]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/shared/dissect-image.c
Merge pull request #27835 from keszybz/test-58-repart-modernization
[thirdparty/systemd.git] / src / shared / dissect-image.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #if HAVE_VALGRIND_MEMCHECK_H
4 #include <valgrind/memcheck.h>
5 #endif
6
7 #include <linux/dm-ioctl.h>
8 #include <linux/loop.h>
9 #include <sys/file.h>
10 #include <sys/mount.h>
11 #include <sys/prctl.h>
12 #include <sys/wait.h>
13 #include <sysexits.h>
14
15 #if HAVE_OPENSSL
16 #include <openssl/err.h>
17 #include <openssl/pem.h>
18 #include <openssl/x509.h>
19 #endif
20
21 #include "sd-device.h"
22 #include "sd-id128.h"
23
24 #include "architecture.h"
25 #include "ask-password-api.h"
26 #include "blkid-util.h"
27 #include "blockdev-util.h"
28 #include "btrfs-util.h"
29 #include "chase.h"
30 #include "conf-files.h"
31 #include "constants.h"
32 #include "copy.h"
33 #include "cryptsetup-util.h"
34 #include "device-nodes.h"
35 #include "device-util.h"
36 #include "devnum-util.h"
37 #include "discover-image.h"
38 #include "dissect-image.h"
39 #include "dm-util.h"
40 #include "env-file.h"
41 #include "env-util.h"
42 #include "extension-util.h"
43 #include "fd-util.h"
44 #include "fileio.h"
45 #include "fs-util.h"
46 #include "fsck-util.h"
47 #include "gpt.h"
48 #include "hexdecoct.h"
49 #include "hostname-setup.h"
50 #include "id128-util.h"
51 #include "import-util.h"
52 #include "io-util.h"
53 #include "missing_mount.h"
54 #include "mkdir-label.h"
55 #include "mount-util.h"
56 #include "mountpoint-util.h"
57 #include "namespace-util.h"
58 #include "nulstr-util.h"
59 #include "openssl-util.h"
60 #include "os-util.h"
61 #include "path-util.h"
62 #include "process-util.h"
63 #include "raw-clone.h"
64 #include "resize-fs.h"
65 #include "signal-util.h"
66 #include "sparse-endian.h"
67 #include "stat-util.h"
68 #include "stdio-util.h"
69 #include "string-table.h"
70 #include "string-util.h"
71 #include "strv.h"
72 #include "tmpfile-util.h"
73 #include "udev-util.h"
74 #include "user-util.h"
75 #include "xattr-util.h"
76
77 /* how many times to wait for the device nodes to appear */
78 #define N_DEVICE_NODE_LIST_ATTEMPTS 10
79
80 int dissect_fstype_ok(const char *fstype) {
81 const char *e;
82 bool b;
83
84 /* When we automatically mount file systems, be a bit conservative by default what we are willing to
85 * mount, just as an extra safety net to not mount with badly maintained legacy file system
86 * drivers. */
87
88 e = secure_getenv("SYSTEMD_DISSECT_FILE_SYSTEMS");
89 if (e) {
90 _cleanup_strv_free_ char **l = NULL;
91
92 l = strv_split(e, ":");
93 if (!l)
94 return -ENOMEM;
95
96 b = strv_contains(l, fstype);
97 } else
98 b = STR_IN_SET(fstype,
99 "btrfs",
100 "erofs",
101 "ext4",
102 "squashfs",
103 "vfat",
104 "xfs");
105 if (b)
106 return true;
107
108 log_debug("File system type '%s' is not allowed to be mounted as result of automatic dissection.", fstype);
109 return false;
110 }
111
112 int probe_sector_size(int fd, uint32_t *ret) {
113
114 struct gpt_header {
115 char signature[8];
116 le32_t revision;
117 le32_t header_size;
118 le32_t crc32;
119 le32_t reserved;
120 le64_t my_lba;
121 le64_t alternate_lba;
122 le64_t first_usable_lba;
123 le64_t last_usable_lba;
124 sd_id128_t disk_guid;
125 le64_t partition_entry_lba;
126 le32_t number_of_partition_entries;
127 le32_t size_of_partition_entry;
128 le32_t partition_entry_array_crc32;
129 } _packed_;
130
131 /* Disk images might be for 512B or for 4096 sector sizes, let's try to auto-detect that by searching
132 * for the GPT headers at the relevant byte offsets */
133
134 assert_cc(sizeof(struct gpt_header) == 92);
135
136 /* We expect a sector size in the range 512…4096. The GPT header is located in the second
137 * sector. Hence it could be at byte 512 at the earliest, and at byte 4096 at the latest. And we must
138 * read with granularity of the largest sector size we care about. Which means 8K. */
139 uint8_t sectors[2 * 4096];
140 uint32_t found = 0;
141 ssize_t n;
142
143 assert(fd >= 0);
144 assert(ret);
145
146 n = pread(fd, sectors, sizeof(sectors), 0);
147 if (n < 0)
148 return -errno;
149 if (n != sizeof(sectors)) /* too short? */
150 goto not_found;
151
152 /* Let's see if we find the GPT partition header with various expected sector sizes */
153 for (uint32_t sz = 512; sz <= 4096; sz <<= 1) {
154 struct gpt_header *p;
155
156 assert(sizeof(sectors) >= sz * 2);
157 p = (struct gpt_header*) (sectors + sz);
158
159 if (memcmp(p->signature, (const char[8]) { 'E', 'F', 'I', ' ', 'P', 'A', 'R', 'T' }, 8) != 0)
160 continue;
161
162 if (le32toh(p->revision) != UINT32_C(0x00010000)) /* the only known revision of the spec: 1.0 */
163 continue;
164
165 if (le32toh(p->header_size) < sizeof(struct gpt_header))
166 continue;
167
168 if (le32toh(p->header_size) > 4096) /* larger than a sector? something is off… */
169 continue;
170
171 if (le64toh(p->my_lba) != 1) /* this sector must claim to be at sector offset 1 */
172 continue;
173
174 if (found != 0)
175 return log_debug_errno(SYNTHETIC_ERRNO(ENOTUNIQ),
176 "Detected valid partition table at offsets matching multiple sector sizes, refusing.");
177
178 found = sz;
179 }
180
181 if (found != 0) {
182 log_debug("Determined sector size %" PRIu32 " based on discovered partition table.", found);
183 *ret = found;
184 return 1; /* indicate we *did* find it */
185 }
186
187 not_found:
188 log_debug("Couldn't find any partition table to derive sector size of.");
189 *ret = 512; /* pick the traditional default */
190 return 0; /* indicate we didn't find it */
191 }
192
193 int probe_sector_size_prefer_ioctl(int fd, uint32_t *ret) {
194 struct stat st;
195
196 assert(fd >= 0);
197 assert(ret);
198
199 /* Just like probe_sector_size(), but if we are looking at a block device, will use the already
200 * configured sector size rather than probing by contents */
201
202 if (fstat(fd, &st) < 0)
203 return -errno;
204
205 if (S_ISBLK(st.st_mode))
206 return blockdev_get_sector_size(fd, ret);
207
208 return probe_sector_size(fd, ret);
209 }
210
211 int probe_filesystem_full(
212 int fd,
213 const char *path,
214 uint64_t offset,
215 uint64_t size,
216 char **ret_fstype) {
217
218 /* Try to find device content type and return it in *ret_fstype. If nothing is found,
219 * 0/NULL will be returned. -EUCLEAN will be returned for ambiguous results, and a
220 * different error otherwise. */
221
222 #if HAVE_BLKID
223 _cleanup_(blkid_free_probep) blkid_probe b = NULL;
224 _cleanup_free_ char *path_by_fd = NULL;
225 _cleanup_close_ int fd_close = -EBADF;
226 const char *fstype;
227 int r;
228
229 assert(fd >= 0 || path);
230 assert(ret_fstype);
231
232 if (fd < 0) {
233 fd_close = open(path, O_RDONLY|O_NONBLOCK|O_CLOEXEC|O_NOCTTY);
234 if (fd_close < 0)
235 return -errno;
236
237 fd = fd_close;
238 }
239
240 if (!path) {
241 r = fd_get_path(fd, &path_by_fd);
242 if (r < 0)
243 return r;
244
245 path = path_by_fd;
246 }
247
248 if (size == 0) /* empty size? nothing found! */
249 goto not_found;
250
251 b = blkid_new_probe();
252 if (!b)
253 return -ENOMEM;
254
255 /* The Linux kernel maintains separate block device caches for main ("whole") and partition block
256 * devices, which means making a change to one might not be reflected immediately when reading via
257 * the other. That's massively confusing when mixing accesses to such devices. Let's address this in
258 * a limited way: when probing a file system that is not at the beginning of the block device we
259 * apparently probe a partition via the main block device, and in that case let's first flush the
260 * main block device cache, so that we get the data that the per-partition block device last
261 * sync'ed on.
262 *
263 * This only works under the assumption that any tools that write to the partition block devices
264 * issue an syncfs()/fsync() on the device after making changes. Typically file system formatting
265 * tools that write a superblock onto a partition block device do that, however. */
266 if (offset != 0)
267 if (ioctl(fd, BLKFLSBUF, 0) < 0)
268 log_debug_errno(errno, "Failed to flush block device cache, ignoring: %m");
269
270 errno = 0;
271 r = blkid_probe_set_device(
272 b,
273 fd,
274 offset,
275 size == UINT64_MAX ? 0 : size); /* when blkid sees size=0 it understands "everything". We prefer using UINT64_MAX for that */
276 if (r != 0)
277 return errno_or_else(ENOMEM);
278
279 blkid_probe_enable_superblocks(b, 1);
280 blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE);
281
282 errno = 0;
283 r = blkid_do_safeprobe(b);
284 if (r == _BLKID_SAFEPROBE_NOT_FOUND)
285 goto not_found;
286 if (r == _BLKID_SAFEPROBE_AMBIGUOUS)
287 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN),
288 "Results ambiguous for partition %s", path);
289 if (r == _BLKID_SAFEPROBE_ERROR)
290 return log_debug_errno(errno_or_else(EIO), "Failed to probe partition %s: %m", path);
291
292 assert(r == _BLKID_SAFEPROBE_FOUND);
293
294 (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
295
296 if (fstype) {
297 char *t;
298
299 log_debug("Probed fstype '%s' on partition %s.", fstype, path);
300
301 t = strdup(fstype);
302 if (!t)
303 return -ENOMEM;
304
305 *ret_fstype = t;
306 return 1;
307 }
308
309 not_found:
310 log_debug("No type detected on partition %s", path);
311 *ret_fstype = NULL;
312 return 0;
313 #else
314 return -EOPNOTSUPP;
315 #endif
316 }
317
318 #if HAVE_BLKID
319 static int image_policy_may_use(
320 const ImagePolicy *policy,
321 PartitionDesignator designator) {
322
323 PartitionPolicyFlags f;
324
325 /* For each partition we find in the partition table do a first check if it may exist at all given
326 * the policy, or if it shall be ignored. */
327
328 f = image_policy_get_exhaustively(policy, designator);
329 if (f < 0)
330 return f;
331
332 if ((f & _PARTITION_POLICY_USE_MASK) == PARTITION_POLICY_ABSENT)
333 /* only flag set in policy is "absent"? then this partition may not exist at all */
334 return log_debug_errno(
335 SYNTHETIC_ERRNO(ERFKILL),
336 "Partition of designator '%s' exists, but not allowed by policy, refusing.",
337 partition_designator_to_string(designator));
338 if ((f & _PARTITION_POLICY_USE_MASK & ~PARTITION_POLICY_ABSENT) == PARTITION_POLICY_UNUSED) {
339 /* only "unused" or "unused" + "absent" are set? then don't use it */
340 log_debug("Partition of designator '%s' exists, and policy dictates to ignore it, doing so.",
341 partition_designator_to_string(designator));
342 return false; /* ignore! */
343 }
344
345 return true; /* use! */
346 }
347
348 static int image_policy_check_protection(
349 const ImagePolicy *policy,
350 PartitionDesignator designator,
351 PartitionPolicyFlags found_flags) {
352
353 PartitionPolicyFlags policy_flags;
354
355 /* Checks if the flags in the policy for the designated partition overlap the flags of what we found */
356
357 if (found_flags < 0)
358 return found_flags;
359
360 policy_flags = image_policy_get_exhaustively(policy, designator);
361 if (policy_flags < 0)
362 return policy_flags;
363
364 if ((found_flags & policy_flags) == 0) {
365 _cleanup_free_ char *found_flags_string = NULL, *policy_flags_string = NULL;
366
367 (void) partition_policy_flags_to_string(found_flags, /* simplify= */ true, &found_flags_string);
368 (void) partition_policy_flags_to_string(policy_flags, /* simplify= */ true, &policy_flags_string);
369
370 return log_debug_errno(SYNTHETIC_ERRNO(ERFKILL), "Partition %s discovered with policy '%s' but '%s' was required, refusing.",
371 partition_designator_to_string(designator),
372 strnull(found_flags_string), strnull(policy_flags_string));
373 }
374
375 return 0;
376 }
377
378 static int image_policy_check_partition_flags(
379 const ImagePolicy *policy,
380 PartitionDesignator designator,
381 uint64_t gpt_flags) {
382
383 PartitionPolicyFlags policy_flags;
384 bool b;
385
386 /* Checks if the partition flags in the policy match reality */
387
388 policy_flags = image_policy_get_exhaustively(policy, designator);
389 if (policy_flags < 0)
390 return policy_flags;
391
392 b = FLAGS_SET(gpt_flags, SD_GPT_FLAG_READ_ONLY);
393 if ((policy_flags & _PARTITION_POLICY_READ_ONLY_MASK) == (b ? PARTITION_POLICY_READ_ONLY_OFF : PARTITION_POLICY_READ_ONLY_ON))
394 return log_debug_errno(SYNTHETIC_ERRNO(ERFKILL), "Partition %s has 'read-only' flag incorrectly set (must be %s, is %s), refusing.",
395 partition_designator_to_string(designator),
396 one_zero(!b), one_zero(b));
397
398 b = FLAGS_SET(gpt_flags, SD_GPT_FLAG_GROWFS);
399 if ((policy_flags & _PARTITION_POLICY_GROWFS_MASK) == (b ? PARTITION_POLICY_GROWFS_OFF : PARTITION_POLICY_GROWFS_ON))
400 return log_debug_errno(SYNTHETIC_ERRNO(ERFKILL), "Partition %s has 'growfs' flag incorrectly set (must be %s, is %s), refusing.",
401 partition_designator_to_string(designator),
402 one_zero(!b), one_zero(b));
403
404 return 0;
405 }
406
407 static int dissected_image_probe_filesystems(
408 DissectedImage *m,
409 int fd,
410 const ImagePolicy *policy) {
411
412 int r;
413
414 assert(m);
415
416 /* Fill in file system types if we don't know them yet. */
417
418 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
419 DissectedPartition *p = m->partitions + i;
420 PartitionPolicyFlags found_flags;
421
422 if (!p->found)
423 continue;
424
425 if (!p->fstype) {
426 /* If we have an fd referring to the partition block device, use that. Otherwise go
427 * via the whole block device or backing regular file, and read via offset. */
428 if (p->mount_node_fd >= 0)
429 r = probe_filesystem_full(p->mount_node_fd, p->node, 0, UINT64_MAX, &p->fstype);
430 else
431 r = probe_filesystem_full(fd, p->node, p->offset, p->size, &p->fstype);
432 if (r < 0)
433 return r;
434 }
435
436 if (streq_ptr(p->fstype, "crypto_LUKS")) {
437 m->encrypted = true;
438 found_flags = PARTITION_POLICY_ENCRYPTED; /* found this one, and its definitely encrypted */
439 } else
440 /* found it, but it's definitely not encrypted, hence mask the encrypted flag, but
441 * set all other ways that indicate "present". */
442 found_flags = PARTITION_POLICY_UNPROTECTED|PARTITION_POLICY_VERITY|PARTITION_POLICY_SIGNED;
443
444 if (p->fstype && fstype_is_ro(p->fstype))
445 p->rw = false;
446
447 if (!p->rw)
448 p->growfs = false;
449
450 /* We might have learnt more about the file system now (i.e. whether it is encrypted or not),
451 * hence we need to validate this against policy again, to see if the policy still matches
452 * with this new information. Note that image_policy_check_protection() will check for
453 * overlap between what's allowed in the policy and what we pass as 'found_policy' here. In
454 * the unencrypted case we thus might pass an overly unspecific mask here (i.e. unprotected
455 * OR verity OR signed), but that's fine since the earlier policy check already checked more
456 * specific which of those three cases where OK. Keep in mind that this function here only
457 * looks at specific partitions (and thus can only deduce encryption or not) but not the
458 * overall partition table (and thus cannot deduce verity or not). The earlier dissection
459 * checks already did the relevant checks that look at the whole partition table, and
460 * enforced policy there as needed. */
461 r = image_policy_check_protection(policy, i, found_flags);
462 if (r < 0)
463 return r;
464 }
465
466 return 0;
467 }
468
469 static void check_partition_flags(
470 const char *node,
471 unsigned long long pflags,
472 unsigned long long supported) {
473
474 assert(node);
