);
365
366 m->has_verity_sig = false; /* signature not embedded, must be specified */
367 m->verity_sig_ready = m->verity_ready &&
368 verity->root_hash_sig;
369
370 options = mount_options_from_designator(mount_options, PARTITION_ROOT);
371 if (options) {
372 o = strdup(options);
373 if (!o)
374 return -ENOMEM;
375 }
376
377 m->partitions[PARTITION_ROOT] = (DissectedPartition) {
378 .found = true,
379 .rw = !m->verity_ready && !fstype_is_ro(fstype),
380 .partno = -1,
381 .architecture = _ARCHITECTURE_INVALID,
382 .fstype = TAKE_PTR(t),
383 .node = TAKE_PTR(n),
384 .mount_options = TAKE_PTR(o),
385 .offset = 0,
386 .size = UINT64_MAX,
387 };
388
389 *ret = TAKE_PTR(m);
390 return 0;
391 }
392 }
393
394 (void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL);
395 if (!pttype)
396 return -ENOPKG;
397
398 is_gpt = streq_ptr(pttype, "gpt");
399 is_mbr = streq_ptr(pttype, "dos");
400
401 if (!is_gpt && ((flags & DISSECT_IMAGE_GPT_ONLY) || !is_mbr))
402 return -ENOPKG;
403
404 /* We support external verity data partitions only if the image has no partition table */
405 if (verity && verity->data_path)
406 return -EBADR;
407
408 /* Safety check: refuse block devices that carry a partition table but for which the kernel doesn't
409 * do partition scanning. */
410 r = blockdev_partscan_enabled(fd);
411 if (r < 0)
412 return r;
413 if (r == 0)
414 return -EPROTONOSUPPORT;
415
416 errno = 0;
417 pl = blkid_probe_get_partitions(b);
418 if (!pl)
419 return errno_or_else(ENOMEM);
420
421 errno = 0;
422 n_partitions = blkid_partlist_numof_partitions(pl);
423 if (n_partitions < 0)
424 return errno_or_else(EIO);
425
426 for (int i = 0; i < n_partitions; i++) {
427 _cleanup_free_ char *node = NULL;
428 unsigned long long pflags;
429 blkid_loff_t start, size;
430 blkid_partition pp;
431 int nr;
432
433 errno = 0;
434 pp = blkid_partlist_get_partition(pl, i);
435 if (!pp)
436 return errno_or_else(EIO);
437
438 pflags = blkid_partition_get_flags(pp);
439
440 errno = 0;
441 nr = blkid_partition_get_partno(pp);
442 if (nr < 0)
443 return errno_or_else(EIO);
444
445 errno = 0;
446 start = blkid_partition_get_start(pp);
447 if (start < 0)
448 return errno_or_else(EIO);
449
450 assert((uint64_t) start < UINT64_MAX/512);
451
452 errno = 0;
453 size = blkid_partition_get_size(pp);
454 if (size < 0)
455 return errno_or_else(EIO);
456
457 assert((uint64_t) size < UINT64_MAX/512);
458
459 r = make_partition_devname(devname, nr, &node);
460 if (r < 0)
461 return r;
462
463 /* So here's the thing: after the main ("whole") block device popped up it might take a while
464 * before the kernel fully probed the partition table. Waiting for that to finish is icky in
465 * userspace. So here's what we do instead. We issue the BLKPG_ADD_PARTITION ioctl to add the
466 * partition ourselves, racing against the kernel. Good thing is: if this call fails with
467 * EBUSY then the kernel was quicker than us, and that's totally OK, the outcome is good for
468 * us: the device node will exist. If OTOH our call was successful we won the race. Which is
469 * also good as the outcome is the same: the partition block device exists, and we can use
470 * it.
471 *
472 * Kernel returns EBUSY if there's already a partition by that number or an overlapping
473 * partition already existent. */
474
475 r = block_device_add_partition(fd, node, nr, (uint64_t) start * 512, (uint64_t) size * 512);
476 if (r < 0) {
477 if (r != -EBUSY)
478 return log_debug_errno(r, "BLKPG_ADD_PARTITION failed: %m");
479
480 log_debug_errno(r, "Kernel was quicker than us in adding partition %i.", nr);
481 } else
482 log_debug("We were quicker than kernel in adding partition %i.", nr);
483
484 if (is_gpt) {
485 PartitionDesignator designator = _PARTITION_DESIGNATOR_INVALID;
486 Architecture architecture = _ARCHITECTURE_INVALID;
487 const char *stype, *sid, *fstype = NULL, *label;
488 sd_id128_t type_id, id;
489 bool rw = true, growfs = false;
490
491 sid = blkid_partition_get_uuid(pp);
492 if (!sid)
493 continue;
494 if (sd_id128_from_string(sid, &id) < 0)
495 continue;
496
497 stype = blkid_partition_get_type_string(pp);
498 if (!stype)
499 continue;
500 if (sd_id128_from_string(stype, &type_id) < 0)
501 continue;
502
503 label = blkid_partition_get_name(pp); /* libblkid returns NULL here if empty */
504
505 if (sd_id128_equal(type_id, SD_GPT_HOME)) {
506
507 check_partition_flags(node, pflags,
508 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
509
510 if (pflags & SD_GPT_FLAG_NO_AUTO)
511 continue;
512
513 designator = PARTITION_HOME;
514 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
515 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
516
517 } else if (sd_id128_equal(type_id, SD_GPT_SRV)) {
518
519 check_partition_flags(node, pflags,
520 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
521
522 if (pflags & SD_GPT_FLAG_NO_AUTO)
523 continue;
524
525 designator = PARTITION_SRV;
526 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
527 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
528
529 } else if (sd_id128_equal(type_id, SD_GPT_ESP)) {
530
531 /* Note that we don't check the SD_GPT_FLAG_NO_AUTO flag for the ESP, as it is
532 * not defined there. We instead check the SD_GPT_FLAG_NO_BLOCK_IO_PROTOCOL, as
533 * recommended by the UEFI spec (See "12.3.3 Number and Location of System
534 * Partitions"). */
535
536 if (pflags & SD_GPT_FLAG_NO_BLOCK_IO_PROTOCOL)
537 continue;
538
539 designator = PARTITION_ESP;
540 fstype = "vfat";
541
542 } else if (sd_id128_equal(type_id, SD_GPT_XBOOTLDR)) {
543
544 check_partition_flags(node, pflags,
545 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
546
547 if (pflags & SD_GPT_FLAG_NO_AUTO)
548 continue;
549
550 designator = PARTITION_XBOOTLDR;
551 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
552 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
553
554 } else if (gpt_partition_type_is_root(type_id)) {
555
556 check_partition_flags(node, pflags,
557 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
558
559 if (pflags & SD_GPT_FLAG_NO_AUTO)
560 continue;
561
562 /* If a root ID is specified, ignore everything but the root id */
563 if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id))
564 continue;
565
566 assert_se((architecture = gpt_partition_type_uuid_to_arch(type_id)) >= 0);
567 designator = PARTITION_ROOT_OF_ARCH(architecture);
568 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
569 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
570
571 } else if (gpt_partition_type_is_root_verity(type_id)) {
572
573 check_partition_flags(node, pflags,
574 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY);
575
576 if (pflags & SD_GPT_FLAG_NO_AUTO)
577 continue;
578
579 m->has_verity = true;
580
581 /* If no verity configuration is specified, then don't do verity */
582 if (!verity)
583 continue;
584 if (verity->designator >= 0 && verity->designator != PARTITION_ROOT)
585 continue;
586
587 /* If root hash is specified, then ignore everything but the root id */
588 if (!sd_id128_is_null(root_verity_uuid) && !sd_id128_equal(root_verity_uuid, id))
589 continue;
590
591 assert_se((architecture = gpt_partition_type_uuid_to_arch(type_id)) >= 0);
592 designator = PARTITION_VERITY_OF(PARTITION_ROOT_OF_ARCH(architecture));
593 fstype = "DM_verity_hash";
594 rw = false;
595
596 } else if (gpt_partition_type_is_root_verity_sig(type_id)) {
597
598 check_partition_flags(node, pflags,
599 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY);
600
601 if (pflags & SD_GPT_FLAG_NO_AUTO)
602 continue;
603
604 m->has_verity_sig = true;
605
606 /* If root hash is specified explicitly, then ignore any embedded signature */
607 if (!verity)
608 continue;
609 if (verity->designator >= 0 && verity->designator != PARTITION_ROOT)
610 continue;
611 if (verity->root_hash)
612 continue;
613
614 assert_se((architecture = gpt_partition_type_uuid_to_arch(type_id)) >= 0);
615 designator = PARTITION_VERITY_SIG_OF(PARTITION_ROOT_OF_ARCH(architecture));
616 fstype = "verity_hash_signature";
617 rw = false;
618
619 } else if (gpt_partition_type_is_usr(type_id)) {
620
621 check_partition_flags(node, pflags,
622 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
623
624 if (pflags & SD_GPT_FLAG_NO_AUTO)
625 continue;
626
627 /* If a usr ID is specified, ignore everything but the usr id */
628 if (!sd_id128_is_null(usr_uuid) && !sd_id128_equal(usr_uuid, id))
629 continue;
630
631 assert_se((architecture = gpt_partition_type_uuid_to_arch(type_id)) >= 0);
632 designator = PARTITION_USR_OF_ARCH(architecture);
633 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
634 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
635
636 } else if (gpt_partition_type_is_usr_verity(type_id)) {
637
638 check_partition_flags(node, pflags,
639 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY);
640
641 if (pflags & SD_GPT_FLAG_NO_AUTO)
642 continue;
643
644 m->has_verity = true;
645
646 if (!verity)
647 continue;
648 if (verity->designator >= 0 && verity->designator != PARTITION_USR)
649 continue;
650
651 /* If usr hash is specified, then ignore everything but the usr id */
652 if (!sd_id128_is_null(usr_verity_uuid) && !sd_id128_equal(usr_verity_uuid, id))
653 continue;
654
655 assert_se((architecture = gpt_partition_type_uuid_to_arch(type_id)) >= 0);
656 designator = PARTITION_VERITY_OF(PARTITION_USR_OF_ARCH(architecture));
657 fstype = "DM_verity_hash";
658 rw = false;
659
660 } else if (gpt_partition_type_is_usr_verity_sig(type_id)) {
661
662 check_partition_flags(node, pflags,
663 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY);
664
665 if (pflags & SD_GPT_FLAG_NO_AUTO)
666 continue;
667
668 m->has_verity_sig = true;
669
670 /* If usr hash is specified explicitly, then ignore any embedded signature */
671 if (!verity)
672 continue;
673 if (verity->designator >= 0 && verity->designator != PARTITION_USR)
674 continue;
675 if (verity->root_hash)
676 continue;
677
678 assert_se((architecture = gpt_partition_type_uuid_to_arch(type_id)) >= 0);
679 designator = PARTITION_VERITY_SIG_OF(PARTITION_USR_OF_ARCH(architecture));
680 fstype = "verity_hash_signature";
681 rw = false;
682
683 } else if (sd_id128_equal(type_id, SD_GPT_SWAP)) {
684
685 check_partition_flags(node, pflags, SD_GPT_FLAG_NO_AUTO);
686
687 if (pflags & SD_GPT_FLAG_NO_AUTO)
688 continue;
689
690 designator = PARTITION_SWAP;
691
692 } else if (sd_id128_equal(type_id, SD_GPT_LINUX_GENERIC)) {
693
694 check_partition_flags(node, pflags,
695 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
696
697 if (pflags & SD_GPT_FLAG_NO_AUTO)
698 continue;
699
700 if (generic_node)
701 multiple_generic = true;
702 else {
703 generic_nr = nr;
704 generic_rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
705 generic_growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
706 generic_uuid = id;
707 generic_node = strdup(node);
708 if (!generic_node)
709 return -ENOMEM;
710 }
711
712 } else if (sd_id128_equal(type_id, SD_GPT_TMP)) {
713
714 check_partition_flags(node, pflags,
715 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
716
717 if (pflags & SD_GPT_FLAG_NO_AUTO)
718 continue;
719
720 designator = PARTITION_TMP;
721 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
722 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
723
724 } else if (sd_id128_equal(type_id, SD_GPT_VAR)) {
725
726 check_partition_flags(node, pflags,
727 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
728
729 if (pflags & SD_GPT_FLAG_NO_AUTO)
730 continue;
731
732 if (!FLAGS_SET(flags, DISSECT_IMAGE_RELAX_VAR_CHECK)) {
733 sd_id128_t var_uuid;
734
735 /* For /var we insist that the uuid of the partition matches the
736 * HMAC-SHA256 of the /var GPT partition type uuid, keyed by machine
