]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/shared/dissect-image.c
shared: clean up mkdir.h/label.h situation
[thirdparty/systemd.git] / src / shared / dissect-image.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #if HAVE_VALGRIND_MEMCHECK_H
4 #include <valgrind/memcheck.h>
5 #endif
6
7 #include <linux/dm-ioctl.h>
8 #include <linux/loop.h>
9 #include <sys/mount.h>
10 #include <sys/prctl.h>
11 #include <sys/wait.h>
12 #include <sysexits.h>
13
14 #if HAVE_OPENSSL
15 #include <openssl/err.h>
16 #include <openssl/pem.h>
17 #include <openssl/x509.h>
18 #endif
19
20 #include "sd-device.h"
21 #include "sd-id128.h"
22
23 #include "architecture.h"
24 #include "ask-password-api.h"
25 #include "blkid-util.h"
26 #include "blockdev-util.h"
27 #include "chase-symlinks.h"
28 #include "conf-files.h"
29 #include "copy.h"
30 #include "cryptsetup-util.h"
31 #include "def.h"
32 #include "device-nodes.h"
33 #include "device-util.h"
34 #include "discover-image.h"
35 #include "dissect-image.h"
36 #include "dm-util.h"
37 #include "env-file.h"
38 #include "env-util.h"
39 #include "extension-release.h"
40 #include "fd-util.h"
41 #include "fileio.h"
42 #include "fs-util.h"
43 #include "fsck-util.h"
44 #include "gpt.h"
45 #include "hexdecoct.h"
46 #include "hostname-setup.h"
47 #include "id128-util.h"
48 #include "import-util.h"
49 #include "mkdir-label.h"
50 #include "mount-util.h"
51 #include "mountpoint-util.h"
52 #include "namespace-util.h"
53 #include "nulstr-util.h"
54 #include "openssl-util.h"
55 #include "os-util.h"
56 #include "path-util.h"
57 #include "process-util.h"
58 #include "raw-clone.h"
59 #include "resize-fs.h"
60 #include "signal-util.h"
61 #include "stat-util.h"
62 #include "stdio-util.h"
63 #include "string-table.h"
64 #include "string-util.h"
65 #include "strv.h"
66 #include "tmpfile-util.h"
67 #include "udev-util.h"
68 #include "user-util.h"
69 #include "xattr-util.h"
70
71 /* how many times to wait for the device nodes to appear */
72 #define N_DEVICE_NODE_LIST_ATTEMPTS 10
73
74 int probe_filesystem(const char *node, char **ret_fstype) {
75 /* Try to find device content type and return it in *ret_fstype. If nothing is found,
76 * 0/NULL will be returned. -EUCLEAN will be returned for ambiguous results, and an
77 * different error otherwise. */
78
79 #if HAVE_BLKID
80 _cleanup_(blkid_free_probep) blkid_probe b = NULL;
81 const char *fstype;
82 int r;
83
84 errno = 0;
85 b = blkid_new_probe_from_filename(node);
86 if (!b)
87 return errno_or_else(ENOMEM);
88
89 blkid_probe_enable_superblocks(b, 1);
90 blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE);
91
92 errno = 0;
93 r = blkid_do_safeprobe(b);
94 if (r == 1) {
95 log_debug("No type detected on partition %s", node);
96 goto not_found;
97 }
98 if (r == -2)
99 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN),
100 "Results ambiguous for partition %s", node);
101 if (r != 0)
102 return errno_or_else(EIO);
103
104 (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
105
106 if (fstype) {
107 char *t;
108
109 t = strdup(fstype);
110 if (!t)
111 return -ENOMEM;
112
113 *ret_fstype = t;
114 return 1;
115 }
116
117 not_found:
118 *ret_fstype = NULL;
119 return 0;
120 #else
121 return -EOPNOTSUPP;
122 #endif
123 }
124
125 #if HAVE_BLKID
126 static int enumerator_for_parent(sd_device *d, sd_device_enumerator **ret) {
127 _cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
128 int r;
129
130 assert(d);
131 assert(ret);
132
133 r = sd_device_enumerator_new(&e);
134 if (r < 0)
135 return r;
136
137 r = sd_device_enumerator_add_match_subsystem(e, "block", true);
138 if (r < 0)
139 return r;
140
141 r = sd_device_enumerator_add_match_parent(e, d);
142 if (r < 0)
143 return r;
144
145 r = sd_device_enumerator_add_match_sysattr(e, "partition", NULL, true);
146 if (r < 0)
147 return r;
148
149 *ret = TAKE_PTR(e);
150 return 0;
151 }
152
153 static int device_is_partition(
154 sd_device *d,
155 sd_device *expected_parent,
156 blkid_partition pp) {
157
158 const char *v, *parent_syspath, *expected_parent_syspath;
159 blkid_loff_t bsize, bstart;
160 uint64_t size, start;
161 int partno, bpartno, r;
162 sd_device *parent;
163
164 assert(d);
165 assert(expected_parent);
166 assert(pp);
167
168 r = sd_device_get_subsystem(d, &v);
169 if (r < 0)
170 return r;
171 if (!streq(v, "block"))
172 return false;
173
174 if (sd_device_get_devtype(d, &v) < 0 || !streq(v, "partition"))
175 return false;
176
177 r = sd_device_get_parent(d, &parent);
178 if (r < 0)
179 return false; /* Doesn't have a parent? No relevant to us */
180
181 r = sd_device_get_syspath(parent, &parent_syspath); /* Check parent of device of this action */
182 if (r < 0)
183 return r;
184
185 r = sd_device_get_syspath(expected_parent, &expected_parent_syspath); /* Check parent of device we are looking for */
186 if (r < 0)
187 return r;
188
189 if (!path_equal(parent_syspath, expected_parent_syspath))
190 return false; /* Has a different parent than what we need, not interesting to us */
191
192 /* On kernel uevents we may find the partition number in the PARTN= field. Let's use that preferably,
193 * since it's cheaper and more importantly: the sysfs attribute "partition" appears to become
194 * available late, hence let's use the property instead, which is available at the moment we see the
195 * uevent. */
196 r = sd_device_get_property_value(d, "PARTN", &v);
197 if (r == -ENOENT)
198 r = sd_device_get_sysattr_value(d, "partition", &v);
199 if (r < 0)
200 return r;
201
202 r = safe_atoi(v, &partno);
203 if (r < 0)
204 return r;
205
206 errno = 0;
207 bpartno = blkid_partition_get_partno(pp);
208 if (bpartno < 0)
209 return errno_or_else(EIO);
210
211 if (partno != bpartno)
212 return false;
213
214 r = sd_device_get_sysattr_value(d, "start", &v);
215 if (r < 0)
216 return r;
217 r = safe_atou64(v, &start);
218 if (r < 0)
219 return r;
220
221 errno = 0;
222 bstart = blkid_partition_get_start(pp);
223 if (bstart < 0)
224 return errno_or_else(EIO);
225
226 if (start != (uint64_t) bstart)
227 return false;
228
229 r = sd_device_get_sysattr_value(d, "size", &v);
230 if (r < 0)
231 return r;
232 r = safe_atou64(v, &size);
233 if (r < 0)
234 return r;
235
236 errno = 0;
237 bsize = blkid_partition_get_size(pp);
238 if (bsize < 0)
239 return errno_or_else(EIO);
240
241 if (size != (uint64_t) bsize)
242 return false;
243
244 return true;
245 }
246
247 static int find_partition(
248 sd_device *parent,
249 blkid_partition pp,
250 usec_t timestamp_not_before,
251 DissectImageFlags flags,
252 sd_device **ret) {
253
254 _cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
255 sd_device *q;
256 int r;
257
258 assert(parent);
259 assert(pp);
260 assert(ret);
261
262 r = enumerator_for_parent(parent, &e);
263 if (r < 0)
264 return r;
265
266 FOREACH_DEVICE(e, q) {
267 uint64_t usec;
268
269 if (!FLAGS_SET(flags, DISSECT_IMAGE_NO_UDEV)) {
270 r = sd_device_get_usec_initialized(q, &usec);
271 if (r == -EBUSY) /* Not initialized yet */
272 continue;
273 if (r < 0)
274 return r;
275
276 if (timestamp_not_before != USEC_INFINITY &&
277 usec < timestamp_not_before) /* udev database entry older than our attachment? Then it's not ours */
278 continue;
279 }
280
281 r = device_is_partition(q, parent, pp);
282 if (r < 0)
283 return r;
284 if (r > 0) {
285 *ret = sd_device_ref(q);
286 return 0;
287 }
288 }
289
290 return -ENXIO;
291 }
292
293 struct wait_data {
294 sd_device *parent_device;
295 blkid_partition blkidp;
296 sd_device *found;
297 uint64_t diskseq;
298 uint64_t uevent_seqnum_not_before;
299 usec_t timestamp_not_before;
300 DissectImageFlags flags;
301 };
302
303 static inline void wait_data_done(struct wait_data *d) {
304 sd_device_unref(d->found);
305 }
306
307 static int device_monitor_handler(sd_device_monitor *monitor, sd_device *device, void *userdata) {
308 struct wait_data *w = userdata;
309 int r;
310
311 assert(w);
312
313 if (device_for_action(device, SD_DEVICE_REMOVE))
314 return 0;
315
316 if (w->diskseq != 0) {
317 uint64_t diskseq;
318
319 /* If w->diskseq is non-zero, then we must have a disk seqnum */
320 r = sd_device_get_diskseq(device, &diskseq);
321 if (r < 0) {
322 log_debug_errno(r, "Dropping event because it has no diskseq, but waiting for %" PRIu64, w->diskseq);
323 return 0;
324 }
325 if (diskseq < w->diskseq) {
326 log_debug("Dropping event because diskseq too old (%" PRIu64 " < %" PRIu64 ")",
327 diskseq, w->diskseq);
328 return 0;
329 }
330 if (diskseq > w->diskseq) {
331 r = -EBUSY;
332 goto finish; /* Newer than what we were expecting, so we missed it, stop waiting */
333 }
334 } else if (w->uevent_seqnum_not_before != UINT64_MAX) {
335 uint64_t seqnum;
336
337 r = sd_device_get_seqnum(device, &seqnum);
338 if (r < 0)
339 goto finish;
340
341 if (seqnum <= w->uevent_seqnum_not_before) { /* From an older use of this loop device */
342 log_debug("Dropping event because seqnum too old (%" PRIu64 " <= %" PRIu64 ")",
343 seqnum, w->uevent_seqnum_not_before);
344 return 0;
345 }
346 }
347
348 r = device_is_partition(device, w->parent_device, w->blkidp);
349 if (r < 0)
350 goto finish;
351 if (r == 0) /* Not the one we need */
352 return 0;
353
354 /* It's the one we need! Yay! */
355 assert(!w->found);
356 w->found = sd_device_ref(device);
357 r = 0;
358
359 finish:
360 return sd_event_exit(sd_device_monitor_get_event(monitor), r);
361 }
362
363 static int timeout_handler(sd_event_source *s, uint64_t usec, void *userdata) {
364 struct wait_data *w = userdata;
365 int r;
366
367 assert(w);
368
369 /* Why partition not appeared within the timeout? We may lost some uevent, as some properties
370 * were not ready when we received uevent... Not sure, but anyway, let's try to find the
371 * partition again before give up. */
372
373 r = find_partition(w->parent_device, w->blkidp, w->timestamp_not_before, w->flags, &w->found);
374 if (r == -ENXIO)
375 return log_debug_errno(SYNTHETIC_ERRNO(ETIMEDOUT),
376 "Partition still not appeared after timeout reached.");
377 if (r < 0)
378 return log_debug_errno(r, "Failed to find partition: %m");
379
380 log_debug("Partition appeared after timeout reached.");
381 return sd_event_exit(sd_event_source_get_event(s), 0);
382 }
383
384 static int retry_handler(sd_event_source *s, uint64_t usec, void *userdata) {
385 struct wait_data *w = userdata;
386 int r;
387
388 assert(w);
389
390 r = find_partition(w->parent_device, w->blkidp, w->timestamp_not_before, w->flags, &w->found);
391 if (r != -ENXIO) {
392 if (r < 0)
393 return log_debug_errno(r, "Failed to find partition: %m");
394
395 log_debug("Partition found by a periodic search.");
396 return sd_event_exit(sd_event_source_get_event(s), 0);
397 }
398
399 r = sd_event_source_set_time_relative(s, 500 * USEC_PER_MSEC);
400 if (r < 0)
401 return r;
402
403 return sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
404 }
405
406 static int wait_for_partition_device(
407 sd_device *parent,
408 blkid_partition pp,
409 usec_t deadline,
410 uint64_t diskseq,
411 uint64_t uevent_seqnum_not_before,
412 usec_t timestamp_not_before,
413 DissectImageFlags flags,
414 sd_device **ret) {
415
416 _cleanup_(sd_event_source_unrefp) sd_event_source *timeout_source = NULL, *retry_source = NULL;
417 _cleanup_(sd_device_monitor_unrefp) sd_device_monitor *monitor = NULL;
418 _cleanup_(sd_event_unrefp) sd_event *event = NULL;
419 int r;
420
421 assert(parent);
422 assert(pp);
423 assert(ret);
424
425 r = find_partition(parent, pp, timestamp_not_before, flags, ret);
426 if (r != -ENXIO)
427 return r;
428
429 r = sd_event_new(&event);
430 if (r < 0)
431 return r;
432
433 r = sd_device_monitor_new(&monitor);
434 if (r < 0)
435 return r;
436
437 r = sd_device_monitor_filter_add_match_subsystem_devtype(monitor, "block", "partition");
438 if (r < 0)
439 return r;
440
441 r = sd_device_monitor_filter_add_match_parent(monitor, parent, true);
442 if (r < 0)
443 return r;
444
445 r = sd_device_monitor_filter_add_match_sysattr(monitor, "partition", NULL, true);
446 if (r < 0)
447 return r;
448
449 r = sd_device_monitor_attach_event(monitor, event);
450 if (r < 0)
451 return r;
452
453 _cleanup_(wait_data_done) struct wait_data w = {
454 .parent_device = parent,
455 .blkidp = pp,
456 .diskseq = diskseq,
457 .uevent_seqnum_not_before = uevent_seqnum_not_before,
458 .timestamp_not_before = timestamp_not_before,
459 .flags = flags,
460 };
461
462 r = sd_device_monitor_start(monitor, device_monitor_handler, &w);
463 if (r < 0)
464 return r;
465
466 /* Check again, the partition might have appeared in the meantime */
467 r = find_partition(parent, pp, timestamp_not_before, flags, ret);
468 if (r != -ENXIO)
469 return r;
470
471 if (deadline != USEC_INFINITY) {
472 r = sd_event_add_time(
473 event, &timeout_source,
474 CLOCK_MONOTONIC, deadline, 0,
475 timeout_handler, &w);
476 if (r < 0)
477 return r;
478
479 r = sd_event_source_set_exit_on_failure(timeout_source, true);
480 if (r < 0)
481 return r;
482 }
483
484 /* If we don't have a disk sequence number then we cannot do exact matching,
485 * and we cannot know if we missed it or if it has not been sent yet, so set
486 * up additional retries to increase the chances of receiving the event. */
487 if (diskseq == 0) {
488 r = sd_event_add_time_relative(
489 event, &retry_source,
490 CLOCK_MONOTONIC, 500 * USEC_PER_MSEC, 0,
491 retry_handler, &w);
492 if (r < 0)
493 return r;
494
495 r = sd_event_source_set_exit_on_failure(retry_source, true);
496 if (r < 0)
497 return r;
498 }
499
500 r = sd_event_loop(event);
501 if (r < 0)
502 return r;
503
504 assert(w.found);
505 *ret = TAKE_PTR(w.found);
506 return 0;
507 }
508
509 static void check_partition_flags(
510 const char *node,
511 unsigned long long pflags,
512 unsigned long long supported) {
513
514 assert(node);
515
516 /* Mask away all flags supported by this partition's type and the three flags the UEFI spec defines generically */
517 pflags &= ~(supported | GPT_FLAG_REQUIRED_PARTITION | GPT_FLAG_NO_BLOCK_IO_PROTOCOL | GPT_FLAG_LEGACY_BIOS_BOOTABLE);
518
519 if (pflags == 0)
520 return;
521
522 /* If there are other bits set, then log about it, to make things discoverable */
523 for (unsigned i = 0; i < sizeof(pflags) * 8; i++) {
524 unsigned long long bit = 1ULL << i;
525 if (!FLAGS_SET(pflags, bit))
526 continue;
527
528 log_debug("Unexpected partition flag %llu set on %s!", bit, node);
529 }
530 }
531
532 static int device_wait_for_initialization_harder(
533 sd_device *device,
534 const char *subsystem,
535 usec_t deadline,
536 sd_device **ret) {
537
538 usec_t start, left, retrigger_timeout;
539 int r;
540
541 start = now(CLOCK_MONOTONIC);
542 left = usec_sub_unsigned(deadline, start);
543
544 if (DEBUG_LOGGING) {
545 const char *sn = NULL;
546
547 (void) sd_device_get_sysname(device, &sn);
548 log_device_debug(device,
549 "Will wait up to %s for '%s' to initialize…", FORMAT_TIMESPAN(left, 0), strna(sn));
550 }
551
552 if (left != USEC_INFINITY)
553 retrigger_timeout = CLAMP(left / 4, 1 * USEC_PER_SEC, 5 * USEC_PER_SEC); /* A fourth of the total timeout, but let's clamp to 1s…5s range */
554 else
555 retrigger_timeout = 2 * USEC_PER_SEC;
556
557 for (;;) {
558 usec_t local_deadline, n;
559 bool last_try;
560
561 n = now(CLOCK_MONOTONIC);
562 assert(n >= start);
563
564 /* Find next deadline, when we'll retrigger */
565 local_deadline = start +
566 DIV_ROUND_UP(n - start, retrigger_timeout) * retrigger_timeout;
567
568 if (deadline != USEC_INFINITY && deadline <= local_deadline) {
569 local_deadline = deadline;
570 last_try = true;
571 } else
572 last_try = false;
573
574 r = device_wait_for_initialization(device, subsystem, local_deadline, ret);
575 if (r >= 0 && DEBUG_LOGGING) {
576 const char *sn = NULL;
577
578 (void) sd_device_get_sysname(device, &sn);
579 log_device_debug(device,
580 "Successfully waited for device '%s' to initialize for %s.",
581 strna(sn),
582 FORMAT_TIMESPAN(usec_sub_unsigned(now(CLOCK_MONOTONIC), start), 0));
583
584 }
585 if (r != -ETIMEDOUT || last_try)
586 return r;
587
588 if (DEBUG_LOGGING)
589 log_device_debug(device,
590 "Device didn't initialize within %s, assuming lost event. Retriggering device.",
591 FORMAT_TIMESPAN(usec_sub_unsigned(now(CLOCK_MONOTONIC), start), 0));
592
593 r = sd_device_trigger(device, SD_DEVICE_CHANGE);
594 if (r < 0)
595 return r;
596 }
597 }
598 #endif
599
600 #define DEVICE_TIMEOUT_USEC (45 * USEC_PER_SEC)
601
602 static void dissected_partition_done(DissectedPartition *p) {
603 assert(p);
604
605 free(p->fstype);
606 free(p->node);
607 free(p->label);
608 free(p->decrypted_fstype);
609 free(p->decrypted_node);
610 free(p->mount_options);
611
612 *p = (DissectedPartition) {
613 .partno = -1,
614 .architecture = -1
615 };
616 }
617
618 int dissect_image(
619 int fd,
620 const VeritySettings *verity,
621 const MountOptions *mount_options,
622 uint64_t diskseq,
623 uint64_t uevent_seqnum_not_before,
624 usec_t timestamp_not_before,
625 DissectImageFlags flags,
626 DissectedImage **ret) {
627
628 #if HAVE_BLKID
629 #ifdef GPT_ROOT_NATIVE
630 sd_id128_t root_uuid = SD_ID128_NULL, root_verity_uuid = SD_ID128_NULL;
631 #endif
632 #ifdef GPT_USR_NATIVE
633 sd_id128_t usr_uuid = SD_ID128_NULL, usr_verity_uuid = SD_ID128_NULL;
634 #endif
635 bool is_gpt, is_mbr, multiple_generic = false,
636 generic_rw = false, /* initialize to appease gcc */
637 generic_growfs = false;
638 _cleanup_(sd_device_unrefp) sd_device *d = NULL;
639 _cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
640 _cleanup_(blkid_free_probep) blkid_probe b = NULL;
641 _cleanup_free_ char *generic_node = NULL;
642 sd_id128_t generic_uuid = SD_ID128_NULL;
643 const char *pttype = NULL, *sysname = NULL;
644 blkid_partlist pl;
645 int r, generic_nr = -1, n_partitions;
646 struct stat st;
647 usec_t deadline;
648
649 assert(fd >= 0);
650 assert(ret);
651 assert(!verity || verity->designator < 0 || IN_SET(verity->designator, PARTITION_ROOT, PARTITION_USR));
652 assert(!verity || verity->root_hash || verity->root_hash_size == 0);
653 assert(!verity || verity->root_hash_sig || verity->root_hash_sig_size == 0);
654 assert(!verity || (verity->root_hash || !verity->root_hash_sig));
655 assert(!((flags & DISSECT_IMAGE_GPT_ONLY) && (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)));
656
657 /* Probes a disk image, and returns information about what it found in *ret.