475
476 /* Mask away all flags supported by this partition's type and the three flags the UEFI spec defines generically */
477 pflags &= ~(supported |
478 SD_GPT_FLAG_REQUIRED_PARTITION |
479 SD_GPT_FLAG_NO_BLOCK_IO_PROTOCOL |
480 SD_GPT_FLAG_LEGACY_BIOS_BOOTABLE);
481
482 if (pflags == 0)
483 return;
484
485 /* If there are other bits set, then log about it, to make things discoverable */
486 for (unsigned i = 0; i < sizeof(pflags) * 8; i++) {
487 unsigned long long bit = 1ULL << i;
488 if (!FLAGS_SET(pflags, bit))
489 continue;
490
491 log_debug("Unexpected partition flag %llu set on %s!", bit, node);
492 }
493 }
494
495 static int dissected_image_new(const char *path, DissectedImage **ret) {
496 _cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
497 _cleanup_free_ char *name = NULL;
498 int r;
499
500 assert(ret);
501
502 if (path) {
503 _cleanup_free_ char *filename = NULL;
504
505 r = path_extract_filename(path, &filename);
506 if (r < 0)
507 return r;
508
509 r = raw_strip_suffixes(filename, &name);
510 if (r < 0)
511 return r;
512
513 if (!image_name_is_valid(name)) {
514 log_debug("Image name %s is not valid, ignoring.", strna(name));
515 name = mfree(name);
516 }
517 }
518
519 m = new(DissectedImage, 1);
520 if (!m)
521 return -ENOMEM;
522
523 *m = (DissectedImage) {
524 .has_init_system = -1,
525 .image_name = TAKE_PTR(name),
526 };
527
528 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++)
529 m->partitions[i] = DISSECTED_PARTITION_NULL;
530
531 *ret = TAKE_PTR(m);
532 return 0;
533 }
534 #endif
535
536 static void dissected_partition_done(DissectedPartition *p) {
537 assert(p);
538
539 free(p->fstype);
540 free(p->node);
541 free(p->label);
542 free(p->decrypted_fstype);
543 free(p->decrypted_node);
544 free(p->mount_options);
545 safe_close(p->mount_node_fd);
546
547 *p = DISSECTED_PARTITION_NULL;
548 }
549
550 #if HAVE_BLKID
551 static int make_partition_devname(
552 const char *whole_devname,
553 uint64_t diskseq,
554 int nr,
555 DissectImageFlags flags,
556 char **ret) {
557
558 _cleanup_free_ char *s = NULL;
559 int r;
560
561 assert(whole_devname);
562 assert(nr != 0); /* zero is not a valid partition nr */
563 assert(ret);
564
565 if (!FLAGS_SET(flags, DISSECT_IMAGE_DISKSEQ_DEVNODE) || diskseq == 0) {
566
567 /* Given a whole block device node name (e.g. /dev/sda or /dev/loop7) generate a partition
568 * device name (e.g. /dev/sda7 or /dev/loop7p5). The rule the kernel uses is simple: if whole
569 * block device node name ends in a digit, then suffix a 'p', followed by the partition
570 * number. Otherwise, just suffix the partition number without any 'p'. */
571
572 if (nr < 0) { /* whole disk? */
573 s = strdup(whole_devname);
574 if (!s)
575 return -ENOMEM;
576 } else {
577 size_t l = strlen(whole_devname);
578 if (l < 1) /* underflow check for the subtraction below */
579 return -EINVAL;
580
581 bool need_p = ascii_isdigit(whole_devname[l-1]); /* Last char a digit? */
582
583 if (asprintf(&s, "%s%s%i", whole_devname, need_p ? "p" : "", nr) < 0)
584 return -ENOMEM;
585 }
586 } else {
587 if (nr < 0) /* whole disk? */
588 r = asprintf(&s, "/dev/disk/by-diskseq/%" PRIu64, diskseq);
589 else
590 r = asprintf(&s, "/dev/disk/by-diskseq/%" PRIu64 "-part%i", diskseq, nr);
591 if (r < 0)
592 return -ENOMEM;
593 }
594
595 *ret = TAKE_PTR(s);
596 return 0;
597 }
598
599 static int open_partition(
600 const char *node,
601 bool is_partition,
602 const LoopDevice *loop) {
603
604 _cleanup_(sd_device_unrefp) sd_device *dev = NULL;
605 _cleanup_close_ int fd = -EBADF;
606 dev_t devnum;
607 int r;
608
609 assert(node);
610 assert(loop);
611
612 fd = open(node, O_RDONLY|O_NONBLOCK|O_CLOEXEC|O_NOCTTY);
613 if (fd < 0)
614 return -errno;
615
616 /* Check if the block device is a child of (or equivalent to) the originally provided one. */
617 r = block_device_new_from_fd(fd, is_partition ? BLOCK_DEVICE_LOOKUP_WHOLE_DISK : 0, &dev);
618 if (r < 0)
619 return r;
620
621 r = sd_device_get_devnum(dev, &devnum);
622 if (r < 0)
623 return r;
624
625 if (loop->devno != devnum)
626 return -ENXIO;
627
628 /* Also check diskseq. */
629 if (loop->diskseq != 0) {
630 uint64_t diskseq;
631
632 r = fd_get_diskseq(fd, &diskseq);
633 if (r < 0)
634 return r;
635
636 if (loop->diskseq != diskseq)
637 return -ENXIO;
638 }
639
640 log_debug("Opened %s (fd=%i, whole_block_devnum=" DEVNUM_FORMAT_STR ", diskseq=%" PRIu64 ").",
641 node, fd, DEVNUM_FORMAT_VAL(loop->devno), loop->diskseq);
642 return TAKE_FD(fd);
643 }
644
645 static int compare_arch(Architecture a, Architecture b) {
646 if (a == b)
647 return 0;
648
649 if (a == native_architecture())
650 return 1;
651
652 if (b == native_architecture())
653 return -1;
654
655 #ifdef ARCHITECTURE_SECONDARY
656 if (a == ARCHITECTURE_SECONDARY)
657 return 1;
658
659 if (b == ARCHITECTURE_SECONDARY)
660 return -1;
661 #endif
662
663 return 0;
664 }
665
666 static int dissect_image(
667 DissectedImage *m,
668 int fd,
669 const char *devname,
670 const VeritySettings *verity,
671 const MountOptions *mount_options,
672 const ImagePolicy *policy,
673 DissectImageFlags flags) {
674
675 sd_id128_t root_uuid = SD_ID128_NULL, root_verity_uuid = SD_ID128_NULL;
676 sd_id128_t usr_uuid = SD_ID128_NULL, usr_verity_uuid = SD_ID128_NULL;
677 bool is_gpt, is_mbr, multiple_generic = false,
678 generic_rw = false, /* initialize to appease gcc */
679 generic_growfs = false;
680 _cleanup_(blkid_free_probep) blkid_probe b = NULL;
681 _cleanup_free_ char *generic_node = NULL;
682 sd_id128_t generic_uuid = SD_ID128_NULL;
683 const char *pttype = NULL, *sptuuid = NULL;
684 blkid_partlist pl;
685 int r, generic_nr = -1, n_partitions;
686
687 assert(m);
688 assert(fd >= 0);
689 assert(devname);
690 assert(!verity || verity->designator < 0 || IN_SET(verity->designator, PARTITION_ROOT, PARTITION_USR));
691 assert(!verity || verity->root_hash || verity->root_hash_size == 0);
692 assert(!verity || verity->root_hash_sig || verity->root_hash_sig_size == 0);
693 assert(!verity || (verity->root_hash || !verity->root_hash_sig));
694 assert(!((flags & DISSECT_IMAGE_GPT_ONLY) && (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)));
695 assert(m->sector_size > 0);
696
697 /* Probes a disk image, and returns information about what it found in *ret.
698 *
699 * Returns -ENOPKG if no suitable partition table or file system could be found.
700 * Returns -EADDRNOTAVAIL if a root hash was specified but no matching root/verity partitions found.
701 * Returns -ENXIO if we couldn't find any partition suitable as root or /usr partition
702 * Returns -ENOTUNIQ if we only found multiple generic partitions and thus don't know what to do with that
703 * Returns -ERFKILL if image doesn't match image policy
704 * Returns -EBADR if verity data was provided externally for an image that has a GPT partition table (i.e. is not just a naked fs)
705 * Returns -EPROTONOSUPPORT if DISSECT_IMAGE_ADD_PARTITION_DEVICES is set but the block device does not have partition logic enabled
706 * Returns -ENOMSG if we didn't find a single usable partition (and DISSECT_IMAGE_REFUSE_EMPTY is set) */
707
708 uint64_t diskseq = m->loop ? m->loop->diskseq : 0;
709
710 if (verity && verity->root_hash) {
711 sd_id128_t fsuuid, vuuid;
712
713 /* If a root hash is supplied, then we use the root partition that has a UUID that match the
714 * first 128bit of the root hash. And we use the verity partition that has a UUID that match
715 * the final 128bit. */
716
717 if (verity->root_hash_size < sizeof(sd_id128_t))
718 return -EINVAL;
719
720 memcpy(&fsuuid, verity->root_hash, sizeof(sd_id128_t));
721 memcpy(&vuuid, (const uint8_t*) verity->root_hash + verity->root_hash_size - sizeof(sd_id128_t), sizeof(sd_id128_t));
722
723 if (sd_id128_is_null(fsuuid))
724 return -EINVAL;
725 if (sd_id128_is_null(vuuid))
726 return -EINVAL;
727
728 /* If the verity data declares it's for the /usr partition, then search for that, in all
729 * other cases assume it's for the root partition. */
730 if (verity->designator == PARTITION_USR) {
731 usr_uuid = fsuuid;
732 usr_verity_uuid = vuuid;
733 } else {
734 root_uuid = fsuuid;
735 root_verity_uuid = vuuid;
736 }
737 }
738
739 b = blkid_new_probe();
740 if (!b)
741 return -ENOMEM;
742
743 errno = 0;
744 r = blkid_probe_set_device(b, fd, 0, 0);
745 if (r != 0)
746 return errno_or_else(ENOMEM);
747
748 errno = 0;
749 r = blkid_probe_set_sectorsize(b, m->sector_size);
750 if (r != 0)
751 return errno_or_else(EIO);
752
753 if ((flags & DISSECT_IMAGE_GPT_ONLY) == 0) {
754 /* Look for file system superblocks, unless we only shall look for GPT partition tables */
755 blkid_probe_enable_superblocks(b, 1);
756 blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE|BLKID_SUBLKS_USAGE|BLKID_SUBLKS_UUID);
757 }
758
759 blkid_probe_enable_partitions(b, 1);
760 blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS);
761
762 errno = 0;
763 r = blkid_do_safeprobe(b);
764 if (r == _BLKID_SAFEPROBE_ERROR)
765 return errno_or_else(EIO);
766 if (IN_SET(r, _BLKID_SAFEPROBE_AMBIGUOUS, _BLKID_SAFEPROBE_NOT_FOUND))
767 return log_debug_errno(SYNTHETIC_ERRNO(ENOPKG), "Failed to identify any partition table.");
768
769 assert(r == _BLKID_SAFEPROBE_FOUND);
770
771 if ((!(flags & DISSECT_IMAGE_GPT_ONLY) &&
772 (flags & DISSECT_IMAGE_GENERIC_ROOT)) ||
773 (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)) {
774 const char *usage = NULL;
775
776 /* If flags permit this, also allow using non-partitioned single-filesystem images */
777
778 (void) blkid_probe_lookup_value(b, "USAGE", &usage, NULL);
779 if (STRPTR_IN_SET(usage, "filesystem", "crypto")) {
780 _cleanup_free_ char *t = NULL, *n = NULL, *o = NULL;
781 const char *fstype = NULL, *options = NULL, *suuid = NULL;
782 _cleanup_close_ int mount_node_fd = -EBADF;
783 sd_id128_t uuid = SD_ID128_NULL;
784 PartitionPolicyFlags found_flags;
785 bool encrypted;
786
787 /* OK, we have found a file system, that's our root partition then. */
788
789 r = image_policy_may_use(policy, PARTITION_ROOT);
790 if (r < 0)
791 return r;
792 if (r == 0) /* policy says ignore this, so we ignore it */
793 return -ENOPKG;
794
795 (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
796 (void) blkid_probe_lookup_value(b, "UUID", &suuid, NULL);
797
798 encrypted = streq_ptr(fstype, "crypto_LUKS");
799
800 if (verity_settings_data_covers(verity, PARTITION_ROOT))
801 found_flags = verity->root_hash_sig ? PARTITION_POLICY_SIGNED : PARTITION_POLICY_VERITY;
802 else
803 found_flags = encrypted ? PARTITION_POLICY_ENCRYPTED : PARTITION_POLICY_UNPROTECTED;
804
805 r = image_policy_check_protection(policy, PARTITION_ROOT, found_flags);
806 if (r < 0)
807 return r;
808
809 r = image_policy_check_partition_flags(policy, PARTITION_ROOT, 0); /* we have no gpt partition flags, hence check against all bits off */
810 if (r < 0)
811 return r;
812
813 if (FLAGS_SET(flags, DISSECT_IMAGE_PIN_PARTITION_DEVICES)) {
814 mount_node_fd = open_partition(devname, /* is_partition = */ false, m->loop);
815 if (mount_node_fd < 0)
816 return mount_node_fd;
817 }
818
819 if (fstype) {
820 t = strdup(fstype);
821 if (!t)
822 return -ENOMEM;
823 }
824
825 if (suuid) {
826 /* blkid will return FAT's serial number as UUID, hence it is quite possible
827 * that parsing this will fail. We'll ignore the ID, since it's just too
828 * short to be useful as tru identifier. */
829 r = sd_id128_from_string(suuid, &uuid);
830 if (r < 0)
831 log_debug_errno(r, "Failed to parse file system UUID '%s', ignoring: %m", suuid);
832 }
833
834 r = make_partition_devname(devname, diskseq, -1, flags, &n);
835 if (r < 0)
836 return r;
837
838 m->single_file_system = true;
839 m->encrypted = encrypted;
840
841 m->has_verity = verity && verity->data_path;
842 m->verity_ready = verity_settings_data_covers(verity, PARTITION_ROOT);
843
844 m->has_verity_sig = false; /* signature not embedded, must be specified */
845 m->verity_sig_ready = m->verity_ready && verity->root_hash_sig;
846
847 m->image_uuid = uuid;
848
849 options = mount_options_from_designator(mount_options, PARTITION_ROOT);
850 if (options) {
851 o = strdup(options);
852 if (!o)
853 return -ENOMEM;
854 }
855
856 m->partitions[PARTITION_ROOT] = (DissectedPartition) {
857 .found = true,
858 .rw = !m->verity_ready && !fstype_is_ro(fstype),
859 .partno = -1,
860 .architecture = _ARCHITECTURE_INVALID,
861 .fstype = TAKE_PTR(t),
862 .node = TAKE_PTR(n),
863 .mount_options = TAKE_PTR(o),
864 .mount_node_fd = TAKE_FD(mount_node_fd),
865 .offset = 0,
866 .size = UINT64_MAX,
867 };
868
869 return 0;
870 }
871 }
872
873 (void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL);
874 if (!pttype)
875 return -ENOPKG;
876
877 is_gpt = streq_ptr(pttype, "gpt");
878 is_mbr = streq_ptr(pttype, "dos");
879
880 if (!is_gpt && ((flags & DISSECT_IMAGE_GPT_ONLY) || !is_mbr))
881 return -ENOPKG;
882
883 /* We support external verity data partitions only if the image has no partition table */
884 if (verity && verity->data_path)
885 return -EBADR;
886
887 if (FLAGS_SET(flags, DISSECT_IMAGE_ADD_PARTITION_DEVICES)) {
888 /* Safety check: refuse block devices that carry a partition table but for which the kernel doesn't
889 * do partition scanning. */
890 r = blockdev_partscan_enabled(fd);
891 if (r < 0)
892 return r;
893 if (r == 0)
894 return -EPROTONOSUPPORT;
895 }
896
897 (void) blkid_probe_lookup_value(b, "PTUUID", &sptuuid, NULL);
898 if (sptuuid) {
899 r = sd_id128_from_string(sptuuid, &m->image_uuid);
900 if (r < 0)
901 log_debug_errno(r, "Failed to parse partition table UUID '%s', ignoring: %m", sptuuid);
902 }
903
904 errno = 0;
905 pl = blkid_probe_get_partitions(b);
906 if (!pl)
907 return errno_or_else(ENOMEM);
908
909 errno = 0;
910 n_partitions = blkid_partlist_numof_partitions(pl);
911 if (n_partitions < 0)
912 return errno_or_else(EIO);
913
914 for (int i = 0; i < n_partitions; i++) {
915 _cleanup_free_ char *node = NULL;
916 unsigned long long pflags;
917 blkid_loff_t start, size;
918 blkid_partition pp;
919 int nr;
920
921 errno = 0;
922 pp = blkid_partlist_get_partition(pl, i);
923 if (!pp)
924 return errno_or_else(EIO);
925
926 pflags = blkid_partition_get_flags(pp);
927
928 errno = 0;
929 nr = blkid_partition_get_partno(pp);
930 if (nr < 0)
931 return errno_or_else(EIO);
932
933 errno = 0;
934 start = blkid_partition_get_start(pp);
935 if (start < 0)
936 return errno_or_else(EIO);
937
938 assert((uint64_t) start < UINT64_MAX/512);
939
940 errno = 0;
941 size = blkid_partition_get_size(pp);
942 if (size < 0)
943 return errno_or_else(EIO);
944
945 assert((uint64_t) size < UINT64_MAX/512);
946
947 /* While probing we need the non-diskseq device node name to access the thing, hence mask off
948 * DISSECT_IMAGE_DISKSEQ_DEVNODE. */
949 r = make_partition_devname(devname, diskseq, nr, flags & ~DISSECT_IMAGE_DISKSEQ_DEVNODE, &node);
950 if (r < 0)
951 return r;
952
953 /* So here's the thing: after the main ("whole") block device popped up it might take a while
954 * before the kernel fully probed the partition table. Waiting for that to finish is icky in
955 * userspace. So here's what we do instead. We issue the BLKPG_ADD_PARTITION ioctl to add the
956 * partition ourselves, racing against the kernel. Good thing is: if this call fails with
957 * EBUSY then the kernel was quicker than us, and that's totally OK, the outcome is good for
958 * us: the device node will exist. If OTOH our call was successful we won the race. Which is
959 * also good as the outcome is the same: the partition block device exists, and we can use
960 * it.