737 * ID. Why? Unlike the other partitions /var is inherently
738 * installation specific, hence we need to be careful not to mount it
739 * in the wrong installation. By hashing the partition UUID from
740 * /etc/machine-id we can securely bind the partition to the
741 * installation. */
742
743 r = sd_id128_get_machine_app_specific(SD_GPT_VAR, &var_uuid);
744 if (r < 0)
745 return r;
746
747 if (!sd_id128_equal(var_uuid, id)) {
748 log_debug("Found a /var/ partition, but its UUID didn't match our expectations, ignoring.");
749 continue;
750 }
751 }
752
753 designator = PARTITION_VAR;
754 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
755 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
756 }
757
758 if (designator != _PARTITION_DESIGNATOR_INVALID) {
759 _cleanup_free_ char *t = NULL, *o = NULL, *l = NULL;
760 const char *options = NULL;
761
762 if (m->partitions[designator].found) {
763 /* For most partition types the first one we see wins. Except for the
764 * rootfs and /usr, where we do a version compare of the label, and
765 * let the newest version win. This permits a simple A/B versioning
766 * scheme in OS images. */
767
768 if (!PARTITION_DESIGNATOR_VERSIONED(designator) ||
769 strverscmp_improved(m->partitions[designator].label, label) >= 0)
770 continue;
771
772 dissected_partition_done(m->partitions + designator);
773 }
774
775 if (fstype) {
776 t = strdup(fstype);
777 if (!t)
778 return -ENOMEM;
779 }
780
781 if (label) {
782 l = strdup(label);
783 if (!l)
784 return -ENOMEM;
785 }
786
787 options = mount_options_from_designator(mount_options, designator);
788 if (options) {
789 o = strdup(options);
790 if (!o)
791 return -ENOMEM;
792 }
793
794 m->partitions[designator] = (DissectedPartition) {
795 .found = true,
796 .partno = nr,
797 .rw = rw,
798 .growfs = growfs,
799 .architecture = architecture,
800 .node = TAKE_PTR(node),
801 .fstype = TAKE_PTR(t),
802 .label = TAKE_PTR(l),
803 .uuid = id,
804 .mount_options = TAKE_PTR(o),
805 .offset = (uint64_t) start * 512,
806 .size = (uint64_t) size * 512,
807 };
808 }
809
810 } else if (is_mbr) {
811
812 switch (blkid_partition_get_type(pp)) {
813
814 case 0x83: /* Linux partition */
815
816 if (pflags != 0x80) /* Bootable flag */
817 continue;
818
819 if (generic_node)
820 multiple_generic = true;
821 else {
822 generic_nr = nr;
823 generic_rw = true;
824 generic_growfs = false;
825 generic_node = strdup(node);
826 if (!generic_node)
827 return -ENOMEM;
828 }
829
830 break;
831
832 case 0xEA: { /* Boot Loader Spec extended $BOOT partition */
833 _cleanup_free_ char *o = NULL;
834 sd_id128_t id = SD_ID128_NULL;
835 const char *sid, *options = NULL;
836
837 /* First one wins */
838 if (m->partitions[PARTITION_XBOOTLDR].found)
839 continue;
840
841 sid = blkid_partition_get_uuid(pp);
842 if (sid)
843 (void) sd_id128_from_string(sid, &id);
844
845 options = mount_options_from_designator(mount_options, PARTITION_XBOOTLDR);
846 if (options) {
847 o = strdup(options);
848 if (!o)
849 return -ENOMEM;
850 }
851
852 m->partitions[PARTITION_XBOOTLDR] = (DissectedPartition) {
853 .found = true,
854 .partno = nr,
855 .rw = true,
856 .growfs = false,
857 .architecture = _ARCHITECTURE_INVALID,
858 .node = TAKE_PTR(node),
859 .uuid = id,
860 .mount_options = TAKE_PTR(o),
861 .offset = (uint64_t) start * 512,
862 .size = (uint64_t) size * 512,
863 };
864
865 break;
866 }}
867 }
868 }
869
870 if (m->partitions[PARTITION_ROOT].found) {
871 /* If we found the primary arch, then invalidate the secondary and other arch to avoid any
872 * ambiguities, since we never want to mount the secondary or other arch in this case. */
873 m->partitions[PARTITION_ROOT_SECONDARY].found = false;
874 m->partitions[PARTITION_ROOT_SECONDARY_VERITY].found = false;
875 m->partitions[PARTITION_ROOT_SECONDARY_VERITY_SIG].found = false;
876 m->partitions[PARTITION_USR_SECONDARY].found = false;
877 m->partitions[PARTITION_USR_SECONDARY_VERITY].found = false;
878 m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG].found = false;
879
880 m->partitions[PARTITION_ROOT_OTHER].found = false;
881 m->partitions[PARTITION_ROOT_OTHER_VERITY].found = false;
882 m->partitions[PARTITION_ROOT_OTHER_VERITY_SIG].found = false;
883 m->partitions[PARTITION_USR_OTHER].found = false;
884 m->partitions[PARTITION_USR_OTHER_VERITY].found = false;
885 m->partitions[PARTITION_USR_OTHER_VERITY_SIG].found = false;
886
887 } else if (m->partitions[PARTITION_ROOT_VERITY].found ||
888 m->partitions[PARTITION_ROOT_VERITY_SIG].found)
889 return -EADDRNOTAVAIL; /* Verity found but no matching rootfs? Something is off, refuse. */
890
891 else if (m->partitions[PARTITION_ROOT_SECONDARY].found) {
892
893 /* No root partition found but there's one for the secondary architecture? Then upgrade
894 * secondary arch to first and invalidate the other arch. */
895
896 log_debug("No root partition found of the native architecture, falling back to a root "
897 "partition of the secondary architecture.");
898
899 m->partitions[PARTITION_ROOT] = m->partitions[PARTITION_ROOT_SECONDARY];
900 zero(m->partitions[PARTITION_ROOT_SECONDARY]);
901 m->partitions[PARTITION_ROOT_VERITY] = m->partitions[PARTITION_ROOT_SECONDARY_VERITY];
902 zero(m->partitions[PARTITION_ROOT_SECONDARY_VERITY]);
903 m->partitions[PARTITION_ROOT_VERITY_SIG] = m->partitions[PARTITION_ROOT_SECONDARY_VERITY_SIG];
904 zero(m->partitions[PARTITION_ROOT_SECONDARY_VERITY_SIG]);
905
906 m->partitions[PARTITION_USR] = m->partitions[PARTITION_USR_SECONDARY];
907 zero(m->partitions[PARTITION_USR_SECONDARY]);
908 m->partitions[PARTITION_USR_VERITY] = m->partitions[PARTITION_USR_SECONDARY_VERITY];
909 zero(m->partitions[PARTITION_USR_SECONDARY_VERITY]);
910 m->partitions[PARTITION_USR_VERITY_SIG] = m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG];
911 zero(m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG]);
912
913 m->partitions[PARTITION_ROOT_OTHER].found = false;
914 m->partitions[PARTITION_ROOT_OTHER_VERITY].found = false;
915 m->partitions[PARTITION_ROOT_OTHER_VERITY_SIG].found = false;
916 m->partitions[PARTITION_USR_OTHER].found = false;
917 m->partitions[PARTITION_USR_OTHER_VERITY].found = false;
918 m->partitions[PARTITION_USR_OTHER_VERITY_SIG].found = false;
919
920 } else if (m->partitions[PARTITION_ROOT_SECONDARY_VERITY].found ||
921 m->partitions[PARTITION_ROOT_SECONDARY_VERITY_SIG].found)
922 return -EADDRNOTAVAIL; /* as above */
923
924 else if (m->partitions[PARTITION_ROOT_OTHER].found) {
925
926 /* No root or secondary partition found but there's one for another architecture? Then
927 * upgrade the other architecture to first. */
928
929 log_debug("No root partition found of the native architecture or the secondary architecture, "
930 "falling back to a root partition of a non-native architecture (%s).",
931 architecture_to_string(m->partitions[PARTITION_ROOT_OTHER].architecture));
932
933 m->partitions[PARTITION_ROOT] = m->partitions[PARTITION_ROOT_OTHER];
934 zero(m->partitions[PARTITION_ROOT_OTHER]);
935 m->partitions[PARTITION_ROOT_VERITY] = m->partitions[PARTITION_ROOT_OTHER_VERITY];
936 zero(m->partitions[PARTITION_ROOT_OTHER_VERITY]);
937 m->partitions[PARTITION_ROOT_VERITY_SIG] = m->partitions[PARTITION_ROOT_OTHER_VERITY_SIG];
938 zero(m->partitions[PARTITION_ROOT_OTHER_VERITY_SIG]);
939
940 m->partitions[PARTITION_USR] = m->partitions[PARTITION_USR_OTHER];
941 zero(m->partitions[PARTITION_USR_OTHER]);
942 m->partitions[PARTITION_USR_VERITY] = m->partitions[PARTITION_USR_OTHER_VERITY];
943 zero(m->partitions[PARTITION_USR_OTHER_VERITY]);
944 m->partitions[PARTITION_USR_VERITY_SIG] = m->partitions[PARTITION_USR_OTHER_VERITY_SIG];
945 zero(m->partitions[PARTITION_USR_OTHER_VERITY_SIG]);
946 }
947
948 /* Hmm, we found a signature partition but no Verity data? Something is off. */
949 if (m->partitions[PARTITION_ROOT_VERITY_SIG].found && !m->partitions[PARTITION_ROOT_VERITY].found)
950 return -EADDRNOTAVAIL;
951
952 if (m->partitions[PARTITION_USR].found) {
953 /* Invalidate secondary and other arch /usr/ if we found the primary arch */
954 m->partitions[PARTITION_USR_SECONDARY].found = false;
955 m->partitions[PARTITION_USR_SECONDARY_VERITY].found = false;
956 m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG].found = false;
957
958 m->partitions[PARTITION_USR_OTHER].found = false;
959 m->partitions[PARTITION_USR_OTHER_VERITY].found = false;
960 m->partitions[PARTITION_USR_OTHER_VERITY_SIG].found = false;
961
962 } else if (m->partitions[PARTITION_USR_VERITY].found ||
963 m->partitions[PARTITION_USR_VERITY_SIG].found)
964 return -EADDRNOTAVAIL; /* as above */
965
966 else if (m->partitions[PARTITION_USR_SECONDARY].found) {
967
968 log_debug("No usr partition found of the native architecture, falling back to a usr "
969 "partition of the secondary architecture.");
970
971 /* Upgrade secondary arch to primary */
972 m->partitions[PARTITION_USR] = m->partitions[PARTITION_USR_SECONDARY];
973 zero(m->partitions[PARTITION_USR_SECONDARY]);
974 m->partitions[PARTITION_USR_VERITY] = m->partitions[PARTITION_USR_SECONDARY_VERITY];
975 zero(m->partitions[PARTITION_USR_SECONDARY_VERITY]);
976 m->partitions[PARTITION_USR_VERITY_SIG] = m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG];
977 zero(m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG]);
978
979 m->partitions[PARTITION_USR_OTHER].found = false;
980 m->partitions[PARTITION_USR_OTHER_VERITY].found = false;
981 m->partitions[PARTITION_USR_OTHER_VERITY_SIG].found = false;
982
983 } else if (m->partitions[PARTITION_USR_SECONDARY_VERITY].found ||
984 m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG].found)
985 return -EADDRNOTAVAIL; /* as above */
986
987 else if (m->partitions[PARTITION_USR_OTHER].found) {
988
989 log_debug("No usr partition found of the native architecture or the secondary architecture, "
990 "falling back to a usr partition of a non-native architecture (%s).",
991 architecture_to_string(m->partitions[PARTITION_ROOT_OTHER].architecture));
992
993 /* Upgrade other arch to primary */
994 m->partitions[PARTITION_USR] = m->partitions[PARTITION_USR_OTHER];
995 zero(m->partitions[PARTITION_USR_OTHER]);
996 m->partitions[PARTITION_USR_VERITY] = m->partitions[PARTITION_USR_OTHER_VERITY];
997 zero(m->partitions[PARTITION_USR_OTHER_VERITY]);
998 m->partitions[PARTITION_USR_VERITY_SIG] = m->partitions[PARTITION_USR_OTHER_VERITY_SIG];
999 zero(m->partitions[PARTITION_USR_OTHER_VERITY_SIG]);
1000 }
1001
1002 /* Hmm, we found a signature partition but no Verity data? Something is off. */
1003 if (m->partitions[PARTITION_USR_VERITY_SIG].found && !m->partitions[PARTITION_USR_VERITY].found)
1004 return -EADDRNOTAVAIL;
1005
1006 /* If root and /usr are combined then insist that the architecture matches */
1007 if (m->partitions[PARTITION_ROOT].found &&
1008 m->partitions[PARTITION_USR].found &&
1009 (m->partitions[PARTITION_ROOT].architecture >= 0 &&
1010 m->partitions[PARTITION_USR].architecture >= 0 &&
1011 m->partitions[PARTITION_ROOT].architecture != m->partitions[PARTITION_USR].architecture))
1012 return -EADDRNOTAVAIL;
1013
1014 if (!m->partitions[PARTITION_ROOT].found &&
1015 !m->partitions[PARTITION_USR].found &&
1016 (flags & DISSECT_IMAGE_GENERIC_ROOT) &&
1017 (!verity || !verity->root_hash || verity->designator != PARTITION_USR)) {
1018
1019 /* OK, we found nothing usable, then check if there's a single generic partition, and use
1020 * that. If the root hash was set however, then we won't fall back to a generic node, because
1021 * the root hash decides. */
1022
1023 /* If we didn't find a properly marked root partition, but we did find a single suitable
1024 * generic Linux partition, then use this as root partition, if the caller asked for it. */