658 *
659 * Returns -ENOPKG if no suitable partition table or file system could be found.
660 * Returns -EADDRNOTAVAIL if a root hash was specified but no matching root/verity partitions found.
661 * Returns -ENXIO if we couldn't find any partition suitable as root or /usr partition
662 * Returns -ENOTUNIQ if we only found multiple generic partitions and thus don't know what to do with that */
663
664 if (verity && verity->root_hash) {
665 sd_id128_t fsuuid, vuuid;
666
667 /* If a root hash is supplied, then we use the root partition that has a UUID that match the
668 * first 128bit of the root hash. And we use the verity partition that has a UUID that match
669 * the final 128bit. */
670
671 if (verity->root_hash_size < sizeof(sd_id128_t))
672 return -EINVAL;
673
674 memcpy(&fsuuid, verity->root_hash, sizeof(sd_id128_t));
675 memcpy(&vuuid, (const uint8_t*) verity->root_hash + verity->root_hash_size - sizeof(sd_id128_t), sizeof(sd_id128_t));
676
677 if (sd_id128_is_null(fsuuid))
678 return -EINVAL;
679 if (sd_id128_is_null(vuuid))
680 return -EINVAL;
681
682 /* If the verity data declares it's for the /usr partition, then search for that, in all
683 * other cases assume it's for the root partition. */
684 #ifdef GPT_USR_NATIVE
685 if (verity->designator == PARTITION_USR) {
686 usr_uuid = fsuuid;
687 usr_verity_uuid = vuuid;
688 } else {
689 #endif
690 #ifdef GPT_ROOT_NATIVE
691 root_uuid = fsuuid;
692 root_verity_uuid = vuuid;
693 #endif
694 #ifdef GPT_USR_NATIVE
695 }
696 #endif
697 }
698
699 if (fstat(fd, &st) < 0)
700 return -errno;
701
702 if (!S_ISBLK(st.st_mode))
703 return -ENOTBLK;
704
705 r = sd_device_new_from_stat_rdev(&d, &st);
706 if (r < 0)
707 return r;
708
709 if (!FLAGS_SET(flags, DISSECT_IMAGE_NO_UDEV)) {
710 _cleanup_(sd_device_unrefp) sd_device *initialized = NULL;
711
712 /* If udev support is enabled, then let's wait for the device to be initialized before we doing anything. */
713
714 r = device_wait_for_initialization_harder(
715 d,
716 "block",
717 usec_add(now(CLOCK_MONOTONIC), DEVICE_TIMEOUT_USEC),
718 &initialized);
719 if (r < 0)
720 return r;
721
722 sd_device_unref(d);
723 d = TAKE_PTR(initialized);
724 }
725
726 b = blkid_new_probe();
727 if (!b)
728 return -ENOMEM;
729
730 errno = 0;
731 r = blkid_probe_set_device(b, fd, 0, 0);
732 if (r != 0)
733 return errno_or_else(ENOMEM);
734
735 if ((flags & DISSECT_IMAGE_GPT_ONLY) == 0) {
736 /* Look for file system superblocks, unless we only shall look for GPT partition tables */
737 blkid_probe_enable_superblocks(b, 1);
738 blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE|BLKID_SUBLKS_USAGE);
739 }
740
741 blkid_probe_enable_partitions(b, 1);
742 blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS);
743
744 errno = 0;
745 r = blkid_do_safeprobe(b);
746 if (IN_SET(r, -2, 1))
747 return log_debug_errno(SYNTHETIC_ERRNO(ENOPKG), "Failed to identify any partition table.");
748 if (r != 0)
749 return errno_or_else(EIO);
750
751 m = new0(DissectedImage, 1);
752 if (!m)
753 return -ENOMEM;
754
755 r = sd_device_get_sysname(d, &sysname);
756 if (r < 0)
757 return log_debug_errno(r, "Failed to get device sysname: %m");
758 if (startswith(sysname, "loop")) {
759 _cleanup_free_ char *name_stripped = NULL;
760 const char *full_path;
761
762 r = sd_device_get_sysattr_value(d, "loop/backing_file", &full_path);
763 if (r < 0)
764 log_debug_errno(r, "Failed to lookup image name via loop device backing file sysattr, ignoring: %m");
765 else {
766 r = raw_strip_suffixes(basename(full_path), &name_stripped);
767 if (r < 0)
768 return r;
769 }
770
771 free_and_replace(m->image_name, name_stripped);
772 } else {
773 r = free_and_strdup(&m->image_name, sysname);
774 if (r < 0)
775 return r;
776 }
777
778 if (!image_name_is_valid(m->image_name)) {
779 log_debug("Image name %s is not valid, ignoring", strempty(m->image_name));
780 m->image_name = mfree(m->image_name);
781 }
782
783 if ((!(flags & DISSECT_IMAGE_GPT_ONLY) &&
784 (flags & DISSECT_IMAGE_GENERIC_ROOT)) ||
785 (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)) {
786 const char *usage = NULL;
787
788 /* If flags permit this, also allow using non-partitioned single-filesystem images */
789
790 (void) blkid_probe_lookup_value(b, "USAGE", &usage, NULL);
791 if (STRPTR_IN_SET(usage, "filesystem", "crypto")) {
792 const char *fstype = NULL, *options = NULL, *devname = NULL;
793 _cleanup_free_ char *t = NULL, *n = NULL, *o = NULL;
794
795 /* OK, we have found a file system, that's our root partition then. */
796 (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
797
798 if (fstype) {
799 t = strdup(fstype);
800 if (!t)
801 return -ENOMEM;
802 }
803
804 r = sd_device_get_devname(d, &devname);
805 if (r < 0)
806 return r;
807
808 n = strdup(devname);
809 if (!n)
810 return -ENOMEM;
811
812 m->single_file_system = true;
813 m->encrypted = streq_ptr(fstype, "crypto_LUKS");
814
815 m->has_verity = verity && verity->data_path;
816 m->verity_ready = m->has_verity &&
817 verity->root_hash &&
818 (verity->designator < 0 || verity->designator == PARTITION_ROOT);
819
820 m->has_verity_sig = false; /* signature not embedded, must be specified */
821 m->verity_sig_ready = m->verity_ready &&
822 verity->root_hash_sig;
823
824 options = mount_options_from_designator(mount_options, PARTITION_ROOT);
825 if (options) {
826 o = strdup(options);
827 if (!o)
828 return -ENOMEM;
829 }
830
831 m->partitions[PARTITION_ROOT] = (DissectedPartition) {
832 .found = true,
833 .rw = !m->verity_ready && !fstype_is_ro(fstype),
834 .partno = -1,
835 .architecture = _ARCHITECTURE_INVALID,
836 .fstype = TAKE_PTR(t),
837 .node = TAKE_PTR(n),
838 .mount_options = TAKE_PTR(o),
839 .offset = 0,
840 .size = UINT64_MAX,
841 };
842
843 *ret = TAKE_PTR(m);
844 return 0;
845 }
846 }
847
848 (void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL);
849 if (!pttype)
850 return -ENOPKG;
851
852 is_gpt = streq_ptr(pttype, "gpt");
853 is_mbr = streq_ptr(pttype, "dos");
854
855 if (!is_gpt && ((flags & DISSECT_IMAGE_GPT_ONLY) || !is_mbr))
856 return -ENOPKG;
857
858 /* We support external verity data partitions only if the image has no partition table */
859 if (verity && verity->data_path)
860 return -EBADR;
861
862 /* Safety check: refuse block devices that carry a partition table but for which the kernel doesn't
863 * do partition scanning. */
864 r = blockdev_partscan_enabled(fd);
865 if (r < 0)
866 return r;
867 if (r == 0)
868 return -EPROTONOSUPPORT;
869
870 errno = 0;
871 pl = blkid_probe_get_partitions(b);
872 if (!pl)
873 return errno_or_else(ENOMEM);
874
875 errno = 0;
876 n_partitions = blkid_partlist_numof_partitions(pl);
877 if (n_partitions < 0)
878 return errno_or_else(EIO);
879
880 deadline = usec_add(now(CLOCK_MONOTONIC), DEVICE_TIMEOUT_USEC);
881 for (int i = 0; i < n_partitions; i++) {
882 _cleanup_(sd_device_unrefp) sd_device *q = NULL;
883 unsigned long long pflags;
884 blkid_loff_t start, size;
885 blkid_partition pp;
886 const char *node;
887 int nr;
888
889 errno = 0;
890 pp = blkid_partlist_get_partition(pl, i);
891 if (!pp)
892 return errno_or_else(EIO);
893
894 r = wait_for_partition_device(d, pp, deadline, diskseq, uevent_seqnum_not_before, timestamp_not_before, flags, &q);
895 if (r < 0)
896 return r;
897
898 r = sd_device_get_devname(q, &node);
899 if (r < 0)
900 return r;
901
902 pflags = blkid_partition_get_flags(pp);
903
904 errno = 0;
905 nr = blkid_partition_get_partno(pp);
906 if (nr < 0)
907 return errno_or_else(EIO);
908
909 errno = 0;
910 start = blkid_partition_get_start(pp);
911 if (start < 0)
912 return errno_or_else(EIO);
913
914 assert((uint64_t) start < UINT64_MAX/512);
915
916 errno = 0;
917 size = blkid_partition_get_size(pp);
918 if (size < 0)
919 return errno_or_else(EIO);
920
921 assert((uint64_t) size < UINT64_MAX/512);
922
923 if (is_gpt) {
924 PartitionDesignator designator = _PARTITION_DESIGNATOR_INVALID;
925 int architecture = _ARCHITECTURE_INVALID;
926 const char *stype, *sid, *fstype = NULL, *label;
927 sd_id128_t type_id, id;
928 bool rw = true, growfs = false;
929
930 sid = blkid_partition_get_uuid(pp);
931 if (!sid)
932 continue;
933 if (sd_id128_from_string(sid, &id) < 0)
934 continue;
935
936 stype = blkid_partition_get_type_string(pp);
937 if (!stype)
938 continue;
939 if (sd_id128_from_string(stype, &type_id) < 0)
940 continue;
941
942 label = blkid_partition_get_name(pp); /* libblkid returns NULL here if empty */
943
944 if (sd_id128_equal(type_id, GPT_HOME)) {
945
946 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
947
948 if (pflags & GPT_FLAG_NO_AUTO)
949 continue;
950
951 designator = PARTITION_HOME;
952 rw = !(pflags & GPT_FLAG_READ_ONLY);
953 growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
954
955 } else if (sd_id128_equal(type_id, GPT_SRV)) {
956
957 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
958
959 if (pflags & GPT_FLAG_NO_AUTO)
960 continue;
961
962 designator = PARTITION_SRV;
963 rw = !(pflags & GPT_FLAG_READ_ONLY);
964 growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
965
966 } else if (sd_id128_equal(type_id, GPT_ESP)) {
967
968 /* Note that we don't check the GPT_FLAG_NO_AUTO flag for the ESP, as it is
969 * not defined there. We instead check the GPT_FLAG_NO_BLOCK_IO_PROTOCOL, as
970 * recommended by the UEFI spec (See "12.3.3 Number and Location of System
971 * Partitions"). */
972
973 if (pflags & GPT_FLAG_NO_BLOCK_IO_PROTOCOL)
974 continue;
975
976 designator = PARTITION_ESP;
977 fstype = "vfat";
978
979 } else if (sd_id128_equal(type_id, GPT_XBOOTLDR)) {
980
981 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
982
983 if (pflags & GPT_FLAG_NO_AUTO)
984 continue;
985
986 designator = PARTITION_XBOOTLDR;
987 rw = !(pflags & GPT_FLAG_READ_ONLY);
988 growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
989 }
990 #ifdef GPT_ROOT_NATIVE
991 else if (sd_id128_equal(type_id, GPT_ROOT_NATIVE)) {
992
993 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
994
995 if (pflags & GPT_FLAG_NO_AUTO)
996 continue;
997
998 /* If a root ID is specified, ignore everything but the root id */
999 if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id))
1000 continue;
1001
1002 designator = PARTITION_ROOT;
1003 architecture = native_architecture();
1004 rw = !(pflags & GPT_FLAG_READ_ONLY);
1005 growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
1006
1007 } else if (sd_id128_equal(type_id, GPT_ROOT_NATIVE_VERITY)) {
1008
1009 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
1010
1011 if (pflags & GPT_FLAG_NO_AUTO)
1012 continue;
1013
1014 m->has_verity = true;
1015
1016 /* If no verity configuration is specified, then don't do verity */
1017 if (!verity)
1018 continue;
1019 if (verity->designator >= 0 && verity->designator != PARTITION_ROOT)
1020 continue;
1021
1022 /* If root hash is specified, then ignore everything but the root id */
1023 if (!sd_id128_is_null(root_verity_uuid) && !sd_id128_equal(root_verity_uuid, id))
1024 continue;
1025
1026 designator = PARTITION_ROOT_VERITY;
1027 fstype = "DM_verity_hash";
1028 architecture = native_architecture();
1029 rw = false;
1030
1031 } else if (sd_id128_equal(type_id, GPT_ROOT_NATIVE_VERITY_SIG)) {
1032
1033 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
1034
1035 if (pflags & GPT_FLAG_NO_AUTO)
1036 continue;
1037
1038 m->has_verity_sig = true;
1039
1040 /* If root hash is specified explicitly, then ignore any embedded signature */
1041 if (!verity)
1042 continue;
1043 if (verity->designator >= 0 && verity->designator != PARTITION_ROOT)
1044 continue;
1045 if (verity->root_hash)
1046 continue;
1047
1048 designator = PARTITION_ROOT_VERITY_SIG;
1049 fstype = "verity_hash_signature";
1050 architecture = native_architecture();
1051 rw = false;
1052 }
1053 #endif
1054 #ifdef GPT_ROOT_SECONDARY
1055 else if (sd_id128_equal(type_id, GPT_ROOT_SECONDARY)) {
1056
1057 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
1058
1059 if (pflags & GPT_FLAG_NO_AUTO)
1060 continue;
1061
1062 /* If a root ID is specified, ignore everything but the root id */
1063 if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id))
1064 continue;
1065
1066 designator = PARTITION_ROOT_SECONDARY;
1067 architecture = SECONDARY_ARCHITECTURE;
1068 rw = !(pflags & GPT_FLAG_READ_ONLY);
1069 growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
1070
1071 } else if (sd_id128_equal(type_id, GPT_ROOT_SECONDARY_VERITY)) {
1072
1073 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
1074
1075 if (pflags & GPT_FLAG_NO_AUTO)
1076 continue;
1077
1078 m->has_verity = true;
1079
1080 /* Don't do verity if no verity config is passed in */
1081 if (!verity)
1082 continue;
1083 if (verity->designator >= 0 && verity->designator != PARTITION_ROOT)
1084 continue;
1085
1086 /* If root hash is specified, then ignore everything but the root id */
1087 if (!sd_id128_is_null(root_verity_uuid) && !sd_id128_equal(root_verity_uuid, id))