961 *
962 * Kernel returns EBUSY if there's already a partition by that number or an overlapping
963 * partition already existent. */
964
965 if (FLAGS_SET(flags, DISSECT_IMAGE_ADD_PARTITION_DEVICES)) {
966 r = block_device_add_partition(fd, node, nr, (uint64_t) start * 512, (uint64_t) size * 512);
967 if (r < 0) {
968 if (r != -EBUSY)
969 return log_debug_errno(r, "BLKPG_ADD_PARTITION failed: %m");
970
971 log_debug_errno(r, "Kernel was quicker than us in adding partition %i.", nr);
972 } else
973 log_debug("We were quicker than kernel in adding partition %i.", nr);
974 }
975
976 if (is_gpt) {
977 const char *fstype = NULL, *label;
978 sd_id128_t type_id, id;
979 GptPartitionType type;
980 bool rw = true, growfs = false;
981
982 r = blkid_partition_get_uuid_id128(pp, &id);
983 if (r < 0) {
984 log_debug_errno(r, "Failed to read partition UUID, ignoring: %m");
985 continue;
986 }
987
988 r = blkid_partition_get_type_id128(pp, &type_id);
989 if (r < 0) {
990 log_debug_errno(r, "Failed to read partition type UUID, ignoring: %m");
991 continue;
992 }
993
994 type = gpt_partition_type_from_uuid(type_id);
995
996 label = blkid_partition_get_name(pp); /* libblkid returns NULL here if empty */
997
998 if (IN_SET(type.designator,
999 PARTITION_HOME,
1000 PARTITION_SRV,
1001 PARTITION_XBOOTLDR,
1002 PARTITION_TMP)) {
1003
1004 check_partition_flags(node, pflags,
1005 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
1006
1007 if (pflags & SD_GPT_FLAG_NO_AUTO)
1008 continue;
1009
1010 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
1011 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
1012
1013 } else if (type.designator == PARTITION_ESP) {
1014
1015 /* Note that we don't check the SD_GPT_FLAG_NO_AUTO flag for the ESP, as it is
1016 * not defined there. We instead check the SD_GPT_FLAG_NO_BLOCK_IO_PROTOCOL, as
1017 * recommended by the UEFI spec (See "12.3.3 Number and Location of System
1018 * Partitions"). */
1019
1020 if (pflags & SD_GPT_FLAG_NO_BLOCK_IO_PROTOCOL)
1021 continue;
1022
1023 fstype = "vfat";
1024
1025 } else if (type.designator == PARTITION_ROOT) {
1026
1027 check_partition_flags(node, pflags,
1028 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
1029
1030 if (pflags & SD_GPT_FLAG_NO_AUTO)
1031 continue;
1032
1033 /* If a root ID is specified, ignore everything but the root id */
1034 if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id))
1035 continue;
1036
1037 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
1038 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
1039
1040 } else if (type.designator == PARTITION_ROOT_VERITY) {
1041
1042 check_partition_flags(node, pflags,
1043 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY);
1044
1045 if (pflags & SD_GPT_FLAG_NO_AUTO)
1046 continue;
1047
1048 m->has_verity = true;
1049
1050 /* If no verity configuration is specified, then don't do verity */
1051 if (!verity)
1052 continue;
1053 if (verity->designator >= 0 && verity->designator != PARTITION_ROOT)
1054 continue;
1055
1056 /* If root hash is specified, then ignore everything but the root id */
1057 if (!sd_id128_is_null(root_verity_uuid) && !sd_id128_equal(root_verity_uuid, id))
1058 continue;
1059
1060 fstype = "DM_verity_hash";
1061 rw = false;
1062
1063 } else if (type.designator == PARTITION_ROOT_VERITY_SIG) {
1064
1065 check_partition_flags(node, pflags,
1066 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY);
1067
1068 if (pflags & SD_GPT_FLAG_NO_AUTO)
1069 continue;
1070
1071 m->has_verity_sig = true;
1072
1073 if (!verity)
1074 continue;
1075 if (verity->designator >= 0 && verity->designator != PARTITION_ROOT)
1076 continue;
1077
1078 fstype = "verity_hash_signature";
1079 rw = false;
1080
1081 } else if (type.designator == PARTITION_USR) {
1082
1083 check_partition_flags(node, pflags,
1084 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
1085
1086 if (pflags & SD_GPT_FLAG_NO_AUTO)
1087 continue;
1088
1089 /* If a usr ID is specified, ignore everything but the usr id */
1090 if (!sd_id128_is_null(usr_uuid) && !sd_id128_equal(usr_uuid, id))
1091 continue;
1092
1093 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
1094 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
1095
1096 } else if (type.designator == PARTITION_USR_VERITY) {
1097
1098 check_partition_flags(node, pflags,
1099 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY);
1100
1101 if (pflags & SD_GPT_FLAG_NO_AUTO)
1102 continue;
1103
1104 m->has_verity = true;
1105
1106 if (!verity)
1107 continue;
1108 if (verity->designator >= 0 && verity->designator != PARTITION_USR)
1109 continue;
1110
1111 /* If usr hash is specified, then ignore everything but the usr id */
1112 if (!sd_id128_is_null(usr_verity_uuid) && !sd_id128_equal(usr_verity_uuid, id))
1113 continue;
1114
1115 fstype = "DM_verity_hash";
1116 rw = false;
1117
1118 } else if (type.designator == PARTITION_USR_VERITY_SIG) {
1119
1120 check_partition_flags(node, pflags,
1121 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY);
1122
1123 if (pflags & SD_GPT_FLAG_NO_AUTO)
1124 continue;
1125
1126 m->has_verity_sig = true;
1127
1128 if (!verity)
1129 continue;
1130 if (verity->designator >= 0 && verity->designator != PARTITION_USR)
1131 continue;
1132
1133 fstype = "verity_hash_signature";
1134 rw = false;
1135
1136 } else if (type.designator == PARTITION_SWAP) {
1137
1138 check_partition_flags(node, pflags, SD_GPT_FLAG_NO_AUTO);
1139
1140 if (pflags & SD_GPT_FLAG_NO_AUTO)
1141 continue;
1142
1143 /* Note: we don't set fstype = "swap" here, because we still need to probe if
1144 * it might be encrypted (i.e. fstype "crypt_LUKS") or unencrypted
1145 * (i.e. fstype "swap"), and the only way to figure that out is via fstype
1146 * probing. */
1147
1148 /* We don't have a designator for SD_GPT_LINUX_GENERIC so check the UUID instead. */
1149 } else if (sd_id128_equal(type.uuid, SD_GPT_LINUX_GENERIC)) {
1150
1151 check_partition_flags(node, pflags,
1152 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
1153
1154 if (pflags & SD_GPT_FLAG_NO_AUTO)
1155 continue;
1156
1157 if (generic_node)
1158 multiple_generic = true;
1159 else {
1160 generic_nr = nr;
1161 generic_rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
1162 generic_growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
1163 generic_uuid = id;
1164 generic_node = TAKE_PTR(node);
1165 }
1166
1167 } else if (type.designator == PARTITION_VAR) {
1168
1169 check_partition_flags(node, pflags,
1170 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
1171
1172 if (pflags & SD_GPT_FLAG_NO_AUTO)
1173 continue;
1174
1175 if (!FLAGS_SET(flags, DISSECT_IMAGE_RELAX_VAR_CHECK)) {
1176 sd_id128_t var_uuid;
1177
1178 /* For /var we insist that the uuid of the partition matches the
1179 * HMAC-SHA256 of the /var GPT partition type uuid, keyed by machine
1180 * ID. Why? Unlike the other partitions /var is inherently
1181 * installation specific, hence we need to be careful not to mount it
1182 * in the wrong installation. By hashing the partition UUID from
1183 * /etc/machine-id we can securely bind the partition to the
1184 * installation. */
1185
1186 r = sd_id128_get_machine_app_specific(SD_GPT_VAR, &var_uuid);
1187 if (r < 0)
1188 return r;
1189
1190 if (!sd_id128_equal(var_uuid, id)) {
1191 log_debug("Found a /var/ partition, but its UUID didn't match our expectations "
1192 "(found: " SD_ID128_UUID_FORMAT_STR ", expected: " SD_ID128_UUID_FORMAT_STR "), ignoring.",
1193 SD_ID128_FORMAT_VAL(id), SD_ID128_FORMAT_VAL(var_uuid));
1194 continue;
1195 }
1196 }
1197
1198 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
1199 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
1200 }
1201
1202 if (type.designator != _PARTITION_DESIGNATOR_INVALID) {
1203 _cleanup_free_ char *t = NULL, *o = NULL, *l = NULL, *n = NULL;
1204 _cleanup_close_ int mount_node_fd = -EBADF;
1205 const char *options = NULL;
1206
1207 r = image_policy_may_use(policy, type.designator);
1208 if (r < 0)
1209 return r;
1210 if (r == 0) {
1211 /* Policy says: ignore; Remember this fact, so that we later can distinguish between "found but ignored" and "not found at all" */
1212
1213 if (!m->partitions[type.designator].found)
1214 m->partitions[type.designator].ignored = true;
1215
1216 continue;
1217 }
1218
1219 if (m->partitions[type.designator].found) {
1220 /* For most partition types the first one we see wins. Except for the
1221 * rootfs and /usr, where we do a version compare of the label, and
1222 * let the newest version win. This permits a simple A/B versioning
1223 * scheme in OS images. */
1224
1225 if (compare_arch(type.arch, m->partitions[type.designator].architecture) <= 0)
1226 continue;
1227
1228 if (!partition_designator_is_versioned(type.designator) ||
1229 strverscmp_improved(m->partitions[type.designator].label, label) >= 0)
1230 continue;
1231
1232 dissected_partition_done(m->partitions + type.designator);
1233 }
1234
1235 if (FLAGS_SET(flags, DISSECT_IMAGE_PIN_PARTITION_DEVICES) &&
1236 type.designator != PARTITION_SWAP) {
1237 mount_node_fd = open_partition(node, /* is_partition = */ true, m->loop);
1238 if (mount_node_fd < 0)
1239 return mount_node_fd;
1240 }
1241
1242 r = make_partition_devname(devname, diskseq, nr, flags, &n);
1243 if (r < 0)
1244 return r;
1245
1246 if (fstype) {
1247 t = strdup(fstype);
1248 if (!t)
1249 return -ENOMEM;
1250 }
1251
1252 if (label) {
1253 l = strdup(label);
1254 if (!l)
1255 return -ENOMEM;
1256 }
1257
1258 options = mount_options_from_designator(mount_options, type.designator);
1259 if (options) {
1260 o = strdup(options);
1261 if (!o)
1262 return -ENOMEM;
1263 }
1264
1265 m->partitions[type.designator] = (DissectedPartition) {
1266 .found = true,
1267 .partno = nr,
1268 .rw = rw,
1269 .growfs = growfs,
1270 .architecture = type.arch,
1271 .node = TAKE_PTR(n),
1272 .fstype = TAKE_PTR(t),
1273 .label = TAKE_PTR(l),
1274 .uuid = id,
1275 .mount_options = TAKE_PTR(o),
1276 .mount_node_fd = TAKE_FD(mount_node_fd),
1277 .offset = (uint64_t) start * 512,
1278 .size = (uint64_t) size * 512,
1279 .gpt_flags = pflags,
1280 };
1281 }
1282
1283 } else if (is_mbr) {
1284
1285 switch (blkid_partition_get_type(pp)) {
1286
1287 case 0x83: /* Linux partition */
1288
1289 if (pflags != 0x80) /* Bootable flag */
1290 continue;
1291
1292 if (generic_node)
1293 multiple_generic = true;
1294 else {
1295 generic_nr = nr;
1296 generic_rw = true;
1297 generic_growfs = false;
1298 generic_node = TAKE_PTR(node);
1299 }
1300
1301 break;
1302
1303 case 0xEA: { /* Boot Loader Spec extended $BOOT partition */
1304 _cleanup_close_ int mount_node_fd = -EBADF;
1305 _cleanup_free_ char *o = NULL, *n = NULL;
1306 sd_id128_t id = SD_ID128_NULL;
1307 const char *options = NULL;
1308
1309 r = image_policy_may_use(policy, PARTITION_XBOOTLDR);
1310 if (r < 0)
1311 return r;
1312 if (r == 0) { /* policy says: ignore */
1313 if (!m->partitions[PARTITION_XBOOTLDR].found)
1314 m->partitions[PARTITION_XBOOTLDR].ignored = true;
1315
1316 continue;
1317 }
1318
1319 /* First one wins */
1320 if (m->partitions[PARTITION_XBOOTLDR].found)
1321 continue;
1322
1323 if (FLAGS_SET(flags, DISSECT_IMAGE_PIN_PARTITION_DEVICES)) {
1324 mount_node_fd = open_partition(node, /* is_partition = */ true, m->loop);
1325 if (mount_node_fd < 0)
1326 return mount_node_fd;
1327 }
1328
1329 (void) blkid_partition_get_uuid_id128(pp, &id);
1330
1331 r = make_partition_devname(devname, diskseq, nr, flags, &n);
1332 if (r < 0)
1333 return r;
1334
1335 options = mount_options_from_designator(mount_options, PARTITION_XBOOTLDR);
1336 if (options) {
1337 o = strdup(options);
1338 if (!o)
1339 return -ENOMEM;
1340 }
1341
1342 m->partitions[PARTITION_XBOOTLDR] = (DissectedPartition) {
1343 .found = true,
1344 .partno = nr,
1345 .rw = true,
1346 .growfs = false,
1347 .architecture = _ARCHITECTURE_INVALID,
1348 .node = TAKE_PTR(n),
1349 .uuid = id,
1350 .mount_options = TAKE_PTR(o),
1351 .mount_node_fd = TAKE_FD(mount_node_fd),
1352 .offset = (uint64_t) start * 512,
1353 .size = (uint64_t) size * 512,
1354 };
1355
1356 break;
1357 }}
1358 }
1359 }
1360
1361 if (!m->partitions[PARTITION_ROOT].found &&
1362 (m->partitions[PARTITION_ROOT_VERITY].found ||
1363 m->partitions[PARTITION_ROOT_VERITY_SIG].found))
1364 return -EADDRNOTAVAIL; /* Verity found but no matching rootfs? Something is off, refuse. */
1365
1366 /* Hmm, we found a signature partition but no Verity data? Something is off. */
1367 if (m->partitions[PARTITION_ROOT_VERITY_SIG].found && !m->partitions[PARTITION_ROOT_VERITY].found)
1368 return -EADDRNOTAVAIL;
1369
1370 if (!m->partitions[PARTITION_USR].found &&
1371 (m->partitions[PARTITION_USR_VERITY].found ||
1372 m->partitions[PARTITION_USR_VERITY_SIG].found))
1373 return -EADDRNOTAVAIL; /* as above */
1374
1375 /* as above */
1376 if (m->partitions[PARTITION_USR_VERITY_SIG].found && !m->partitions[PARTITION_USR_VERITY].found)
1377 return -EADDRNOTAVAIL;
1378
1379 /* If root and /usr are combined then insist that the architecture matches */
1380 if (m->partitions[PARTITION_ROOT].found &&
1381 m->partitions[PARTITION_USR].found &&
1382 (m->partitions[PARTITION_ROOT].architecture >= 0 &&
1383 m->partitions[PARTITION_USR].architecture >= 0 &&
1384 m->partitions[PARTITION_ROOT].architecture != m->partitions[PARTITION_USR].architecture))
1385 return -EADDRNOTAVAIL;
1386
1387 if (!m->partitions[PARTITION_ROOT].found &&
1388 !m->partitions[PARTITION_USR].found &&
1389 (flags & DISSECT_IMAGE_GENERIC_ROOT) &&
1390 (!verity || !verity->root_hash || verity->designator != PARTITION_USR)) {
1391
1392 /* OK, we found nothing usable, then check if there's a single generic partition, and use
1393 * that. If the root hash was set however, then we won't fall back to a generic node, because
1394 * the root hash decides. */
1395
1396 /* If we didn't find a properly marked root partition, but we did find a single suitable
1397 * generic Linux partition, then use this as root partition, if the caller asked for it. */
1398 if (multiple_generic)
1399 return -ENOTUNIQ;
1400
1401 /* If we didn't find a generic node, then we can't fix this up either */
1402 if (generic_node) {
1403 r = image_policy_may_use(policy, PARTITION_ROOT);
1404 if (r < 0)
1405 return r;
1406 if (r == 0)
1407 /* Policy says: ignore; remember that we did */
1408 m->partitions[PARTITION_ROOT].ignored = true;
1409 else {
1410 _cleanup_close_ int mount_node_fd = -EBADF;
1411 _cleanup_free_ char *o = NULL, *n = NULL;
1412 const char *options;
1413
1414 if (FLAGS_SET(flags, DISSECT_IMAGE_PIN_PARTITION_DEVICES)) {
1415 mount_node_fd = open_partition(generic_node, /* is_partition = */ true, m->loop);
1416 if (mount_node_fd < 0)
1417 return mount_node_fd;
1418 }
1419
1420 r = make_partition_devname(devname, diskseq, generic_nr, flags, &n);
1421 if (r < 0)
1422 return r;
1423
1424 options = mount_options_from_designator(mount_options, PARTITION_ROOT);
1425 if (options) {
1426 o = strdup(options);
1427 if (!o)
1428 return -ENOMEM;
1429 }
1430
1431 assert(generic_nr >= 0);
1432 m->partitions[PARTITION_ROOT] = (DissectedPartition) {
1433 .found = true,
1434 .rw = generic_rw,
1435 .growfs = generic_growfs,
1436 .partno = generic_nr,
1437 .architecture = _ARCHITECTURE_INVALID,
1438 .node = TAKE_PTR(n),
1439 .uuid = generic_uuid,
1440 .mount_options = TAKE_PTR(o),
1441 .mount_node_fd = TAKE_FD(mount_node_fd),
1442 .offset = UINT64_MAX,
1443 .size = UINT64_MAX,
1444 };
1445 }
1446 }
1447 }
1448
1449 /* Check if we have a root fs if we are told to do check. /usr alone is fine too, but only if appropriate flag for that is set too */
1450 if (FLAGS_SET(flags, DISSECT_IMAGE_REQUIRE_ROOT) &&
1451 !(m->partitions[PARTITION_ROOT].found || (m->partitions[PARTITION_USR].found && FLAGS_SET(flags, DISSECT_IMAGE_USR_NO_ROOT))))
1452 return -ENXIO;
1453
1454 if (m->partitions[PARTITION_ROOT_VERITY].found) {
1455 /* We only support one verity partition per image, i.e. can't do for both /usr and root fs */
1456 if (m->partitions[PARTITION_USR_VERITY].found)
1457 return -ENOTUNIQ;
1458
1459 /* We don't support verity enabled root with a split out /usr. Neither with nor without
1460 * verity there. (Note that we do support verity-less root with verity-full /usr, though.) */
1461 if (m->partitions[PARTITION_USR].found)
1462 return -EADDRNOTAVAIL;
1463 }
1464
1465 if (verity) {
1466 /* If a verity designator is specified, then insist that the matching partition exists */
1467 if (verity->designator >= 0 && !m->partitions[verity->designator].found)
1468 return -EADDRNOTAVAIL;
1469
1470 bool have_verity_sig_partition =
1471 m->partitions[verity->designator == PARTITION_USR ? PARTITION_USR_VERITY_SIG : PARTITION_ROOT_VERITY_SIG].found;
1472
1473 if (verity->root_hash) {
1474 /* If we have an explicit root hash and found the partitions for it, then we are ready to use
1475 * Verity, set things up for it */
1476
1477 if (verity->designator < 0 || verity->designator == PARTITION_ROOT) {
1478 if (!m->partitions[PARTITION_ROOT_VERITY].found || !m->partitions[PARTITION_ROOT].found)
1479 return -EADDRNOTAVAIL;
1480
1481 /* If we found a verity setup, then the root partition is necessarily read-only. */
1482 m->partitions[PARTITION_ROOT].rw = false;
1483 m->verity_ready = true;
1484
1485 } else {
1486 assert(verity->designator == PARTITION_USR);
1487
1488 if (!m->partitions[PARTITION_USR_VERITY].found || !m->partitions[PARTITION_USR].found)
1489 return -EADDRNOTAVAIL;
1490
1491 m->partitions[PARTITION_USR].rw = false;
1492 m->verity_ready = true;
1493 }
1494
1495 if (m->verity_ready)
1496 m->verity_sig_ready = verity->root_hash_sig || have_verity_sig_partition;
1497
1498 } else if (have_verity_sig_partition) {
1499
1500 /* If we found an embedded signature partition, we are ready, too. */
1501
1502 m->verity_ready = m->verity_sig_ready = true;
1503 m->partitions[verity->designator == PARTITION_USR ? PARTITION_USR : PARTITION_ROOT].rw = false;
1504 }
1505 }
1506
1507 bool any = false;
1508
1509 /* After we discovered all partitions let's see if the verity requirements match the policy. (Note:
1510 * we don't check encryption requirements here, because we haven't probed the file system yet, hence
1511 * don't know if this is encrypted or not) */
1512 for (PartitionDesignator di = 0; di < _PARTITION_DESIGNATOR_MAX; di++) {
1513 PartitionDesignator vi, si;
1514 PartitionPolicyFlags found_flags;
1515
1516 any = any || m->partitions[di].found;
1517
1518 vi = partition_verity_of(di);
1519 si = partition_verity_sig_of(di);
1520
1521 /* Determine the verity protection level for this partition. */
1522 found_flags = m->partitions[di].found ?