1025 if (multiple_generic)
1026 return -ENOTUNIQ;
1027
1028 /* If we didn't find a generic node, then we can't fix this up either */
1029 if (generic_node) {
1030 _cleanup_free_ char *o = NULL;
1031 const char *options;
1032
1033 options = mount_options_from_designator(mount_options, PARTITION_ROOT);
1034 if (options) {
1035 o = strdup(options);
1036 if (!o)
1037 return -ENOMEM;
1038 }
1039
1040 assert(generic_nr >= 0);
1041 m->partitions[PARTITION_ROOT] = (DissectedPartition) {
1042 .found = true,
1043 .rw = generic_rw,
1044 .growfs = generic_growfs,
1045 .partno = generic_nr,
1046 .architecture = _ARCHITECTURE_INVALID,
1047 .node = TAKE_PTR(generic_node),
1048 .uuid = generic_uuid,
1049 .mount_options = TAKE_PTR(o),
1050 .offset = UINT64_MAX,
1051 .size = UINT64_MAX,
1052 };
1053 }
1054 }
1055
1056 /* Check if we have a root fs if we are told to do check. /usr alone is fine too, but only if appropriate flag for that is set too */
1057 if (FLAGS_SET(flags, DISSECT_IMAGE_REQUIRE_ROOT) &&
1058 !(m->partitions[PARTITION_ROOT].found || (m->partitions[PARTITION_USR].found && FLAGS_SET(flags, DISSECT_IMAGE_USR_NO_ROOT))))
1059 return -ENXIO;
1060
1061 if (m->partitions[PARTITION_ROOT_VERITY].found) {
1062 /* We only support one verity partition per image, i.e. can't do for both /usr and root fs */
1063 if (m->partitions[PARTITION_USR_VERITY].found)
1064 return -ENOTUNIQ;
1065
1066 /* We don't support verity enabled root with a split out /usr. Neither with nor without
1067 * verity there. (Note that we do support verity-less root with verity-full /usr, though.) */
1068 if (m->partitions[PARTITION_USR].found)
1069 return -EADDRNOTAVAIL;
1070 }
1071
1072 if (verity) {
1073 /* If a verity designator is specified, then insist that the matching partition exists */
1074 if (verity->designator >= 0 && !m->partitions[verity->designator].found)
1075 return -EADDRNOTAVAIL;
1076
1077 if (verity->root_hash) {
1078 /* If we have an explicit root hash and found the partitions for it, then we are ready to use
1079 * Verity, set things up for it */
1080
1081 if (verity->designator < 0 || verity->designator == PARTITION_ROOT) {
1082 if (!m->partitions[PARTITION_ROOT_VERITY].found || !m->partitions[PARTITION_ROOT].found)
1083 return -EADDRNOTAVAIL;
1084
1085 /* If we found a verity setup, then the root partition is necessarily read-only. */
1086 m->partitions[PARTITION_ROOT].rw = false;
1087 m->verity_ready = true;
1088
1089 } else {
1090 assert(verity->designator == PARTITION_USR);
1091
1092 if (!m->partitions[PARTITION_USR_VERITY].found || !m->partitions[PARTITION_USR].found)
1093 return -EADDRNOTAVAIL;
1094
1095 m->partitions[PARTITION_USR].rw = false;
1096 m->verity_ready = true;
1097 }
1098
1099 if (m->verity_ready)
1100 m->verity_sig_ready = verity->root_hash_sig;
1101
1102 } else if (m->partitions[verity->designator == PARTITION_USR ? PARTITION_USR_VERITY_SIG : PARTITION_ROOT_VERITY_SIG].found) {
1103
1104 /* If we found an embedded signature partition, we are ready, too. */
1105
1106 m->verity_ready = m->verity_sig_ready = true;
1107 m->partitions[verity->designator == PARTITION_USR ? PARTITION_USR : PARTITION_ROOT].rw = false;
1108 }
1109 }
1110
1111 blkid_free_probe(b);
1112 b = NULL;
1113
1114 /* Fill in file system types if we don't know them yet. */
1115 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
1116 DissectedPartition *p = m->partitions + i;
1117
1118 if (!p->found)
1119 continue;
1120
1121 if (!p->fstype && p->node) {
1122 r = probe_filesystem(p->node, &p->fstype);
1123 if (r < 0 && r != -EUCLEAN)
1124 return r;
1125 }
1126
1127 if (streq_ptr(p->fstype, "crypto_LUKS"))
1128 m->encrypted = true;
1129
1130 if (p->fstype && fstype_is_ro(p->fstype))
1131 p->rw = false;
1132
1133 if (!p->rw)
1134 p->growfs = false;
1135 }
1136
1137 *ret = TAKE_PTR(m);
1138 return 0;
1139 #else
1140 return -EOPNOTSUPP;
1141 #endif
1142 }
1143
1144 DissectedImage* dissected_image_unref(DissectedImage *m) {
1145 if (!m)
1146 return NULL;
1147
1148 /* First, clear dissected partitions. */
1149 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++)
1150 dissected_partition_done(m->partitions + i);
1151
1152 /* Second, free decrypted images. This must be after dissected_partition_done(), as freeing
1153 * DecryptedImage may try to deactivate partitions. */
1154 decrypted_image_unref(m->decrypted_image);
1155
1156 /* Third, unref LoopDevice. This must be called after the above two, as freeing LoopDevice may try to
1157 * remove existing partitions on the loopback block device. */
1158 loop_device_unref(m->loop);
1159
1160 free(m->image_name);
1161 free(m->hostname);
1162 strv_free(m->machine_info);
1163 strv_free(m->os_release);
1164 strv_free(m->extension_release);
1165
1166 return mfree(m);
1167 }
1168
1169 static int is_loop_device(const char *path) {
1170 char s[SYS_BLOCK_PATH_MAX("/../loop/")];
1171 struct stat st;
1172
1173 assert(path);
1174
1175 if (stat(path, &st) < 0)
1176 return -errno;
1177
1178 if (!S_ISBLK(st.st_mode))
1179 return -ENOTBLK;
1180
1181 xsprintf_sys_block_path(s, "/loop/", st.st_dev);
1182 if (access(s, F_OK) < 0) {
1183 if (errno != ENOENT)
1184 return -errno;
1185
1186 /* The device itself isn't a loop device, but maybe it's a partition and its parent is? */
1187 xsprintf_sys_block_path(s, "/../loop/", st.st_dev);
1188 if (access(s, F_OK) < 0)
1189 return errno == ENOENT ? false : -errno;
1190 }
1191
1192 return true;
1193 }
1194
1195 static int run_fsck(const char *node, const char *fstype) {
1196 int r, exit_status;
1197 pid_t pid;
1198
1199 assert(node);
1200 assert(fstype);
1201
1202 r = fsck_exists(fstype);
1203 if (r < 0) {
1204 log_debug_errno(r, "Couldn't determine whether fsck for %s exists, proceeding anyway.", fstype);
1205 return 0;
1206 }
1207 if (r == 0) {
1208 log_debug("Not checking partition %s, as fsck for %s does not exist.", node, fstype);
1209 return 0;
1210 }
1211
1212 r = safe_fork("(fsck)", FORK_RESET_SIGNALS|FORK_CLOSE_ALL_FDS|FORK_RLIMIT_NOFILE_SAFE|FORK_DEATHSIG|FORK_NULL_STDIO, &pid);
1213 if (r < 0)
1214 return log_debug_errno(r, "Failed to fork off fsck: %m");
1215 if (r == 0) {
1216 /* Child */
1217 execl("/sbin/fsck", "/sbin/fsck", "-aT", node, NULL);
1218 log_open();
1219 log_debug_errno(errno, "Failed to execl() fsck: %m");
1220 _exit(FSCK_OPERATIONAL_ERROR);
1221 }
1222
1223 exit_status = wait_for_terminate_and_check("fsck", pid, 0);
1224 if (exit_status < 0)
1225 return log_debug_errno(exit_status, "Failed to fork off /sbin/fsck: %m");
1226
1227 if ((exit_status & ~FSCK_ERROR_CORRECTED) != FSCK_SUCCESS) {
1228 log_debug("fsck failed with exit status %i.", exit_status);
1229
1230 if ((exit_status & (FSCK_SYSTEM_SHOULD_REBOOT|FSCK_ERRORS_LEFT_UNCORRECTED)) != 0)
1231 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN), "File system is corrupted, refusing.");
1232
1233 log_debug("Ignoring fsck error.");
1234 }
1235
1236 return 0;
1237 }
1238
1239 static int fs_grow(const char *node_path, const char *mount_path) {
1240 _cleanup_close_ int mount_fd = -1, node_fd = -1;
1241 uint64_t size, newsize;
1242 int r;
1243
1244 node_fd = open(node_path, O_RDONLY|O_CLOEXEC|O_NONBLOCK|O_NOCTTY);
1245 if (node_fd < 0)
1246 return log_debug_errno(errno, "Failed to open node device %s: %m", node_path);
1247
1248 if (ioctl(node_fd, BLKGETSIZE64, &size) != 0)
1249 return log_debug_errno(errno, "Failed to get block device size of %s: %m", node_path);
1250
1251 mount_fd = open(mount_path, O_RDONLY|O_DIRECTORY|O_CLOEXEC);
1252 if (mount_fd < 0)
1253 return log_debug_errno(errno, "Failed to open mountd file system %s: %m", mount_path);
1254
1255 log_debug("Resizing \"%s\" to %"PRIu64" bytes...", mount_path, size);
1256 r = resize_fs(mount_fd, size, &newsize);
1257 if (r < 0)
1258 return log_debug_errno(r, "Failed to resize \"%s\" to %"PRIu64" bytes: %m", mount_path, size);
1259
1260 if (newsize == size)
1261 log_debug("Successfully resized \"%s\" to %s bytes.",
1262 mount_path, FORMAT_BYTES(newsize));
1263 else {
1264 assert(newsize < size);
1265 log_debug("Successfully resized \"%s\" to %s bytes (%"PRIu64" bytes lost due to blocksize).",
1266 mount_path, FORMAT_BYTES(newsize), size - newsize);
1267 }
1268
1269 return 0;
1270 }
1271
1272 static int mount_partition(
1273 DissectedPartition *m,
1274 const char *where,
1275 const char *directory,
1276 uid_t uid_shift,
1277 uid_t uid_range,
1278 DissectImageFlags flags) {
1279
1280 _cleanup_free_ char *chased = NULL, *options = NULL;
1281 const char *p, *node, *fstype;
1282 bool rw, remap_uid_gid = false;
1283 int r;
1284
1285 assert(m);
1286 assert(where);
1287
1288 /* Use decrypted node and matching fstype if available, otherwise use the original device */
1289 node = m->decrypted_node ?: m->node;
1290 fstype = m->decrypted_node ? m->decrypted_fstype: m->fstype;
1291
1292 if (!m->found || !node)
1293 return 0;
1294 if (!fstype)
1295 return -EAFNOSUPPORT;
1296
1297 /* We are looking at an encrypted partition? This either means stacked encryption, or the caller
1298 * didn't call dissected_image_decrypt() beforehand. Let's return a recognizable error for this
1299 * case. */
1300 if (streq(fstype, "crypto_LUKS"))
1301 return -EUNATCH;
1302
1303 rw = m->rw && !(flags & DISSECT_IMAGE_MOUNT_READ_ONLY);
1304
1305 if (FLAGS_SET(flags, DISSECT_IMAGE_FSCK) && rw) {
1306 r = run_fsck(node, fstype);
1307 if (r < 0)
1308 return r;
1309 }
1310
1311 if (directory) {
1312 /* Automatically create missing mount points inside the image, if necessary. */
1313 r = mkdir_p_root(where, directory, uid_shift, (gid_t) uid_shift, 0755);
1314 if (r < 0 && r != -EROFS)
1315 return r;
1316
1317 r = chase_symlinks(directory, where, CHASE_PREFIX_ROOT, &chased, NULL);
1318 if (r < 0)
1319 return r;
1320
1321 p = chased;
1322 } else {
1323 /* Create top-level mount if missing – but only if this is asked for. This won't modify the
1324 * image (as the branch above does) but the host hierarchy, and the created directory might
1325 * survive our mount in the host hierarchy hence. */
1326 if (FLAGS_SET(flags, DISSECT_IMAGE_MKDIR)) {
1327 r = mkdir_p(where, 0755);
1328 if (r < 0)
1329 return r;
1330 }
1331
1332 p = where;
1333 }
1334
1335 /* If requested, turn on discard support. */
1336 if (fstype_can_discard(fstype) &&
1337 ((flags & DISSECT_IMAGE_DISCARD) ||
1338 ((flags & DISSECT_IMAGE_DISCARD_ON_LOOP) && is_loop_device(m->node) > 0))) {
1339 options = strdup("discard");
1340 if (!options)
1341 return -ENOMEM;
1342 }
1343
1344 if (uid_is_valid(uid_shift) && uid_shift != 0) {
1345
1346 if (fstype_can_uid_gid(fstype)) {
1347 _cleanup_free_ char *uid_option = NULL;
1348
1349 if (asprintf(&uid_option, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0)
1350 return -ENOMEM;
1351
1352 if (!strextend_with_separator(&options, ",", uid_option))
1353 return -ENOMEM;
1354 } else if (FLAGS_SET(flags, DISSECT_IMAGE_MOUNT_IDMAPPED))
1355 remap_uid_gid = true;
1356 }
1357
1358 if (!isempty(m->mount_options))
1359 if (!strextend_with_separator(&options, ",", m->mount_options))
1360 return -ENOMEM;
1361
1362 /* So, when you request MS_RDONLY from ext4, then this means nothing. It happily still writes to the
1363 * backing storage. What's worse, the BLKRO[GS]ET flag and (in case of loopback devices)
1364 * LO_FLAGS_READ_ONLY don't mean anything, they affect userspace accesses only, and write accesses
1365 * from the upper file system still get propagated through to the underlying file system,
1366 * unrestricted. To actually get ext4/xfs/btrfs to stop writing to the device we need to specify
1367 * "norecovery" as mount option, in addition to MS_RDONLY. Yes, this sucks, since it means we need to
1368 * carry a per file system table here.