1088 continue;
1089
1090 designator = PARTITION_ROOT_SECONDARY_VERITY;
1091 fstype = "DM_verity_hash";
1092 architecture = SECONDARY_ARCHITECTURE;
1093 rw = false;
1094
1095 } else if (sd_id128_equal(type_id, GPT_ROOT_SECONDARY_VERITY_SIG)) {
1096
1097 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
1098
1099 if (pflags & GPT_FLAG_NO_AUTO)
1100 continue;
1101
1102 m->has_verity_sig = true;
1103
1104 /* If root hash is specified explicitly, then ignore any embedded signature */
1105 if (!verity)
1106 continue;
1107 if (verity->designator >= 0 && verity->designator != PARTITION_ROOT)
1108 continue;
1109 if (verity->root_hash)
1110 continue;
1111
1112 designator = PARTITION_ROOT_SECONDARY_VERITY_SIG;
1113 fstype = "verity_hash_signature";
1114 architecture = native_architecture();
1115 rw = false;
1116 }
1117 #endif
1118 #ifdef GPT_USR_NATIVE
1119 else if (sd_id128_equal(type_id, GPT_USR_NATIVE)) {
1120
1121 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
1122
1123 if (pflags & GPT_FLAG_NO_AUTO)
1124 continue;
1125
1126 /* If a usr ID is specified, ignore everything but the usr id */
1127 if (!sd_id128_is_null(usr_uuid) && !sd_id128_equal(usr_uuid, id))
1128 continue;
1129
1130 designator = PARTITION_USR;
1131 architecture = native_architecture();
1132 rw = !(pflags & GPT_FLAG_READ_ONLY);
1133 growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
1134
1135 } else if (sd_id128_equal(type_id, GPT_USR_NATIVE_VERITY)) {
1136
1137 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
1138
1139 if (pflags & GPT_FLAG_NO_AUTO)
1140 continue;
1141
1142 m->has_verity = true;
1143
1144 if (!verity)
1145 continue;
1146 if (verity->designator >= 0 && verity->designator != PARTITION_USR)
1147 continue;
1148
1149 /* If usr hash is specified, then ignore everything but the usr id */
1150 if (!sd_id128_is_null(usr_verity_uuid) && !sd_id128_equal(usr_verity_uuid, id))
1151 continue;
1152
1153 designator = PARTITION_USR_VERITY;
1154 fstype = "DM_verity_hash";
1155 architecture = native_architecture();
1156 rw = false;
1157
1158 } else if (sd_id128_equal(type_id, GPT_USR_NATIVE_VERITY_SIG)) {
1159
1160 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
1161
1162 if (pflags & GPT_FLAG_NO_AUTO)
1163 continue;
1164
1165 m->has_verity_sig = true;
1166
1167 /* If usr hash is specified explicitly, then ignore any embedded signature */
1168 if (!verity)
1169 continue;
1170 if (verity->designator >= 0 && verity->designator != PARTITION_USR)
1171 continue;
1172 if (verity->root_hash)
1173 continue;
1174
1175 designator = PARTITION_USR_VERITY_SIG;
1176 fstype = "verity_hash_signature";
1177 architecture = native_architecture();
1178 rw = false;
1179 }
1180 #endif
1181 #ifdef GPT_USR_SECONDARY
1182 else if (sd_id128_equal(type_id, GPT_USR_SECONDARY)) {
1183
1184 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
1185
1186 if (pflags & GPT_FLAG_NO_AUTO)
1187 continue;
1188
1189 /* If a usr ID is specified, ignore everything but the usr id */
1190 if (!sd_id128_is_null(usr_uuid) && !sd_id128_equal(usr_uuid, id))
1191 continue;
1192
1193 designator = PARTITION_USR_SECONDARY;
1194 architecture = SECONDARY_ARCHITECTURE;
1195 rw = !(pflags & GPT_FLAG_READ_ONLY);
1196 growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
1197
1198 } else if (sd_id128_equal(type_id, GPT_USR_SECONDARY_VERITY)) {
1199
1200 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
1201
1202 if (pflags & GPT_FLAG_NO_AUTO)
1203 continue;
1204
1205 m->has_verity = true;
1206
1207 if (!verity)
1208 continue;
1209 if (verity->designator >= 0 && verity->designator != PARTITION_USR)
1210 continue;
1211
1212 /* If usr hash is specified, then ignore everything but the root id */
1213 if (!sd_id128_is_null(usr_verity_uuid) && !sd_id128_equal(usr_verity_uuid, id))
1214 continue;
1215
1216 designator = PARTITION_USR_SECONDARY_VERITY;
1217 fstype = "DM_verity_hash";
1218 architecture = SECONDARY_ARCHITECTURE;
1219 rw = false;
1220
1221 } else if (sd_id128_equal(type_id, GPT_USR_SECONDARY_VERITY_SIG)) {
1222
1223 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
1224
1225 if (pflags & GPT_FLAG_NO_AUTO)
1226 continue;
1227
1228 m->has_verity_sig = true;
1229
1230 /* If usr hash is specified explicitly, then ignore any embedded signature */
1231 if (!verity)
1232 continue;
1233 if (verity->designator >= 0 && verity->designator != PARTITION_USR)
1234 continue;
1235 if (verity->root_hash)
1236 continue;
1237
1238 designator = PARTITION_USR_SECONDARY_VERITY_SIG;
1239 fstype = "verity_hash_signature";
1240 architecture = native_architecture();
1241 rw = false;
1242 }
1243 #endif
1244 else if (sd_id128_equal(type_id, GPT_SWAP)) {
1245
1246 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO);
1247
1248 if (pflags & GPT_FLAG_NO_AUTO)
1249 continue;
1250
1251 designator = PARTITION_SWAP;
1252
1253 } else if (sd_id128_equal(type_id, GPT_LINUX_GENERIC)) {
1254
1255 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
1256
1257 if (pflags & GPT_FLAG_NO_AUTO)
1258 continue;
1259
1260 if (generic_node)
1261 multiple_generic = true;
1262 else {
1263 generic_nr = nr;
1264 generic_rw = !(pflags & GPT_FLAG_READ_ONLY);
1265 generic_growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
1266 generic_uuid = id;
1267 generic_node = strdup(node);
1268 if (!generic_node)
1269 return -ENOMEM;
1270 }
1271
1272 } else if (sd_id128_equal(type_id, GPT_TMP)) {
1273
1274 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
1275
1276 if (pflags & GPT_FLAG_NO_AUTO)
1277 continue;
1278
1279 designator = PARTITION_TMP;
1280 rw = !(pflags & GPT_FLAG_READ_ONLY);
1281 growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
1282
1283 } else if (sd_id128_equal(type_id, GPT_VAR)) {
1284
1285 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY|GPT_FLAG_GROWFS);
1286
1287 if (pflags & GPT_FLAG_NO_AUTO)
1288 continue;
1289
1290 if (!FLAGS_SET(flags, DISSECT_IMAGE_RELAX_VAR_CHECK)) {
1291 sd_id128_t var_uuid;
1292
1293 /* For /var we insist that the uuid of the partition matches the
1294 * HMAC-SHA256 of the /var GPT partition type uuid, keyed by machine
1295 * ID. Why? Unlike the other partitions /var is inherently
1296 * installation specific, hence we need to be careful not to mount it
1297 * in the wrong installation. By hashing the partition UUID from
1298 * /etc/machine-id we can securely bind the partition to the
1299 * installation. */
1300
1301 r = sd_id128_get_machine_app_specific(GPT_VAR, &var_uuid);
1302 if (r < 0)
1303 return r;
1304
1305 if (!sd_id128_equal(var_uuid, id)) {
1306 log_debug("Found a /var/ partition, but its UUID didn't match our expectations, ignoring.");
1307 continue;
1308 }
1309 }
1310
1311 designator = PARTITION_VAR;
1312 rw = !(pflags & GPT_FLAG_READ_ONLY);
1313 growfs = FLAGS_SET(pflags, GPT_FLAG_GROWFS);
1314 }
1315
1316 if (designator != _PARTITION_DESIGNATOR_INVALID) {
1317 _cleanup_free_ char *t = NULL, *n = NULL, *o = NULL, *l = NULL;
1318 const char *options = NULL;
1319
1320 if (m->partitions[designator].found) {
1321 /* For most partition types the first one we see wins. Except for the
1322 * rootfs and /usr, where we do a version compare of the label, and
1323 * let the newest version win. This permits a simple A/B versioning
1324 * scheme in OS images. */
1325
1326 if (!PARTITION_DESIGNATOR_VERSIONED(designator) ||
1327 strverscmp_improved(m->partitions[designator].label, label) >= 0)
1328 continue;
1329
1330 dissected_partition_done(m->partitions + designator);
1331 }
1332
1333 if (fstype) {
1334 t = strdup(fstype);
1335 if (!t)
1336 return -ENOMEM;
1337 }
1338
1339 n = strdup(node);
1340 if (!n)
1341 return -ENOMEM;
1342
1343 if (label) {
1344 l = strdup(label);
1345 if (!l)
1346 return -ENOMEM;
1347 }
1348
1349 options = mount_options_from_designator(mount_options, designator);
1350 if (options) {
1351 o = strdup(options);
1352 if (!o)
1353 return -ENOMEM;
1354 }
1355
1356 m->partitions[designator] = (DissectedPartition) {
1357 .found = true,
1358 .partno = nr,
1359 .rw = rw,
1360 .growfs = growfs,
1361 .architecture = architecture,
1362 .node = TAKE_PTR(n),
1363 .fstype = TAKE_PTR(t),
1364 .label = TAKE_PTR(l),
1365 .uuid = id,
1366 .mount_options = TAKE_PTR(o),
1367 .offset = (uint64_t) start * 512,
1368 .size = (uint64_t) size * 512,
1369 };
1370 }
1371
1372 } else if (is_mbr) {
1373
1374 switch (blkid_partition_get_type(pp)) {
1375
1376 case 0x83: /* Linux partition */
1377
1378 if (pflags != 0x80) /* Bootable flag */
1379 continue;
1380
1381 if (generic_node)
1382 multiple_generic = true;
1383 else {
1384 generic_nr = nr;
1385 generic_rw = true;
1386 generic_growfs = false;
1387 generic_node = strdup(node);
1388 if (!generic_node)
1389 return -ENOMEM;
1390 }
1391
1392 break;
1393
1394 case 0xEA: { /* Boot Loader Spec extended $BOOT partition */
1395 _cleanup_free_ char *n = NULL, *o = NULL;
1396 sd_id128_t id = SD_ID128_NULL;
1397 const char *sid, *options = NULL;
1398
1399 /* First one wins */
1400 if (m->partitions[PARTITION_XBOOTLDR].found)
1401 continue;
1402
1403 sid = blkid_partition_get_uuid(pp);
1404 if (sid)
1405 (void) sd_id128_from_string(sid, &id);
1406
1407 n = strdup(node);
1408 if (!n)
1409 return -ENOMEM;
1410
1411 options = mount_options_from_designator(mount_options, PARTITION_XBOOTLDR);
1412 if (options) {
1413 o = strdup(options);
1414 if (!o)
1415 return -ENOMEM;
1416 }
1417
1418 m->partitions[PARTITION_XBOOTLDR] = (DissectedPartition) {
1419 .found = true,
1420 .partno = nr,
1421 .rw = true,
1422 .growfs = false,
1423 .architecture = _ARCHITECTURE_INVALID,
1424 .node = TAKE_PTR(n),
1425 .uuid = id,
1426 .mount_options = TAKE_PTR(o),
1427 .offset = (uint64_t) start * 512,
1428 .size = (uint64_t) size * 512,
1429 };
1430
1431 break;
1432 }}
1433 }
1434 }
1435
1436 if (m->partitions[PARTITION_ROOT].found) {
1437 /* If we found the primary arch, then invalidate the secondary arch to avoid any ambiguities,
1438 * since we never want to mount the secondary arch in this case. */
1439 m->partitions[PARTITION_ROOT_SECONDARY].found = false;
1440 m->partitions[PARTITION_ROOT_SECONDARY_VERITY].found = false;
1441 m->partitions[PARTITION_ROOT_SECONDARY_VERITY_SIG].found = false;
1442 m->partitions[PARTITION_USR_SECONDARY].found = false;
1443 m->partitions[PARTITION_USR_SECONDARY_VERITY].found = false;
1444 m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG].found = false;
1445
1446 } else if (m->partitions[PARTITION_ROOT_VERITY].found ||
1447 m->partitions[PARTITION_ROOT_VERITY_SIG].found)
1448 return -EADDRNOTAVAIL; /* Verity found but no matching rootfs? Something is off, refuse. */
1449
1450 else if (m->partitions[PARTITION_ROOT_SECONDARY].found) {
1451
1452 /* No root partition found but there's one for the secondary architecture? Then upgrade
1453 * secondary arch to first */
1454
1455 m->partitions[PARTITION_ROOT] = m->partitions[PARTITION_ROOT_SECONDARY];
1456 zero(m->partitions[PARTITION_ROOT_SECONDARY]);
1457 m->partitions[PARTITION_ROOT_VERITY] = m->partitions[PARTITION_ROOT_SECONDARY_VERITY];
1458 zero(m->partitions[PARTITION_ROOT_SECONDARY_VERITY]);
1459 m->partitions[PARTITION_ROOT_VERITY_SIG] = m->partitions[PARTITION_ROOT_SECONDARY_VERITY_SIG];
1460 zero(m->partitions[PARTITION_ROOT_SECONDARY_VERITY_SIG]);
1461
1462 m->partitions[PARTITION_USR] = m->partitions[PARTITION_USR_SECONDARY];
1463 zero(m->partitions[PARTITION_USR_SECONDARY]);
1464 m->partitions[PARTITION_USR_VERITY] = m->partitions[PARTITION_USR_SECONDARY_VERITY];
1465 zero(m->partitions[PARTITION_USR_SECONDARY_VERITY]);
1466 m->partitions[PARTITION_USR_VERITY_SIG] = m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG];
1467 zero(m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG]);
1468
1469 } else if (m->partitions[PARTITION_ROOT_SECONDARY_VERITY].found ||
1470 m->partitions[PARTITION_ROOT_SECONDARY_VERITY_SIG].found)
1471 return -EADDRNOTAVAIL; /* as above */
1472
1473 /* Hmm, we found a signature partition but no Verity data? Something is off. */
1474 if (m->partitions[PARTITION_ROOT_VERITY_SIG].found && !m->partitions[PARTITION_ROOT_VERITY].found)
1475 return -EADDRNOTAVAIL;
1476
1477 if (m->partitions[PARTITION_USR].found) {
1478 /* Invalidate secondary arch /usr/ if we found the primary arch */
1479 m->partitions[PARTITION_USR_SECONDARY].found = false;
1480 m->partitions[PARTITION_USR_SECONDARY_VERITY].found = false;
1481 m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG].found = false;
1482
1483 } else if (m->partitions[PARTITION_USR_VERITY].found ||
1484 m->partitions[PARTITION_USR_VERITY_SIG].found)
1485 return -EADDRNOTAVAIL; /* as above */
1486
1487 else if (m->partitions[PARTITION_USR_SECONDARY].found) {
1488
1489 /* Upgrade secondary arch to primary */
1490 m->partitions[PARTITION_USR] = m->partitions[PARTITION_USR_SECONDARY];
1491 zero(m->partitions[PARTITION_USR_SECONDARY]);
1492 m->partitions[PARTITION_USR_VERITY] = m->partitions[PARTITION_USR_SECONDARY_VERITY];