1523 (vi >= 0 && m->partitions[vi].found ?
1524 (si >= 0 && m->partitions[si].found ? PARTITION_POLICY_SIGNED : PARTITION_POLICY_VERITY) :
1525 PARTITION_POLICY_ENCRYPTED|PARTITION_POLICY_UNPROTECTED) :
1526 (m->partitions[di].ignored ? PARTITION_POLICY_UNUSED : PARTITION_POLICY_ABSENT);
1527
1528 r = image_policy_check_protection(policy, di, found_flags);
1529 if (r < 0)
1530 return r;
1531
1532 if (m->partitions[di].found) {
1533 r = image_policy_check_partition_flags(policy, di, m->partitions[di].gpt_flags);
1534 if (r < 0)
1535 return r;
1536 }
1537 }
1538
1539 if (!any && !FLAGS_SET(flags, DISSECT_IMAGE_ALLOW_EMPTY))
1540 return -ENOMSG;
1541
1542 r = dissected_image_probe_filesystems(m, fd, policy);
1543 if (r < 0)
1544 return r;
1545
1546 return 0;
1547 }
1548 #endif
1549
1550 int dissect_image_file(
1551 const char *path,
1552 const VeritySettings *verity,
1553 const MountOptions *mount_options,
1554 const ImagePolicy *image_policy,
1555 DissectImageFlags flags,
1556 DissectedImage **ret) {
1557
1558 #if HAVE_BLKID
1559 _cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
1560 _cleanup_close_ int fd = -EBADF;
1561 int r;
1562
1563 assert(path);
1564
1565 fd = open(path, O_RDONLY|O_CLOEXEC|O_NONBLOCK|O_NOCTTY);
1566 if (fd < 0)
1567 return -errno;
1568
1569 r = fd_verify_regular(fd);
1570 if (r < 0)
1571 return r;
1572
1573 r = dissected_image_new(path, &m);
1574 if (r < 0)
1575 return r;
1576
1577 r = probe_sector_size(fd, &m->sector_size);
1578 if (r < 0)
1579 return r;
1580
1581 r = dissect_image(m, fd, path, verity, mount_options, image_policy, flags);
1582 if (r < 0)
1583 return r;
1584
1585 if (ret)
1586 *ret = TAKE_PTR(m);
1587 return 0;
1588 #else
1589 return -EOPNOTSUPP;
1590 #endif
1591 }
1592
1593 int dissect_log_error(int log_level, int r, const char *name, const VeritySettings *verity) {
1594 assert(log_level >= 0 && log_level <= LOG_DEBUG);
1595 assert(name);
1596
1597 switch (r) {
1598
1599 case 0 ... INT_MAX: /* success! */
1600 return r;
1601
1602 case -EOPNOTSUPP:
1603 return log_full_errno(log_level, r, "Dissecting images is not supported, compiled without blkid support.");
1604
1605 case -ENOPKG:
1606 return log_full_errno(log_level, r, "%s: Couldn't identify a suitable partition table or file system.", name);
1607
1608 case -ENOMEDIUM:
1609 return log_full_errno(log_level, r, "%s: The image does not pass os-release/extension-release validation.", name);
1610
1611 case -EADDRNOTAVAIL:
1612 return log_full_errno(log_level, r, "%s: No root partition for specified root hash found.", name);
1613
1614 case -ENOTUNIQ:
1615 return log_full_errno(log_level, r, "%s: Multiple suitable root partitions found in image.", name);
1616
1617 case -ENXIO:
1618 return log_full_errno(log_level, r, "%s: No suitable root partition found in image.", name);
1619
1620 case -EPROTONOSUPPORT:
1621 return log_full_errno(log_level, r, "Device '%s' is a loopback block device with partition scanning turned off, please turn it on.", name);
1622
1623 case -ENOTBLK:
1624 return log_full_errno(log_level, r, "%s: Image is not a block device.", name);
1625
1626 case -EBADR:
1627 return log_full_errno(log_level, r,
1628 "Combining partitioned images (such as '%s') with external Verity data (such as '%s') not supported. "
1629 "(Consider setting $SYSTEMD_DISSECT_VERITY_SIDECAR=0 to disable automatic discovery of external Verity data.)",
1630 name, strna(verity ? verity->data_path : NULL));
1631
1632 case -ERFKILL:
1633 return log_full_errno(log_level, r, "%s: image does not match image policy.", name);
1634
1635 case -ENOMSG:
1636 return log_full_errno(log_level, r, "%s: no suitable partitions found.", name);
1637
1638 default:
1639 return log_full_errno(log_level, r, "%s: cannot dissect image: %m", name);
1640 }
1641 }
1642
1643 int dissect_image_file_and_warn(
1644 const char *path,
1645 const VeritySettings *verity,
1646 const MountOptions *mount_options,
1647 const ImagePolicy *image_policy,
1648 DissectImageFlags flags,
1649 DissectedImage **ret) {
1650
1651 return dissect_log_error(
1652 LOG_ERR,
1653 dissect_image_file(path, verity, mount_options, image_policy, flags, ret),
1654 path,
1655 verity);
1656 }
1657
1658 DissectedImage* dissected_image_unref(DissectedImage *m) {
1659 if (!m)
1660 return NULL;
1661
1662 /* First, clear dissected partitions. */
1663 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++)
1664 dissected_partition_done(m->partitions + i);
1665
1666 /* Second, free decrypted images. This must be after dissected_partition_done(), as freeing
1667 * DecryptedImage may try to deactivate partitions. */
1668 decrypted_image_unref(m->decrypted_image);
1669
1670 /* Third, unref LoopDevice. This must be called after the above two, as freeing LoopDevice may try to
1671 * remove existing partitions on the loopback block device. */
1672 loop_device_unref(m->loop);
1673
1674 free(m->image_name);
1675 free(m->hostname);
1676 strv_free(m->machine_info);
1677 strv_free(m->os_release);
1678 strv_free(m->initrd_release);
1679 strv_free(m->extension_release);
1680
1681 return mfree(m);
1682 }
1683
1684 static int is_loop_device(const char *path) {
1685 char s[SYS_BLOCK_PATH_MAX("/../loop/")];
1686 struct stat st;
1687
1688 assert(path);
1689
1690 if (stat(path, &st) < 0)
1691 return -errno;
1692
1693 if (!S_ISBLK(st.st_mode))
1694 return -ENOTBLK;
1695
1696 xsprintf_sys_block_path(s, "/loop/", st.st_dev);
1697 if (access(s, F_OK) < 0) {
1698 if (errno != ENOENT)
1699 return -errno;
1700
1701 /* The device itself isn't a loop device, but maybe it's a partition and its parent is? */
1702 xsprintf_sys_block_path(s, "/../loop/", st.st_dev);
1703 if (access(s, F_OK) < 0)
1704 return errno == ENOENT ? false : -errno;
1705 }
1706
1707 return true;
1708 }
1709
1710 static int run_fsck(int node_fd, const char *fstype) {
1711 int r, exit_status;
1712 pid_t pid;
1713
1714 assert(node_fd >= 0);
1715 assert(fstype);
1716
1717 r = fsck_exists_for_fstype(fstype);
1718 if (r < 0) {
1719 log_debug_errno(r, "Couldn't determine whether fsck for %s exists, proceeding anyway.", fstype);
1720 return 0;
1721 }
1722 if (r == 0) {
1723 log_debug("Not checking partition %s, as fsck for %s does not exist.", FORMAT_PROC_FD_PATH(node_fd), fstype);
1724 return 0;
1725 }
1726
1727 r = safe_fork_full(
1728 "(fsck)",
1729 NULL,
1730 &node_fd, 1, /* Leave the node fd open */
1731 FORK_RESET_SIGNALS|FORK_CLOSE_ALL_FDS|FORK_RLIMIT_NOFILE_SAFE|FORK_DEATHSIG|FORK_REARRANGE_STDIO|FORK_CLOEXEC_OFF,
1732 &pid);
1733 if (r < 0)
1734 return log_debug_errno(r, "Failed to fork off fsck: %m");
1735 if (r == 0) {
1736 /* Child */
1737 execlp("fsck", "fsck", "-aT", FORMAT_PROC_FD_PATH(node_fd), NULL);
1738 log_open();
1739 log_debug_errno(errno, "Failed to execl() fsck: %m");
1740 _exit(FSCK_OPERATIONAL_ERROR);
1741 }
1742
1743 exit_status = wait_for_terminate_and_check("fsck", pid, 0);
1744 if (exit_status < 0)
1745 return log_debug_errno(exit_status, "Failed to fork off fsck: %m");
1746
1747 if ((exit_status & ~FSCK_ERROR_CORRECTED) != FSCK_SUCCESS) {
1748 log_debug("fsck failed with exit status %i.", exit_status);
1749
1750 if ((exit_status & (FSCK_SYSTEM_SHOULD_REBOOT|FSCK_ERRORS_LEFT_UNCORRECTED)) != 0)
1751 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN), "File system is corrupted, refusing.");
1752
1753 log_debug("Ignoring fsck error.");
1754 }
1755
1756 return 0;
1757 }
1758
1759 static int fs_grow(const char *node_path, const char *mount_path) {
1760 _cleanup_close_ int mount_fd = -EBADF, node_fd = -EBADF;
1761 uint64_t size, newsize;
1762 int r;
1763
1764 node_fd = open(node_path, O_RDONLY|O_CLOEXEC|O_NONBLOCK|O_NOCTTY);
1765 if (node_fd < 0)
1766 return log_debug_errno(errno, "Failed to open node device %s: %m", node_path);
1767
1768 if (ioctl(node_fd, BLKGETSIZE64, &size) != 0)
1769 return log_debug_errno(errno, "Failed to get block device size of %s: %m", node_path);
1770
1771 mount_fd = open(mount_path, O_RDONLY|O_DIRECTORY|O_CLOEXEC);
1772 if (mount_fd < 0)
1773 return log_debug_errno(errno, "Failed to open mountd file system %s: %m", mount_path);
1774
1775 log_debug("Resizing \"%s\" to %"PRIu64" bytes...", mount_path, size);
1776 r = resize_fs(mount_fd, size, &newsize);
1777 if (r < 0)
1778 return log_debug_errno(r, "Failed to resize \"%s\" to %"PRIu64" bytes: %m", mount_path, size);
1779
1780 if (newsize == size)
1781 log_debug("Successfully resized \"%s\" to %s bytes.",
1782 mount_path, FORMAT_BYTES(newsize));
1783 else {
1784 assert(newsize < size);
1785 log_debug("Successfully resized \"%s\" to %s bytes (%"PRIu64" bytes lost due to blocksize).",
1786 mount_path, FORMAT_BYTES(newsize), size - newsize);
1787 }
1788
1789 return 0;
1790 }
1791
1792 int partition_pick_mount_options(
1793 PartitionDesignator d,
1794 const char *fstype,
1795 bool rw,
1796 bool discard,
1797 char **ret_options,
1798 unsigned long *ret_ms_flags) {
1799
1800 _cleanup_free_ char *options = NULL;
1801
1802 assert(ret_options);
1803
1804 /* Selects a baseline of bind mount flags, that should always apply.
1805 *
1806 * Firstly, we set MS_NODEV universally on all mounts, since we don't want to allow device nodes outside of /dev/.
1807 *
1808 * On /var/tmp/ we'll also set MS_NOSUID, same as we set for /tmp/ on the host.
1809 *
1810 * On the ESP and XBOOTLDR partitions we'll also disable symlinks, and execution. These file systems
1811 * are generally untrusted (i.e. not encrypted or authenticated), and typically VFAT hence we should
1812 * be as restrictive as possible, and this shouldn't hurt, since the functionality is not available
1813 * there anyway. */
1814
1815 unsigned long flags = MS_NODEV;
1816
1817 if (!rw)
1818 flags |= MS_RDONLY;
1819
1820 switch (d) {
1821
1822 case PARTITION_ESP:
1823 case PARTITION_XBOOTLDR:
1824 flags |= MS_NOSUID|MS_NOEXEC|ms_nosymfollow_supported();
1825
1826 /* The ESP might contain a pre-boot random seed. Let's make this unaccessible to regular
1827 * userspace. ESP/XBOOTLDR is almost certainly VFAT, hence if we don't know assume it is. */
1828 if (!fstype || fstype_can_umask(fstype))
1829 if (!strextend_with_separator(&options, ",", "umask=0077"))
1830 return -ENOMEM;
1831 break;
1832
1833 case PARTITION_TMP:
1834 flags |= MS_NOSUID;
1835 break;
1836
1837 default:
1838 break;
1839 }
1840
1841 /* So, when you request MS_RDONLY from ext4, then this means nothing. It happily still writes to the
1842 * backing storage. What's worse, the BLKRO[GS]ET flag and (in case of loopback devices)
1843 * LO_FLAGS_READ_ONLY don't mean anything, they affect userspace accesses only, and write accesses
1844 * from the upper file system still get propagated through to the underlying file system,
1845 * unrestricted. To actually get ext4/xfs/btrfs to stop writing to the device we need to specify
1846 * "norecovery" as mount option, in addition to MS_RDONLY. Yes, this sucks, since it means we need to
1847 * carry a per file system table here.