1369 *
1370 * Note that this means that we might not be able to mount corrupted file systems as read-only
1371 * anymore (since in some cases the kernel implementations will refuse mounting when corrupted,
1372 * read-only and "norecovery" is specified). But I think for the case of automatically determined
1373 * mount options for loopback devices this is the right choice, since otherwise using the same
1374 * loopback file twice even in read-only mode, is going to fail badly sooner or later. The usecase of
1375 * making reuse of the immutable images "just work" is more relevant to us than having read-only
1376 * access that actually modifies stuff work on such image files. Or to say this differently: if
1377 * people want their file systems to be fixed up they should just open them in writable mode, where
1378 * all these problems don't exist. */
1379 if (!rw && STRPTR_IN_SET(fstype, "ext3", "ext4", "xfs", "btrfs"))
1380 if (!strextend_with_separator(&options, ",", "norecovery"))
1381 return -ENOMEM;
1382
1383 r = mount_nofollow_verbose(LOG_DEBUG, node, p, fstype, MS_NODEV|(rw ? 0 : MS_RDONLY), options);
1384 if (r < 0)
1385 return r;
1386
1387 if (rw && m->growfs && FLAGS_SET(flags, DISSECT_IMAGE_GROWFS))
1388 (void) fs_grow(node, p);
1389
1390 if (remap_uid_gid) {
1391 r = remount_idmap(p, uid_shift, uid_range, UID_INVALID, REMOUNT_IDMAPPING_HOST_ROOT);
1392 if (r < 0)
1393 return r;
1394 }
1395
1396 return 1;
1397 }
1398
1399 static int mount_root_tmpfs(const char *where, uid_t uid_shift, DissectImageFlags flags) {
1400 _cleanup_free_ char *options = NULL;
1401 int r;
1402
1403 assert(where);
1404
1405 /* For images that contain /usr/ but no rootfs, let's mount rootfs as tmpfs */
1406
1407 if (FLAGS_SET(flags, DISSECT_IMAGE_MKDIR)) {
1408 r = mkdir_p(where, 0755);
1409 if (r < 0)
1410 return r;
1411 }
1412
1413 if (uid_is_valid(uid_shift)) {
1414 if (asprintf(&options, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0)
1415 return -ENOMEM;
1416 }
1417
1418 r = mount_nofollow_verbose(LOG_DEBUG, "rootfs", where, "tmpfs", MS_NODEV, options);
1419 if (r < 0)
1420 return r;
1421
1422 return 1;
1423 }
1424
1425 int dissected_image_mount(
1426 DissectedImage *m,
1427 const char *where,
1428 uid_t uid_shift,
1429 uid_t uid_range,
1430 DissectImageFlags flags) {
1431
1432 int r, xbootldr_mounted;
1433
1434 assert(m);
1435 assert(where);
1436
1437 /* Returns:
1438 *
1439 * -ENXIO → No root partition found
1440 * -EMEDIUMTYPE → DISSECT_IMAGE_VALIDATE_OS set but no os-release/extension-release file found
1441 * -EUNATCH → Encrypted partition found for which no dm-crypt was set up yet
1442 * -EUCLEAN → fsck for file system failed
1443 * -EBUSY → File system already mounted/used elsewhere (kernel)
1444 * -EAFNOSUPPORT → File system type not supported or not known
1445 */
1446
1447 if (!(m->partitions[PARTITION_ROOT].found ||
1448 (m->partitions[PARTITION_USR].found && FLAGS_SET(flags, DISSECT_IMAGE_USR_NO_ROOT))))
1449 return -ENXIO; /* Require a root fs or at least a /usr/ fs (the latter is subject to a flag of its own) */
1450
1451 if ((flags & DISSECT_IMAGE_MOUNT_NON_ROOT_ONLY) == 0) {
1452
1453 /* First mount the root fs. If there's none we use a tmpfs. */
1454 if (m->partitions[PARTITION_ROOT].found)
1455 r = mount_partition(m->partitions + PARTITION_ROOT, where, NULL, uid_shift, uid_range, flags);
1456 else
1457 r = mount_root_tmpfs(where, uid_shift, flags);
1458 if (r < 0)
1459 return r;
1460
1461 /* For us mounting root always means mounting /usr as well */
1462 r = mount_partition(m->partitions + PARTITION_USR, where, "/usr", uid_shift, uid_range, flags);
1463 if (r < 0)
1464 return r;
1465
1466 if ((flags & (DISSECT_IMAGE_VALIDATE_OS|DISSECT_IMAGE_VALIDATE_OS_EXT)) != 0) {
1467 /* If either one of the validation flags are set, ensure that the image qualifies
1468 * as one or the other (or both). */
1469 bool ok = false;
1470
1471 if (FLAGS_SET(flags, DISSECT_IMAGE_VALIDATE_OS)) {
1472 r = path_is_os_tree(where);
1473 if (r < 0)
1474 return r;
1475 if (r > 0)
1476 ok = true;
1477 }
1478 if (!ok && FLAGS_SET(flags, DISSECT_IMAGE_VALIDATE_OS_EXT)) {
1479 r = path_is_extension_tree(where, m->image_name);
1480 if (r < 0)
1481 return r;
1482 if (r > 0)
1483 ok = true;
1484 }
1485
1486 if (!ok)
1487 return -ENOMEDIUM;
1488 }
1489 }
1490
1491 if (flags & DISSECT_IMAGE_MOUNT_ROOT_ONLY)
1492 return 0;
1493
1494 r = mount_partition(m->partitions + PARTITION_HOME, where, "/home", uid_shift, uid_range, flags);
1495 if (r < 0)
1496 return r;
1497
1498 r = mount_partition(m->partitions + PARTITION_SRV, where, "/srv", uid_shift, uid_range, flags);
1499 if (r < 0)
1500 return r;
1501
1502 r = mount_partition(m->partitions + PARTITION_VAR, where, "/var", uid_shift, uid_range, flags);
1503 if (r < 0)
1504 return r;
1505
1506 r = mount_partition(m->partitions + PARTITION_TMP, where, "/var/tmp", uid_shift, uid_range, flags);
1507 if (r < 0)
1508 return r;
1509
1510 xbootldr_mounted = mount_partition(m->partitions + PARTITION_XBOOTLDR, where, "/boot", uid_shift, uid_range, flags);
1511 if (xbootldr_mounted < 0)
1512 return xbootldr_mounted;
1513
1514 if (m->partitions[PARTITION_ESP].found) {
1515 int esp_done = false;
1516
1517 /* Mount the ESP to /efi if it exists. If it doesn't exist, use /boot instead, but only if it
1518 * exists and is empty, and we didn't already mount the XBOOTLDR partition into it. */
1519
1520 r = chase_symlinks("/efi", where, CHASE_PREFIX_ROOT, NULL, NULL);
1521 if (r < 0) {
1522 if (r != -ENOENT)
1523 return r;
1524
1525 /* /efi doesn't exist. Let's see if /boot is suitable then */
1526
1527 if (!xbootldr_mounted) {
1528 _cleanup_free_ char *p = NULL;
1529
1530 r = chase_symlinks("/boot", where, CHASE_PREFIX_ROOT, &p, NULL);
1531 if (r < 0) {
1532 if (r != -ENOENT)
1533 return r;
1534 } else if (dir_is_empty(p, /* ignore_hidden_or_backup= */ false) > 0) {
1535 /* It exists and is an empty directory. Let's mount the ESP there. */
1536 r = mount_partition(m->partitions + PARTITION_ESP, where, "/boot", uid_shift, uid_range, flags);
1537 if (r < 0)
1538 return r;
1539
1540 esp_done = true;
1541 }
1542 }
1543 }
1544
1545 if (!esp_done) {
1546 /* OK, let's mount the ESP now to /efi (possibly creating the dir if missing) */
1547
1548 r = mount_partition(m->partitions + PARTITION_ESP, where, "/efi", uid_shift, uid_range, flags);
1549 if (r < 0)
1550 return r;
1551 }
1552 }
1553
1554 return 0;
1555 }
1556
1557 int dissected_image_mount_and_warn(
1558 DissectedImage *m,
1559 const char *where,
1560 uid_t uid_shift,
1561 uid_t uid_range,
1562 DissectImageFlags flags) {
1563
1564 int r;
1565
1566 assert(m);
1567 assert(where);
1568
1569 r = dissected_image_mount(m, where, uid_shift, uid_range, flags);
1570 if (r == -ENXIO)
1571 return log_error_errno(r, "Not root file system found in image.");
1572 if (r == -EMEDIUMTYPE)
1573 return log_error_errno(r, "No suitable os-release/extension-release file in image found.");
1574 if (r == -EUNATCH)
1575 return log_error_errno(r, "Encrypted file system discovered, but decryption not requested.");
1576 if (r == -EUCLEAN)
1577 return log_error_errno(r, "File system check on image failed.");
1578 if (r == -EBUSY)
1579 return log_error_errno(r, "File system already mounted elsewhere.");
1580 if (r == -EAFNOSUPPORT)
1581 return log_error_errno(r, "File system type not supported or not known.");
1582 if (r < 0)
1583 return log_error_errno(r, "Failed to mount image: %m");
1584
1585 return r;
1586 }
1587
1588 #if HAVE_LIBCRYPTSETUP
1589 struct DecryptedPartition {
1590 struct crypt_device *device;
1591 char *name;
1592 bool relinquished;
1593 };
1594 #endif
1595
1596 typedef struct DecryptedPartition DecryptedPartition;
1597
1598 struct DecryptedImage {
1599 unsigned n_ref;
1600 DecryptedPartition *decrypted;
1601 size_t n_decrypted;
1602 };
1603
1604 static DecryptedImage* decrypted_image_free(DecryptedImage *d) {
1605 #if HAVE_LIBCRYPTSETUP
1606 int r;
1607
1608 if (!d)
1609 return NULL;
1610
1611 for (size_t i = 0; i < d->n_decrypted; i++) {
1612 DecryptedPartition *p = d->decrypted + i;
1613
1614 if (p->device && p->name && !p->relinquished) {
1615 /* Let's deactivate lazily, as the dm volume may be already/still used by other processes. */
1616 r = sym_crypt_deactivate_by_name(p->device, p->name, CRYPT_DEACTIVATE_DEFERRED);
1617 if (r < 0)
1618 log_debug_errno(r, "Failed to deactivate encrypted partition %s", p->name);
1619 }
1620
1621 if (p->device)
1622 sym_crypt_free(p->device);
1623 free(p->name);
1624 }
1625
1626 free(d->decrypted);
1627 free(d);
1628 #endif
1629 return NULL;
1630 }
1631
1632 DEFINE_TRIVIAL_REF_UNREF_FUNC(DecryptedImage, decrypted_image, decrypted_image_free);
1633
1634 #if HAVE_LIBCRYPTSETUP
1635 static int decrypted_image_new(DecryptedImage **ret) {
1636 _cleanup_(decrypted_image_unrefp) DecryptedImage *d = NULL;
1637
1638 assert(ret);
1639
1640 d = new(DecryptedImage, 1);
1641 if (!d)
1642 return -ENOMEM;
1643
1644 *d = (DecryptedImage) {
1645 .n_ref = 1,
1646 };
1647
1648 *ret = TAKE_PTR(d);
1649 return 0;
1650 }
1651
1652 static int make_dm_name_and_node(const void *original_node, const char *suffix, char **ret_name, char **ret_node) {
1653 _cleanup_free_ char *name = NULL, *node = NULL;
1654 const char *base;
1655
1656 assert(original_node);
1657 assert(suffix);
1658 assert(ret_name);
1659 assert(ret_node);
1660
1661 base = strrchr(original_node, '/');
1662 if (!base)
1663 base = original_node;
1664 else
1665 base++;
1666 if (isempty(base))
1667 return -EINVAL;
1668
1669 name = strjoin(base, suffix);
1670 if (!name)
1671 return -ENOMEM;
1672 if (!filename_is_valid(name))
1673 return -EINVAL;
1674
1675 node = path_join(sym_crypt_get_dir(), name);
1676 if (!node)
1677 return -ENOMEM;
1678
1679 *ret_name = TAKE_PTR(name);
1680 *ret_node = TAKE_PTR(node);
1681
1682 return 0;
1683 }
1684
1685 static int decrypt_partition(
1686 DissectedPartition *m,
1687 const char *passphrase,
1688 DissectImageFlags flags,
1689 DecryptedImage *d) {
1690
1691 _cleanup_free_ char *node = NULL, *name = NULL;
1692 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
1693 int r;
1694
1695 assert(m);
1696 assert(d);
1697
1698 if (!m->found || !m->node || !m->fstype)
1699 return 0;
1700
1701 if (!streq(m->fstype, "crypto_LUKS"))
1702 return 0;
1703
1704 if (!passphrase)
1705 return -ENOKEY;
1706
1707 r = dlopen_cryptsetup();
1708 if (r < 0)
1709 return r;
1710
1711 r = make_dm_name_and_node(m->node, "-decrypted", &name, &node);
1712 if (r < 0)
1713 return r;
1714
1715 if (!GREEDY_REALLOC0(d->decrypted, d->n_decrypted + 1))
1716 return -ENOMEM;
1717
1718 r = sym_crypt_init(&cd, m->node);
1719 if (r < 0)
1720 return log_debug_errno(r, "Failed to initialize dm-crypt: %m");
1721
1722 cryptsetup_enable_logging(cd);
1723
1724 r = sym_crypt_load(cd, CRYPT_LUKS, NULL);
1725 if (r < 0)
1726 return log_debug_errno(r, "Failed to load LUKS metadata: %m");
1727
1728 r = sym_crypt_activate_by_passphrase(cd, name, CRYPT_ANY_SLOT, passphrase, strlen(passphrase),
1729 ((flags & DISSECT_IMAGE_DEVICE_READ_ONLY) ? CRYPT_ACTIVATE_READONLY : 0) |
1730 ((flags & DISSECT_IMAGE_DISCARD_ON_CRYPTO) ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0));
1731 if (r < 0) {
1732 log_debug_errno(r, "Failed to activate LUKS device: %m");
1733 return r == -EPERM ? -EKEYREJECTED : r;
1734 }
1735
1736 d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
1737 .name = TAKE_PTR(name),
1738 .device = TAKE_PTR(cd),
1739 };
1740
1741 m->decrypted_node = TAKE_PTR(node);
1742
1743 return 0;
1744 }
1745
1746 static int verity_can_reuse(
1747 const VeritySettings *verity,
1748 const char *name,
1749 struct crypt_device **ret_cd) {
1750
1751 /* If the same volume was already open, check that the root hashes match, and reuse it if they do */
1752 _cleanup_free_ char *root_hash_existing = NULL;
1753 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
1754 struct crypt_params_verity crypt_params = {};
1755 size_t root_hash_existing_size;
1756 int r;
1757
1758 assert(verity);
1759 assert(name);
1760 assert(ret_cd);
1761
1762 r = sym_crypt_init_by_name(&cd, name);
1763 if (r < 0)
1764 return log_debug_errno(r, "Error opening verity device, crypt_init_by_name failed: %m");