1493 zero(m->partitions[PARTITION_USR_SECONDARY_VERITY]);
1494 m->partitions[PARTITION_USR_VERITY_SIG] = m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG];
1495 zero(m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG]);
1496
1497 } else if (m->partitions[PARTITION_USR_SECONDARY_VERITY].found ||
1498 m->partitions[PARTITION_USR_SECONDARY_VERITY_SIG].found)
1499 return -EADDRNOTAVAIL; /* as above */
1500
1501 /* Hmm, we found a signature partition but no Verity data? Something is off. */
1502 if (m->partitions[PARTITION_USR_VERITY_SIG].found && !m->partitions[PARTITION_USR_VERITY].found)
1503 return -EADDRNOTAVAIL;
1504
1505 /* If root and /usr are combined then insist that the architecture matches */
1506 if (m->partitions[PARTITION_ROOT].found &&
1507 m->partitions[PARTITION_USR].found &&
1508 (m->partitions[PARTITION_ROOT].architecture >= 0 &&
1509 m->partitions[PARTITION_USR].architecture >= 0 &&
1510 m->partitions[PARTITION_ROOT].architecture != m->partitions[PARTITION_USR].architecture))
1511 return -EADDRNOTAVAIL;
1512
1513 if (!m->partitions[PARTITION_ROOT].found &&
1514 !m->partitions[PARTITION_USR].found &&
1515 (flags & DISSECT_IMAGE_GENERIC_ROOT) &&
1516 (!verity || !verity->root_hash || verity->designator != PARTITION_USR)) {
1517
1518 /* OK, we found nothing usable, then check if there's a single generic one distro, and use
1519 * that. If the root hash was set however, then we won't fall back to a generic node, because
1520 * the root hash decides. */
1521
1522 /* If we didn't find a properly marked root partition, but we did find a single suitable
1523 * generic Linux partition, then use this as root partition, if the caller asked for it. */
1524 if (multiple_generic)
1525 return -ENOTUNIQ;
1526
1527 /* If we didn't find a generic node, then we can't fix this up either */
1528 if (generic_node) {
1529 _cleanup_free_ char *o = NULL;
1530 const char *options;
1531
1532 options = mount_options_from_designator(mount_options, PARTITION_ROOT);
1533 if (options) {
1534 o = strdup(options);
1535 if (!o)
1536 return -ENOMEM;
1537 }
1538
1539 assert(generic_nr >= 0);
1540 m->partitions[PARTITION_ROOT] = (DissectedPartition) {
1541 .found = true,
1542 .rw = generic_rw,
1543 .growfs = generic_growfs,
1544 .partno = generic_nr,
1545 .architecture = _ARCHITECTURE_INVALID,
1546 .node = TAKE_PTR(generic_node),
1547 .uuid = generic_uuid,
1548 .mount_options = TAKE_PTR(o),
1549 .offset = UINT64_MAX,
1550 .size = UINT64_MAX,
1551 };
1552 }
1553 }
1554
1555 /* Check if we have a root fs if we are told to do check. /usr alone is fine too, but only if appropriate flag for that is set too */
1556 if (FLAGS_SET(flags, DISSECT_IMAGE_REQUIRE_ROOT) &&
1557 !(m->partitions[PARTITION_ROOT].found || (m->partitions[PARTITION_USR].found && FLAGS_SET(flags, DISSECT_IMAGE_USR_NO_ROOT))))
1558 return -ENXIO;
1559
1560 if (m->partitions[PARTITION_ROOT_VERITY].found) {
1561 /* We only support one verity partition per image, i.e. can't do for both /usr and root fs */
1562 if (m->partitions[PARTITION_USR_VERITY].found)
1563 return -ENOTUNIQ;
1564
1565 /* We don't support verity enabled root with a split out /usr. Neither with nor without
1566 * verity there. (Note that we do support verity-less root with verity-full /usr, though.) */
1567 if (m->partitions[PARTITION_USR].found)
1568 return -EADDRNOTAVAIL;
1569 }
1570
1571 if (verity) {
1572 /* If a verity designator is specified, then insist that the matching partition exists */
1573 if (verity->designator >= 0 && !m->partitions[verity->designator].found)
1574 return -EADDRNOTAVAIL;
1575
1576 if (verity->root_hash) {
1577 /* If we have an explicit root hash and found the partitions for it, then we are ready to use
1578 * Verity, set things up for it */
1579
1580 if (verity->designator < 0 || verity->designator == PARTITION_ROOT) {
1581 if (!m->partitions[PARTITION_ROOT_VERITY].found || !m->partitions[PARTITION_ROOT].found)
1582 return -EADDRNOTAVAIL;
1583
1584 /* If we found a verity setup, then the root partition is necessarily read-only. */
1585 m->partitions[PARTITION_ROOT].rw = false;
1586 m->verity_ready = true;
1587
1588 } else {
1589 assert(verity->designator == PARTITION_USR);
1590
1591 if (!m->partitions[PARTITION_USR_VERITY].found || !m->partitions[PARTITION_USR].found)
1592 return -EADDRNOTAVAIL;
1593
1594 m->partitions[PARTITION_USR].rw = false;
1595 m->verity_ready = true;
1596 }
1597
1598 if (m->verity_ready)
1599 m->verity_sig_ready = verity->root_hash_sig;
1600
1601 } else if (m->partitions[verity->designator == PARTITION_USR ? PARTITION_USR_VERITY_SIG : PARTITION_ROOT_VERITY_SIG].found) {
1602
1603 /* If we found an embedded signature partition, we are ready, too. */
1604
1605 m->verity_ready = m->verity_sig_ready = true;
1606 m->partitions[verity->designator == PARTITION_USR ? PARTITION_USR : PARTITION_ROOT].rw = false;
1607 }
1608 }
1609
1610 blkid_free_probe(b);
1611 b = NULL;
1612
1613 /* Fill in file system types if we don't know them yet. */
1614 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
1615 DissectedPartition *p = m->partitions + i;
1616
1617 if (!p->found)
1618 continue;
1619
1620 if (!p->fstype && p->node) {
1621 r = probe_filesystem(p->node, &p->fstype);
1622 if (r < 0 && r != -EUCLEAN)
1623 return r;
1624 }
1625
1626 if (streq_ptr(p->fstype, "crypto_LUKS"))
1627 m->encrypted = true;
1628
1629 if (p->fstype && fstype_is_ro(p->fstype))
1630 p->rw = false;
1631
1632 if (!p->rw)
1633 p->growfs = false;
1634 }
1635
1636 *ret = TAKE_PTR(m);
1637 return 0;
1638 #else
1639 return -EOPNOTSUPP;
1640 #endif
1641 }
1642
1643 DissectedImage* dissected_image_unref(DissectedImage *m) {
1644 if (!m)
1645 return NULL;
1646
1647 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++)
1648 dissected_partition_done(m->partitions + i);
1649
1650 free(m->image_name);
1651 free(m->hostname);
1652 strv_free(m->machine_info);
1653 strv_free(m->os_release);
1654 strv_free(m->extension_release);
1655
1656 return mfree(m);
1657 }
1658
1659 static int is_loop_device(const char *path) {
1660 char s[SYS_BLOCK_PATH_MAX("/../loop/")];
1661 struct stat st;
1662
1663 assert(path);
1664
1665 if (stat(path, &st) < 0)
1666 return -errno;
1667
1668 if (!S_ISBLK(st.st_mode))
1669 return -ENOTBLK;
1670
1671 xsprintf_sys_block_path(s, "/loop/", st.st_dev);
1672 if (access(s, F_OK) < 0) {
1673 if (errno != ENOENT)
1674 return -errno;
1675
1676 /* The device itself isn't a loop device, but maybe it's a partition and its parent is? */
1677 xsprintf_sys_block_path(s, "/../loop/", st.st_dev);
1678 if (access(s, F_OK) < 0)
1679 return errno == ENOENT ? false : -errno;
1680 }
1681
1682 return true;
1683 }
1684
1685 static int run_fsck(const char *node, const char *fstype) {
1686 int r, exit_status;
1687 pid_t pid;
1688
1689 assert(node);
1690 assert(fstype);
1691
1692 r = fsck_exists(fstype);
1693 if (r < 0) {
1694 log_debug_errno(r, "Couldn't determine whether fsck for %s exists, proceeding anyway.", fstype);
1695 return 0;
1696 }
1697 if (r == 0) {
1698 log_debug("Not checking partition %s, as fsck for %s does not exist.", node, fstype);
1699 return 0;
1700 }
1701
1702 r = safe_fork("(fsck)", FORK_RESET_SIGNALS|FORK_CLOSE_ALL_FDS|FORK_RLIMIT_NOFILE_SAFE|FORK_DEATHSIG|FORK_NULL_STDIO, &pid);
1703 if (r < 0)
1704 return log_debug_errno(r, "Failed to fork off fsck: %m");
1705 if (r == 0) {
1706 /* Child */
1707 execl("/sbin/fsck", "/sbin/fsck", "-aT", node, NULL);
1708 log_open();
1709 log_debug_errno(errno, "Failed to execl() fsck: %m");
1710 _exit(FSCK_OPERATIONAL_ERROR);
1711 }
1712
1713 exit_status = wait_for_terminate_and_check("fsck", pid, 0);
1714 if (exit_status < 0)
1715 return log_debug_errno(exit_status, "Failed to fork off /sbin/fsck: %m");
1716
1717 if ((exit_status & ~FSCK_ERROR_CORRECTED) != FSCK_SUCCESS) {
1718 log_debug("fsck failed with exit status %i.", exit_status);
1719
1720 if ((exit_status & (FSCK_SYSTEM_SHOULD_REBOOT|FSCK_ERRORS_LEFT_UNCORRECTED)) != 0)
1721 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN), "File system is corrupted, refusing.");
1722
1723 log_debug("Ignoring fsck error.");
1724 }
1725
1726 return 0;
1727 }
1728
1729 static int fs_grow(const char *node_path, const char *mount_path) {
1730 _cleanup_close_ int mount_fd = -1, node_fd = -1;
1731 uint64_t size, newsize;
1732 int r;
1733
1734 node_fd = open(node_path, O_RDONLY|O_CLOEXEC|O_NONBLOCK|O_NOCTTY);
1735 if (node_fd < 0)
1736 return log_debug_errno(errno, "Failed to open node device %s: %m", node_path);
1737
1738 if (ioctl(node_fd, BLKGETSIZE64, &size) != 0)
1739 return log_debug_errno(errno, "Failed to get block device size of %s: %m", node_path);
1740
1741 mount_fd = open(mount_path, O_RDONLY|O_DIRECTORY|O_CLOEXEC);
1742 if (mount_fd < 0)
1743 return log_debug_errno(errno, "Failed to open mountd file system %s: %m", mount_path);
1744
1745 log_debug("Resizing \"%s\" to %"PRIu64" bytes...", mount_path, size);
1746 r = resize_fs(mount_fd, size, &newsize);
1747 if (r < 0)
1748 return log_debug_errno(r, "Failed to resize \"%s\" to %"PRIu64" bytes: %m", mount_path, size);
1749
1750 if (newsize == size)
1751 log_debug("Successfully resized \"%s\" to %s bytes.",
1752 mount_path, FORMAT_BYTES(newsize));
1753 else {
1754 assert(newsize < size);
1755 log_debug("Successfully resized \"%s\" to %s bytes (%"PRIu64" bytes lost due to blocksize).",
1756 mount_path, FORMAT_BYTES(newsize), size - newsize);
1757 }
1758
1759 return 0;
1760 }
1761
1762 static int mount_partition(
1763 DissectedPartition *m,
1764 const char *where,
1765 const char *directory,
1766 uid_t uid_shift,
1767 uid_t uid_range,
1768 DissectImageFlags flags) {
1769
1770 _cleanup_free_ char *chased = NULL, *options = NULL;
1771 const char *p, *node, *fstype;
1772 bool rw, remap_uid_gid = false;
1773 int r;
1774
1775 assert(m);
1776 assert(where);
1777
1778 /* Use decrypted node and matching fstype if available, otherwise use the original device */
1779 node = m->decrypted_node ?: m->node;
1780 fstype = m->decrypted_node ? m->decrypted_fstype: m->fstype;
1781
1782 if (!m->found || !node)
1783 return 0;
1784 if (!fstype)
1785 return -EAFNOSUPPORT;
1786
1787 /* We are looking at an encrypted partition? This either means stacked encryption, or the caller didn't call dissected_image_decrypt() beforehand. Let's return a recognizable error for this case. */
1788 if (streq(fstype, "crypto_LUKS"))
1789 return -EUNATCH;
1790
1791 rw = m->rw && !(flags & DISSECT_IMAGE_MOUNT_READ_ONLY);
1792
1793 if (FLAGS_SET(flags, DISSECT_IMAGE_FSCK) && rw) {
1794 r = run_fsck(node, fstype);
1795 if (r < 0)
1796 return r;
1797 }
1798
1799 if (directory) {
1800 /* Automatically create missing mount points inside the image, if necessary. */
1801 r = mkdir_p_root(where, directory, uid_shift, (gid_t) uid_shift, 0755);
1802 if (r < 0 && r != -EROFS)
1803 return r;
1804
1805 r = chase_symlinks(directory, where, CHASE_PREFIX_ROOT, &chased, NULL);
1806 if (r < 0)
1807 return r;
1808
1809 p = chased;
1810 } else {
1811 /* Create top-level mount if missing – but only if this is asked for. This won't modify the
1812 * image (as the branch above does) but the host hierarchy, and the created directory might
1813 * survive our mount in the host hierarchy hence. */
1814 if (FLAGS_SET(flags, DISSECT_IMAGE_MKDIR)) {
1815 r = mkdir_p(where, 0755);
1816 if (r < 0)
1817 return r;
1818 }
1819
1820 p = where;
1821 }
1822
1823 /* If requested, turn on discard support. */
1824 if (fstype_can_discard(fstype) &&
1825 ((flags & DISSECT_IMAGE_DISCARD) ||
1826 ((flags & DISSECT_IMAGE_DISCARD_ON_LOOP) && is_loop_device(m->node) > 0))) {
1827 options = strdup("discard");
1828 if (!options)
1829 return -ENOMEM;
1830 }
1831
1832 if (uid_is_valid(uid_shift) && uid_shift != 0) {
1833
1834 if (fstype_can_uid_gid(fstype)) {
1835 _cleanup_free_ char *uid_option = NULL;
1836
1837 if (asprintf(&uid_option, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0)
1838 return -ENOMEM;
1839
1840 if (!strextend_with_separator(&options, ",", uid_option))
1841 return -ENOMEM;
1842 } else if (FLAGS_SET(flags, DISSECT_IMAGE_MOUNT_IDMAPPED))
1843 remap_uid_gid = true;
1844 }
1845
1846 if (!isempty(m->mount_options))
1847 if (!strextend_with_separator(&options, ",", m->mount_options))
1848 return -ENOMEM;
1849
1850 /* So, when you request MS_RDONLY from ext4, then this means nothing. It happily still writes to the
1851 * backing storage. What's worse, the BLKRO[GS]ET flag and (in case of loopback devices)
1852 * LO_FLAGS_READ_ONLY don't mean anything, they affect userspace accesses only, and write accesses
1853 * from the upper file system still get propagated through to the underlying file system,
1854 * unrestricted. To actually get ext4/xfs/btrfs to stop writing to the device we need to specify
1855 * "norecovery" as mount option, in addition to MS_RDONLY. Yes, this sucks, since it means we need to
1856 * carry a per file system table here.