1848 *
1849 * Note that this means that we might not be able to mount corrupted file systems as read-only
1850 * anymore (since in some cases the kernel implementations will refuse mounting when corrupted,
1851 * read-only and "norecovery" is specified). But I think for the case of automatically determined
1852 * mount options for loopback devices this is the right choice, since otherwise using the same
1853 * loopback file twice even in read-only mode, is going to fail badly sooner or later. The usecase of
1854 * making reuse of the immutable images "just work" is more relevant to us than having read-only
1855 * access that actually modifies stuff work on such image files. Or to say this differently: if
1856 * people want their file systems to be fixed up they should just open them in writable mode, where
1857 * all these problems don't exist. */
1858 if (!rw && fstype && fstype_can_norecovery(fstype))
1859 if (!strextend_with_separator(&options, ",", "norecovery"))
1860 return -ENOMEM;
1861
1862 if (discard && fstype && fstype_can_discard(fstype))
1863 if (!strextend_with_separator(&options, ",", "discard"))
1864 return -ENOMEM;
1865
1866 if (!ret_ms_flags) /* Fold flags into option string if ret_flags specified as NULL */
1867 if (!strextend_with_separator(&options, ",",
1868 FLAGS_SET(flags, MS_RDONLY) ? "ro" : "rw",
1869 FLAGS_SET(flags, MS_NODEV) ? "nodev" : "dev",
1870 FLAGS_SET(flags, MS_NOSUID) ? "nosuid" : "suid",
1871 FLAGS_SET(flags, MS_NOEXEC) ? "noexec" : "exec",
1872 FLAGS_SET(flags, MS_NOSYMFOLLOW) ? "nosymfollow" : NULL))
1873 /* NB: we suppress 'symfollow' here, since it's the default, and old /bin/mount might not know it */
1874 return -ENOMEM;
1875
1876 if (ret_ms_flags)
1877 *ret_ms_flags = flags;
1878
1879 *ret_options = TAKE_PTR(options);
1880 return 0;
1881 }
1882
1883 static int mount_partition(
1884 PartitionDesignator d,
1885 DissectedPartition *m,
1886 const char *where,
1887 const char *directory,
1888 uid_t uid_shift,
1889 uid_t uid_range,
1890 DissectImageFlags flags) {
1891
1892 _cleanup_free_ char *chased = NULL, *options = NULL;
1893 bool rw, discard, remap_uid_gid = false;
1894 const char *p, *node, *fstype;
1895 unsigned long ms_flags;
1896 int r;
1897
1898 assert(m);
1899 assert(where);
1900
1901 if (m->mount_node_fd < 0)
1902 return 0;
1903
1904 /* Use decrypted node and matching fstype if available, otherwise use the original device */
1905 node = FORMAT_PROC_FD_PATH(m->mount_node_fd);
1906 fstype = dissected_partition_fstype(m);
1907
1908 if (!fstype)
1909 return -EAFNOSUPPORT;
1910
1911 /* We are looking at an encrypted partition? This either means stacked encryption, or the caller
1912 * didn't call dissected_image_decrypt() beforehand. Let's return a recognizable error for this
1913 * case. */
1914 if (streq(fstype, "crypto_LUKS"))
1915 return -EUNATCH;
1916
1917 r = dissect_fstype_ok(fstype);
1918 if (r < 0)
1919 return r;
1920 if (!r)
1921 return -EIDRM; /* Recognizable error */
1922
1923 rw = m->rw && !(flags & DISSECT_IMAGE_MOUNT_READ_ONLY);
1924
1925 discard = ((flags & DISSECT_IMAGE_DISCARD) ||
1926 ((flags & DISSECT_IMAGE_DISCARD_ON_LOOP) && is_loop_device(m->node) > 0));
1927
1928 if (FLAGS_SET(flags, DISSECT_IMAGE_FSCK) && rw) {
1929 r = run_fsck(m->mount_node_fd, fstype);
1930 if (r < 0)
1931 return r;
1932 }
1933
1934 if (directory) {
1935 /* Automatically create missing mount points inside the image, if necessary. */
1936 r = mkdir_p_root(where, directory, uid_shift, (gid_t) uid_shift, 0755);
1937 if (r < 0 && r != -EROFS)
1938 return r;
1939
1940 r = chase(directory, where, CHASE_PREFIX_ROOT, &chased, NULL);
1941 if (r < 0)
1942 return r;
1943
1944 p = chased;
1945 } else {
1946 /* Create top-level mount if missing – but only if this is asked for. This won't modify the
1947 * image (as the branch above does) but the host hierarchy, and the created directory might
1948 * survive our mount in the host hierarchy hence. */
1949 if (FLAGS_SET(flags, DISSECT_IMAGE_MKDIR)) {
1950 r = mkdir_p(where, 0755);
1951 if (r < 0)
1952 return r;
1953 }
1954
1955 p = where;
1956 }
1957
1958 r = partition_pick_mount_options(d, dissected_partition_fstype(m), rw, discard, &options, &ms_flags);
1959 if (r < 0)
1960 return r;
1961
1962 if (uid_is_valid(uid_shift) && uid_shift != 0) {
1963
1964 if (fstype_can_uid_gid(fstype)) {
1965 _cleanup_free_ char *uid_option = NULL;
1966
1967 if (asprintf(&uid_option, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0)
1968 return -ENOMEM;
1969
1970 if (!strextend_with_separator(&options, ",", uid_option))
1971 return -ENOMEM;
1972 } else if (FLAGS_SET(flags, DISSECT_IMAGE_MOUNT_IDMAPPED))
1973 remap_uid_gid = true;
1974 }
1975
1976 if (!isempty(m->mount_options))
1977 if (!strextend_with_separator(&options, ",", m->mount_options))
1978 return -ENOMEM;
1979
1980 r = mount_nofollow_verbose(LOG_DEBUG, node, p, fstype, ms_flags, options);
1981 if (r < 0)
1982 return r;
1983
1984 if (rw && m->growfs && FLAGS_SET(flags, DISSECT_IMAGE_GROWFS))
1985 (void) fs_grow(node, p);
1986
1987 if (remap_uid_gid) {
1988 r = remount_idmap(p, uid_shift, uid_range, UID_INVALID, REMOUNT_IDMAPPING_HOST_ROOT);
1989 if (r < 0)
1990 return r;
1991 }
1992
1993 return 1;
1994 }
1995
1996 static int mount_root_tmpfs(const char *where, uid_t uid_shift, DissectImageFlags flags) {
1997 _cleanup_free_ char *options = NULL;
1998 int r;
1999
2000 assert(where);
2001
2002 /* For images that contain /usr/ but no rootfs, let's mount rootfs as tmpfs */
2003
2004 if (FLAGS_SET(flags, DISSECT_IMAGE_MKDIR)) {
2005 r = mkdir_p(where, 0755);
2006 if (r < 0)
2007 return r;
2008 }
2009
2010 if (uid_is_valid(uid_shift)) {
2011 if (asprintf(&options, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0)
2012 return -ENOMEM;
2013 }
2014
2015 r = mount_nofollow_verbose(LOG_DEBUG, "rootfs", where, "tmpfs", MS_NODEV, options);
2016 if (r < 0)
2017 return r;
2018
2019 return 1;
2020 }
2021
2022 static int mount_point_is_available(const char *where, const char *path, bool missing_ok) {
2023 _cleanup_free_ char *p = NULL;
2024 int r;
2025
2026 /* Check whether <path> is suitable as a mountpoint, i.e. is an empty directory
2027 * or does not exist at all (when missing_ok). */
2028
2029 r = chase(path, where, CHASE_PREFIX_ROOT, &p, NULL);
2030 if (r == -ENOENT)
2031 return missing_ok;
2032 if (r < 0)
2033 return log_debug_errno(r, "Failed to chase \"%s\": %m", path);
2034
2035 r = dir_is_empty(p, /* ignore_hidden_or_backup= */ false);
2036 if (r == -ENOTDIR)
2037 return false;
2038 if (r < 0)
2039 return log_debug_errno(r, "Failed to check directory \"%s\": %m", p);
2040 return true;
2041 }
2042
2043 int dissected_image_mount(
2044 DissectedImage *m,
2045 const char *where,
2046 uid_t uid_shift,
2047 uid_t uid_range,
2048 DissectImageFlags flags) {
2049
2050 int r;
2051
2052 assert(m);
2053 assert(where);
2054
2055 /* Returns:
2056 *
2057 * -ENXIO → No root partition found
2058 * -EMEDIUMTYPE → DISSECT_IMAGE_VALIDATE_OS set but no os-release/extension-release file found
2059 * -EUNATCH → Encrypted partition found for which no dm-crypt was set up yet
2060 * -EUCLEAN → fsck for file system failed
2061 * -EBUSY → File system already mounted/used elsewhere (kernel)
2062 * -EAFNOSUPPORT → File system type not supported or not known
2063 * -EIDRM → File system is not among allowlisted "common" file systems
2064 */
2065
2066 if (!(m->partitions[PARTITION_ROOT].found ||
2067 (m->partitions[PARTITION_USR].found && FLAGS_SET(flags, DISSECT_IMAGE_USR_NO_ROOT))))
2068 return -ENXIO; /* Require a root fs or at least a /usr/ fs (the latter is subject to a flag of its own) */
2069
2070 if ((flags & DISSECT_IMAGE_MOUNT_NON_ROOT_ONLY) == 0) {
2071
2072 /* First mount the root fs. If there's none we use a tmpfs. */
2073 if (m->partitions[PARTITION_ROOT].found)
2074 r = mount_partition(PARTITION_ROOT, m->partitions + PARTITION_ROOT, where, NULL, uid_shift, uid_range, flags);
2075 else
2076 r = mount_root_tmpfs(where, uid_shift, flags);
2077 if (r < 0)
2078 return r;
2079
2080 /* For us mounting root always means mounting /usr as well */
2081 r = mount_partition(PARTITION_USR, m->partitions + PARTITION_USR, where, "/usr", uid_shift, uid_range, flags);
2082 if (r < 0)
2083 return r;
2084
2085 if ((flags & (DISSECT_IMAGE_VALIDATE_OS|DISSECT_IMAGE_VALIDATE_OS_EXT)) != 0) {
2086 /* If either one of the validation flags are set, ensure that the image qualifies
2087 * as one or the other (or both). */
2088 bool ok = false;
2089
2090 if (FLAGS_SET(flags, DISSECT_IMAGE_VALIDATE_OS)) {
2091 r = path_is_os_tree(where);
2092 if (r < 0)
2093 return r;
2094 if (r > 0)
2095 ok = true;
2096 }
2097 if (!ok && FLAGS_SET(flags, DISSECT_IMAGE_VALIDATE_OS_EXT)) {
2098 r = extension_has_forbidden_content(where);
2099 if (r < 0)
2100 return r;
2101 if (r == 0) {
2102 r = path_is_extension_tree(IMAGE_SYSEXT, where, m->image_name, FLAGS_SET(flags, DISSECT_IMAGE_RELAX_SYSEXT_CHECK));
2103 if (r < 0)
2104 return r;
2105 if (r > 0)
2106 ok = true;
2107 }
2108 }
2109
2110 if (!ok)
2111 return -ENOMEDIUM;
2112 }
2113 }
2114
2115 if (flags & DISSECT_IMAGE_MOUNT_ROOT_ONLY)
2116 return 0;
2117
2118 r = mount_partition(PARTITION_HOME, m->partitions + PARTITION_HOME, where, "/home", uid_shift, uid_range, flags);
2119 if (r < 0)
2120 return r;
2121
2122 r = mount_partition(PARTITION_SRV, m->partitions + PARTITION_SRV, where, "/srv", uid_shift, uid_range, flags);
2123 if (r < 0)
2124 return r;
2125
2126 r = mount_partition(PARTITION_VAR, m->partitions + PARTITION_VAR, where, "/var", uid_shift, uid_range, flags);
2127 if (r < 0)
2128 return r;
2129
2130 r = mount_partition(PARTITION_TMP, m->partitions + PARTITION_TMP, where, "/var/tmp", uid_shift, uid_range, flags);
2131 if (r < 0)
2132 return r;
2133
2134 int slash_boot_is_available;
2135 r = slash_boot_is_available = mount_point_is_available(where, "/boot", /* missing_ok = */ true);
2136 if (r < 0)
2137 return r;
2138 if (r > 0) {
2139 r = mount_partition(PARTITION_XBOOTLDR, m->partitions + PARTITION_XBOOTLDR, where, "/boot", uid_shift, uid_range, flags);
2140 if (r < 0)
2141 return r;
2142 slash_boot_is_available = !r;
2143 }
2144
2145 if (m->partitions[PARTITION_ESP].found) {
2146 const char *esp_path = NULL;
2147
2148 /* Mount the ESP to /boot/ if it exists and is empty and we didn't already mount the XBOOTLDR
2149 * partition into it. Otherwise, use /efi instead, but only if it exists and is empty. */
2150
2151 if (slash_boot_is_available) {
2152 r = mount_point_is_available(where, "/boot", /* missing_ok = */ false);
2153 if (r < 0)
2154 return r;
2155 if (r > 0)
2156 esp_path = "/boot";
2157 }
2158
2159 if (!esp_path) {
2160 r = mount_point_is_available(where, "/efi", /* missing_ok = */ true);
2161 if (r < 0)
2162 return r;
2163 if (r > 0)
2164 esp_path = "/efi";
2165 }
2166
2167 if (esp_path) {
2168 /* OK, let's mount the ESP now (possibly creating the dir if missing) */
2169 r = mount_partition(PARTITION_ESP, m->partitions + PARTITION_ESP, where, esp_path, uid_shift, uid_range, flags);
2170 if (r < 0)
2171 return r;
2172 }
2173 }
2174
2175 return 0;
2176 }
2177
2178 int dissected_image_mount_and_warn(
2179 DissectedImage *m,
2180 const char *where,
2181 uid_t uid_shift,
2182 uid_t uid_range,
2183 DissectImageFlags flags) {
2184
2185 int r;
2186
2187 assert(m);
2188 assert(where);
2189
2190 r = dissected_image_mount(m, where, uid_shift, uid_range, flags);
2191 if (r == -ENXIO)
2192 return log_error_errno(r, "Not root file system found in image.");
2193 if (r == -EMEDIUMTYPE)
2194 return log_error_errno(r, "No suitable os-release/extension-release file in image found.");
2195 if (r == -EUNATCH)
2196 return log_error_errno(r, "Encrypted file system discovered, but decryption not requested.");
2197 if (r == -EUCLEAN)
2198 return log_error_errno(r, "File system check on image failed.");
2199 if (r == -EBUSY)
2200 return log_error_errno(r, "File system already mounted elsewhere.");
2201 if (r == -EAFNOSUPPORT)
2202 return log_error_errno(r, "File system type not supported or not known.");
2203 if (r == -EIDRM)
2204 return log_error_errno(r, "File system is too uncommon, refused.");
2205 if (r < 0)
2206 return log_error_errno(r, "Failed to mount image: %m");
2207
2208 return r;
2209 }
2210
2211 #if HAVE_LIBCRYPTSETUP
2212 struct DecryptedPartition {
2213 struct crypt_device *device;
2214 char *name;
2215 bool relinquished;
2216 };
2217 #endif
2218
2219 typedef struct DecryptedPartition DecryptedPartition;
2220
2221 struct DecryptedImage {
2222 unsigned n_ref;
2223 DecryptedPartition *decrypted;
2224 size_t n_decrypted;
2225 };
2226
2227 static DecryptedImage* decrypted_image_free(DecryptedImage *d) {
2228 #if HAVE_LIBCRYPTSETUP
2229 int r;
2230
2231 if (!d)
2232 return NULL;
2233
2234 for (size_t i = 0; i < d->n_decrypted; i++) {
2235 DecryptedPartition *p = d->decrypted + i;
2236
2237 if (p->device && p->name && !p->relinquished) {
2238 _cleanup_free_ char *node = NULL;
2239
2240 node = path_join("/dev/mapper", p->name);
2241 if (node) {
2242 r = btrfs_forget_device(node);
2243 if (r < 0 && r != -ENOENT)
2244 log_debug_errno(r, "Failed to forget btrfs device %s, ignoring: %m", node);
2245 } else
2246 log_oom_debug();
2247
2248 /* Let's deactivate lazily, as the dm volume may be already/still used by other processes. */
2249 r = sym_crypt_deactivate_by_name(p->device, p->name, CRYPT_DEACTIVATE_DEFERRED);
2250 if (r < 0)
2251 log_debug_errno(r, "Failed to deactivate encrypted partition %s", p->name);
2252 }
2253
2254 if (p->device)
2255 sym_crypt_free(p->device);
2256 free(p->name);
2257 }
2258
2259 free(d->decrypted);
2260 free(d);
2261 #endif
2262 return NULL;
2263 }
2264
2265 DEFINE_TRIVIAL_REF_UNREF_FUNC(DecryptedImage, decrypted_image, decrypted_image_free);
2266
2267 #if HAVE_LIBCRYPTSETUP
2268 static int decrypted_image_new(DecryptedImage **ret) {
2269 _cleanup_(decrypted_image_unrefp) DecryptedImage *d = NULL;
2270
2271 assert(ret);
2272
2273 d = new(DecryptedImage, 1);
2274 if (!d)
2275 return -ENOMEM;
2276
2277 *d = (DecryptedImage) {
2278 .n_ref = 1,
2279 };
2280
2281 *ret = TAKE_PTR(d);
2282 return 0;
2283 }
2284
2285 static int make_dm_name_and_node(const void *original_node, const char *suffix, char **ret_name, char **ret_node) {
2286 _cleanup_free_ char *name = NULL, *node = NULL;
2287 const char *base;
2288
2289 assert(original_node);
2290 assert(suffix);
2291 assert(ret_name);
2292 assert(ret_node);
2293
2294 base = strrchr(original_node, '/');
2295 if (!base)
2296 base = original_node;
2297 else
2298 base++;
2299 if (isempty(base))
2300 return -EINVAL;
2301
2302 name = strjoin(base, suffix);
2303 if (!name)
2304 return -ENOMEM;
2305 if (!filename_is_valid(name))
2306 return -EINVAL;
2307
2308 node = path_join(sym_crypt_get_dir(), name);
2309 if (!node)
2310 return -ENOMEM;
2311
2312 *ret_name = TAKE_PTR(name);
2313 *ret_node = TAKE_PTR(node);
2314
2315 return 0;
2316 }
2317
2318 static int decrypt_partition(
2319 DissectedPartition *m,
2320 const char *passphrase,
2321 DissectImageFlags flags,
2322 DecryptedImage *d) {
2323
2324 _cleanup_free_ char *node = NULL, *name = NULL;
2325 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
2326 _cleanup_close_ int fd = -EBADF;
2327 int r;
2328
2329 assert(m);
2330 assert(d);
2331
2332 if (!m->found || !m->node || !m->fstype)
2333 return 0;
2334
2335 if (!streq(m->fstype, "crypto_LUKS"))
2336 return 0;
2337
2338 if (!passphrase)
2339 return -ENOKEY;
2340
2341 r = dlopen_cryptsetup();
2342 if (r < 0)
2343 return r;
2344
2345 r = make_dm_name_and_node(m->node, "-decrypted", &name, &node);
2346 if (r < 0)
2347 return r;
2348