1765
1766 cryptsetup_enable_logging(cd);
1767
1768 r = sym_crypt_get_verity_info(cd, &crypt_params);
1769 if (r < 0)
1770 return log_debug_errno(r, "Error opening verity device, crypt_get_verity_info failed: %m");
1771
1772 root_hash_existing_size = verity->root_hash_size;
1773 root_hash_existing = malloc0(root_hash_existing_size);
1774 if (!root_hash_existing)
1775 return -ENOMEM;
1776
1777 r = sym_crypt_volume_key_get(cd, CRYPT_ANY_SLOT, root_hash_existing, &root_hash_existing_size, NULL, 0);
1778 if (r < 0)
1779 return log_debug_errno(r, "Error opening verity device, crypt_volume_key_get failed: %m");
1780 if (verity->root_hash_size != root_hash_existing_size ||
1781 memcmp(root_hash_existing, verity->root_hash, verity->root_hash_size) != 0)
1782 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but root hashes are different.");
1783
1784 #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
1785 /* Ensure that, if signatures are supported, we only reuse the device if the previous mount used the
1786 * same settings, so that a previous unsigned mount will not be reused if the user asks to use
1787 * signing for the new one, and vice versa. */
1788 if (!!verity->root_hash_sig != !!(crypt_params.flags & CRYPT_VERITY_ROOT_HASH_SIGNATURE))
1789 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but signature settings are not the same.");
1790 #endif
1791
1792 *ret_cd = TAKE_PTR(cd);
1793 return 0;
1794 }
1795
1796 static inline char* dm_deferred_remove_clean(char *name) {
1797 if (!name)
1798 return NULL;
1799
1800 (void) sym_crypt_deactivate_by_name(NULL, name, CRYPT_DEACTIVATE_DEFERRED);
1801 return mfree(name);
1802 }
1803 DEFINE_TRIVIAL_CLEANUP_FUNC(char *, dm_deferred_remove_clean);
1804
1805 static int validate_signature_userspace(const VeritySettings *verity) {
1806 #if HAVE_OPENSSL
1807 _cleanup_(sk_X509_free_allp) STACK_OF(X509) *sk = NULL;
1808 _cleanup_strv_free_ char **certs = NULL;
1809 _cleanup_(PKCS7_freep) PKCS7 *p7 = NULL;
1810 _cleanup_free_ char *s = NULL;
1811 _cleanup_(BIO_freep) BIO *bio = NULL; /* 'bio' must be freed first, 's' second, hence keep this order
1812 * of declaration in place, please */
1813 const unsigned char *d;
1814 int r;
1815
1816 assert(verity);
1817 assert(verity->root_hash);
1818 assert(verity->root_hash_sig);
1819
1820 /* Because installing a signature certificate into the kernel chain is so messy, let's optionally do
1821 * userspace validation. */
1822
1823 r = conf_files_list_nulstr(&certs, ".crt", NULL, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, CONF_PATHS_NULSTR("verity.d"));
1824 if (r < 0)
1825 return log_debug_errno(r, "Failed to enumerate certificates: %m");
1826 if (strv_isempty(certs)) {
1827 log_debug("No userspace dm-verity certificates found.");
1828 return 0;
1829 }
1830
1831 d = verity->root_hash_sig;
1832 p7 = d2i_PKCS7(NULL, &d, (long) verity->root_hash_sig_size);
1833 if (!p7)
1834 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse PKCS7 DER signature data.");
1835
1836 s = hexmem(verity->root_hash, verity->root_hash_size);
1837 if (!s)
1838 return log_oom_debug();
1839
1840 bio = BIO_new_mem_buf(s, strlen(s));
1841 if (!bio)
1842 return log_oom_debug();
1843
1844 sk = sk_X509_new_null();
1845 if (!sk)
1846 return log_oom_debug();
1847
1848 STRV_FOREACH(i, certs) {
1849 _cleanup_(X509_freep) X509 *c = NULL;
1850 _cleanup_fclose_ FILE *f = NULL;
1851
1852 f = fopen(*i, "re");
1853 if (!f) {
1854 log_debug_errno(errno, "Failed to open '%s', ignoring: %m", *i);
1855 continue;
1856 }
1857
1858 c = PEM_read_X509(f, NULL, NULL, NULL);
1859 if (!c) {
1860 log_debug("Failed to load X509 certificate '%s', ignoring.", *i);
1861 continue;
1862 }
1863
1864 if (sk_X509_push(sk, c) == 0)
1865 return log_oom_debug();
1866
1867 TAKE_PTR(c);
1868 }
1869
1870 r = PKCS7_verify(p7, sk, NULL, bio, NULL, PKCS7_NOINTERN|PKCS7_NOVERIFY);
1871 if (r)
1872 log_debug("Userspace PKCS#7 validation succeeded.");
1873 else
1874 log_debug("Userspace PKCS#7 validation failed: %s", ERR_error_string(ERR_get_error(), NULL));
1875
1876 return r;
1877 #else
1878 log_debug("Not doing client-side validation of dm-verity root hash signatures, OpenSSL support disabled.");
1879 return 0;
1880 #endif
1881 }
1882
1883 static int do_crypt_activate_verity(
1884 struct crypt_device *cd,
1885 const char *name,
1886 const VeritySettings *verity) {
1887
1888 bool check_signature;
1889 int r;
1890
1891 assert(cd);
1892 assert(name);
1893 assert(verity);
1894
1895 if (verity->root_hash_sig) {
1896 r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_SIGNATURE");
1897 if (r < 0 && r != -ENXIO)
1898 log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_SIGNATURE");
1899
1900 check_signature = r != 0;
1901 } else
1902 check_signature = false;
1903
1904 if (check_signature) {
1905
1906 #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
1907 /* First, if we have support for signed keys in the kernel, then try that first. */
1908 r = sym_crypt_activate_by_signed_key(
1909 cd,
1910 name,
1911 verity->root_hash,
1912 verity->root_hash_size,
1913 verity->root_hash_sig,
1914 verity->root_hash_sig_size,
1915 CRYPT_ACTIVATE_READONLY);
1916 if (r >= 0)
1917 return r;
1918
1919 log_debug("Validation of dm-verity signature failed via the kernel, trying userspace validation instead.");
1920 #else
1921 log_debug("Activation of verity device with signature requested, but not supported via the kernel by %s due to missing crypt_activate_by_signed_key(), trying userspace validation instead.",
1922 program_invocation_short_name);
1923 #endif
1924
1925 /* So this didn't work via the kernel, then let's try userspace validation instead. If that
1926 * works we'll try to activate without telling the kernel the signature. */
1927
1928 r = validate_signature_userspace(verity);
1929 if (r < 0)
1930 return r;
1931 if (r == 0)
1932 return log_debug_errno(SYNTHETIC_ERRNO(ENOKEY),
1933 "Activation of signed Verity volume worked neither via the kernel nor in userspace, can't activate.");
1934 }
1935
1936 return sym_crypt_activate_by_volume_key(
1937 cd,
1938 name,
1939 verity->root_hash,
1940 verity->root_hash_size,
1941 CRYPT_ACTIVATE_READONLY);
1942 }
1943
1944 static usec_t verity_timeout(void) {
1945 usec_t t = 100 * USEC_PER_MSEC;
1946 const char *e;
1947 int r;
1948
1949 /* On slower machines, like non-KVM vm, setting up device may take a long time.
1950 * Let's make the timeout configurable. */
1951
1952 e = getenv("SYSTEMD_DISSECT_VERITY_TIMEOUT_SEC");
1953 if (!e)
1954 return t;
1955
1956 r = parse_sec(e, &t);
1957 if (r < 0)
1958 log_debug_errno(r,
1959 "Failed to parse timeout specified in $SYSTEMD_DISSECT_VERITY_TIMEOUT_SEC, "
1960 "using the default timeout (%s).",
1961 FORMAT_TIMESPAN(t, USEC_PER_MSEC));
1962
1963 return t;
1964 }
1965
1966 static int verity_partition(
1967 PartitionDesignator designator,
1968 DissectedPartition *m,
1969 DissectedPartition *v,
1970 const VeritySettings *verity,
1971 DissectImageFlags flags,
1972 DecryptedImage *d) {
1973
1974 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
1975 _cleanup_(dm_deferred_remove_cleanp) char *restore_deferred_remove = NULL;
1976 _cleanup_free_ char *node = NULL, *name = NULL;
1977 int r;
1978
1979 assert(m);
1980 assert(v || (verity && verity->data_path));
1981
1982 if (!verity || !verity->root_hash)
1983 return 0;
1984 if (!((verity->designator < 0 && designator == PARTITION_ROOT) ||
1985 (verity->designator == designator)))
1986 return 0;
1987
1988 if (!m->found || !m->node || !m->fstype)
1989 return 0;
1990 if (!verity->data_path) {
1991 if (!v->found || !v->node || !v->fstype)
1992 return 0;
1993
1994 if (!streq(v->fstype, "DM_verity_hash"))
1995 return 0;
1996 }
1997
1998 r = dlopen_cryptsetup();
1999 if (r < 0)
2000 return r;
2001
2002 if (FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) {
2003 /* Use the roothash, which is unique per volume, as the device node name, so that it can be reused */
2004 _cleanup_free_ char *root_hash_encoded = NULL;
2005
2006 root_hash_encoded = hexmem(verity->root_hash, verity->root_hash_size);
2007 if (!root_hash_encoded)
2008 return -ENOMEM;
2009
2010 r = make_dm_name_and_node(root_hash_encoded, "-verity", &name, &node);
2011 } else
2012 r = make_dm_name_and_node(m->node, "-verity", &name, &node);
2013 if (r < 0)
2014 return r;
2015
2016 r = sym_crypt_init(&cd, verity->data_path ?: v->node);
2017 if (r < 0)
2018 return r;
2019
2020 cryptsetup_enable_logging(cd);
2021
2022 r = sym_crypt_load(cd, CRYPT_VERITY, NULL);
2023 if (r < 0)
2024 return r;
2025
2026 r = sym_crypt_set_data_device(cd, m->node);
2027 if (r < 0)
2028 return r;
2029
2030 if (!GREEDY_REALLOC0(d->decrypted, d->n_decrypted + 1))
2031 return -ENOMEM;
2032
2033 /* If activating fails because the device already exists, check the metadata and reuse it if it matches.
2034 * In case of ENODEV/ENOENT, which can happen if another process is activating at the exact same time,
2035 * retry a few times before giving up. */
2036 for (unsigned i = 0; i < N_DEVICE_NODE_LIST_ATTEMPTS; i++) {
2037
2038 r = do_crypt_activate_verity(cd, name, verity);
2039 /* libdevmapper can return EINVAL when the device is already in the activation stage.
2040 * There's no way to distinguish this situation from a genuine error due to invalid
2041 * parameters, so immediately fall back to activating the device with a unique name.
2042 * Improvements in libcrypsetup can ensure this never happens:
2043 * https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/96 */
2044 if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
2045 break;
2046 if (r < 0 && !IN_SET(r,
2047 -EEXIST, /* Volume is already open and ready to be used */
2048 -EBUSY, /* Volume is being opened but not ready, crypt_init_by_name can fetch details */
2049 -ENODEV /* Volume is being opened but not ready, crypt_init_by_name would fail, try to open again */))
2050 return r;
2051 if (IN_SET(r, -EEXIST, -EBUSY)) {
2052 _cleanup_(sym_crypt_freep) struct crypt_device *existing_cd = NULL;
2053
2054 if (!restore_deferred_remove){
2055 /* To avoid races, disable automatic removal on umount while setting up the new device. Restore it on failure. */
2056 r = dm_deferred_remove_cancel(name);
2057 /* If activation returns EBUSY there might be no deferred removal to cancel, that's fine */
2058 if (r < 0 && r != -ENXIO)
2059 return log_debug_errno(r, "Disabling automated deferred removal for verity device %s failed: %m", node);
2060 if (r >= 0) {
2061 restore_deferred_remove = strdup(name);
2062 if (!restore_deferred_remove)
2063 return -ENOMEM;
2064 }
2065 }
2066
2067 r = verity_can_reuse(verity, name, &existing_cd);
2068 /* Same as above, -EINVAL can randomly happen when it actually means -EEXIST */
2069 if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
2070 break;
2071 if (r < 0 && !IN_SET(r, -ENODEV, -ENOENT, -EBUSY))
2072 return log_debug_errno(r, "Checking whether existing verity device %s can be reused failed: %m", node);
2073 if (r >= 0) {
2074 /* devmapper might say that the device exists, but the devlink might not yet have been
2075 * created. Check and wait for the udev event in that case. */
2076 r = device_wait_for_devlink(node, "block", verity_timeout(), NULL);
2077 /* Fallback to activation with a unique device if it's taking too long */
2078 if (r == -ETIMEDOUT && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
2079 break;
2080 if (r < 0)
2081 return r;
2082
2083 crypt_free_and_replace(cd, existing_cd);
2084 }
2085 }
2086 if (r >= 0)
2087 goto success;
2088
2089 /* Device is being opened by another process, but it has not finished yet, yield for 2ms */
2090 (void) usleep(2 * USEC_PER_MSEC);
2091 }
2092
2093 /* All trials failed or a conflicting verity device exists. Let's try to activate with a unique name. */
2094 if (FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) {
2095 /* Before trying to activate with unique name, we need to free crypt_device object.
2096 * Otherwise, we get error from libcryptsetup like the following:
2097 * ------
2098 * systemd[1234]: Cannot use device /dev/loop5 which is in use (already mapped or mounted).