1857 *
1858 * Note that this means that we might not be able to mount corrupted file systems as read-only
1859 * anymore (since in some cases the kernel implementations will refuse mounting when corrupted,
1860 * read-only and "norecovery" is specified). But I think for the case of automatically determined
1861 * mount options for loopback devices this is the right choice, since otherwise using the same
1862 * loopback file twice even in read-only mode, is going to fail badly sooner or later. The usecase of
1863 * making reuse of the immutable images "just work" is more relevant to us than having read-only
1864 * access that actually modifies stuff work on such image files. Or to say this differently: if
1865 * people want their file systems to be fixed up they should just open them in writable mode, where
1866 * all these problems don't exist. */
1867 if (!rw && STRPTR_IN_SET(fstype, "ext3", "ext4", "xfs", "btrfs"))
1868 if (!strextend_with_separator(&options, ",", "norecovery"))
1869 return -ENOMEM;
1870
1871 r = mount_nofollow_verbose(LOG_DEBUG, node, p, fstype, MS_NODEV|(rw ? 0 : MS_RDONLY), options);
1872 if (r < 0)
1873 return r;
1874
1875 if (rw && m->growfs && FLAGS_SET(flags, DISSECT_IMAGE_GROWFS))
1876 (void) fs_grow(node, p);
1877
1878 if (remap_uid_gid) {
1879 r = remount_idmap(p, uid_shift, uid_range);
1880 if (r < 0)
1881 return r;
1882 }
1883
1884 return 1;
1885 }
1886
1887 static int mount_root_tmpfs(const char *where, uid_t uid_shift, DissectImageFlags flags) {
1888 _cleanup_free_ char *options = NULL;
1889 int r;
1890
1891 assert(where);
1892
1893 /* For images that contain /usr/ but no rootfs, let's mount rootfs as tmpfs */
1894
1895 if (FLAGS_SET(flags, DISSECT_IMAGE_MKDIR)) {
1896 r = mkdir_p(where, 0755);
1897 if (r < 0)
1898 return r;
1899 }
1900
1901 if (uid_is_valid(uid_shift)) {
1902 if (asprintf(&options, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0)
1903 return -ENOMEM;
1904 }
1905
1906 r = mount_nofollow_verbose(LOG_DEBUG, "rootfs", where, "tmpfs", MS_NODEV, options);
1907 if (r < 0)
1908 return r;
1909
1910 return 1;
1911 }
1912
1913 int dissected_image_mount(
1914 DissectedImage *m,
1915 const char *where,
1916 uid_t uid_shift,
1917 uid_t uid_range,
1918 DissectImageFlags flags) {
1919
1920 int r, xbootldr_mounted;
1921
1922 assert(m);
1923 assert(where);
1924
1925 /* Returns:
1926 *
1927 * -ENXIO → No root partition found
1928 * -EMEDIUMTYPE → DISSECT_IMAGE_VALIDATE_OS set but no os-release/extension-release file found
1929 * -EUNATCH → Encrypted partition found for which no dm-crypt was set up yet
1930 * -EUCLEAN → fsck for file system failed
1931 * -EBUSY → File system already mounted/used elsewhere (kernel)
1932 * -EAFNOSUPPORT → File system type not supported or not known
1933 */
1934
1935 if (!(m->partitions[PARTITION_ROOT].found ||
1936 (m->partitions[PARTITION_USR].found && FLAGS_SET(flags, DISSECT_IMAGE_USR_NO_ROOT))))
1937 return -ENXIO; /* Require a root fs or at least a /usr/ fs (the latter is subject to a flag of its own) */
1938
1939 if ((flags & DISSECT_IMAGE_MOUNT_NON_ROOT_ONLY) == 0) {
1940
1941 /* First mount the root fs. If there's none we use a tmpfs. */
1942 if (m->partitions[PARTITION_ROOT].found)
1943 r = mount_partition(m->partitions + PARTITION_ROOT, where, NULL, uid_shift, uid_range, flags);
1944 else
1945 r = mount_root_tmpfs(where, uid_shift, flags);
1946 if (r < 0)
1947 return r;
1948
1949 /* For us mounting root always means mounting /usr as well */
1950 r = mount_partition(m->partitions + PARTITION_USR, where, "/usr", uid_shift, uid_range, flags);
1951 if (r < 0)
1952 return r;
1953
1954 if ((flags & (DISSECT_IMAGE_VALIDATE_OS|DISSECT_IMAGE_VALIDATE_OS_EXT)) != 0) {
1955 /* If either one of the validation flags are set, ensure that the image qualifies
1956 * as one or the other (or both). */
1957 bool ok = false;
1958
1959 if (FLAGS_SET(flags, DISSECT_IMAGE_VALIDATE_OS)) {
1960 r = path_is_os_tree(where);
1961 if (r < 0)
1962 return r;
1963 if (r > 0)
1964 ok = true;
1965 }
1966 if (!ok && FLAGS_SET(flags, DISSECT_IMAGE_VALIDATE_OS_EXT)) {
1967 r = path_is_extension_tree(where, m->image_name);
1968 if (r < 0)
1969 return r;
1970 if (r > 0)
1971 ok = true;
1972 }
1973
1974 if (!ok)
1975 return -ENOMEDIUM;
1976 }
1977 }
1978
1979 if (flags & DISSECT_IMAGE_MOUNT_ROOT_ONLY)
1980 return 0;
1981
1982 r = mount_partition(m->partitions + PARTITION_HOME, where, "/home", uid_shift, uid_range, flags);
1983 if (r < 0)
1984 return r;
1985
1986 r = mount_partition(m->partitions + PARTITION_SRV, where, "/srv", uid_shift, uid_range, flags);
1987 if (r < 0)
1988 return r;
1989
1990 r = mount_partition(m->partitions + PARTITION_VAR, where, "/var", uid_shift, uid_range, flags);
1991 if (r < 0)
1992 return r;
1993
1994 r = mount_partition(m->partitions + PARTITION_TMP, where, "/var/tmp", uid_shift, uid_range, flags);
1995 if (r < 0)
1996 return r;
1997
1998 xbootldr_mounted = mount_partition(m->partitions + PARTITION_XBOOTLDR, where, "/boot", uid_shift, uid_range, flags);
1999 if (xbootldr_mounted < 0)
2000 return xbootldr_mounted;
2001
2002 if (m->partitions[PARTITION_ESP].found) {
2003 int esp_done = false;
2004
2005 /* Mount the ESP to /efi if it exists. If it doesn't exist, use /boot instead, but only if it
2006 * exists and is empty, and we didn't already mount the XBOOTLDR partition into it. */
2007
2008 r = chase_symlinks("/efi", where, CHASE_PREFIX_ROOT, NULL, NULL);
2009 if (r < 0) {
2010 if (r != -ENOENT)
2011 return r;
2012
2013 /* /efi doesn't exist. Let's see if /boot is suitable then */
2014
2015 if (!xbootldr_mounted) {
2016 _cleanup_free_ char *p = NULL;
2017
2018 r = chase_symlinks("/boot", where, CHASE_PREFIX_ROOT, &p, NULL);
2019 if (r < 0) {
2020 if (r != -ENOENT)
2021 return r;
2022 } else if (dir_is_empty(p) > 0) {
2023 /* It exists and is an empty directory. Let's mount the ESP there. */
2024 r = mount_partition(m->partitions + PARTITION_ESP, where, "/boot", uid_shift, uid_range, flags);
2025 if (r < 0)
2026 return r;
2027
2028 esp_done = true;
2029 }
2030 }
2031 }
2032
2033 if (!esp_done) {
2034 /* OK, let's mount the ESP now to /efi (possibly creating the dir if missing) */
2035
2036 r = mount_partition(m->partitions + PARTITION_ESP, where, "/efi", uid_shift, uid_range, flags);
2037 if (r < 0)
2038 return r;
2039 }
2040 }
2041
2042 return 0;
2043 }
2044
2045 int dissected_image_mount_and_warn(
2046 DissectedImage *m,
2047 const char *where,
2048 uid_t uid_shift,
2049 uid_t uid_range,
2050 DissectImageFlags flags) {
2051
2052 int r;
2053
2054 assert(m);
2055 assert(where);
2056
2057 r = dissected_image_mount(m, where, uid_shift, uid_range, flags);
2058 if (r == -ENXIO)
2059 return log_error_errno(r, "Not root file system found in image.");
2060 if (r == -EMEDIUMTYPE)
2061 return log_error_errno(r, "No suitable os-release/extension-release file in image found.");
2062 if (r == -EUNATCH)
2063 return log_error_errno(r, "Encrypted file system discovered, but decryption not requested.");
2064 if (r == -EUCLEAN)
2065 return log_error_errno(r, "File system check on image failed.");
2066 if (r == -EBUSY)
2067 return log_error_errno(r, "File system already mounted elsewhere.");
2068 if (r == -EAFNOSUPPORT)
2069 return log_error_errno(r, "File system type not supported or not known.");
2070 if (r < 0)
2071 return log_error_errno(r, "Failed to mount image: %m");
2072
2073 return r;
2074 }
2075
2076 #if HAVE_LIBCRYPTSETUP
2077 typedef struct DecryptedPartition {
2078 struct crypt_device *device;
2079 char *name;
2080 bool relinquished;
2081 } DecryptedPartition;
2082
2083 struct DecryptedImage {
2084 DecryptedPartition *decrypted;
2085 size_t n_decrypted;
2086 };
2087 #endif
2088
2089 DecryptedImage* decrypted_image_unref(DecryptedImage* d) {
2090 #if HAVE_LIBCRYPTSETUP
2091 int r;
2092
2093 if (!d)
2094 return NULL;
2095
2096 for (size_t i = 0; i < d->n_decrypted; i++) {
2097 DecryptedPartition *p = d->decrypted + i;
2098
2099 if (p->device && p->name && !p->relinquished) {
2100 r = sym_crypt_deactivate_by_name(p->device, p->name, 0);
2101 if (r < 0)
2102 log_debug_errno(r, "Failed to deactivate encrypted partition %s", p->name);
2103 }
2104
2105 if (p->device)
2106 sym_crypt_free(p->device);
2107 free(p->name);
2108 }
2109
2110 free(d->decrypted);
2111 free(d);
2112 #endif
2113 return NULL;
2114 }
2115
2116 #if HAVE_LIBCRYPTSETUP
2117
2118 static int make_dm_name_and_node(const void *original_node, const char *suffix, char **ret_name, char **ret_node) {
2119 _cleanup_free_ char *name = NULL, *node = NULL;
2120 const char *base;
2121
2122 assert(original_node);
2123 assert(suffix);
2124 assert(ret_name);
2125 assert(ret_node);
2126
2127 base = strrchr(original_node, '/');
2128 if (!base)
2129 base = original_node;
2130 else
2131 base++;
2132 if (isempty(base))
2133 return -EINVAL;
2134
2135 name = strjoin(base, suffix);
2136 if (!name)
2137 return -ENOMEM;
2138 if (!filename_is_valid(name))
2139 return -EINVAL;
2140
2141 node = path_join(sym_crypt_get_dir(), name);
2142 if (!node)
2143 return -ENOMEM;
2144
2145 *ret_name = TAKE_PTR(name);
2146 *ret_node = TAKE_PTR(node);
2147
2148 return 0;
2149 }
2150
2151 static int decrypt_partition(
2152 DissectedPartition *m,
2153 const char *passphrase,
2154 DissectImageFlags flags,
2155 DecryptedImage *d) {
2156
2157 _cleanup_free_ char *node = NULL, *name = NULL;
2158 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
2159 int r;
2160
2161 assert(m);
2162 assert(d);
2163
2164 if (!m->found || !m->node || !m->fstype)
2165 return 0;
2166
2167 if (!streq(m->fstype, "crypto_LUKS"))
2168 return 0;
2169
2170 if (!passphrase)
2171 return -ENOKEY;
2172
2173 r = dlopen_cryptsetup();
2174 if (r < 0)
2175 return r;
2176
2177 r = make_dm_name_and_node(m->node, "-decrypted", &name, &node);
2178 if (r < 0)
2179 return r;
2180
2181 if (!GREEDY_REALLOC0(d->decrypted, d->n_decrypted + 1))
2182 return -ENOMEM;
2183
2184 r = sym_crypt_init(&cd, m->node);
2185 if (r < 0)
2186 return log_debug_errno(r, "Failed to initialize dm-crypt: %m");
2187
2188 cryptsetup_enable_logging(cd);
2189
2190 r = sym_crypt_load(cd, CRYPT_LUKS, NULL);
2191 if (r < 0)
2192 return log_debug_errno(r, "Failed to load LUKS metadata: %m");
2193
2194 r = sym_crypt_activate_by_passphrase(cd, name, CRYPT_ANY_SLOT, passphrase, strlen(passphrase),
2195 ((flags & DISSECT_IMAGE_DEVICE_READ_ONLY) ? CRYPT_ACTIVATE_READONLY : 0) |
2196 ((flags & DISSECT_IMAGE_DISCARD_ON_CRYPTO) ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0));
2197 if (r < 0) {
2198 log_debug_errno(r, "Failed to activate LUKS device: %m");
2199 return r == -EPERM ? -EKEYREJECTED : r;
2200 }
2201
2202 d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
2203 .name = TAKE_PTR(name),
2204 .device = TAKE_PTR(cd),
2205 };
2206
2207 m->decrypted_node = TAKE_PTR(node);
2208
2209 return 0;
2210 }
2211
2212 static int verity_can_reuse(
2213 const VeritySettings *verity,
2214 const char *name,
2215 struct crypt_device **ret_cd) {
2216
2217 /* If the same volume was already open, check that the root hashes match, and reuse it if they do */
2218 _cleanup_free_ char *root_hash_existing = NULL;
2219 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
2220 struct crypt_params_verity crypt_params = {};
2221 size_t root_hash_existing_size;
2222 int r;
2223
2224 assert(verity);
2225 assert(name);
2226 assert(ret_cd);
2227
2228 r = sym_crypt_init_by_name(&cd, name);
2229 if (r < 0)
2230 return log_debug_errno(r, "Error opening verity device, crypt_init_by_name failed: %m");
2231
2232 cryptsetup_enable_logging(cd);
2233
2234 r = sym_crypt_get_verity_info(cd, &crypt_params);
2235 if (r < 0)
2236 return log_debug_errno(r, "Error opening verity device, crypt_get_verity_info failed: %m");
2237
2238 root_hash_existing_size = verity->root_hash_size;
2239 root_hash_existing = malloc0(root_hash_existing_size);
2240 if (!root_hash_existing)
2241 return -ENOMEM;
2242
2243 r = sym_crypt_volume_key_get(cd, CRYPT_ANY_SLOT, root_hash_existing, &root_hash_existing_size, NULL, 0);
2244 if (r < 0)
2245 return log_debug_errno(r, "Error opening verity device, crypt_volume_key_get failed: %m");
2246 if (verity->root_hash_size != root_hash_existing_size ||
2247 memcmp(root_hash_existing, verity->root_hash, verity->root_hash_size) != 0)
2248 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but root hashes are different.");
2249
2250 #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
2251 /* Ensure that, if signatures are supported, we only reuse the device if the previous mount used the
2252 * same settings, so that a previous unsigned mount will not be reused if the user asks to use
2253 * signing for the new one, and vice versa. */
2254 if (!!verity->root_hash_sig != !!(crypt_params.flags & CRYPT_VERITY_ROOT_HASH_SIGNATURE))
2255 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but signature settings are not the same.");
2256 #endif
2257
2258 *ret_cd = TAKE_PTR(cd);
2259 return 0;
2260 }
2261
2262 static inline char* dm_deferred_remove_clean(char *name) {
2263 if (!name)
2264 return NULL;
2265
2266 (void) sym_crypt_deactivate_by_name(NULL, name, CRYPT_DEACTIVATE_DEFERRED);
2267 return mfree(name);