2349 if (!GREEDY_REALLOC0(d->decrypted, d->n_decrypted + 1))
2350 return -ENOMEM;
2351
2352 r = sym_crypt_init(&cd, m->node);
2353 if (r < 0)
2354 return log_debug_errno(r, "Failed to initialize dm-crypt: %m");
2355
2356 cryptsetup_enable_logging(cd);
2357
2358 r = sym_crypt_load(cd, CRYPT_LUKS, NULL);
2359 if (r < 0)
2360 return log_debug_errno(r, "Failed to load LUKS metadata: %m");
2361
2362 r = sym_crypt_activate_by_passphrase(cd, name, CRYPT_ANY_SLOT, passphrase, strlen(passphrase),
2363 ((flags & DISSECT_IMAGE_DEVICE_READ_ONLY) ? CRYPT_ACTIVATE_READONLY : 0) |
2364 ((flags & DISSECT_IMAGE_DISCARD_ON_CRYPTO) ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0));
2365 if (r < 0) {
2366 log_debug_errno(r, "Failed to activate LUKS device: %m");
2367 return r == -EPERM ? -EKEYREJECTED : r;
2368 }
2369
2370 fd = open(node, O_RDONLY|O_NONBLOCK|O_CLOEXEC|O_NOCTTY);
2371 if (fd < 0)
2372 return log_debug_errno(errno, "Failed to open %s: %m", node);
2373
2374 d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
2375 .name = TAKE_PTR(name),
2376 .device = TAKE_PTR(cd),
2377 };
2378
2379 m->decrypted_node = TAKE_PTR(node);
2380 close_and_replace(m->mount_node_fd, fd);
2381
2382 return 0;
2383 }
2384
2385 static int verity_can_reuse(
2386 const VeritySettings *verity,
2387 const char *name,
2388 struct crypt_device **ret_cd) {
2389
2390 /* If the same volume was already open, check that the root hashes match, and reuse it if they do */
2391 _cleanup_free_ char *root_hash_existing = NULL;
2392 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
2393 struct crypt_params_verity crypt_params = {};
2394 size_t root_hash_existing_size;
2395 int r;
2396
2397 assert(verity);
2398 assert(name);
2399 assert(ret_cd);
2400
2401 r = sym_crypt_init_by_name(&cd, name);
2402 if (r < 0)
2403 return log_debug_errno(r, "Error opening verity device, crypt_init_by_name failed: %m");
2404
2405 cryptsetup_enable_logging(cd);
2406
2407 r = sym_crypt_get_verity_info(cd, &crypt_params);
2408 if (r < 0)
2409 return log_debug_errno(r, "Error opening verity device, crypt_get_verity_info failed: %m");
2410
2411 root_hash_existing_size = verity->root_hash_size;
2412 root_hash_existing = malloc0(root_hash_existing_size);
2413 if (!root_hash_existing)
2414 return -ENOMEM;
2415
2416 r = sym_crypt_volume_key_get(cd, CRYPT_ANY_SLOT, root_hash_existing, &root_hash_existing_size, NULL, 0);
2417 if (r < 0)
2418 return log_debug_errno(r, "Error opening verity device, crypt_volume_key_get failed: %m");
2419 if (verity->root_hash_size != root_hash_existing_size ||
2420 memcmp(root_hash_existing, verity->root_hash, verity->root_hash_size) != 0)
2421 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but root hashes are different.");
2422
2423 #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
2424 /* Ensure that, if signatures are supported, we only reuse the device if the previous mount used the
2425 * same settings, so that a previous unsigned mount will not be reused if the user asks to use
2426 * signing for the new one, and vice versa. */
2427 if (!!verity->root_hash_sig != !!(crypt_params.flags & CRYPT_VERITY_ROOT_HASH_SIGNATURE))
2428 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but signature settings are not the same.");
2429 #endif
2430
2431 *ret_cd = TAKE_PTR(cd);
2432 return 0;
2433 }
2434
2435 static inline char* dm_deferred_remove_clean(char *name) {
2436 if (!name)
2437 return NULL;
2438
2439 (void) sym_crypt_deactivate_by_name(NULL, name, CRYPT_DEACTIVATE_DEFERRED);
2440 return mfree(name);
2441 }
2442 DEFINE_TRIVIAL_CLEANUP_FUNC(char *, dm_deferred_remove_clean);
2443
2444 static int validate_signature_userspace(const VeritySettings *verity) {
2445 #if HAVE_OPENSSL
2446 _cleanup_(sk_X509_free_allp) STACK_OF(X509) *sk = NULL;
2447 _cleanup_strv_free_ char **certs = NULL;
2448 _cleanup_(PKCS7_freep) PKCS7 *p7 = NULL;
2449 _cleanup_free_ char *s = NULL;
2450 _cleanup_(BIO_freep) BIO *bio = NULL; /* 'bio' must be freed first, 's' second, hence keep this order
2451 * of declaration in place, please */
2452 const unsigned char *d;
2453 int r;
2454
2455 assert(verity);
2456 assert(verity->root_hash);
2457 assert(verity->root_hash_sig);
2458
2459 /* Because installing a signature certificate into the kernel chain is so messy, let's optionally do
2460 * userspace validation. */
2461
2462 r = conf_files_list_nulstr(&certs, ".crt", NULL, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, CONF_PATHS_NULSTR("verity.d"));
2463 if (r < 0)
2464 return log_debug_errno(r, "Failed to enumerate certificates: %m");
2465 if (strv_isempty(certs)) {
2466 log_debug("No userspace dm-verity certificates found.");
2467 return 0;
2468 }
2469
2470 d = verity->root_hash_sig;
2471 p7 = d2i_PKCS7(NULL, &d, (long) verity->root_hash_sig_size);
2472 if (!p7)
2473 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse PKCS7 DER signature data.");
2474
2475 s = hexmem(verity->root_hash, verity->root_hash_size);
2476 if (!s)
2477 return log_oom_debug();
2478
2479 bio = BIO_new_mem_buf(s, strlen(s));
2480 if (!bio)
2481 return log_oom_debug();
2482
2483 sk = sk_X509_new_null();
2484 if (!sk)
2485 return log_oom_debug();
2486
2487 STRV_FOREACH(i, certs) {
2488 _cleanup_(X509_freep) X509 *c = NULL;
2489 _cleanup_fclose_ FILE *f = NULL;
2490
2491 f = fopen(*i, "re");
2492 if (!f) {
2493 log_debug_errno(errno, "Failed to open '%s', ignoring: %m", *i);
2494 continue;
2495 }
2496
2497 c = PEM_read_X509(f, NULL, NULL, NULL);
2498 if (!c) {
2499 log_debug("Failed to load X509 certificate '%s', ignoring.", *i);
2500 continue;
2501 }
2502
2503 if (sk_X509_push(sk, c) == 0)
2504 return log_oom_debug();
2505
2506 TAKE_PTR(c);
2507 }
2508
2509 r = PKCS7_verify(p7, sk, NULL, bio, NULL, PKCS7_NOINTERN|PKCS7_NOVERIFY);
2510 if (r)
2511 log_debug("Userspace PKCS#7 validation succeeded.");
2512 else
2513 log_debug("Userspace PKCS#7 validation failed: %s", ERR_error_string(ERR_get_error(), NULL));
2514
2515 return r;
2516 #else
2517 log_debug("Not doing client-side validation of dm-verity root hash signatures, OpenSSL support disabled.");
2518 return 0;
2519 #endif
2520 }
2521
2522 static int do_crypt_activate_verity(
2523 struct crypt_device *cd,
2524 const char *name,
2525 const VeritySettings *verity) {
2526
2527 bool check_signature;
2528 int r;
2529
2530 assert(cd);
2531 assert(name);
2532 assert(verity);
2533
2534 if (verity->root_hash_sig) {
2535 r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_SIGNATURE");
2536 if (r < 0 && r != -ENXIO)
2537 log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_SIGNATURE");
2538
2539 check_signature = r != 0;
2540 } else
2541 check_signature = false;
2542
2543 if (check_signature) {
2544
2545 #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
2546 /* First, if we have support for signed keys in the kernel, then try that first. */
2547 r = sym_crypt_activate_by_signed_key(
2548 cd,
2549 name,
2550 verity->root_hash,
2551 verity->root_hash_size,
2552 verity->root_hash_sig,
2553 verity->root_hash_sig_size,
2554 CRYPT_ACTIVATE_READONLY);
2555 if (r >= 0)
2556 return r;
2557
2558 log_debug("Validation of dm-verity signature failed via the kernel, trying userspace validation instead.");
2559 #else
2560 log_debug("Activation of verity device with signature requested, but not supported via the kernel by %s due to missing crypt_activate_by_signed_key(), trying userspace validation instead.",
2561 program_invocation_short_name);
2562 #endif
2563
2564 /* So this didn't work via the kernel, then let's try userspace validation instead. If that
2565 * works we'll try to activate without telling the kernel the signature. */
2566
2567 r = validate_signature_userspace(verity);
2568 if (r < 0)
2569 return r;
2570 if (r == 0)
2571 return log_debug_errno(SYNTHETIC_ERRNO(ENOKEY),
2572 "Activation of signed Verity volume worked neither via the kernel nor in userspace, can't activate.");
2573 }
2574
2575 return sym_crypt_activate_by_volume_key(
2576 cd,
2577 name,
2578 verity->root_hash,
2579 verity->root_hash_size,
2580 CRYPT_ACTIVATE_READONLY);
2581 }
2582
2583 static usec_t verity_timeout(void) {
2584 usec_t t = 100 * USEC_PER_MSEC;
2585 const char *e;
2586 int r;
2587
2588 /* On slower machines, like non-KVM vm, setting up device may take a long time.
2589 * Let's make the timeout configurable. */
2590
2591 e = getenv("SYSTEMD_DISSECT_VERITY_TIMEOUT_SEC");
2592 if (!e)
2593 return t;
2594
2595 r = parse_sec(e, &t);
2596 if (r < 0)
2597 log_debug_errno(r,
2598 "Failed to parse timeout specified in $SYSTEMD_DISSECT_VERITY_TIMEOUT_SEC, "
2599 "using the default timeout (%s).",
2600 FORMAT_TIMESPAN(t, USEC_PER_MSEC));
2601
2602 return t;
2603 }
2604
2605 static int verity_partition(
2606 PartitionDesignator designator,
2607 DissectedPartition *m,
2608 DissectedPartition *v,
2609 const VeritySettings *verity,
2610 DissectImageFlags flags,
2611 DecryptedImage *d) {
2612
2613 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
2614 _cleanup_(dm_deferred_remove_cleanp) char *restore_deferred_remove = NULL;
2615 _cleanup_free_ char *node = NULL, *name = NULL;
2616 _cleanup_close_ int mount_node_fd = -EBADF;
2617 int r;
2618
2619 assert(m);
2620 assert(v || (verity && verity->data_path));
2621
2622 if (!verity || !verity->root_hash)
2623 return 0;
2624 if (!((verity->designator < 0 && designator == PARTITION_ROOT) ||
2625 (verity->designator == designator)))
2626 return 0;
2627
2628 if (!m->found || !m->node || !m->fstype)
2629 return 0;
2630 if (!verity->data_path) {
2631 if (!v->found || !v->node || !v->fstype)
2632 return 0;
2633
2634 if (!streq(v->fstype, "DM_verity_hash"))
2635 return 0;
2636 }
2637
2638 r = dlopen_cryptsetup();
2639 if (r < 0)
2640 return r;
2641
2642 if (FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) {
2643 /* Use the roothash, which is unique per volume, as the device node name, so that it can be reused */
2644 _cleanup_free_ char *root_hash_encoded = NULL;
2645
2646 root_hash_encoded = hexmem(verity->root_hash, verity->root_hash_size);
2647 if (!root_hash_encoded)
2648 return -ENOMEM;
2649
2650 r = make_dm_name_and_node(root_hash_encoded, "-verity", &name, &node);
2651 } else
2652 r = make_dm_name_and_node(m->node, "-verity", &name, &node);
2653 if (r < 0)
2654 return r;
2655
2656 r = sym_crypt_init(&cd, verity->data_path ?: v->node);
2657 if (r < 0)
2658 return r;
2659
2660 cryptsetup_enable_logging(cd);
2661
2662 r = sym_crypt_load(cd, CRYPT_VERITY, NULL);
2663 if (r < 0)
2664 return r;
2665
2666 r = sym_crypt_set_data_device(cd, m->node);
2667 if (r < 0)
2668 return r;
2669
2670 if (!GREEDY_REALLOC0(d->decrypted, d->n_decrypted + 1))
2671 return -ENOMEM;
2672
2673 /* If activating fails because the device already exists, check the metadata and reuse it if it matches.
2674 * In case of ENODEV/ENOENT, which can happen if another process is activating at the exact same time,
2675 * retry a few times before giving up. */
2676 for (unsigned i = 0; i < N_DEVICE_NODE_LIST_ATTEMPTS; i++) {
2677 _cleanup_(sym_crypt_freep) struct crypt_device *existing_cd = NULL;
2678 _cleanup_close_ int fd = -EBADF;
2679
2680 /* First, check if the device already exists. */
2681 fd = open(node, O_RDONLY|O_NONBLOCK|O_CLOEXEC|O_NOCTTY);
2682 if (fd < 0 && !ERRNO_IS_DEVICE_ABSENT(errno))
2683 return log_debug_errno(errno, "Failed to open verity device %s: %m", node);
2684 if (fd >= 0)
2685 goto check; /* The device already exists. Let's check it. */
2686
2687 /* The symlink to the device node does not exist yet. Assume not activated, and let's activate it. */
2688 r = do_crypt_activate_verity(cd, name, verity);
2689 if (r >= 0)
2690 goto try_open; /* The device is activated. Let's open it. */
2691 /* libdevmapper can return EINVAL when the device is already in the activation stage.
2692 * There's no way to distinguish this situation from a genuine error due to invalid
2693 * parameters, so immediately fall back to activating the device with a unique name.
2694 * Improvements in libcrypsetup can ensure this never happens:
2695 * https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/96 */
2696 if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
2697 break;
2698 if (r == -ENODEV) /* Volume is being opened but not ready, crypt_init_by_name would fail, try to open again */
2699 goto try_again;
2700 if (!IN_SET(r,
2701 -EEXIST, /* Volume has already been opened and ready to be used. */
2702 -EBUSY /* Volume is being opened but not ready, crypt_init_by_name() can fetch details. */))
2703 return log_debug_errno(r, "Failed to activate verity device %s: %m", node);
2704
2705 check:
2706 if (!restore_deferred_remove){
2707 /* To avoid races, disable automatic removal on umount while setting up the new device. Restore it on failure. */
2708 r = dm_deferred_remove_cancel(name);
2709 /* -EBUSY and -ENXIO: the device has already been removed or being removed. We cannot
2710 * use the device, try to open again. See target_message() in drivers/md/dm-ioctl.c
2711 * and dm_cancel_deferred_remove() in drivers/md/dm.c */
2712 if (IN_SET(r, -EBUSY, -ENXIO))
2713 goto try_again;
2714 if (r < 0)
2715 return log_debug_errno(r, "Failed to disable automated deferred removal for verity device %s: %m", node);
2716
2717 restore_deferred_remove = strdup(name);
2718 if (!restore_deferred_remove)
2719 return log_oom_debug();
2720 }
2721
2722 r = verity_can_reuse(verity, name, &existing_cd);
2723 /* Same as above, -EINVAL can randomly happen when it actually means -EEXIST */
2724 if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
2725 break;
2726 if (IN_SET(r,
2727 -ENOENT, /* Removed?? */
2728 -EBUSY, /* Volume is being opened but not ready, crypt_init_by_name() can fetch details. */
2729 -ENODEV /* Volume is being opened but not ready, crypt_init_by_name() would fail, try to open again. */ ))
2730 goto try_again;
2731 if (r < 0)
2732 return log_debug_errno(r, "Failed to check if existing verity device %s can be reused: %m", node);
2733
2734 if (fd < 0) {
2735 /* devmapper might say that the device exists, but the devlink might not yet have been
2736 * created. Check and wait for the udev event in that case. */
2737 r = device_wait_for_devlink(node, "block", verity_timeout(), NULL);
2738 /* Fallback to activation with a unique device if it's taking too long */
2739 if (r == -ETIMEDOUT && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
2740 break;
2741 if (r < 0)
2742 return log_debug_errno(r, "Failed to wait device node symlink %s: %m", node);
2743 }
2744
2745 try_open:
2746 if (fd < 0) {
2747 /* Now, the device is activated and devlink is created. Let's open it. */
2748 fd = open(node, O_RDONLY|O_NONBLOCK|O_CLOEXEC|O_NOCTTY);
2749 if (fd < 0) {
2750 if (!ERRNO_IS_DEVICE_ABSENT(errno))
2751 return log_debug_errno(errno, "Failed to open verity device %s: %m", node);
2752
2753 /* The device has already been removed?? */
2754 goto try_again;
2755 }
2756 }
2757
2758 mount_node_fd = TAKE_FD(fd);
2759 if (existing_cd)
2760 crypt_free_and_replace(cd, existing_cd);
2761
2762 goto success;
2763
2764 try_again:
2765 /* Device is being removed by another process. Let's wait for a while. */
2766 (void) usleep(2 * USEC_PER_MSEC);
2767 }
2768
2769 /* All trials failed or a conflicting verity device exists. Let's try to activate with a unique name. */
2770 if (FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) {
2771 /* Before trying to activate with unique name, we need to free crypt_device object.
2772 * Otherwise, we get error from libcryptsetup like the following:
2773 * ------
2774 * systemd[1234]: Cannot use device /dev/loop5 which is in use (already mapped or mounted).