2099 * ------
2100 */
2101 sym_crypt_free(cd);
2102 cd = NULL;
2103 return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
2104 }
2105
2106 return log_debug_errno(SYNTHETIC_ERRNO(EBUSY), "All attempts to activate verity device %s failed.", name);
2107
2108 success:
2109 /* Everything looks good and we'll be able to mount the device, so deferred remove will be re-enabled at that point. */
2110 restore_deferred_remove = mfree(restore_deferred_remove);
2111
2112 d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
2113 .name = TAKE_PTR(name),
2114 .device = TAKE_PTR(cd),
2115 };
2116
2117 m->decrypted_node = TAKE_PTR(node);
2118
2119 return 0;
2120 }
2121 #endif
2122
2123 int dissected_image_decrypt(
2124 DissectedImage *m,
2125 const char *passphrase,
2126 const VeritySettings *verity,
2127 DissectImageFlags flags) {
2128
2129 #if HAVE_LIBCRYPTSETUP
2130 _cleanup_(decrypted_image_unrefp) DecryptedImage *d = NULL;
2131 int r;
2132 #endif
2133
2134 assert(m);
2135 assert(!verity || verity->root_hash || verity->root_hash_size == 0);
2136
2137 /* Returns:
2138 *
2139 * = 0 → There was nothing to decrypt
2140 * > 0 → Decrypted successfully
2141 * -ENOKEY → There's something to decrypt but no key was supplied
2142 * -EKEYREJECTED → Passed key was not correct
2143 */
2144
2145 if (verity && verity->root_hash && verity->root_hash_size < sizeof(sd_id128_t))
2146 return -EINVAL;
2147
2148 if (!m->encrypted && !m->verity_ready)
2149 return 0;
2150
2151 #if HAVE_LIBCRYPTSETUP
2152 r = decrypted_image_new(&d);
2153 if (r < 0)
2154 return r;
2155
2156 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
2157 DissectedPartition *p = m->partitions + i;
2158 PartitionDesignator k;
2159
2160 if (!p->found)
2161 continue;
2162
2163 r = decrypt_partition(p, passphrase, flags, d);
2164 if (r < 0)
2165 return r;
2166
2167 k = PARTITION_VERITY_OF(i);
2168 if (k >= 0) {
2169 r = verity_partition(i, p, m->partitions + k, verity, flags | DISSECT_IMAGE_VERITY_SHARE, d);
2170 if (r < 0)
2171 return r;
2172 }
2173
2174 if (!p->decrypted_fstype && p->decrypted_node) {
2175 r = probe_filesystem(p->decrypted_node, &p->decrypted_fstype);
2176 if (r < 0 && r != -EUCLEAN)
2177 return r;
2178 }
2179 }
2180
2181 m->decrypted_image = TAKE_PTR(d);
2182
2183 return 1;
2184 #else
2185 return -EOPNOTSUPP;
2186 #endif
2187 }
2188
2189 int dissected_image_decrypt_interactively(
2190 DissectedImage *m,
2191 const char *passphrase,
2192 const VeritySettings *verity,
2193 DissectImageFlags flags) {
2194
2195 _cleanup_strv_free_erase_ char **z = NULL;
2196 int n = 3, r;
2197
2198 if (passphrase)
2199 n--;
2200
2201 for (;;) {
2202 r = dissected_image_decrypt(m, passphrase, verity, flags);
2203 if (r >= 0)
2204 return r;
2205 if (r == -EKEYREJECTED)
2206 log_error_errno(r, "Incorrect passphrase, try again!");
2207 else if (r != -ENOKEY)
2208 return log_error_errno(r, "Failed to decrypt image: %m");
2209
2210 if (--n < 0)
2211 return log_error_errno(SYNTHETIC_ERRNO(EKEYREJECTED),
2212 "Too many retries.");
2213
2214 z = strv_free(z);
2215
2216 r = ask_password_auto("Please enter image passphrase:", NULL, "dissect", "dissect", "dissect.passphrase", USEC_INFINITY, 0, &z);
2217 if (r < 0)
2218 return log_error_errno(r, "Failed to query for passphrase: %m");
2219
2220 passphrase = z[0];
2221 }
2222 }
2223
2224 static int decrypted_image_relinquish(DecryptedImage *d) {
2225 assert(d);
2226
2227 /* Turns on automatic removal after the last use ended for all DM devices of this image, and sets a
2228 * boolean so that we don't clean it up ourselves either anymore */
2229
2230 #if HAVE_LIBCRYPTSETUP
2231 int r;
2232
2233 for (size_t i = 0; i < d->n_decrypted; i++) {
2234 DecryptedPartition *p = d->decrypted + i;
2235
2236 if (p->relinquished)
2237 continue;
2238
2239 r = sym_crypt_deactivate_by_name(NULL, p->name, CRYPT_DEACTIVATE_DEFERRED);
2240 if (r < 0)
2241 return log_debug_errno(r, "Failed to mark %s for auto-removal: %m", p->name);
2242
2243 p->relinquished = true;
2244 }
2245 #endif
2246
2247 return 0;
2248 }
2249
2250 int dissected_image_relinquish(DissectedImage *m) {
2251 int r;
2252
2253 assert(m);
2254
2255 if (m->decrypted_image) {
2256 r = decrypted_image_relinquish(m->decrypted_image);
2257 if (r < 0)
2258 return r;
2259 }
2260
2261 if (m->loop)
2262 loop_device_relinquish(m->loop);
2263
2264 return 0;
2265 }
2266
2267 static char *build_auxiliary_path(const char *image, const char *suffix) {
2268 const char *e;
2269 char *n;
2270
2271 assert(image);
2272 assert(suffix);
2273
2274 e = endswith(image, ".raw");
2275 if (!e)
2276 return strjoin(e, suffix);
2277
2278 n = new(char, e - image + strlen(suffix) + 1);
2279 if (!n)
2280 return NULL;
2281
2282 strcpy(mempcpy(n, image, e - image), suffix);
2283 return n;
2284 }
2285
2286 void verity_settings_done(VeritySettings *v) {
2287 assert(v);
2288
2289 v->root_hash = mfree(v->root_hash);
2290 v->root_hash_size = 0;
2291
2292 v->root_hash_sig = mfree(v->root_hash_sig);
2293 v->root_hash_sig_size = 0;
2294
2295 v->data_path = mfree(v->data_path);
2296 }
2297
2298 int verity_settings_load(
2299 VeritySettings *verity,
2300 const char *image,
2301 const char *root_hash_path,
2302 const char *root_hash_sig_path) {
2303
2304 _cleanup_free_ void *root_hash = NULL, *root_hash_sig = NULL;
2305 size_t root_hash_size = 0, root_hash_sig_size = 0;
2306 _cleanup_free_ char *verity_data_path = NULL;
2307 PartitionDesignator designator;
2308 int r;
2309
2310 assert(verity);
2311 assert(image);
2312 assert(verity->designator < 0 || IN_SET(verity->designator, PARTITION_ROOT, PARTITION_USR));
2313
2314 /* If we are asked to load the root hash for a device node, exit early */
2315 if (is_device_path(image))
2316 return 0;
2317
2318 r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_SIDECAR");
2319 if (r < 0 && r != -ENXIO)
2320 log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_SIDECAR, ignoring: %m");
2321 if (r == 0)
2322 return 0;
2323
2324 designator = verity->designator;
2325
2326 /* We only fill in what isn't already filled in */
2327
2328 if (!verity->root_hash) {
2329 _cleanup_free_ char *text = NULL;
2330
2331 if (root_hash_path) {
2332 /* If explicitly specified it takes precedence */
2333 r = read_one_line_file(root_hash_path, &text);
2334 if (r < 0)
2335 return r;
2336
2337 if (designator < 0)
2338 designator = PARTITION_ROOT;
2339 } else {
2340 /* Otherwise look for xattr and separate file, and first for the data for root and if
2341 * that doesn't exist for /usr */
2342
2343 if (designator < 0 || designator == PARTITION_ROOT) {
2344 r = getxattr_malloc(image, "user.verity.roothash", &text);
2345 if (r < 0) {
2346 _cleanup_free_ char *p = NULL;
2347
2348 if (!IN_SET(r, -ENODATA, -ENOENT) && !ERRNO_IS_NOT_SUPPORTED(r))
2349 return r;
2350
2351 p = build_auxiliary_path(image, ".roothash");
2352 if (!p)
2353 return -ENOMEM;
2354
2355 r = read_one_line_file(p, &text);
2356 if (r < 0 && r != -ENOENT)
2357 return r;
2358 }
2359
2360 if (text)
2361 designator = PARTITION_ROOT;
2362 }
2363
2364 if (!text && (designator < 0 || designator == PARTITION_USR)) {
2365 /* So in the "roothash" xattr/file name above the "root" of course primarily
2366 * refers to the root of the Verity Merkle tree. But coincidentally it also
2367 * is the hash for the *root* file system, i.e. the "root" neatly refers to
2368 * two distinct concepts called "root". Taking benefit of this happy
2369 * coincidence we call the file with the root hash for the /usr/ file system
2370 * `usrhash`, because `usrroothash` or `rootusrhash` would just be too
2371 * confusing. We thus drop the reference to the root of the Merkle tree, and
2372 * just indicate which file system it's about. */
2373 r = getxattr_malloc(image, "user.verity.usrhash", &text);
2374 if (r < 0) {
2375 _cleanup_free_ char *p = NULL;
2376
2377 if (!IN_SET(r, -ENODATA, -ENOENT) && !ERRNO_IS_NOT_SUPPORTED(r))
2378 return r;
2379
2380 p = build_auxiliary_path(image, ".usrhash");
2381 if (!p)
2382 return -ENOMEM;
2383
2384 r = read_one_line_file(p, &text);
2385 if (r < 0 && r != -ENOENT)
2386 return r;
2387 }
2388
2389 if (text)
2390 designator = PARTITION_USR;
2391 }
2392 }
2393
2394 if (text) {
2395 r = unhexmem(text, strlen(text), &root_hash, &root_hash_size);
2396 if (r < 0)
2397 return r;
2398 if (root_hash_size < sizeof(sd_id128_t))
2399 return -EINVAL;
2400 }
2401 }
2402
2403 if ((root_hash || verity->root_hash) && !verity->root_hash_sig) {
2404 if (root_hash_sig_path) {
2405 r = read_full_file(root_hash_sig_path, (char**) &root_hash_sig, &root_hash_sig_size);
2406 if (r < 0 && r != -ENOENT)
2407 return r;
2408
2409 if (designator < 0)
2410 designator = PARTITION_ROOT;
2411 } else {
2412 if (designator < 0 || designator == PARTITION_ROOT) {
2413 _cleanup_free_ char *p = NULL;
2414
2415 /* Follow naming convention recommended by the relevant RFC:
2416 * https://tools.ietf.org/html/rfc5751#section-3.2.1 */
2417 p = build_auxiliary_path(image, ".roothash.p7s");
2418 if (!p)
2419 return -ENOMEM;
2420
2421 r = read_full_file(p, (char**) &root_hash_sig, &root_hash_sig_size);
2422 if (r < 0 && r != -ENOENT)
2423 return r;
2424 if (r >= 0)
2425 designator = PARTITION_ROOT;
2426 }
2427
2428 if (!root_hash_sig && (designator < 0 || designator == PARTITION_USR)) {
2429 _cleanup_free_ char *p = NULL;
2430
2431 p = build_auxiliary_path(image, ".usrhash.p7s");
2432 if (!p)
2433 return -ENOMEM;
2434
2435 r = read_full_file(p, (char**) &root_hash_sig, &root_hash_sig_size);
2436 if (r < 0 && r != -ENOENT)
2437 return r;
2438 if (r >= 0)
2439 designator = PARTITION_USR;
2440 }
2441 }
2442
2443 if (root_hash_sig && root_hash_sig_size == 0) /* refuse empty size signatures */
2444 return -EINVAL;
2445 }
2446
2447 if (!verity->data_path) {
2448 _cleanup_free_ char *p = NULL;
2449
2450 p = build_auxiliary_path(image, ".verity");
2451 if (!p)
2452 return -ENOMEM;
2453
2454 if (access(p, F_OK) < 0) {
2455 if (errno != ENOENT)
2456 return -errno;
2457 } else
2458 verity_data_path = TAKE_PTR(p);
2459 }
2460
2461 if (root_hash) {
2462 verity->root_hash = TAKE_PTR(root_hash);
2463 verity->root_hash_size = root_hash_size;
2464 }
2465
2466 if (root_hash_sig) {
2467 verity->root_hash_sig = TAKE_PTR(root_hash_sig);
2468 verity->root_hash_sig_size = root_hash_sig_size;
2469 }
2470
2471 if (verity_data_path)
2472 verity->data_path = TAKE_PTR(verity_data_path);
2473
2474 if (verity->designator < 0)
2475 verity->designator = designator;
2476
2477 return 1;
2478 }
2479
2480 int dissected_image_load_verity_sig_partition(
2481 DissectedImage *m,
2482 int fd,
2483 VeritySettings *verity) {
2484
2485 _cleanup_free_ void *root_hash = NULL, *root_hash_sig = NULL;
2486 _cleanup_(json_variant_unrefp) JsonVariant *v = NULL;
2487 size_t root_hash_size, root_hash_sig_size;
2488 _cleanup_free_ char *buf = NULL;
2489 PartitionDesignator d;
2490 DissectedPartition *p;
2491 JsonVariant *rh, *sig;
2492 ssize_t n;
2493 char *e;
2494 int r;
2495
2496 assert(m);
2497 assert(fd >= 0);
2498 assert(verity);
2499
2500 if (verity->root_hash && verity->root_hash_sig) /* Already loaded? */
2501 return 0;
2502
2503 r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_EMBEDDED");
2504 if (r < 0 && r != -ENXIO)
2505 log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_EMBEDDED, ignoring: %m");
2506 if (r == 0)
2507 return 0;
2508
2509 d = PARTITION_VERITY_SIG_OF(verity->designator < 0 ? PARTITION_ROOT : verity->designator);
2510 assert(d >= 0);
2511
2512 p = m->partitions + d;
2513 if (!p->found)
2514 return 0;
2515 if (p->offset == UINT64_MAX || p->size == UINT64_MAX)
2516 return -EINVAL;
2517
2518 if (p->size > 4*1024*1024) /* Signature data cannot possible be larger than 4M, refuse that */
2519 return -EFBIG;
2520
2521 buf = new(char, p->size+1);
2522 if (!buf)
2523 return -ENOMEM;
2524
2525 n = pread(fd, buf, p->size, p->offset);
2526 if (n < 0)
2527 return -ENOMEM;
2528 if ((uint64_t) n != p->size)
2529 return -EIO;
2530
2531 e = memchr(buf, 0, p->size);
2532 if (e) {
2533 /* If we found a NUL byte then the rest of the data must be NUL too */
2534 if (!memeqzero(e, p->size - (e - buf)))
2535 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature data contains embedded NUL byte.");
2536 } else
2537 buf[p->size] = 0;
2538
2539 r = json_parse(buf, 0, &v, NULL, NULL);
2540 if (r < 0)
2541 return log_debug_errno(r, "Failed to parse signature JSON data: %m");