2268 }
2269 DEFINE_TRIVIAL_CLEANUP_FUNC(char *, dm_deferred_remove_clean);
2270
2271 static int validate_signature_userspace(const VeritySettings *verity) {
2272 #if HAVE_OPENSSL
2273 _cleanup_(sk_X509_free_allp) STACK_OF(X509) *sk = NULL;
2274 _cleanup_strv_free_ char **certs = NULL;
2275 _cleanup_(PKCS7_freep) PKCS7 *p7 = NULL;
2276 _cleanup_free_ char *s = NULL;
2277 _cleanup_(BIO_freep) BIO *bio = NULL; /* 'bio' must be freed first, 's' second, hence keep this order
2278 * of declaration in place, please */
2279 const unsigned char *d;
2280 char **i;
2281 int r;
2282
2283 assert(verity);
2284 assert(verity->root_hash);
2285 assert(verity->root_hash_sig);
2286
2287 /* Because installing a signature certificate into the kernel chain is so messy, let's optionally do
2288 * userspace validation. */
2289
2290 r = conf_files_list_nulstr(&certs, ".crt", NULL, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, CONF_PATHS_NULSTR("verity.d"));
2291 if (r < 0)
2292 return log_debug_errno(r, "Failed to enumerate certificates: %m");
2293 if (strv_isempty(certs)) {
2294 log_debug("No userspace dm-verity certificates found.");
2295 return 0;
2296 }
2297
2298 d = verity->root_hash_sig;
2299 p7 = d2i_PKCS7(NULL, &d, (long) verity->root_hash_sig_size);
2300 if (!p7)
2301 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse PKCS7 DER signature data.");
2302
2303 s = hexmem(verity->root_hash, verity->root_hash_size);
2304 if (!s)
2305 return log_oom_debug();
2306
2307 bio = BIO_new_mem_buf(s, strlen(s));
2308 if (!bio)
2309 return log_oom_debug();
2310
2311 sk = sk_X509_new_null();
2312 if (!sk)
2313 return log_oom_debug();
2314
2315 STRV_FOREACH(i, certs) {
2316 _cleanup_(X509_freep) X509 *c = NULL;
2317 _cleanup_fclose_ FILE *f = NULL;
2318
2319 f = fopen(*i, "re");
2320 if (!f) {
2321 log_debug_errno(errno, "Failed to open '%s', ignoring: %m", *i);
2322 continue;
2323 }
2324
2325 c = PEM_read_X509(f, NULL, NULL, NULL);
2326 if (!c) {
2327 log_debug("Failed to load X509 certificate '%s', ignoring.", *i);
2328 continue;
2329 }
2330
2331 if (sk_X509_push(sk, c) == 0)
2332 return log_oom_debug();
2333
2334 TAKE_PTR(c);
2335 }
2336
2337 r = PKCS7_verify(p7, sk, NULL, bio, NULL, PKCS7_NOINTERN|PKCS7_NOVERIFY);
2338 if (r)
2339 log_debug("Userspace PKCS#7 validation succeeded.");
2340 else
2341 log_debug("Userspace PKCS#7 validation failed: %s", ERR_error_string(ERR_get_error(), NULL));
2342
2343 return r;
2344 #else
2345 log_debug("Not doing client-side validation of dm-verity root hash signatures, OpenSSL support disabled.");
2346 return 0;
2347 #endif
2348 }
2349
2350 static int do_crypt_activate_verity(
2351 struct crypt_device *cd,
2352 const char *name,
2353 const VeritySettings *verity) {
2354
2355 bool check_signature;
2356 int r;
2357
2358 assert(cd);
2359 assert(name);
2360 assert(verity);
2361
2362 if (verity->root_hash_sig) {
2363 r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_SIGNATURE");
2364 if (r < 0 && r != -ENXIO)
2365 log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_SIGNATURE");
2366
2367 check_signature = r != 0;
2368 } else
2369 check_signature = false;
2370
2371 if (check_signature) {
2372
2373 #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
2374 /* First, if we have support for signed keys in the kernel, then try that first. */
2375 r = sym_crypt_activate_by_signed_key(
2376 cd,
2377 name,
2378 verity->root_hash,
2379 verity->root_hash_size,
2380 verity->root_hash_sig,
2381 verity->root_hash_sig_size,
2382 CRYPT_ACTIVATE_READONLY);
2383 if (r >= 0)
2384 return r;
2385
2386 log_debug("Validation of dm-verity signature failed via the kernel, trying userspace validation instead.");
2387 #else
2388 log_debug("Activation of verity device with signature requested, but not supported via the kernel by %s due to missing crypt_activate_by_signed_key(), trying userspace validation instead.",
2389 program_invocation_short_name);
2390 #endif
2391
2392 /* So this didn't work via the kernel, then let's try userspace validation instead. If that
2393 * works we'll try to activate without telling the kernel the signature. */
2394
2395 r = validate_signature_userspace(verity);
2396 if (r < 0)
2397 return r;
2398 if (r == 0)
2399 return log_debug_errno(SYNTHETIC_ERRNO(ENOKEY),
2400 "Activation of signed Verity volume worked neither via the kernel nor in userspace, can't activate.");
2401 }
2402
2403 return sym_crypt_activate_by_volume_key(
2404 cd,
2405 name,
2406 verity->root_hash,
2407 verity->root_hash_size,
2408 CRYPT_ACTIVATE_READONLY);
2409 }
2410
2411 static int verity_partition(
2412 PartitionDesignator designator,
2413 DissectedPartition *m,
2414 DissectedPartition *v,
2415 const VeritySettings *verity,
2416 DissectImageFlags flags,
2417 DecryptedImage *d) {
2418
2419 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
2420 _cleanup_(dm_deferred_remove_cleanp) char *restore_deferred_remove = NULL;
2421 _cleanup_free_ char *node = NULL, *name = NULL;
2422 int r;
2423
2424 assert(m);
2425 assert(v || (verity && verity->data_path));
2426
2427 if (!verity || !verity->root_hash)
2428 return 0;
2429 if (!((verity->designator < 0 && designator == PARTITION_ROOT) ||
2430 (verity->designator == designator)))
2431 return 0;
2432
2433 if (!m->found || !m->node || !m->fstype)
2434 return 0;
2435 if (!verity->data_path) {
2436 if (!v->found || !v->node || !v->fstype)
2437 return 0;
2438
2439 if (!streq(v->fstype, "DM_verity_hash"))
2440 return 0;
2441 }
2442
2443 r = dlopen_cryptsetup();
2444 if (r < 0)
2445 return r;
2446
2447 if (FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) {
2448 /* Use the roothash, which is unique per volume, as the device node name, so that it can be reused */
2449 _cleanup_free_ char *root_hash_encoded = NULL;
2450
2451 root_hash_encoded = hexmem(verity->root_hash, verity->root_hash_size);
2452 if (!root_hash_encoded)
2453 return -ENOMEM;
2454
2455 r = make_dm_name_and_node(root_hash_encoded, "-verity", &name, &node);
2456 } else
2457 r = make_dm_name_and_node(m->node, "-verity", &name, &node);
2458 if (r < 0)
2459 return r;
2460
2461 r = sym_crypt_init(&cd, verity->data_path ?: v->node);
2462 if (r < 0)
2463 return r;
2464
2465 cryptsetup_enable_logging(cd);
2466
2467 r = sym_crypt_load(cd, CRYPT_VERITY, NULL);
2468 if (r < 0)
2469 return r;
2470
2471 r = sym_crypt_set_data_device(cd, m->node);
2472 if (r < 0)
2473 return r;
2474
2475 if (!GREEDY_REALLOC0(d->decrypted, d->n_decrypted + 1))
2476 return -ENOMEM;
2477
2478 /* If activating fails because the device already exists, check the metadata and reuse it if it matches.
2479 * In case of ENODEV/ENOENT, which can happen if another process is activating at the exact same time,
2480 * retry a few times before giving up. */
2481 for (unsigned i = 0; i < N_DEVICE_NODE_LIST_ATTEMPTS; i++) {
2482
2483 r = do_crypt_activate_verity(cd, name, verity);
2484 /* libdevmapper can return EINVAL when the device is already in the activation stage.
2485 * There's no way to distinguish this situation from a genuine error due to invalid
2486 * parameters, so immediately fall back to activating the device with a unique name.
2487 * Improvements in libcrypsetup can ensure this never happens:
2488 * https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/96 */
2489 if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
2490 return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
2491 if (!IN_SET(r,
2492 0, /* Success */
2493 -EEXIST, /* Volume is already open and ready to be used */
2494 -EBUSY, /* Volume is being opened but not ready, crypt_init_by_name can fetch details */
2495 -ENODEV /* Volume is being opened but not ready, crypt_init_by_name would fail, try to open again */))
2496 return r;
2497 if (IN_SET(r, -EEXIST, -EBUSY)) {
2498 struct crypt_device *existing_cd = NULL;
2499
2500 if (!restore_deferred_remove){
2501 /* To avoid races, disable automatic removal on umount while setting up the new device. Restore it on failure. */
2502 r = dm_deferred_remove_cancel(name);
2503 /* If activation returns EBUSY there might be no deferred removal to cancel, that's fine */
2504 if (r < 0 && r != -ENXIO)
2505 return log_debug_errno(r, "Disabling automated deferred removal for verity device %s failed: %m", node);
2506 if (r == 0) {
2507 restore_deferred_remove = strdup(name);
2508 if (!restore_deferred_remove)
2509 return -ENOMEM;
2510 }
2511 }
2512
2513 r = verity_can_reuse(verity, name, &existing_cd);
2514 /* Same as above, -EINVAL can randomly happen when it actually means -EEXIST */
2515 if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
2516 return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
2517 if (!IN_SET(r, 0, -ENODEV, -ENOENT, -EBUSY))
2518 return log_debug_errno(r, "Checking whether existing verity device %s can be reused failed: %m", node);
2519 if (r == 0) {
2520 /* devmapper might say that the device exists, but the devlink might not yet have been
2521 * created. Check and wait for the udev event in that case. */
2522 r = device_wait_for_devlink(node, "block", usec_add(now(CLOCK_MONOTONIC), 100 * USEC_PER_MSEC), NULL);
2523 /* Fallback to activation with a unique device if it's taking too long */
2524 if (r == -ETIMEDOUT)
2525 break;
2526 if (r < 0)
2527 return r;
2528
2529 if (cd)
2530 sym_crypt_free(cd);
2531 cd = existing_cd;
2532 }
2533 }
2534 if (r == 0)
2535 break;
2536
2537 /* Device is being opened by another process, but it has not finished yet, yield for 2ms */
2538 (void) usleep(2 * USEC_PER_MSEC);
2539 }
2540
2541 /* An existing verity device was reported by libcryptsetup/libdevmapper, but we can't use it at this time.
2542 * Fall back to activating it with a unique device name. */
2543 if (r != 0 && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
2544 return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
2545
2546 /* Everything looks good and we'll be able to mount the device, so deferred remove will be re-enabled at that point. */
2547 restore_deferred_remove = mfree(restore_deferred_remove);
2548
2549 d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
2550 .name = TAKE_PTR(name),
2551 .device = TAKE_PTR(cd),
2552 };
2553
2554 m->decrypted_node = TAKE_PTR(node);
2555
2556 return 0;
2557 }
2558 #endif
2559
2560 int dissected_image_decrypt(
2561 DissectedImage *m,
2562 const char *passphrase,
2563 const VeritySettings *verity,
2564 DissectImageFlags flags,
2565 DecryptedImage **ret) {
2566
2567 #if HAVE_LIBCRYPTSETUP
2568 _cleanup_(decrypted_image_unrefp) DecryptedImage *d = NULL;
2569 int r;
2570 #endif
2571
2572 assert(m);
2573 assert(!verity || verity->root_hash || verity->root_hash_size == 0);
2574
2575 /* Returns:
2576 *
2577 * = 0 → There was nothing to decrypt
2578 * > 0 → Decrypted successfully
2579 * -ENOKEY → There's something to decrypt but no key was supplied
2580 * -EKEYREJECTED → Passed key was not correct
2581 */
2582
2583 if (verity && verity->root_hash && verity->root_hash_size < sizeof(sd_id128_t))
2584 return -EINVAL;
2585
2586 if (!m->encrypted && !m->verity_ready) {
2587 *ret = NULL;
2588 return 0;
2589 }
2590
2591 #if HAVE_LIBCRYPTSETUP
2592 d = new0(DecryptedImage, 1);
2593 if (!d)
2594 return -ENOMEM;
2595
2596 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
2597 DissectedPartition *p = m->partitions + i;
2598 PartitionDesignator k;
2599
2600 if (!p->found)
2601 continue;
2602
2603 r = decrypt_partition(p, passphrase, flags, d);
2604 if (r < 0)
2605 return r;
2606
2607 k = PARTITION_VERITY_OF(i);
2608 if (k >= 0) {
2609 r = verity_partition(i, p, m->partitions + k, verity, flags | DISSECT_IMAGE_VERITY_SHARE, d);
2610 if (r < 0)
2611 return r;
2612 }
2613
2614 if (!p->decrypted_fstype && p->decrypted_node) {
2615 r = probe_filesystem(p->decrypted_node, &p->decrypted_fstype);
2616 if (r < 0 && r != -EUCLEAN)
2617 return r;
2618 }
2619 }
2620
2621 *ret = TAKE_PTR(d);
2622
2623 return 1;
2624 #else
2625 return -EOPNOTSUPP;
2626 #endif
2627 }
2628
2629 int dissected_image_decrypt_interactively(
2630 DissectedImage *m,
2631 const char *passphrase,
2632 const VeritySettings *verity,
2633 DissectImageFlags flags,
2634 DecryptedImage **ret) {
2635
2636 _cleanup_strv_free_erase_ char **z = NULL;
2637 int n = 3, r;
2638
2639 if (passphrase)
2640 n--;
2641
2642 for (;;) {
2643 r = dissected_image_decrypt(m, passphrase, verity, flags, ret);
2644 if (r >= 0)
2645 return r;
2646 if (r == -EKEYREJECTED)
2647 log_error_errno(r, "Incorrect passphrase, try again!");
2648 else if (r != -ENOKEY)
2649 return log_error_errno(r, "Failed to decrypt image: %m");
2650
2651 if (--n < 0)
2652 return log_error_errno(SYNTHETIC_ERRNO(EKEYREJECTED),
2653 "Too many retries.");
2654
2655 z = strv_free(z);
2656
2657 r = ask_password_auto("Please enter image passphrase:", NULL, "dissect", "dissect", "dissect.passphrase", USEC_INFINITY, 0, &z);
2658 if (r < 0)
2659 return log_error_errno(r, "Failed to query for passphrase: %m");
2660
2661 passphrase = z[0];
2662 }
2663 }
2664
2665 int decrypted_image_relinquish(DecryptedImage *d) {
2666 assert(d);
2667
2668 /* Turns on automatic removal after the last use ended for all DM devices of this image, and sets a