2775 * ------
2776 */
2777 sym_crypt_free(cd);
2778 cd = NULL;
2779 return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
2780 }
2781
2782 return log_debug_errno(SYNTHETIC_ERRNO(EBUSY), "All attempts to activate verity device %s failed.", name);
2783
2784 success:
2785 /* Everything looks good and we'll be able to mount the device, so deferred remove will be re-enabled at that point. */
2786 restore_deferred_remove = mfree(restore_deferred_remove);
2787
2788 d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
2789 .name = TAKE_PTR(name),
2790 .device = TAKE_PTR(cd),
2791 };
2792
2793 m->decrypted_node = TAKE_PTR(node);
2794 close_and_replace(m->mount_node_fd, mount_node_fd);
2795
2796 return 0;
2797 }
2798 #endif
2799
2800 int dissected_image_decrypt(
2801 DissectedImage *m,
2802 const char *passphrase,
2803 const VeritySettings *verity,
2804 DissectImageFlags flags) {
2805
2806 #if HAVE_LIBCRYPTSETUP
2807 _cleanup_(decrypted_image_unrefp) DecryptedImage *d = NULL;
2808 int r;
2809 #endif
2810
2811 assert(m);
2812 assert(!verity || verity->root_hash || verity->root_hash_size == 0);
2813
2814 /* Returns:
2815 *
2816 * = 0 → There was nothing to decrypt
2817 * > 0 → Decrypted successfully
2818 * -ENOKEY → There's something to decrypt but no key was supplied
2819 * -EKEYREJECTED → Passed key was not correct
2820 */
2821
2822 if (verity && verity->root_hash && verity->root_hash_size < sizeof(sd_id128_t))
2823 return -EINVAL;
2824
2825 if (!m->encrypted && !m->verity_ready)
2826 return 0;
2827
2828 #if HAVE_LIBCRYPTSETUP
2829 r = decrypted_image_new(&d);
2830 if (r < 0)
2831 return r;
2832
2833 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
2834 DissectedPartition *p = m->partitions + i;
2835 PartitionDesignator k;
2836
2837 if (!p->found)
2838 continue;
2839
2840 r = decrypt_partition(p, passphrase, flags, d);
2841 if (r < 0)
2842 return r;
2843
2844 k = partition_verity_of(i);
2845 if (k >= 0) {
2846 r = verity_partition(i, p, m->partitions + k, verity, flags | DISSECT_IMAGE_VERITY_SHARE, d);
2847 if (r < 0)
2848 return r;
2849 }
2850
2851 if (!p->decrypted_fstype && p->mount_node_fd >= 0 && p->decrypted_node) {
2852 r = probe_filesystem_full(p->mount_node_fd, p->decrypted_node, 0, UINT64_MAX, &p->decrypted_fstype);
2853 if (r < 0 && r != -EUCLEAN)
2854 return r;
2855 }
2856 }
2857
2858 m->decrypted_image = TAKE_PTR(d);
2859
2860 return 1;
2861 #else
2862 return -EOPNOTSUPP;
2863 #endif
2864 }
2865
2866 int dissected_image_decrypt_interactively(
2867 DissectedImage *m,
2868 const char *passphrase,
2869 const VeritySettings *verity,
2870 DissectImageFlags flags) {
2871
2872 _cleanup_strv_free_erase_ char **z = NULL;
2873 int n = 3, r;
2874
2875 if (passphrase)
2876 n--;
2877
2878 for (;;) {
2879 r = dissected_image_decrypt(m, passphrase, verity, flags);
2880 if (r >= 0)
2881 return r;
2882 if (r == -EKEYREJECTED)
2883 log_error_errno(r, "Incorrect passphrase, try again!");
2884 else if (r != -ENOKEY)
2885 return log_error_errno(r, "Failed to decrypt image: %m");
2886
2887 if (--n < 0)
2888 return log_error_errno(SYNTHETIC_ERRNO(EKEYREJECTED),
2889 "Too many retries.");
2890
2891 z = strv_free(z);
2892
2893 r = ask_password_auto("Please enter image passphrase:", NULL, "dissect", "dissect", "dissect.passphrase", USEC_INFINITY, 0, &z);
2894 if (r < 0)
2895 return log_error_errno(r, "Failed to query for passphrase: %m");
2896
2897 passphrase = z[0];
2898 }
2899 }
2900
2901 static int decrypted_image_relinquish(DecryptedImage *d) {
2902 assert(d);
2903
2904 /* Turns on automatic removal after the last use ended for all DM devices of this image, and sets a
2905 * boolean so that we don't clean it up ourselves either anymore */
2906
2907 #if HAVE_LIBCRYPTSETUP
2908 int r;
2909
2910 for (size_t i = 0; i < d->n_decrypted; i++) {
2911 DecryptedPartition *p = d->decrypted + i;
2912
2913 if (p->relinquished)
2914 continue;
2915
2916 r = sym_crypt_deactivate_by_name(NULL, p->name, CRYPT_DEACTIVATE_DEFERRED);
2917 if (r < 0)
2918 return log_debug_errno(r, "Failed to mark %s for auto-removal: %m", p->name);
2919
2920 p->relinquished = true;
2921 }
2922 #endif
2923
2924 return 0;
2925 }
2926
2927 int dissected_image_relinquish(DissectedImage *m) {
2928 int r;
2929
2930 assert(m);
2931
2932 if (m->decrypted_image) {
2933 r = decrypted_image_relinquish(m->decrypted_image);
2934 if (r < 0)
2935 return r;
2936 }
2937
2938 if (m->loop)
2939 loop_device_relinquish(m->loop);
2940
2941 return 0;
2942 }
2943
2944 static char *build_auxiliary_path(const char *image, const char *suffix) {
2945 const char *e;
2946 char *n;
2947
2948 assert(image);
2949 assert(suffix);
2950
2951 e = endswith(image, ".raw");
2952 if (!e)
2953 return strjoin(e, suffix);
2954
2955 n = new(char, e - image + strlen(suffix) + 1);
2956 if (!n)
2957 return NULL;
2958
2959 strcpy(mempcpy(n, image, e - image), suffix);
2960 return n;
2961 }
2962
2963 void verity_settings_done(VeritySettings *v) {
2964 assert(v);
2965
2966 v->root_hash = mfree(v->root_hash);
2967 v->root_hash_size = 0;
2968
2969 v->root_hash_sig = mfree(v->root_hash_sig);
2970 v->root_hash_sig_size = 0;
2971
2972 v->data_path = mfree(v->data_path);
2973 }
2974
2975 int verity_settings_load(
2976 VeritySettings *verity,
2977 const char *image,
2978 const char *root_hash_path,
2979 const char *root_hash_sig_path) {
2980
2981 _cleanup_free_ void *root_hash = NULL, *root_hash_sig = NULL;
2982 size_t root_hash_size = 0, root_hash_sig_size = 0;
2983 _cleanup_free_ char *verity_data_path = NULL;
2984 PartitionDesignator designator;
2985 int r;
2986
2987 assert(verity);
2988 assert(image);
2989 assert(verity->designator < 0 || IN_SET(verity->designator, PARTITION_ROOT, PARTITION_USR));
2990
2991 /* If we are asked to load the root hash for a device node, exit early */
2992 if (is_device_path(image))
2993 return 0;
2994
2995 r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_SIDECAR");
2996 if (r < 0 && r != -ENXIO)
2997 log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_SIDECAR, ignoring: %m");
2998 if (r == 0)
2999 return 0;
3000
3001 designator = verity->designator;
3002
3003 /* We only fill in what isn't already filled in */
3004
3005 if (!verity->root_hash) {
3006 _cleanup_free_ char *text = NULL;
3007
3008 if (root_hash_path) {
3009 /* If explicitly specified it takes precedence */
3010 r = read_one_line_file(root_hash_path, &text);
3011 if (r < 0)
3012 return r;
3013
3014 if (designator < 0)
3015 designator = PARTITION_ROOT;
3016 } else {
3017 /* Otherwise look for xattr and separate file, and first for the data for root and if
3018 * that doesn't exist for /usr */
3019
3020 if (designator < 0 || designator == PARTITION_ROOT) {
3021 r = getxattr_malloc(image, "user.verity.roothash", &text);
3022 if (r < 0) {
3023 _cleanup_free_ char *p = NULL;
3024
3025 if (r != -ENOENT && !ERRNO_IS_XATTR_ABSENT(r))
3026 return r;
3027
3028 p = build_auxiliary_path(image, ".roothash");
3029 if (!p)
3030 return -ENOMEM;
3031
3032 r = read_one_line_file(p, &text);
3033 if (r < 0 && r != -ENOENT)
3034 return r;
3035 }
3036
3037 if (text)
3038 designator = PARTITION_ROOT;
3039 }
3040
3041 if (!text && (designator < 0 || designator == PARTITION_USR)) {
3042 /* So in the "roothash" xattr/file name above the "root" of course primarily
3043 * refers to the root of the Verity Merkle tree. But coincidentally it also
3044 * is the hash for the *root* file system, i.e. the "root" neatly refers to
3045 * two distinct concepts called "root". Taking benefit of this happy
3046 * coincidence we call the file with the root hash for the /usr/ file system
3047 * `usrhash`, because `usrroothash` or `rootusrhash` would just be too
3048 * confusing. We thus drop the reference to the root of the Merkle tree, and
3049 * just indicate which file system it's about. */
3050 r = getxattr_malloc(image, "user.verity.usrhash", &text);
3051 if (r < 0) {
3052 _cleanup_free_ char *p = NULL;
3053
3054 if (r != -ENOENT && !ERRNO_IS_XATTR_ABSENT(r))
3055 return r;
3056
3057 p = build_auxiliary_path(image, ".usrhash");
3058 if (!p)
3059 return -ENOMEM;
3060
3061 r = read_one_line_file(p, &text);
3062 if (r < 0 && r != -ENOENT)
3063 return r;
3064 }
3065
3066 if (text)
3067 designator = PARTITION_USR;
3068 }
3069 }
3070
3071 if (text) {
3072 r = unhexmem(text, strlen(text), &root_hash, &root_hash_size);
3073 if (r < 0)
3074 return r;
3075 if (root_hash_size < sizeof(sd_id128_t))
3076 return -EINVAL;
3077 }
3078 }
3079
3080 if ((root_hash || verity->root_hash) && !verity->root_hash_sig) {
3081 if (root_hash_sig_path) {
3082 r = read_full_file(root_hash_sig_path, (char**) &root_hash_sig, &root_hash_sig_size);
3083 if (r < 0 && r != -ENOENT)
3084 return r;
3085
3086 if (designator < 0)
3087 designator = PARTITION_ROOT;
3088 } else {
3089 if (designator < 0 || designator == PARTITION_ROOT) {
3090 _cleanup_free_ char *p = NULL;
3091
3092 /* Follow naming convention recommended by the relevant RFC:
3093 * https://tools.ietf.org/html/rfc5751#section-3.2.1 */
3094 p = build_auxiliary_path(image, ".roothash.p7s");
3095 if (!p)
3096 return -ENOMEM;
3097
3098 r = read_full_file(p, (char**) &root_hash_sig, &root_hash_sig_size);
3099 if (r < 0 && r != -ENOENT)
3100 return r;
3101 if (r >= 0)
3102 designator = PARTITION_ROOT;
3103 }
3104
3105 if (!root_hash_sig && (designator < 0 || designator == PARTITION_USR)) {
3106 _cleanup_free_ char *p = NULL;
3107
3108 p = build_auxiliary_path(image, ".usrhash.p7s");
3109 if (!p)
3110 return -ENOMEM;
3111
3112 r = read_full_file(p, (char**) &root_hash_sig, &root_hash_sig_size);
3113 if (r < 0 && r != -ENOENT)
3114 return r;
3115 if (r >= 0)
3116 designator = PARTITION_USR;
3117 }
3118 }
3119
3120 if (root_hash_sig && root_hash_sig_size == 0) /* refuse empty size signatures */
3121 return -EINVAL;
3122 }
3123
3124 if (!verity->data_path) {
3125 _cleanup_free_ char *p = NULL;
3126
3127 p = build_auxiliary_path(image, ".verity");
3128 if (!p)
3129 return -ENOMEM;
3130
3131 if (access(p, F_OK) < 0) {
3132 if (errno != ENOENT)
3133 return -errno;
3134 } else
3135 verity_data_path = TAKE_PTR(p);
3136 }
3137
3138 if (root_hash) {
3139 verity->root_hash = TAKE_PTR(root_hash);
3140 verity->root_hash_size = root_hash_size;
3141 }
3142
3143 if (root_hash_sig) {
3144 verity->root_hash_sig = TAKE_PTR(root_hash_sig);
3145 verity->root_hash_sig_size = root_hash_sig_size;
3146 }
3147
3148 if (verity_data_path)
3149 verity->data_path = TAKE_PTR(verity_data_path);
3150
3151 if (verity->designator < 0)
3152 verity->designator = designator;
3153
3154 return 1;
3155 }
3156
3157 int dissected_image_load_verity_sig_partition(
3158 DissectedImage *m,
3159 int fd,
3160 VeritySettings *verity) {
3161
3162 _cleanup_free_ void *root_hash = NULL, *root_hash_sig = NULL;
3163 _cleanup_(json_variant_unrefp) JsonVariant *v = NULL;
3164 size_t root_hash_size, root_hash_sig_size;
3165 _cleanup_free_ char *buf = NULL;
3166 PartitionDesignator d;
3167 DissectedPartition *p;
3168 JsonVariant *rh, *sig;
3169 ssize_t n;
3170 char *e;
3171 int r;
3172
3173 assert(m);
3174 assert(fd >= 0);
3175 assert(verity);
3176
3177 if (verity->root_hash && verity->root_hash_sig) /* Already loaded? */
3178 return 0;
3179
3180 r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_EMBEDDED");
3181 if (r < 0 && r != -ENXIO)
3182 log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_EMBEDDED, ignoring: %m");
3183 if (r == 0)
3184 return 0;
3185
3186 d = partition_verity_sig_of(verity->designator < 0 ? PARTITION_ROOT : verity->designator);
3187 assert(d >= 0);
3188
3189 p = m->partitions + d;
3190 if (!p->found)
3191 return 0;
3192 if (p->offset == UINT64_MAX || p->size == UINT64_MAX)
3193 return -EINVAL;
3194
3195 if (p->size > 4*1024*1024) /* Signature data cannot possible be larger than 4M, refuse that */
3196 return -EFBIG;
3197
3198 buf = new(char, p->size+1);
3199 if (!buf)
3200 return -ENOMEM;
3201
3202 n = pread(fd, buf, p->size, p->offset);
3203 if (n < 0)
3204 return -ENOMEM;
3205 if ((uint64_t) n != p->size)
3206 return -EIO;
3207
3208 e = memchr(buf, 0, p->size);
3209 if (e) {
3210 /* If we found a NUL byte then the rest of the data must be NUL too */
3211 if (!memeqzero(e, p->size - (e - buf)))
3212 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature data contains embedded NUL byte.");
3213 } else
3214 buf[p->size] = 0;
3215
3216 r = json_parse(buf, 0, &v, NULL, NULL);
3217 if (r < 0)
3218 return log_debug_errno(r, "Failed to parse signature JSON data: %m");
3219
3220 rh = json_variant_by_key(v, "rootHash");
3221 if (!rh)
3222 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature JSON object lacks 'rootHash' field.");
3223 if (!json_variant_is_string(rh))
3224 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "'rootHash' field of signature JSON object is not a string.");
3225
3226 r = unhexmem(json_variant_string(rh), SIZE_MAX, &root_hash, &root_hash_size);
3227 if (r < 0)
3228 return log_debug_errno(r, "Failed to parse root hash field: %m");
3229
3230 /* Check if specified root hash matches if it is specified */
3231 if (verity->root_hash &&
3232 memcmp_nn(verity->root_hash, verity->root_hash_size, root_hash, root_hash_size) != 0) {
3233 _cleanup_free_ char *a = NULL, *b = NULL;
3234
3235 a = hexmem(root_hash, root_hash_size);
3236 b = hexmem(verity->root_hash, verity->root_hash_size);
3237
3238 return log_debug_errno(r, "Root hash in signature JSON data (%s) doesn't match configured hash (%s).", strna(a), strna(b));
3239 }
3240
3241 sig = json_variant_by_key(v, "signature");
3242 if (!sig)
3243 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature JSON object lacks 'signature' field.");
3244 if (!json_variant_is_string(sig))
3245 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "'signature' field of signature JSON object is not a string.");
3246
3247 r = unbase64mem(json_variant_string(sig), SIZE_MAX, &root_hash_sig, &root_hash_sig_size);
3248 if (r < 0)
3249 return log_debug_errno(r, "Failed to parse signature field: %m");
3250
3251 free_and_replace(verity->root_hash, root_hash);
3252 verity->root_hash_size = root_hash_size;
3253
3254 free_and_replace(verity->root_hash_sig, root_hash_sig);
3255 verity->root_hash_sig_size = root_hash_sig_size;
3256
3257 return 1;
3258 }
3259
3260 int dissected_image_acquire_metadata(DissectedImage *m, DissectImageFlags extra_flags) {
3261
3262 enum {
3263 META_HOSTNAME,
3264 META_MACHINE_ID,
3265 META_MACHINE_INFO,
3266 META_OS_RELEASE,
3267 META_INITRD_RELEASE,
3268 META_EXTENSION_RELEASE,
3269 META_HAS_INIT_SYSTEM,
3270 _META_MAX,
3271 };
3272
3273 static const char *const paths[_META_MAX] = {
3274 [META_HOSTNAME] = "/etc/hostname\0",
3275 [META_MACHINE_ID] = "/etc/machine-id\0",
3276 [META_MACHINE_INFO] = "/etc/machine-info\0",
3277 [META_OS_RELEASE] = ("/etc/os-release\0"
3278 "/usr/lib/os-release\0"),
3279 [META_INITRD_RELEASE] = ("/etc/initrd-release\0"
3280 "/usr/lib/initrd-release\0"),
3281 [META_EXTENSION_RELEASE] = "extension-release\0", /* Used only for logging. */
3282 [META_HAS_INIT_SYSTEM] = "has-init-system\0", /* ditto */
3283 };
3284
3285 _cleanup_strv_free_ char **machine_info = NULL, **os_release = NULL, **initrd_release = NULL, **extension_release = NULL;
3286 _cleanup_close_pair_ int error_pipe[2] = PIPE_EBADF;
3287 _cleanup_(rmdir_and_freep) char *t = NULL;
3288 _cleanup_(sigkill_waitp) pid_t child = 0;
3289 sd_id128_t machine_id = SD_ID128_NULL;
3290 _cleanup_free_ char *hostname = NULL;
3291 unsigned n_meta_initialized = 0;
3292 int fds[2 * _META_MAX], r, v;
3293 int has_init_system = -1;
3294 ssize_t n;
3295
3296 BLOCK_SIGNALS(SIGCHLD);
3297
3298 assert(m);
3299
3300 for (; n_meta_initialized < _META_MAX; n_meta_initialized ++) {
3301 if (!paths[n_meta_initialized]) {
3302 fds[2*n_meta_initialized] = fds[2*n_meta_initialized+1] = -EBADF;
3303 continue;
3304 }
3305
3306 if (pipe2(fds + 2*n_meta_initialized, O_CLOEXEC) < 0) {
3307 r = -errno;
3308 goto finish;
3309 }
3310 }
3311
3312 r = mkdtemp_malloc("/tmp/dissect-XXXXXX", &t);
3313 if (r < 0)
3314 goto finish;
3315
3316 if (pipe2(error_pipe, O_CLOEXEC) < 0) {
3317 r = -errno;
3318 goto finish;
3319 }
3320
3321 r = safe_fork("(sd-dissect)", FORK_RESET_SIGNALS|FORK_DEATHSIG|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, &child);
3322 if (r < 0)
3323 goto finish;
3324 if (r == 0) {
3325 /* Child in a new mount namespace */
3326 error_pipe[0] = safe_close(error_pipe[0]);
3327
3328 r = dissected_image_mount(
3329 m,
3330 t,
3331 UID_INVALID,
3332 UID_INVALID,
3333 extra_flags |
3334 DISSECT_IMAGE_READ_ONLY |
3335 DISSECT_IMAGE_MOUNT_ROOT_ONLY |
3336 DISSECT_IMAGE_USR_NO_ROOT);
3337 if (r < 0) {
3338 log_debug_errno(r, "Failed to mount dissected image: %m");
3339 goto inner_fail;
3340 }
3341
3342 for (unsigned k = 0; k < _META_MAX; k++) {
3343 _cleanup_close_ int fd = -ENOENT;
3344
3345 if (!paths[k])
3346 continue;
3347
3348 fds[2*k] = safe_close(fds[2*k]);
3349
3350 switch (k) {
3351
3352 case META_EXTENSION_RELEASE:
3353 /* As per the os-release spec, if the image is an extension it will have a file
3354 * named after the image name in extension-release.d/ - we use the image name
3355 * and try to resolve it with the extension-release helpers, as sometimes
3356 * the image names are mangled on deployment and do not match anymore.