2542
2543 rh = json_variant_by_key(v, "rootHash");
2544 if (!rh)
2545 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature JSON object lacks 'rootHash' field.");
2546 if (!json_variant_is_string(rh))
2547 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "'rootHash' field of signature JSON object is not a string.");
2548
2549 r = unhexmem(json_variant_string(rh), SIZE_MAX, &root_hash, &root_hash_size);
2550 if (r < 0)
2551 return log_debug_errno(r, "Failed to parse root hash field: %m");
2552
2553 /* Check if specified root hash matches if it is specified */
2554 if (verity->root_hash &&
2555 memcmp_nn(verity->root_hash, verity->root_hash_size, root_hash, root_hash_size) != 0) {
2556 _cleanup_free_ char *a = NULL, *b = NULL;
2557
2558 a = hexmem(root_hash, root_hash_size);
2559 b = hexmem(verity->root_hash, verity->root_hash_size);
2560
2561 return log_debug_errno(r, "Root hash in signature JSON data (%s) doesn't match configured hash (%s).", strna(a), strna(b));
2562 }
2563
2564 sig = json_variant_by_key(v, "signature");
2565 if (!sig)
2566 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature JSON object lacks 'signature' field.");
2567 if (!json_variant_is_string(sig))
2568 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "'signature' field of signature JSON object is not a string.");
2569
2570 r = unbase64mem(json_variant_string(sig), SIZE_MAX, &root_hash_sig, &root_hash_sig_size);
2571 if (r < 0)
2572 return log_debug_errno(r, "Failed to parse signature field: %m");
2573
2574 free_and_replace(verity->root_hash, root_hash);
2575 verity->root_hash_size = root_hash_size;
2576
2577 free_and_replace(verity->root_hash_sig, root_hash_sig);
2578 verity->root_hash_sig_size = root_hash_sig_size;
2579
2580 return 1;
2581 }
2582
2583 int dissected_image_acquire_metadata(DissectedImage *m, DissectImageFlags extra_flags) {
2584
2585 enum {
2586 META_HOSTNAME,
2587 META_MACHINE_ID,
2588 META_MACHINE_INFO,
2589 META_OS_RELEASE,
2590 META_EXTENSION_RELEASE,
2591 META_HAS_INIT_SYSTEM,
2592 _META_MAX,
2593 };
2594
2595 static const char *const paths[_META_MAX] = {
2596 [META_HOSTNAME] = "/etc/hostname\0",
2597 [META_MACHINE_ID] = "/etc/machine-id\0",
2598 [META_MACHINE_INFO] = "/etc/machine-info\0",
2599 [META_OS_RELEASE] = ("/etc/os-release\0"
2600 "/usr/lib/os-release\0"),
2601 [META_EXTENSION_RELEASE] = "extension-release\0", /* Used only for logging. */
2602 [META_HAS_INIT_SYSTEM] = "has-init-system\0", /* ditto */
2603 };
2604
2605 _cleanup_strv_free_ char **machine_info = NULL, **os_release = NULL, **extension_release = NULL;
2606 _cleanup_close_pair_ int error_pipe[2] = { -1, -1 };
2607 _cleanup_(rmdir_and_freep) char *t = NULL;
2608 _cleanup_(sigkill_waitp) pid_t child = 0;
2609 sd_id128_t machine_id = SD_ID128_NULL;
2610 _cleanup_free_ char *hostname = NULL;
2611 unsigned n_meta_initialized = 0;
2612 int fds[2 * _META_MAX], r, v;
2613 int has_init_system = -1;
2614 ssize_t n;
2615
2616 BLOCK_SIGNALS(SIGCHLD);
2617
2618 assert(m);
2619
2620 for (; n_meta_initialized < _META_MAX; n_meta_initialized ++) {
2621 if (!paths[n_meta_initialized]) {
2622 fds[2*n_meta_initialized] = fds[2*n_meta_initialized+1] = -1;
2623 continue;
2624 }
2625
2626 if (pipe2(fds + 2*n_meta_initialized, O_CLOEXEC) < 0) {
2627 r = -errno;
2628 goto finish;
2629 }
2630 }
2631
2632 r = mkdtemp_malloc("/tmp/dissect-XXXXXX", &t);
2633 if (r < 0)
2634 goto finish;
2635
2636 if (pipe2(error_pipe, O_CLOEXEC) < 0) {
2637 r = -errno;
2638 goto finish;
2639 }
2640
2641 r = safe_fork("(sd-dissect)", FORK_RESET_SIGNALS|FORK_DEATHSIG|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, &child);
2642 if (r < 0)
2643 goto finish;
2644 if (r == 0) {
2645 /* Child in a new mount namespace */
2646 error_pipe[0] = safe_close(error_pipe[0]);
2647
2648 r = dissected_image_mount(
2649 m,
2650 t,
2651 UID_INVALID,
2652 UID_INVALID,
2653 extra_flags |
2654 DISSECT_IMAGE_READ_ONLY |
2655 DISSECT_IMAGE_MOUNT_ROOT_ONLY |
2656 DISSECT_IMAGE_USR_NO_ROOT);
2657 if (r < 0) {
2658 log_debug_errno(r, "Failed to mount dissected image: %m");
2659 goto inner_fail;
2660 }
2661
2662 for (unsigned k = 0; k < _META_MAX; k++) {
2663 _cleanup_close_ int fd = -ENOENT;
2664 const char *p;
2665
2666 if (!paths[k])
2667 continue;
2668
2669 fds[2*k] = safe_close(fds[2*k]);
2670
2671 switch (k) {
2672
2673 case META_EXTENSION_RELEASE:
2674 /* As per the os-release spec, if the image is an extension it will have a file
2675 * named after the image name in extension-release.d/ - we use the image name
2676 * and try to resolve it with the extension-release helpers, as sometimes
2677 * the image names are mangled on deployment and do not match anymore.
2678 * Unlike other paths this is not fixed, and the image name
2679 * can be mangled on deployment, so by calling into the helper
2680 * we allow a fallback that matches on the first extension-release
2681 * file found in the directory, if one named after the image cannot
2682 * be found first. */
2683 r = open_extension_release(t, m->image_name, NULL, &fd);
2684 if (r < 0)
2685 fd = r; /* Propagate the error. */
2686 break;
2687
2688 case META_HAS_INIT_SYSTEM: {
2689 bool found = false;
2690
2691 FOREACH_STRING(init,
2692 "/usr/lib/systemd/systemd", /* systemd on /usr merged system */
2693 "/lib/systemd/systemd", /* systemd on /usr non-merged systems */
2694 "/sbin/init") { /* traditional path the Linux kernel invokes */
2695
2696 r = chase_symlinks(init, t, CHASE_PREFIX_ROOT, NULL, NULL);
2697 if (r < 0) {
2698 if (r != -ENOENT)
2699 log_debug_errno(r, "Failed to resolve %s, ignoring: %m", init);
2700 } else {
2701 found = true;
2702 break;
2703 }
2704 }
2705
2706 r = loop_write(fds[2*k+1], &found, sizeof(found), false);
2707 if (r < 0)
2708 goto inner_fail;
2709
2710 continue;
2711 }
2712
2713 default:
2714 NULSTR_FOREACH(p, paths[k]) {
2715 fd = chase_symlinks_and_open(p, t, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NOCTTY, NULL);
2716 if (fd >= 0)
2717 break;
2718 }
2719 }
2720
2721 if (fd < 0) {
2722 log_debug_errno(fd, "Failed to read %s file of image, ignoring: %m", paths[k]);
2723 fds[2*k+1] = safe_close(fds[2*k+1]);
2724 continue;
2725 }
2726
2727 r = copy_bytes(fd, fds[2*k+1], UINT64_MAX, 0);
2728 if (r < 0)
2729 goto inner_fail;
2730
2731 fds[2*k+1] = safe_close(fds[2*k+1]);
2732 }
2733
2734 _exit(EXIT_SUCCESS);
2735
2736 inner_fail:
2737 /* Let parent know the error */
2738 (void) write(error_pipe[1], &r, sizeof(r));
2739 _exit(EXIT_FAILURE);
2740 }
2741
2742 error_pipe[1] = safe_close(error_pipe[1]);
2743
2744 for (unsigned k = 0; k < _META_MAX; k++) {
2745 _cleanup_fclose_ FILE *f = NULL;
2746
2747 if (!paths[k])
2748 continue;
2749
2750 fds[2*k+1] = safe_close(fds[2*k+1]);
2751
2752 f = take_fdopen(&fds[2*k], "r");
2753 if (!f) {
2754 r = -errno;
2755 goto finish;
2756 }
2757
2758 switch (k) {
2759
2760 case META_HOSTNAME:
2761 r = read_etc_hostname_stream(f, &hostname);
2762 if (r < 0)
2763 log_debug_errno(r, "Failed to read /etc/hostname of image: %m");
2764
2765 break;
2766
2767 case META_MACHINE_ID: {
2768 _cleanup_free_ char *line = NULL;
2769
2770 r = read_line(f, LONG_LINE_MAX, &line);
2771 if (r < 0)
2772 log_debug_errno(r, "Failed to read /etc/machine-id of image: %m");
2773 else if (r == 33) {
2774 r = sd_id128_from_string(line, &machine_id);
2775 if (r < 0)
2776 log_debug_errno(r, "Image contains invalid /etc/machine-id: %s", line);
2777 } else if (r == 0)
2778 log_debug("/etc/machine-id file of image is empty.");
2779 else if (streq(line, "uninitialized"))
2780 log_debug("/etc/machine-id file of image is uninitialized (likely aborted first boot).");
2781 else
2782 log_debug("/etc/machine-id file of image has unexpected length %i.", r);
2783
2784 break;
2785 }
2786
2787 case META_MACHINE_INFO:
2788 r = load_env_file_pairs(f, "machine-info", &machine_info);
2789 if (r < 0)
2790 log_debug_errno(r, "Failed to read /etc/machine-info of image: %m");
2791
2792 break;
2793
2794 case META_OS_RELEASE:
2795 r = load_env_file_pairs(f, "os-release", &os_release);
2796 if (r < 0)
2797 log_debug_errno(r, "Failed to read OS release file of image: %m");
2798
2799 break;
2800
2801 case META_EXTENSION_RELEASE:
2802 r = load_env_file_pairs(f, "extension-release", &extension_release);
2803 if (r < 0)
2804 log_debug_errno(r, "Failed to read extension release file of image: %m");
2805
2806 break;
2807
2808 case META_HAS_INIT_SYSTEM: {
2809 bool b = false;
2810 size_t nr;
2811
2812 errno = 0;
2813 nr = fread(&b, 1, sizeof(b), f);
2814 if (nr != sizeof(b))
2815 log_debug_errno(errno_or_else(EIO), "Failed to read has-init-system boolean: %m");
2816 else
2817 has_init_system = b;
2818
2819 break;
2820 }}
2821 }
2822
2823 r = wait_for_terminate_and_check("(sd-dissect)", child, 0);
2824 child = 0;
2825 if (r < 0)
2826 return r;
2827
2828 n = read(error_pipe[0], &v, sizeof(v));
2829 if (n < 0)
2830 return -errno;
2831 if (n == sizeof(v))
2832 return v; /* propagate error sent to us from child */
2833 if (n != 0)
2834 return -EIO;
2835
2836 if (r != EXIT_SUCCESS)
2837 return -EPROTO;
2838
2839 free_and_replace(m->hostname, hostname);
2840 m->machine_id = machine_id;
2841 strv_free_and_replace(m->machine_info, machine_info);
2842 strv_free_and_replace(m->os_release, os_release);
2843 strv_free_and_replace(m->extension_release, extension_release);
2844 m->has_init_system = has_init_system;
2845
2846 finish:
2847 for (unsigned k = 0; k < n_meta_initialized; k++)
2848 safe_close_pair(fds + 2*k);
2849
2850 return r;
2851 }
2852
2853 int dissect_loop_device(
2854 LoopDevice *loop,
2855 const VeritySettings *verity,
2856 const MountOptions *mount_options,
2857 DissectImageFlags flags,
2858 DissectedImage **ret) {
2859
2860 _cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
2861 int r;
2862
2863 assert(loop);
2864 assert(ret);
2865
2866 r = dissect_image(loop->fd, loop->node, loop->backing_file ?: loop->node, verity, mount_options, flags, &m);
2867 if (r < 0)
2868 return r;
2869
2870 m->loop = loop_device_ref(loop);
2871
2872 *ret = TAKE_PTR(m);
2873 return 0;
2874 }
2875
2876 int dissect_loop_device_and_warn(
2877 LoopDevice *loop,
2878 const VeritySettings *verity,
2879 const MountOptions *mount_options,
2880 DissectImageFlags flags,
2881 DissectedImage **ret) {
2882
2883 const char *name;
2884 int r;
2885
2886 assert(loop);
2887 assert(loop->fd >= 0);
2888
2889 name = ASSERT_PTR(loop->backing_file ?: loop->node);
2890
2891 r = dissect_loop_device(loop, verity, mount_options, flags, ret);
2892 switch (r) {
2893
2894 case -EOPNOTSUPP:
2895 return log_error_errno(r, "Dissecting images is not supported, compiled without blkid support.");
2896
2897 case -ENOPKG:
2898 return log_error_errno(r, "%s: Couldn't identify a suitable partition table or file system.", name);
2899
2900 case -ENOMEDIUM:
2901 return log_error_errno(r, "%s: The image does not pass validation.", name);
2902
2903 case -EADDRNOTAVAIL:
2904 return log_error_errno(r, "%s: No root partition for specified root hash found.", name);
2905
2906 case -ENOTUNIQ:
2907 return log_error_errno(r, "%s: Multiple suitable root partitions found in image.", name);
2908
2909 case -ENXIO:
2910 return log_error_errno(r, "%s: No suitable root partition found in image.", name);
2911
2912 case -EPROTONOSUPPORT:
2913 return log_error_errno(r, "Device '%s' is loopback block device with partition scanning turned off, please turn it on.", name);
2914
2915 case -ENOTBLK:
2916 return log_error_errno(r, "%s: Image is not a block device.", name);
2917
2918 case -EBADR:
2919 return log_error_errno(r,
2920 "Combining partitioned images (such as '%s') with external Verity data (such as '%s') not supported. "
2921 "(Consider setting $SYSTEMD_DISSECT_VERITY_SIDECAR=0 to disable automatic discovery of external Verity data.)",
2922 name, strna(verity ? verity->data_path : NULL));
2923
2924 default:
2925 if (r < 0)
2926 return log_error_errno(r, "Failed to dissect image '%s': %m", name);
2927
2928 return r;
2929 }
2930 }
2931
2932 bool dissected_image_verity_candidate(const DissectedImage *image, PartitionDesignator partition_designator) {
2933 assert(image);
2934
2935 /* Checks if this partition could theoretically do Verity. For non-partitioned images this only works
2936 * if there's an external verity file supplied, for which we can consult .has_verity. For partitioned
2937 * images we only check the partition type.