2669 * boolean so that we don't clean it up ourselves either anymore */
2670
2671 #if HAVE_LIBCRYPTSETUP
2672 int r;
2673
2674 for (size_t i = 0; i < d->n_decrypted; i++) {
2675 DecryptedPartition *p = d->decrypted + i;
2676
2677 if (p->relinquished)
2678 continue;
2679
2680 r = sym_crypt_deactivate_by_name(NULL, p->name, CRYPT_DEACTIVATE_DEFERRED);
2681 if (r < 0)
2682 return log_debug_errno(r, "Failed to mark %s for auto-removal: %m", p->name);
2683
2684 p->relinquished = true;
2685 }
2686 #endif
2687
2688 return 0;
2689 }
2690
2691 static char *build_auxiliary_path(const char *image, const char *suffix) {
2692 const char *e;
2693 char *n;
2694
2695 assert(image);
2696 assert(suffix);
2697
2698 e = endswith(image, ".raw");
2699 if (!e)
2700 return strjoin(e, suffix);
2701
2702 n = new(char, e - image + strlen(suffix) + 1);
2703 if (!n)
2704 return NULL;
2705
2706 strcpy(mempcpy(n, image, e - image), suffix);
2707 return n;
2708 }
2709
2710 void verity_settings_done(VeritySettings *v) {
2711 assert(v);
2712
2713 v->root_hash = mfree(v->root_hash);
2714 v->root_hash_size = 0;
2715
2716 v->root_hash_sig = mfree(v->root_hash_sig);
2717 v->root_hash_sig_size = 0;
2718
2719 v->data_path = mfree(v->data_path);
2720 }
2721
2722 int verity_settings_load(
2723 VeritySettings *verity,
2724 const char *image,
2725 const char *root_hash_path,
2726 const char *root_hash_sig_path) {
2727
2728 _cleanup_free_ void *root_hash = NULL, *root_hash_sig = NULL;
2729 size_t root_hash_size = 0, root_hash_sig_size = 0;
2730 _cleanup_free_ char *verity_data_path = NULL;
2731 PartitionDesignator designator;
2732 int r;
2733
2734 assert(verity);
2735 assert(image);
2736 assert(verity->designator < 0 || IN_SET(verity->designator, PARTITION_ROOT, PARTITION_USR));
2737
2738 /* If we are asked to load the root hash for a device node, exit early */
2739 if (is_device_path(image))
2740 return 0;
2741
2742 r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_SIDECAR");
2743 if (r < 0 && r != -ENXIO)
2744 log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_SIDECAR, ignoring: %m");
2745 if (r == 0)
2746 return 0;
2747
2748 designator = verity->designator;
2749
2750 /* We only fill in what isn't already filled in */
2751
2752 if (!verity->root_hash) {
2753 _cleanup_free_ char *text = NULL;
2754
2755 if (root_hash_path) {
2756 /* If explicitly specified it takes precedence */
2757 r = read_one_line_file(root_hash_path, &text);
2758 if (r < 0)
2759 return r;
2760
2761 if (designator < 0)
2762 designator = PARTITION_ROOT;
2763 } else {
2764 /* Otherwise look for xattr and separate file, and first for the data for root and if
2765 * that doesn't exist for /usr */
2766
2767 if (designator < 0 || designator == PARTITION_ROOT) {
2768 r = getxattr_malloc(image, "user.verity.roothash", &text);
2769 if (r < 0) {
2770 _cleanup_free_ char *p = NULL;
2771
2772 if (!IN_SET(r, -ENODATA, -ENOENT) && !ERRNO_IS_NOT_SUPPORTED(r))
2773 return r;
2774
2775 p = build_auxiliary_path(image, ".roothash");
2776 if (!p)
2777 return -ENOMEM;
2778
2779 r = read_one_line_file(p, &text);
2780 if (r < 0 && r != -ENOENT)
2781 return r;
2782 }
2783
2784 if (text)
2785 designator = PARTITION_ROOT;
2786 }
2787
2788 if (!text && (designator < 0 || designator == PARTITION_USR)) {
2789 /* So in the "roothash" xattr/file name above the "root" of course primarily
2790 * refers to the root of the Verity Merkle tree. But coincidentally it also
2791 * is the hash for the *root* file system, i.e. the "root" neatly refers to
2792 * two distinct concepts called "root". Taking benefit of this happy
2793 * coincidence we call the file with the root hash for the /usr/ file system
2794 * `usrhash`, because `usrroothash` or `rootusrhash` would just be too
2795 * confusing. We thus drop the reference to the root of the Merkle tree, and
2796 * just indicate which file system it's about. */
2797 r = getxattr_malloc(image, "user.verity.usrhash", &text);
2798 if (r < 0) {
2799 _cleanup_free_ char *p = NULL;
2800
2801 if (!IN_SET(r, -ENODATA, -ENOENT) && !ERRNO_IS_NOT_SUPPORTED(r))
2802 return r;
2803
2804 p = build_auxiliary_path(image, ".usrhash");
2805 if (!p)
2806 return -ENOMEM;
2807
2808 r = read_one_line_file(p, &text);
2809 if (r < 0 && r != -ENOENT)
2810 return r;
2811 }
2812
2813 if (text)
2814 designator = PARTITION_USR;
2815 }
2816 }
2817
2818 if (text) {
2819 r = unhexmem(text, strlen(text), &root_hash, &root_hash_size);
2820 if (r < 0)
2821 return r;
2822 if (root_hash_size < sizeof(sd_id128_t))
2823 return -EINVAL;
2824 }
2825 }
2826
2827 if ((root_hash || verity->root_hash) && !verity->root_hash_sig) {
2828 if (root_hash_sig_path) {
2829 r = read_full_file(root_hash_sig_path, (char**) &root_hash_sig, &root_hash_sig_size);
2830 if (r < 0 && r != -ENOENT)
2831 return r;
2832
2833 if (designator < 0)
2834 designator = PARTITION_ROOT;
2835 } else {
2836 if (designator < 0 || designator == PARTITION_ROOT) {
2837 _cleanup_free_ char *p = NULL;
2838
2839 /* Follow naming convention recommended by the relevant RFC:
2840 * https://tools.ietf.org/html/rfc5751#section-3.2.1 */
2841 p = build_auxiliary_path(image, ".roothash.p7s");
2842 if (!p)
2843 return -ENOMEM;
2844
2845 r = read_full_file(p, (char**) &root_hash_sig, &root_hash_sig_size);
2846 if (r < 0 && r != -ENOENT)
2847 return r;
2848 if (r >= 0)
2849 designator = PARTITION_ROOT;
2850 }
2851
2852 if (!root_hash_sig && (designator < 0 || designator == PARTITION_USR)) {
2853 _cleanup_free_ char *p = NULL;
2854
2855 p = build_auxiliary_path(image, ".usrhash.p7s");
2856 if (!p)
2857 return -ENOMEM;
2858
2859 r = read_full_file(p, (char**) &root_hash_sig, &root_hash_sig_size);
2860 if (r < 0 && r != -ENOENT)
2861 return r;
2862 if (r >= 0)
2863 designator = PARTITION_USR;
2864 }
2865 }
2866
2867 if (root_hash_sig && root_hash_sig_size == 0) /* refuse empty size signatures */
2868 return -EINVAL;
2869 }
2870
2871 if (!verity->data_path) {
2872 _cleanup_free_ char *p = NULL;
2873
2874 p = build_auxiliary_path(image, ".verity");
2875 if (!p)
2876 return -ENOMEM;
2877
2878 if (access(p, F_OK) < 0) {
2879 if (errno != ENOENT)
2880 return -errno;
2881 } else
2882 verity_data_path = TAKE_PTR(p);
2883 }
2884
2885 if (root_hash) {
2886 verity->root_hash = TAKE_PTR(root_hash);
2887 verity->root_hash_size = root_hash_size;
2888 }
2889
2890 if (root_hash_sig) {
2891 verity->root_hash_sig = TAKE_PTR(root_hash_sig);
2892 verity->root_hash_sig_size = root_hash_sig_size;
2893 }
2894
2895 if (verity_data_path)
2896 verity->data_path = TAKE_PTR(verity_data_path);
2897
2898 if (verity->designator < 0)
2899 verity->designator = designator;
2900
2901 return 1;
2902 }
2903
2904 int dissected_image_load_verity_sig_partition(
2905 DissectedImage *m,
2906 int fd,
2907 VeritySettings *verity) {
2908
2909 _cleanup_free_ void *root_hash = NULL, *root_hash_sig = NULL;
2910 _cleanup_(json_variant_unrefp) JsonVariant *v = NULL;
2911 size_t root_hash_size, root_hash_sig_size;
2912 _cleanup_free_ char *buf = NULL;
2913 PartitionDesignator d;
2914 DissectedPartition *p;
2915 JsonVariant *rh, *sig;
2916 ssize_t n;
2917 char *e;
2918 int r;
2919
2920 assert(m);
2921 assert(fd >= 0);
2922 assert(verity);
2923
2924 if (verity->root_hash && verity->root_hash_sig) /* Already loaded? */
2925 return 0;
2926
2927 r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_EMBEDDED");
2928 if (r < 0 && r != -ENXIO)
2929 log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_EMBEDDED, ignoring: %m");
2930 if (r == 0)
2931 return 0;
2932
2933 d = PARTITION_VERITY_SIG_OF(verity->designator < 0 ? PARTITION_ROOT : verity->designator);
2934 assert(d >= 0);
2935
2936 p = m->partitions + d;
2937 if (!p->found)
2938 return 0;
2939 if (p->offset == UINT64_MAX || p->size == UINT64_MAX)
2940 return -EINVAL;
2941
2942 if (p->size > 4*1024*1024) /* Signature data cannot possible be larger than 4M, refuse that */
2943 return -EFBIG;
2944
2945 buf = new(char, p->size+1);
2946 if (!buf)
2947 return -ENOMEM;
2948
2949 n = pread(fd, buf, p->size, p->offset);
2950 if (n < 0)
2951 return -ENOMEM;
2952 if ((uint64_t) n != p->size)
2953 return -EIO;
2954
2955 e = memchr(buf, 0, p->size);
2956 if (e) {
2957 /* If we found a NUL byte then the rest of the data must be NUL too */
2958 if (!memeqzero(e, p->size - (e - buf)))
2959 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature data contains embedded NUL byte.");
2960 } else
2961 buf[p->size] = 0;
2962
2963 r = json_parse(buf, 0, &v, NULL, NULL);
2964 if (r < 0)
2965 return log_debug_errno(r, "Failed to parse signature JSON data: %m");
2966
2967 rh = json_variant_by_key(v, "rootHash");
2968 if (!rh)
2969 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature JSON object lacks 'rootHash' field.");
2970 if (!json_variant_is_string(rh))
2971 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "'rootHash' field of signature JSON object is not a string.");
2972
2973 r = unhexmem(json_variant_string(rh), SIZE_MAX, &root_hash, &root_hash_size);
2974 if (r < 0)
2975 return log_debug_errno(r, "Failed to parse root hash field: %m");
2976
2977 /* Check if specified root hash matches if it is specified */
2978 if (verity->root_hash &&
2979 memcmp_nn(verity->root_hash, verity->root_hash_size, root_hash, root_hash_size) != 0) {
2980 _cleanup_free_ char *a = NULL, *b = NULL;
2981
2982 a = hexmem(root_hash, root_hash_size);
2983 b = hexmem(verity->root_hash, verity->root_hash_size);
2984
2985 return log_debug_errno(r, "Root hash in signature JSON data (%s) doesn't match configured hash (%s).", strna(a), strna(b));
2986 }
2987
2988 sig = json_variant_by_key(v, "signature");
2989 if (!sig)
2990 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature JSON object lacks 'signature' field.");
2991 if (!json_variant_is_string(sig))
2992 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "'signature' field of signature JSON object is not a string.");
2993
2994 r = unbase64mem(json_variant_string(sig), SIZE_MAX, &root_hash_sig, &root_hash_sig_size);
2995 if (r < 0)
2996 return log_debug_errno(r, "Failed to parse signature field: %m");
2997
2998 free_and_replace(verity->root_hash, root_hash);
2999 verity->root_hash_size = root_hash_size;
3000
3001 free_and_replace(verity->root_hash_sig, root_hash_sig);
3002 verity->root_hash_sig_size = root_hash_sig_size;
3003
3004 return 1;
3005 }
3006
3007 int dissected_image_acquire_metadata(DissectedImage *m) {
3008
3009 enum {
3010 META_HOSTNAME,
3011 META_MACHINE_ID,
3012 META_MACHINE_INFO,
3013 META_OS_RELEASE,
3014 META_EXTENSION_RELEASE,
3015 _META_MAX,
3016 };
3017
3018 static const char *const paths[_META_MAX] = {
3019 [META_HOSTNAME] = "/etc/hostname\0",
3020 [META_MACHINE_ID] = "/etc/machine-id\0",
3021 [META_MACHINE_INFO] = "/etc/machine-info\0",
3022 [META_OS_RELEASE] = ("/etc/os-release\0"
3023 "/usr/lib/os-release\0"),
3024 [META_EXTENSION_RELEASE] = "extension-release\0", /* Used only for logging. */
3025 };
3026
3027 _cleanup_strv_free_ char **machine_info = NULL, **os_release = NULL, **extension_release = NULL;
3028 _cleanup_close_pair_ int error_pipe[2] = { -1, -1 };
3029 _cleanup_(rmdir_and_freep) char *t = NULL;
3030 _cleanup_(sigkill_waitp) pid_t child = 0;
3031 sd_id128_t machine_id = SD_ID128_NULL;
3032 _cleanup_free_ char *hostname = NULL;
3033 unsigned n_meta_initialized = 0;
3034 int fds[2 * _META_MAX], r, v;
3035 ssize_t n;
3036
3037 BLOCK_SIGNALS(SIGCHLD);
3038
3039 assert(m);
3040
3041 for (; n_meta_initialized < _META_MAX; n_meta_initialized ++) {
3042 if (!paths[n_meta_initialized]) {
3043 fds[2*n_meta_initialized] = fds[2*n_meta_initialized+1] = -1;
3044 continue;
3045 }
3046
3047 if (pipe2(fds + 2*n_meta_initialized, O_CLOEXEC) < 0) {
3048 r = -errno;
3049 goto finish;
3050 }
3051 }
3052
3053 r = mkdtemp_malloc("/tmp/dissect-XXXXXX", &t);
3054 if (r < 0)
3055 goto finish;
3056
3057 if (pipe2(error_pipe, O_CLOEXEC) < 0) {
3058 r = -errno;
3059 goto finish;
3060 }
3061
3062 r = safe_fork("(sd-dissect)", FORK_RESET_SIGNALS|FORK_DEATHSIG|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, &child);
3063 if (r < 0)
3064 goto finish;
3065 if (r == 0) {
3066 error_pipe[0] = safe_close(error_pipe[0]);
3067
3068 r = dissected_image_mount(
3069 m,
3070 t,
3071 UID_INVALID,
3072 UID_INVALID,
3073 DISSECT_IMAGE_READ_ONLY|
3074 DISSECT_IMAGE_MOUNT_ROOT_ONLY|
3075 DISSECT_IMAGE_VALIDATE_OS|
3076 DISSECT_IMAGE_VALIDATE_OS_EXT|
3077 DISSECT_IMAGE_USR_NO_ROOT);
3078 if (r < 0) {
3079 /* Let parent know the error */
3080 (void) write(error_pipe[1], &r, sizeof(r));
3081
3082 log_debug_errno(r, "Failed to mount dissected image: %m");
3083 _exit(EXIT_FAILURE);
3084 }
3085
3086 for (unsigned k = 0; k < _META_MAX; k++) {
3087 _cleanup_close_ int fd = -ENOENT;
3088 const char *p;
3089
3090 if (!paths[k])
3091 continue;
3092
3093 fds[2*k] = safe_close(fds[2*k]);
3094
3095 if (k == META_EXTENSION_RELEASE) {
3096 /* As per the os-release spec, if the image is an extension it will have a file
3097 * named after the image name in extension-release.d/ - we use the image name
3098 * and try to resolve it with the extension-release helpers, as sometimes
3099 * the image names are mangled on deployment and do not match anymore.