3357 * Unlike other paths this is not fixed, and the image name
3358 * can be mangled on deployment, so by calling into the helper
3359 * we allow a fallback that matches on the first extension-release
3360 * file found in the directory, if one named after the image cannot
3361 * be found first. */
3362 r = open_extension_release(t, IMAGE_SYSEXT, m->image_name, /* relax_extension_release_check= */ false, NULL, &fd);
3363 if (r < 0)
3364 fd = r; /* Propagate the error. */
3365 break;
3366
3367 case META_HAS_INIT_SYSTEM: {
3368 bool found = false;
3369
3370 FOREACH_STRING(init,
3371 "/usr/lib/systemd/systemd", /* systemd on /usr merged system */
3372 "/lib/systemd/systemd", /* systemd on /usr non-merged systems */
3373 "/sbin/init") { /* traditional path the Linux kernel invokes */
3374
3375 r = chase(init, t, CHASE_PREFIX_ROOT, NULL, NULL);
3376 if (r < 0) {
3377 if (r != -ENOENT)
3378 log_debug_errno(r, "Failed to resolve %s, ignoring: %m", init);
3379 } else {
3380 found = true;
3381 break;
3382 }
3383 }
3384
3385 r = loop_write(fds[2*k+1], &found, sizeof(found), false);
3386 if (r < 0)
3387 goto inner_fail;
3388
3389 continue;
3390 }
3391
3392 default:
3393 NULSTR_FOREACH(p, paths[k]) {
3394 fd = chase_and_open(p, t, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NOCTTY, NULL);
3395 if (fd >= 0)
3396 break;
3397 }
3398 }
3399
3400 if (fd < 0) {
3401 log_debug_errno(fd, "Failed to read %s file of image, ignoring: %m", paths[k]);
3402 fds[2*k+1] = safe_close(fds[2*k+1]);
3403 continue;
3404 }
3405
3406 r = copy_bytes(fd, fds[2*k+1], UINT64_MAX, 0);
3407 if (r < 0)
3408 goto inner_fail;
3409
3410 fds[2*k+1] = safe_close(fds[2*k+1]);
3411 }
3412
3413 _exit(EXIT_SUCCESS);
3414
3415 inner_fail:
3416 /* Let parent know the error */
3417 (void) write(error_pipe[1], &r, sizeof(r));
3418 _exit(EXIT_FAILURE);
3419 }
3420
3421 error_pipe[1] = safe_close(error_pipe[1]);
3422
3423 for (unsigned k = 0; k < _META_MAX; k++) {
3424 _cleanup_fclose_ FILE *f = NULL;
3425
3426 if (!paths[k])
3427 continue;
3428
3429 fds[2*k+1] = safe_close(fds[2*k+1]);
3430
3431 f = take_fdopen(&fds[2*k], "r");
3432 if (!f) {
3433 r = -errno;
3434 goto finish;
3435 }
3436
3437 switch (k) {
3438
3439 case META_HOSTNAME:
3440 r = read_etc_hostname_stream(f, &hostname);
3441 if (r < 0)
3442 log_debug_errno(r, "Failed to read /etc/hostname of image: %m");
3443
3444 break;
3445
3446 case META_MACHINE_ID: {
3447 _cleanup_free_ char *line = NULL;
3448
3449 r = read_line(f, LONG_LINE_MAX, &line);
3450 if (r < 0)
3451 log_debug_errno(r, "Failed to read /etc/machine-id of image: %m");
3452 else if (r == 33) {
3453 r = sd_id128_from_string(line, &machine_id);
3454 if (r < 0)
3455 log_debug_errno(r, "Image contains invalid /etc/machine-id: %s", line);
3456 } else if (r == 0)
3457 log_debug("/etc/machine-id file of image is empty.");
3458 else if (streq(line, "uninitialized"))
3459 log_debug("/etc/machine-id file of image is uninitialized (likely aborted first boot).");
3460 else
3461 log_debug("/etc/machine-id file of image has unexpected length %i.", r);
3462
3463 break;
3464 }
3465
3466 case META_MACHINE_INFO:
3467 r = load_env_file_pairs(f, "machine-info", &machine_info);
3468 if (r < 0)
3469 log_debug_errno(r, "Failed to read /etc/machine-info of image: %m");
3470
3471 break;
3472
3473 case META_OS_RELEASE:
3474 r = load_env_file_pairs(f, "os-release", &os_release);
3475 if (r < 0)
3476 log_debug_errno(r, "Failed to read OS release file of image: %m");
3477
3478 break;
3479
3480 case META_INITRD_RELEASE:
3481 r = load_env_file_pairs(f, "initrd-release", &initrd_release);
3482 if (r < 0)
3483 log_debug_errno(r, "Failed to read initrd release file of image: %m");
3484
3485 break;
3486
3487 case META_EXTENSION_RELEASE:
3488 r = load_env_file_pairs(f, "extension-release", &extension_release);
3489 if (r < 0)
3490 log_debug_errno(r, "Failed to read extension release file of image: %m");
3491
3492 break;
3493
3494 case META_HAS_INIT_SYSTEM: {
3495 bool b = false;
3496 size_t nr;
3497
3498 errno = 0;
3499 nr = fread(&b, 1, sizeof(b), f);
3500 if (nr != sizeof(b))
3501 log_debug_errno(errno_or_else(EIO), "Failed to read has-init-system boolean: %m");
3502 else
3503 has_init_system = b;
3504
3505 break;
3506 }}
3507 }
3508
3509 r = wait_for_terminate_and_check("(sd-dissect)", child, 0);
3510 child = 0;
3511 if (r < 0)
3512 return r;
3513
3514 n = read(error_pipe[0], &v, sizeof(v));
3515 if (n < 0)
3516 return -errno;
3517 if (n == sizeof(v))
3518 return v; /* propagate error sent to us from child */
3519 if (n != 0)
3520 return -EIO;
3521
3522 if (r != EXIT_SUCCESS)
3523 return -EPROTO;
3524
3525 free_and_replace(m->hostname, hostname);
3526 m->machine_id = machine_id;
3527 strv_free_and_replace(m->machine_info, machine_info);
3528 strv_free_and_replace(m->os_release, os_release);
3529 strv_free_and_replace(m->initrd_release, initrd_release);
3530 strv_free_and_replace(m->extension_release, extension_release);
3531 m->has_init_system = has_init_system;
3532
3533 finish:
3534 for (unsigned k = 0; k < n_meta_initialized; k++)
3535 safe_close_pair(fds + 2*k);
3536
3537 return r;
3538 }
3539
3540 Architecture dissected_image_architecture(DissectedImage *img) {
3541 assert(img);
3542
3543 if (img->partitions[PARTITION_ROOT].found &&
3544 img->partitions[PARTITION_ROOT].architecture >= 0)
3545 return img->partitions[PARTITION_ROOT].architecture;
3546
3547 if (img->partitions[PARTITION_USR].found &&
3548 img->partitions[PARTITION_USR].architecture >= 0)
3549 return img->partitions[PARTITION_USR].architecture;
3550
3551 return _ARCHITECTURE_INVALID;
3552 }
3553
3554 int dissect_loop_device(
3555 LoopDevice *loop,
3556 const VeritySettings *verity,
3557 const MountOptions *mount_options,
3558 const ImagePolicy *image_policy,
3559 DissectImageFlags flags,
3560 DissectedImage **ret) {
3561
3562 #if HAVE_BLKID
3563 _cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
3564 int r;
3565
3566 assert(loop);
3567
3568 r = dissected_image_new(loop->backing_file ?: loop->node, &m);
3569 if (r < 0)
3570 return r;
3571
3572 m->loop = loop_device_ref(loop);
3573 m->sector_size = m->loop->sector_size;
3574
3575 r = dissect_image(m, loop->fd, loop->node, verity, mount_options, image_policy, flags);
3576 if (r < 0)
3577 return r;
3578
3579 if (ret)
3580 *ret = TAKE_PTR(m);
3581
3582 return 0;
3583 #else
3584 return -EOPNOTSUPP;
3585 #endif
3586 }
3587
3588 int dissect_loop_device_and_warn(
3589 LoopDevice *loop,
3590 const VeritySettings *verity,
3591 const MountOptions *mount_options,
3592 const ImagePolicy *image_policy,
3593 DissectImageFlags flags,
3594 DissectedImage **ret) {
3595
3596 assert(loop);
3597
3598 return dissect_log_error(
3599 LOG_ERR,
3600 dissect_loop_device(loop, verity, mount_options, image_policy, flags, ret),
3601 loop->backing_file ?: loop->node,
3602 verity);
3603
3604 }
3605
3606 bool dissected_image_verity_candidate(const DissectedImage *image, PartitionDesignator partition_designator) {
3607 assert(image);
3608
3609 /* Checks if this partition could theoretically do Verity. For non-partitioned images this only works
3610 * if there's an external verity file supplied, for which we can consult .has_verity. For partitioned
3611 * images we only check the partition type.
3612 *
3613 * This call is used to decide whether to suppress or show a verity column in tabular output of the
3614 * image. */
3615
3616 if (image->single_file_system)
3617 return partition_designator == PARTITION_ROOT && image->has_verity;
3618
3619 return partition_verity_of(partition_designator) >= 0;
3620 }
3621
3622 bool dissected_image_verity_ready(const DissectedImage *image, PartitionDesignator partition_designator) {
3623 PartitionDesignator k;
3624
3625 assert(image);
3626
3627 /* Checks if this partition has verity data available that we can activate. For non-partitioned this
3628 * works for the root partition, for others only if the associated verity partition was found. */
3629
3630 if (!image->verity_ready)
3631 return false;
3632
3633 if (image->single_file_system)
3634 return partition_designator == PARTITION_ROOT;
3635
3636 k = partition_verity_of(partition_designator);
3637 return k >= 0 && image->partitions[k].found;
3638 }
3639
3640 bool dissected_image_verity_sig_ready(const DissectedImage *image, PartitionDesignator partition_designator) {
3641 PartitionDesignator k;
3642
3643 assert(image);
3644
3645 /* Checks if this partition has verity signature data available that we can use. */
3646
3647 if (!image->verity_sig_ready)
3648 return false;
3649
3650 if (image->single_file_system)
3651 return partition_designator == PARTITION_ROOT;
3652
3653 k = partition_verity_sig_of(partition_designator);
3654 return k >= 0 && image->partitions[k].found;
3655 }
3656
3657 MountOptions* mount_options_free_all(MountOptions *options) {
3658 MountOptions *m;
3659
3660 while ((m = options)) {
3661 LIST_REMOVE(mount_options, options, m);
3662 free(m->options);
3663 free(m);
3664 }
3665
3666 return NULL;
3667 }
3668
3669 const char* mount_options_from_designator(const MountOptions *options, PartitionDesignator designator) {
3670 LIST_FOREACH(mount_options, m, options)
3671 if (designator == m->partition_designator && !isempty(m->options))
3672 return m->options;
3673
3674 return NULL;
3675 }
3676
3677 int mount_image_privately_interactively(
3678 const char *image,
3679 const ImagePolicy *image_policy,
3680 DissectImageFlags flags,
3681 char **ret_directory,
3682 int *ret_dir_fd,
3683 LoopDevice **ret_loop_device) {
3684
3685 _cleanup_(verity_settings_done) VeritySettings verity = VERITY_SETTINGS_DEFAULT;
3686 _cleanup_(loop_device_unrefp) LoopDevice *d = NULL;
3687 _cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
3688 _cleanup_free_ char *dir = NULL;
3689 int r;
3690
3691 /* Mounts an OS image at a temporary place, inside a newly created mount namespace of our own. This
3692 * is used by tools such as systemd-tmpfiles or systemd-firstboot to operate on some disk image
3693 * easily. */
3694
3695 assert(image);
3696 assert(ret_loop_device);
3697
3698 /* We intend to mount this right-away, hence add the partitions if needed and pin them. */
3699 flags |= DISSECT_IMAGE_ADD_PARTITION_DEVICES |
3700 DISSECT_IMAGE_PIN_PARTITION_DEVICES;
3701
3702 r = verity_settings_load(&verity, image, NULL, NULL);
3703 if (r < 0)
3704 return log_error_errno(r, "Failed to load root hash data: %m");
3705
3706 r = loop_device_make_by_path(
3707 image,
3708 FLAGS_SET(flags, DISSECT_IMAGE_DEVICE_READ_ONLY) ? O_RDONLY : O_RDWR,
3709 /* sector_size= */ UINT32_MAX,
3710 FLAGS_SET(flags, DISSECT_IMAGE_NO_PARTITION_TABLE) ? 0 : LO_FLAGS_PARTSCAN,
3711 LOCK_SH,
3712 &d);
3713 if (r < 0)
3714 return log_error_errno(r, "Failed to set up loopback device for %s: %m", image);
3715
3716 r = dissect_loop_device_and_warn(
3717 d,
3718 &verity,
3719 /* mount_options= */ NULL,
3720 image_policy,
3721 flags,
3722 &dissected_image);
3723 if (r < 0)
3724 return r;
3725
3726 r = dissected_image_load_verity_sig_partition(dissected_image, d->fd, &verity);
3727 if (r < 0)
3728 return r;
3729
3730 r = dissected_image_decrypt_interactively(dissected_image, NULL, &verity, flags);
3731 if (r < 0)
3732 return r;
3733
3734 r = detach_mount_namespace();
3735 if (r < 0)
3736 return log_error_errno(r, "Failed to detach mount namespace: %m");
3737
3738 r = mkdir_p("/run/systemd/mount-rootfs", 0555);
3739 if (r < 0)
3740 return log_error_errno(r, "Failed to create mount point: %m");
3741
3742 r = dissected_image_mount_and_warn(
3743 dissected_image,
3744 "/run/systemd/mount-rootfs",
3745 /* uid_shift= */ UID_INVALID,
3746 /* uid_range= */ UID_INVALID,
3747 flags);
3748 if (r < 0)
3749 return r;
3750
3751 r = loop_device_flock(d, LOCK_UN);
3752 if (r < 0)
3753 return r;
3754
3755 r = dissected_image_relinquish(dissected_image);
3756 if (r < 0)
3757 return log_error_errno(r, "Failed to relinquish DM and loopback block devices: %m");
3758
3759 if (ret_directory) {
3760 dir = strdup("/run/systemd/mount-rootfs");
3761 if (!dir)
3762 return log_oom();
3763 }
3764
3765 if (ret_dir_fd) {
3766 _cleanup_close_ int dir_fd = -EBADF;
3767
3768 dir_fd = open("/run/systemd/mount-rootfs", O_CLOEXEC|O_DIRECTORY);
3769 if (dir_fd < 0)
3770 return log_error_errno(errno, "Failed to open mount point directory: %m");
3771
3772 *ret_dir_fd = TAKE_FD(dir_fd);
3773 }
3774
3775 if (ret_directory)
3776 *ret_directory = TAKE_PTR(dir);
3777
3778 *ret_loop_device = TAKE_PTR(d);
3779 return 0;
3780 }
3781
3782 static bool mount_options_relax_extension_release_checks(const MountOptions *options) {
3783 if (!options)
3784 return false;
3785
3786 return string_contains_word(mount_options_from_designator(options, PARTITION_ROOT), ",", "x-systemd.relax-extension-release-check") ||
3787 string_contains_word(mount_options_from_designator(options, PARTITION_USR), ",", "x-systemd.relax-extension-release-check") ||
3788 string_contains_word(options->options, ",", "x-systemd.relax-extension-release-check");
3789 }
3790
3791 int verity_dissect_and_mount(
3792 int src_fd,
3793 const char *src,
3794 const char *dest,
3795 const MountOptions *options,
3796 const ImagePolicy *image_policy,
3797 const char *required_host_os_release_id,
3798 const char *required_host_os_release_version_id,
3799 const char *required_host_os_release_sysext_level,
3800 const char *required_sysext_scope) {
3801
3802 _cleanup_(loop_device_unrefp) LoopDevice *loop_device = NULL;
3803 _cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
3804 _cleanup_(verity_settings_done) VeritySettings verity = VERITY_SETTINGS_DEFAULT;
3805 DissectImageFlags dissect_image_flags;
3806 bool relax_extension_release_check;
3807 int r;
3808
3809 assert(src);
3810 assert(dest);
3811
3812 relax_extension_release_check = mount_options_relax_extension_release_checks(options);
3813
3814 /* We might get an FD for the image, but we use the original path to look for the dm-verity files */
3815 r = verity_settings_load(&verity, src, NULL, NULL);
3816 if (r < 0)
3817 return log_debug_errno(r, "Failed to load root hash: %m");
3818
3819 dissect_image_flags = (verity.data_path ? DISSECT_IMAGE_NO_PARTITION_TABLE : 0) |
3820 (relax_extension_release_check ? DISSECT_IMAGE_RELAX_SYSEXT_CHECK : 0) |
3821 DISSECT_IMAGE_ADD_PARTITION_DEVICES |
3822 DISSECT_IMAGE_PIN_PARTITION_DEVICES;
3823
3824 /* Note that we don't use loop_device_make here, as the FD is most likely O_PATH which would not be
3825 * accepted by LOOP_CONFIGURE, so just let loop_device_make_by_path reopen it as a regular FD. */
3826 r = loop_device_make_by_path(
3827 src_fd >= 0 ? FORMAT_PROC_FD_PATH(src_fd) : src,
3828 /* open_flags= */ -1,
3829 /* sector_size= */ UINT32_MAX,
3830 verity.data_path ? 0 : LO_FLAGS_PARTSCAN,
3831 LOCK_SH,
3832 &loop_device);
3833 if (r < 0)
3834 return log_debug_errno(r, "Failed to create loop device for image: %m");
3835
3836 r = dissect_loop_device(
3837 loop_device,
3838 &verity,
3839 options,
3840 image_policy,
3841 dissect_image_flags,
3842 &dissected_image);
3843 /* No partition table? Might be a single-filesystem image, try again */
3844 if (!verity.data_path && r == -ENOPKG)
3845 r = dissect_loop_device(
3846 loop_device,
3847 &verity,
3848 options,
3849 image_policy,
3850 dissect_image_flags | DISSECT_IMAGE_NO_PARTITION_TABLE,
3851 &dissected_image);
3852 if (r < 0)
3853 return log_debug_errno(r, "Failed to dissect image: %m");
3854
3855 r = dissected_image_load_verity_sig_partition(dissected_image, loop_device->fd, &verity);
3856 if (r < 0)
3857 return r;
3858
3859 r = dissected_image_decrypt(
3860 dissected_image,
3861 NULL,
3862 &verity,
3863 dissect_image_flags);
3864 if (r < 0)
3865 return log_debug_errno(r, "Failed to decrypt dissected image: %m");
3866
3867 r = mkdir_p_label(dest, 0755);
3868 if (r < 0)
3869 return log_debug_errno(r, "Failed to create destination directory %s: %m", dest);
3870 r = umount_recursive(dest, 0);
3871 if (r < 0)
3872 return log_debug_errno(r, "Failed to umount under destination directory %s: %m", dest);
3873
3874 r = dissected_image_mount(dissected_image, dest, UID_INVALID, UID_INVALID, dissect_image_flags);
3875 if (r < 0)
3876 return log_debug_errno(r, "Failed to mount image: %m");
3877
3878 r = loop_device_flock(loop_device, LOCK_UN);
3879 if (r < 0)
3880 return log_debug_errno(r, "Failed to unlock loopback device: %m");
3881
3882 /* If we got os-release values from the caller, then we need to match them with the image's
3883 * extension-release.d/ content. Return -EINVAL if there's any mismatch.
3884 * First, check the distro ID. If that matches, then check the new SYSEXT_LEVEL value if
3885 * available, or else fallback to VERSION_ID. If neither is present (eg: rolling release),
3886 * then a simple match on the ID will be performed. */
3887 if (required_host_os_release_id) {
3888 _cleanup_strv_free_ char **extension_release = NULL;
3889
3890 assert(!isempty(required_host_os_release_id));
3891
3892 r = load_extension_release_pairs(dest, IMAGE_SYSEXT, dissected_image->image_name, relax_extension_release_check, &extension_release);
3893 if (r < 0)
3894 return log_debug_errno(r, "Failed to parse image %s extension-release metadata: %m", dissected_image->image_name);
3895
3896 r = extension_release_validate(
3897 dissected_image->image_name,
3898 required_host_os_release_id,
3899 required_host_os_release_version_id,
3900 required_host_os_release_sysext_level,
3901 required_sysext_scope,
3902 extension_release,
3903 IMAGE_SYSEXT);
3904 if (r == 0)
3905 return log_debug_errno(SYNTHETIC_ERRNO(ESTALE), "Image %s extension-release metadata does not match the root's", dissected_image->image_name);
3906 if (r < 0)
3907 return log_debug_errno(r, "Failed to compare image %s extension-release metadata with the root's os-release: %m", dissected_image->image_name);
3908 }
3909
3910 r = dissected_image_relinquish(dissected_image);
3911 if (r < 0)
3912 return log_debug_errno(r, "Failed to relinquish dissected image: %m");
3913
3914 return 0;
3915 }