2938 *
2939 * This call is used to decide whether to suppress or show a verity column in tabular output of the
2940 * image. */
2941
2942 if (image->single_file_system)
2943 return partition_designator == PARTITION_ROOT && image->has_verity;
2944
2945 return PARTITION_VERITY_OF(partition_designator) >= 0;
2946 }
2947
2948 bool dissected_image_verity_ready(const DissectedImage *image, PartitionDesignator partition_designator) {
2949 PartitionDesignator k;
2950
2951 assert(image);
2952
2953 /* Checks if this partition has verity data available that we can activate. For non-partitioned this
2954 * works for the root partition, for others only if the associated verity partition was found. */
2955
2956 if (!image->verity_ready)
2957 return false;
2958
2959 if (image->single_file_system)
2960 return partition_designator == PARTITION_ROOT;
2961
2962 k = PARTITION_VERITY_OF(partition_designator);
2963 return k >= 0 && image->partitions[k].found;
2964 }
2965
2966 bool dissected_image_verity_sig_ready(const DissectedImage *image, PartitionDesignator partition_designator) {
2967 PartitionDesignator k;
2968
2969 assert(image);
2970
2971 /* Checks if this partition has verity signature data available that we can use. */
2972
2973 if (!image->verity_sig_ready)
2974 return false;
2975
2976 if (image->single_file_system)
2977 return partition_designator == PARTITION_ROOT;
2978
2979 k = PARTITION_VERITY_SIG_OF(partition_designator);
2980 return k >= 0 && image->partitions[k].found;
2981 }
2982
2983 MountOptions* mount_options_free_all(MountOptions *options) {
2984 MountOptions *m;
2985
2986 while ((m = options)) {
2987 LIST_REMOVE(mount_options, options, m);
2988 free(m->options);
2989 free(m);
2990 }
2991
2992 return NULL;
2993 }
2994
2995 const char* mount_options_from_designator(const MountOptions *options, PartitionDesignator designator) {
2996 LIST_FOREACH(mount_options, m, options)
2997 if (designator == m->partition_designator && !isempty(m->options))
2998 return m->options;
2999
3000 return NULL;
3001 }
3002
3003 int mount_image_privately_interactively(
3004 const char *image,
3005 DissectImageFlags flags,
3006 char **ret_directory,
3007 LoopDevice **ret_loop_device) {
3008
3009 _cleanup_(verity_settings_done) VeritySettings verity = VERITY_SETTINGS_DEFAULT;
3010 _cleanup_(loop_device_unrefp) LoopDevice *d = NULL;
3011 _cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
3012 _cleanup_(rmdir_and_freep) char *created_dir = NULL;
3013 _cleanup_free_ char *temp = NULL;
3014 int r;
3015
3016 /* Mounts an OS image at a temporary place, inside a newly created mount namespace of our own. This
3017 * is used by tools such as systemd-tmpfiles or systemd-firstboot to operate on some disk image
3018 * easily. */
3019
3020 assert(image);
3021 assert(ret_directory);
3022 assert(ret_loop_device);
3023
3024 r = verity_settings_load(&verity, image, NULL, NULL);
3025 if (r < 0)
3026 return log_error_errno(r, "Failed to load root hash data: %m");
3027
3028 r = tempfn_random_child(NULL, program_invocation_short_name, &temp);
3029 if (r < 0)
3030 return log_error_errno(r, "Failed to generate temporary mount directory: %m");
3031
3032 r = loop_device_make_by_path(
3033 image,
3034 FLAGS_SET(flags, DISSECT_IMAGE_DEVICE_READ_ONLY) ? O_RDONLY : O_RDWR,
3035 FLAGS_SET(flags, DISSECT_IMAGE_NO_PARTITION_TABLE) ? 0 : LO_FLAGS_PARTSCAN,
3036 LOCK_SH,
3037 &d);
3038 if (r < 0)
3039 return log_error_errno(r, "Failed to set up loopback device for %s: %m", image);
3040
3041 r = dissect_loop_device_and_warn(d, &verity, NULL, flags, &dissected_image);
3042 if (r < 0)
3043 return r;
3044
3045 r = dissected_image_load_verity_sig_partition(dissected_image, d->fd, &verity);
3046 if (r < 0)
3047 return r;
3048
3049 r = dissected_image_decrypt_interactively(dissected_image, NULL, &verity, flags);
3050 if (r < 0)
3051 return r;
3052
3053 r = detach_mount_namespace();
3054 if (r < 0)
3055 return log_error_errno(r, "Failed to detach mount namespace: %m");
3056
3057 r = mkdir_p(temp, 0700);
3058 if (r < 0)
3059 return log_error_errno(r, "Failed to create mount point: %m");
3060
3061 created_dir = TAKE_PTR(temp);
3062
3063 r = dissected_image_mount_and_warn(dissected_image, created_dir, UID_INVALID, UID_INVALID, flags);
3064 if (r < 0)
3065 return r;
3066
3067 r = loop_device_flock(d, LOCK_UN);
3068 if (r < 0)
3069 return r;
3070
3071 r = dissected_image_relinquish(dissected_image);
3072 if (r < 0)
3073 return log_error_errno(r, "Failed to relinquish DM and loopback block devices: %m");
3074
3075 *ret_directory = TAKE_PTR(created_dir);
3076 *ret_loop_device = TAKE_PTR(d);
3077
3078 return 0;
3079 }
3080
3081 static const char *const partition_designator_table[] = {
3082 [PARTITION_ROOT] = "root",
3083 [PARTITION_ROOT_SECONDARY] = "root-secondary",
3084 [PARTITION_ROOT_OTHER] = "root-other",
3085 [PARTITION_USR] = "usr",
3086 [PARTITION_USR_SECONDARY] = "usr-secondary",
3087 [PARTITION_USR_OTHER] = "usr-other",
3088 [PARTITION_HOME] = "home",
3089 [PARTITION_SRV] = "srv",
3090 [PARTITION_ESP] = "esp",
3091 [PARTITION_XBOOTLDR] = "xbootldr",
3092 [PARTITION_SWAP] = "swap",
3093 [PARTITION_ROOT_VERITY] = "root-verity",
3094 [PARTITION_ROOT_SECONDARY_VERITY] = "root-secondary-verity",
3095 [PARTITION_ROOT_OTHER_VERITY] = "root-other-verity",
3096 [PARTITION_USR_VERITY] = "usr-verity",
3097 [PARTITION_USR_SECONDARY_VERITY] = "usr-secondary-verity",
3098 [PARTITION_USR_OTHER_VERITY] = "usr-other-verity",
3099 [PARTITION_ROOT_VERITY_SIG] = "root-verity-sig",
3100 [PARTITION_ROOT_SECONDARY_VERITY_SIG] = "root-secondary-verity-sig",
3101 [PARTITION_ROOT_OTHER_VERITY_SIG] = "root-other-verity-sig",
3102 [PARTITION_USR_VERITY_SIG] = "usr-verity-sig",
3103 [PARTITION_USR_SECONDARY_VERITY_SIG] = "usr-secondary-verity-sig",
3104 [PARTITION_USR_OTHER_VERITY_SIG] = "usr-other-verity-sig",
3105 [PARTITION_TMP] = "tmp",
3106 [PARTITION_VAR] = "var",
3107 };
3108
3109 int verity_dissect_and_mount(
3110 int src_fd,
3111 const char *src,
3112 const char *dest,
3113 const MountOptions *options,
3114 const char *required_host_os_release_id,
3115 const char *required_host_os_release_version_id,
3116 const char *required_host_os_release_sysext_level,
3117 const char *required_sysext_scope) {
3118
3119 _cleanup_(loop_device_unrefp) LoopDevice *loop_device = NULL;
3120 _cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
3121 _cleanup_(verity_settings_done) VeritySettings verity = VERITY_SETTINGS_DEFAULT;
3122 DissectImageFlags dissect_image_flags;
3123 int r;
3124
3125 assert(src);
3126 assert(dest);
3127
3128 /* We might get an FD for the image, but we use the original path to look for the dm-verity files */
3129 r = verity_settings_load(&verity, src, NULL, NULL);
3130 if (r < 0)
3131 return log_debug_errno(r, "Failed to load root hash: %m");
3132
3133 dissect_image_flags = verity.data_path ? DISSECT_IMAGE_NO_PARTITION_TABLE : 0;
3134
3135 /* Note that we don't use loop_device_make here, as the FD is most likely O_PATH which would not be
3136 * accepted by LOOP_CONFIGURE, so just let loop_device_make_by_path reopen it as a regular FD. */
3137 r = loop_device_make_by_path(
3138 src_fd >= 0 ? FORMAT_PROC_FD_PATH(src_fd) : src,
3139 -1,
3140 verity.data_path ? 0 : LO_FLAGS_PARTSCAN,
3141 LOCK_SH,
3142 &loop_device);
3143 if (r < 0)
3144 return log_debug_errno(r, "Failed to create loop device for image: %m");
3145
3146 r = dissect_loop_device(
3147 loop_device,
3148 &verity,
3149 options,
3150 dissect_image_flags,
3151 &dissected_image);
3152 /* No partition table? Might be a single-filesystem image, try again */
3153 if (!verity.data_path && r == -ENOPKG)
3154 r = dissect_loop_device(
3155 loop_device,
3156 &verity,
3157 options,
3158 dissect_image_flags | DISSECT_IMAGE_NO_PARTITION_TABLE,
3159 &dissected_image);
3160 if (r < 0)
3161 return log_debug_errno(r, "Failed to dissect image: %m");
3162
3163 r = dissected_image_load_verity_sig_partition(dissected_image, loop_device->fd, &verity);
3164 if (r < 0)
3165 return r;
3166
3167 r = dissected_image_decrypt(
3168 dissected_image,
3169 NULL,
3170 &verity,
3171 dissect_image_flags);
3172 if (r < 0)
3173 return log_debug_errno(r, "Failed to decrypt dissected image: %m");
3174
3175 r = mkdir_p_label(dest, 0755);
3176 if (r < 0)
3177 return log_debug_errno(r, "Failed to create destination directory %s: %m", dest);
3178 r = umount_recursive(dest, 0);
3179 if (r < 0)
3180 return log_debug_errno(r, "Failed to umount under destination directory %s: %m", dest);
3181
3182 r = dissected_image_mount(dissected_image, dest, UID_INVALID, UID_INVALID, dissect_image_flags);
3183 if (r < 0)
3184 return log_debug_errno(r, "Failed to mount image: %m");
3185
3186 r = loop_device_flock(loop_device, LOCK_UN);
3187 if (r < 0)
3188 return log_debug_errno(r, "Failed to unlock loopback device: %m");
3189
3190 /* If we got os-release values from the caller, then we need to match them with the image's
3191 * extension-release.d/ content. Return -EINVAL if there's any mismatch.
3192 * First, check the distro ID. If that matches, then check the new SYSEXT_LEVEL value if
3193 * available, or else fallback to VERSION_ID. If neither is present (eg: rolling release),
3194 * then a simple match on the ID will be performed. */
3195 if (required_host_os_release_id) {
3196 _cleanup_strv_free_ char **extension_release = NULL;
3197
3198 assert(!isempty(required_host_os_release_id));
3199
3200 r = load_extension_release_pairs(dest, dissected_image->image_name, &extension_release);
3201 if (r < 0)
3202 return log_debug_errno(r, "Failed to parse image %s extension-release metadata: %m", dissected_image->image_name);
3203
3204 r = extension_release_validate(
3205 dissected_image->image_name,
3206 required_host_os_release_id,
3207 required_host_os_release_version_id,
3208 required_host_os_release_sysext_level,
3209 required_sysext_scope,
3210 extension_release);
3211 if (r == 0)
3212 return log_debug_errno(SYNTHETIC_ERRNO(ESTALE), "Image %s extension-release metadata does not match the root's", dissected_image->image_name);
3213 if (r < 0)
3214 return log_debug_errno(r, "Failed to compare image %s extension-release metadata with the root's os-release: %m", dissected_image->image_name);
3215 }
3216
3217 r = dissected_image_relinquish(dissected_image);
3218 if (r < 0)
3219 return log_debug_errno(r, "Failed to relinquish dissected image: %m");
3220
3221 return 0;
3222 }
3223
3224 DEFINE_STRING_TABLE_LOOKUP(partition_designator, PartitionDesignator);