3100 * Unlike other paths this is not fixed, and the image name
3101 * can be mangled on deployment, so by calling into the helper
3102 * we allow a fallback that matches on the first extension-release
3103 * file found in the directory, if one named after the image cannot
3104 * be found first. */
3105 r = open_extension_release(t, m->image_name, NULL, &fd);
3106 if (r < 0)
3107 fd = r; /* Propagate the error. */
3108 } else
3109 NULSTR_FOREACH(p, paths[k]) {
3110 fd = chase_symlinks_and_open(p, t, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NOCTTY, NULL);
3111 if (fd >= 0)
3112 break;
3113 }
3114 if (fd < 0) {
3115 log_debug_errno(fd, "Failed to read %s file of image, ignoring: %m", paths[k]);
3116 fds[2*k+1] = safe_close(fds[2*k+1]);
3117 continue;
3118 }
3119
3120 r = copy_bytes(fd, fds[2*k+1], UINT64_MAX, 0);
3121 if (r < 0) {
3122 (void) write(error_pipe[1], &r, sizeof(r));
3123 _exit(EXIT_FAILURE);
3124 }
3125
3126 fds[2*k+1] = safe_close(fds[2*k+1]);
3127 }
3128
3129 _exit(EXIT_SUCCESS);
3130 }
3131
3132 error_pipe[1] = safe_close(error_pipe[1]);
3133
3134 for (unsigned k = 0; k < _META_MAX; k++) {
3135 _cleanup_fclose_ FILE *f = NULL;
3136
3137 if (!paths[k])
3138 continue;
3139
3140 fds[2*k+1] = safe_close(fds[2*k+1]);
3141
3142 f = take_fdopen(&fds[2*k], "r");
3143 if (!f) {
3144 r = -errno;
3145 goto finish;
3146 }
3147
3148 switch (k) {
3149
3150 case META_HOSTNAME:
3151 r = read_etc_hostname_stream(f, &hostname);
3152 if (r < 0)
3153 log_debug_errno(r, "Failed to read /etc/hostname: %m");
3154
3155 break;
3156
3157 case META_MACHINE_ID: {
3158 _cleanup_free_ char *line = NULL;
3159
3160 r = read_line(f, LONG_LINE_MAX, &line);
3161 if (r < 0)
3162 log_debug_errno(r, "Failed to read /etc/machine-id: %m");
3163 else if (r == 33) {
3164 r = sd_id128_from_string(line, &machine_id);
3165 if (r < 0)
3166 log_debug_errno(r, "Image contains invalid /etc/machine-id: %s", line);
3167 } else if (r == 0)
3168 log_debug("/etc/machine-id file is empty.");
3169 else if (streq(line, "uninitialized"))
3170 log_debug("/etc/machine-id file is uninitialized (likely aborted first boot).");
3171 else
3172 log_debug("/etc/machine-id has unexpected length %i.", r);
3173
3174 break;
3175 }
3176
3177 case META_MACHINE_INFO:
3178 r = load_env_file_pairs(f, "machine-info", &machine_info);
3179 if (r < 0)
3180 log_debug_errno(r, "Failed to read /etc/machine-info: %m");
3181
3182 break;
3183
3184 case META_OS_RELEASE:
3185 r = load_env_file_pairs(f, "os-release", &os_release);
3186 if (r < 0)
3187 log_debug_errno(r, "Failed to read OS release file: %m");
3188
3189 break;
3190
3191 case META_EXTENSION_RELEASE:
3192 r = load_env_file_pairs(f, "extension-release", &extension_release);
3193 if (r < 0)
3194 log_debug_errno(r, "Failed to read extension release file: %m");
3195
3196 break;
3197 }
3198 }
3199
3200 r = wait_for_terminate_and_check("(sd-dissect)", child, 0);
3201 child = 0;
3202 if (r < 0)
3203 return r;
3204
3205 n = read(error_pipe[0], &v, sizeof(v));
3206 if (n < 0)
3207 return -errno;
3208 if (n == sizeof(v))
3209 return v; /* propagate error sent to us from child */
3210 if (n != 0)
3211 return -EIO;
3212
3213 if (r != EXIT_SUCCESS)
3214 return -EPROTO;
3215
3216 free_and_replace(m->hostname, hostname);
3217 m->machine_id = machine_id;
3218 strv_free_and_replace(m->machine_info, machine_info);
3219 strv_free_and_replace(m->os_release, os_release);
3220 strv_free_and_replace(m->extension_release, extension_release);
3221
3222 finish:
3223 for (unsigned k = 0; k < n_meta_initialized; k++)
3224 safe_close_pair(fds + 2*k);
3225
3226 return r;
3227 }
3228
3229 int dissect_image_and_warn(
3230 int fd,
3231 const char *name,
3232 const VeritySettings *verity,
3233 const MountOptions *mount_options,
3234 uint64_t diskseq,
3235 uint64_t uevent_seqnum_not_before,
3236 usec_t timestamp_not_before,
3237 DissectImageFlags flags,
3238 DissectedImage **ret) {
3239
3240 _cleanup_free_ char *buffer = NULL;
3241 int r;
3242
3243 if (!name) {
3244 r = fd_get_path(fd, &buffer);
3245 if (r < 0)
3246 return r;
3247
3248 name = buffer;
3249 }
3250
3251 r = dissect_image(fd, verity, mount_options, diskseq, uevent_seqnum_not_before, timestamp_not_before, flags, ret);
3252 switch (r) {
3253
3254 case -EOPNOTSUPP:
3255 return log_error_errno(r, "Dissecting images is not supported, compiled without blkid support.");
3256
3257 case -ENOPKG:
3258 return log_error_errno(r, "Couldn't identify a suitable partition table or file system in '%s'.", name);
3259
3260 case -EADDRNOTAVAIL:
3261 return log_error_errno(r, "No root partition for specified root hash found in '%s'.", name);
3262
3263 case -ENOTUNIQ:
3264 return log_error_errno(r, "Multiple suitable root partitions found in image '%s'.", name);
3265
3266 case -ENXIO:
3267 return log_error_errno(r, "No suitable root partition found in image '%s'.", name);
3268
3269 case -EPROTONOSUPPORT:
3270 return log_error_errno(r, "Device '%s' is loopback block device with partition scanning turned off, please turn it on.", name);
3271
3272 case -EBADR:
3273 return log_error_errno(r,
3274 "Combining partitioned images (such as '%s') with external Verity data (such as '%s') not supported. "
3275 "(Consider setting $SYSTEMD_DISSECT_VERITY_SIDECAR=0 to disable automatic discovery of external Verity data.)",
3276 name, strna(verity ? verity->data_path : NULL));
3277
3278 case -ENOTBLK:
3279 return log_error_errno(r, "Specified image '%s' is not a block device.", name);
3280
3281 default:
3282 if (r < 0)
3283 return log_error_errno(r, "Failed to dissect image '%s': %m", name);
3284
3285 return r;
3286 }
3287 }
3288
3289 bool dissected_image_verity_candidate(const DissectedImage *image, PartitionDesignator partition_designator) {
3290 assert(image);
3291
3292 /* Checks if this partition could theoretically do Verity. For non-partitioned images this only works
3293 * if there's an external verity file supplied, for which we can consult .has_verity. For partitioned
3294 * images we only check the partition type.
3295 *
3296 * This call is used to decide whether to suppress or show a verity column in tabular output of the
3297 * image. */
3298
3299 if (image->single_file_system)
3300 return partition_designator == PARTITION_ROOT && image->has_verity;
3301
3302 return PARTITION_VERITY_OF(partition_designator) >= 0;
3303 }
3304
3305 bool dissected_image_verity_ready(const DissectedImage *image, PartitionDesignator partition_designator) {
3306 PartitionDesignator k;
3307
3308 assert(image);
3309
3310 /* Checks if this partition has verity data available that we can activate. For non-partitioned this
3311 * works for the root partition, for others only if the associated verity partition was found. */
3312
3313 if (!image->verity_ready)
3314 return false;
3315
3316 if (image->single_file_system)
3317 return partition_designator == PARTITION_ROOT;
3318
3319 k = PARTITION_VERITY_OF(partition_designator);
3320 return k >= 0 && image->partitions[k].found;
3321 }
3322
3323 bool dissected_image_verity_sig_ready(const DissectedImage *image, PartitionDesignator partition_designator) {
3324 PartitionDesignator k;
3325
3326 assert(image);
3327
3328 /* Checks if this partition has verity signature data available that we can use. */
3329
3330 if (!image->verity_sig_ready)
3331 return false;
3332
3333 if (image->single_file_system)
3334 return partition_designator == PARTITION_ROOT;
3335
3336 k = PARTITION_VERITY_SIG_OF(partition_designator);
3337 return k >= 0 && image->partitions[k].found;
3338 }
3339
3340 MountOptions* mount_options_free_all(MountOptions *options) {
3341 MountOptions *m;
3342
3343 while ((m = options)) {
3344 LIST_REMOVE(mount_options, options, m);
3345 free(m->options);
3346 free(m);
3347 }
3348
3349 return NULL;
3350 }
3351
3352 const char* mount_options_from_designator(const MountOptions *options, PartitionDesignator designator) {
3353 const MountOptions *m;
3354
3355 LIST_FOREACH(mount_options, m, options)
3356 if (designator == m->partition_designator && !isempty(m->options))
3357 return m->options;
3358
3359 return NULL;
3360 }
3361
3362 int mount_image_privately_interactively(
3363 const char *image,
3364 DissectImageFlags flags,
3365 char **ret_directory,
3366 LoopDevice **ret_loop_device,
3367 DecryptedImage **ret_decrypted_image) {
3368
3369 _cleanup_(verity_settings_done) VeritySettings verity = VERITY_SETTINGS_DEFAULT;
3370 _cleanup_(loop_device_unrefp) LoopDevice *d = NULL;
3371 _cleanup_(decrypted_image_unrefp) DecryptedImage *decrypted_image = NULL;
3372 _cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
3373 _cleanup_(rmdir_and_freep) char *created_dir = NULL;
3374 _cleanup_free_ char *temp = NULL;
3375 int r;
3376
3377 /* Mounts an OS image at a temporary place, inside a newly created mount namespace of our own. This
3378 * is used by tools such as systemd-tmpfiles or systemd-firstboot to operate on some disk image
3379 * easily. */
3380
3381 assert(image);
3382 assert(ret_directory);
3383 assert(ret_loop_device);
3384 assert(ret_decrypted_image);
3385
3386 r = verity_settings_load(&verity, image, NULL, NULL);
3387 if (r < 0)
3388 return log_error_errno(r, "Failed to load root hash data: %m");
3389
3390 r = tempfn_random_child(NULL, program_invocation_short_name, &temp);
3391 if (r < 0)
3392 return log_error_errno(r, "Failed to generate temporary mount directory: %m");
3393
3394 r = loop_device_make_by_path(
3395 image,
3396 FLAGS_SET(flags, DISSECT_IMAGE_DEVICE_READ_ONLY) ? O_RDONLY : O_RDWR,
3397 FLAGS_SET(flags, DISSECT_IMAGE_NO_PARTITION_TABLE) ? 0 : LO_FLAGS_PARTSCAN,
3398 &d);
3399 if (r < 0)
3400 return log_error_errno(r, "Failed to set up loopback device for %s: %m", image);
3401
3402 r = dissect_image_and_warn(d->fd, image, &verity, NULL, d->diskseq, d->uevent_seqnum_not_before, d->timestamp_not_before, flags, &dissected_image);
3403 if (r < 0)
3404 return r;
3405
3406 r = dissected_image_load_verity_sig_partition(dissected_image, d->fd, &verity);
3407 if (r < 0)
3408 return r;
3409
3410 r = dissected_image_decrypt_interactively(dissected_image, NULL, &verity, flags, &decrypted_image);
3411 if (r < 0)
3412 return r;
3413
3414 r = detach_mount_namespace();
3415 if (r < 0)
3416 return log_error_errno(r, "Failed to detach mount namespace: %m");
3417
3418 r = mkdir_p(temp, 0700);
3419 if (r < 0)
3420 return log_error_errno(r, "Failed to create mount point: %m");
3421
3422 created_dir = TAKE_PTR(temp);
3423
3424 r = dissected_image_mount_and_warn(dissected_image, created_dir, UID_INVALID, UID_INVALID, flags);
3425 if (r < 0)
3426 return r;
3427
3428 if (decrypted_image) {
3429 r = decrypted_image_relinquish(decrypted_image);
3430 if (r < 0)
3431 return log_error_errno(r, "Failed to relinquish DM devices: %m");
3432 }
3433
3434 loop_device_relinquish(d);
3435
3436 *ret_directory = TAKE_PTR(created_dir);
3437 *ret_loop_device = TAKE_PTR(d);
3438 *ret_decrypted_image = TAKE_PTR(decrypted_image);
3439
3440 return 0;
3441 }
3442
3443 static const char *const partition_designator_table[] = {
3444 [PARTITION_ROOT] = "root",
3445 [PARTITION_ROOT_SECONDARY] = "root-secondary",
3446 [PARTITION_USR] = "usr",
3447 [PARTITION_USR_SECONDARY] = "usr-secondary",
3448 [PARTITION_HOME] = "home",
3449 [PARTITION_SRV] = "srv",
3450 [PARTITION_ESP] = "esp",
3451 [PARTITION_XBOOTLDR] = "xbootldr",
3452 [PARTITION_SWAP] = "swap",
3453 [PARTITION_ROOT_VERITY] = "root-verity",
3454 [PARTITION_ROOT_SECONDARY_VERITY] = "root-secondary-verity",
3455 [PARTITION_USR_VERITY] = "usr-verity",
3456 [PARTITION_USR_SECONDARY_VERITY] = "usr-secondary-verity",
3457 [PARTITION_ROOT_VERITY_SIG] = "root-verity-sig",
3458 [PARTITION_ROOT_SECONDARY_VERITY_SIG] = "root-secondary-verity-sig",
3459 [PARTITION_USR_VERITY_SIG] = "usr-verity-sig",
3460 [PARTITION_USR_SECONDARY_VERITY_SIG] = "usr-secondary-verity-sig",
3461 [PARTITION_TMP] = "tmp",
3462 [PARTITION_VAR] = "var",
3463 };
3464
3465 int verity_dissect_and_mount(
3466 const char *src,
3467 const char *dest,
3468 const MountOptions *options,
3469 const char *required_host_os_release_id,
3470 const char *required_host_os_release_version_id,
3471 const char *required_host_os_release_sysext_level) {
3472
3473 _cleanup_(loop_device_unrefp) LoopDevice *loop_device = NULL;
3474 _cleanup_(decrypted_image_unrefp) DecryptedImage *decrypted_image = NULL;
3475 _cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
3476 _cleanup_(verity_settings_done) VeritySettings verity = VERITY_SETTINGS_DEFAULT;
3477 DissectImageFlags dissect_image_flags;
3478 int r;
3479
3480 assert(src);
3481 assert(dest);
3482
3483 r = verity_settings_load(&verity, src, NULL, NULL);
3484 if (r < 0)
3485 return log_debug_errno(r, "Failed to load root hash: %m");
3486
3487 dissect_image_flags = verity.data_path ? DISSECT_IMAGE_NO_PARTITION_TABLE : 0;
3488
3489 r = loop_device_make_by_path(
3490 src,
3491 -1,
3492 verity.data_path ? 0 : LO_FLAGS_PARTSCAN,
3493 &loop_device);
3494 if (r < 0)
3495 return log_debug_errno(r, "Failed to create loop device for image: %m");
3496
3497 r = dissect_image(
3498 loop_device->fd,
3499 &verity,
3500 options,
3501 loop_device->diskseq,
3502 loop_device->uevent_seqnum_not_before,
3503 loop_device->timestamp_not_before,
3504 dissect_image_flags,
3505 &dissected_image);
3506 /* No partition table? Might be a single-filesystem image, try again */
3507 if (!verity.data_path && r == -ENOPKG)
3508 r = dissect_image(
3509 loop_device->fd,
3510 &verity,
3511 options,
3512 loop_device->diskseq,
3513 loop_device->uevent_seqnum_not_before,
3514 loop_device->timestamp_not_before,
3515 dissect_image_flags | DISSECT_IMAGE_NO_PARTITION_TABLE,
3516 &dissected_image);
3517 if (r < 0)
3518 return log_debug_errno(r, "Failed to dissect image: %m");
3519
3520 r = dissected_image_load_verity_sig_partition(dissected_image, loop_device->fd, &verity);
3521 if (r < 0)
3522 return r;
3523
3524 r = dissected_image_decrypt(
3525 dissected_image,
3526 NULL,
3527 &verity,
3528 dissect_image_flags,
3529 &decrypted_image);
3530 if (r < 0)
3531 return log_debug_errno(r, "Failed to decrypt dissected image: %m");
3532
3533 r = mkdir_p_label(dest, 0755);
3534 if (r < 0)
3535 return log_debug_errno(r, "Failed to create destination directory %s: %m", dest);
3536 r = umount_recursive(dest, 0);
3537 if (r < 0)
3538 return log_debug_errno(r, "Failed to umount under destination directory %s: %m", dest);
3539
3540 r = dissected_image_mount(dissected_image, dest, UID_INVALID, UID_INVALID, dissect_image_flags);
3541 if (r < 0)
3542 return log_debug_errno(r, "Failed to mount image: %m");
3543
3544 /* If we got os-release values from the caller, then we need to match them with the image's
3545 * extension-release.d/ content. Return -EINVAL if there's any mismatch.
3546 * First, check the distro ID. If that matches, then check the new SYSEXT_LEVEL value if
3547 * available, or else fallback to VERSION_ID. */
3548 if (required_host_os_release_id &&
3549 (required_host_os_release_version_id || required_host_os_release_sysext_level)) {
3550 _cleanup_strv_free_ char **extension_release = NULL;
3551
3552 r = load_extension_release_pairs(dest, dissected_image->image_name, &extension_release);
3553 if (r < 0)
3554 return log_debug_errno(r, "Failed to parse image %s extension-release metadata: %m", dissected_image->image_name);
3555
3556 r = extension_release_validate(
3557 dissected_image->image_name,
3558 required_host_os_release_id,
3559 required_host_os_release_version_id,
3560 required_host_os_release_sysext_level,
3561 extension_release);
3562 if (r == 0)
3563 return log_debug_errno(SYNTHETIC_ERRNO(ESTALE), "Image %s extension-release metadata does not match the root's", dissected_image->image_name);
3564 if (r < 0)
3565 return log_debug_errno(r, "Failed to compare image %s extension-release metadata with the root's os-release: %m", dissected_image->image_name);
3566 }
3567
3568 if (decrypted_image) {
3569 r = decrypted_image_relinquish(decrypted_image);
3570 if (r < 0)
3571 return log_debug_errno(r, "Failed to relinquish decrypted image: %m");
3572 }
3573
3574 loop_device_relinquish(loop_device);
3575
3576 return 0;
3577 }
3578
3579 DEFINE_STRING_TABLE_LOOKUP(partition_designator, PartitionDesignator);