]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/shared/dissect-image.c
Merge pull request #26341 from DaanDeMeyer/chase-fixes
[thirdparty/systemd.git] / src / shared / dissect-image.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #if HAVE_VALGRIND_MEMCHECK_H
4 #include <valgrind/memcheck.h>
5 #endif
6
7 #include <linux/dm-ioctl.h>
8 #include <linux/loop.h>
9 #include <sys/file.h>
10 #include <sys/mount.h>
11 #include <sys/prctl.h>
12 #include <sys/wait.h>
13 #include <sysexits.h>
14
15 #if HAVE_OPENSSL
16 #include <openssl/err.h>
17 #include <openssl/pem.h>
18 #include <openssl/x509.h>
19 #endif
20
21 #include "sd-device.h"
22 #include "sd-id128.h"
23
24 #include "architecture.h"
25 #include "ask-password-api.h"
26 #include "blkid-util.h"
27 #include "blockdev-util.h"
28 #include "btrfs-util.h"
29 #include "chase-symlinks.h"
30 #include "conf-files.h"
31 #include "constants.h"
32 #include "copy.h"
33 #include "cryptsetup-util.h"
34 #include "device-nodes.h"
35 #include "device-util.h"
36 #include "devnum-util.h"
37 #include "discover-image.h"
38 #include "dissect-image.h"
39 #include "dm-util.h"
40 #include "env-file.h"
41 #include "env-util.h"
42 #include "extension-release.h"
43 #include "fd-util.h"
44 #include "fileio.h"
45 #include "fs-util.h"
46 #include "fsck-util.h"
47 #include "gpt.h"
48 #include "hexdecoct.h"
49 #include "hostname-setup.h"
50 #include "id128-util.h"
51 #include "import-util.h"
52 #include "io-util.h"
53 #include "mkdir-label.h"
54 #include "mount-util.h"
55 #include "mountpoint-util.h"
56 #include "namespace-util.h"
57 #include "nulstr-util.h"
58 #include "openssl-util.h"
59 #include "os-util.h"
60 #include "path-util.h"
61 #include "process-util.h"
62 #include "raw-clone.h"
63 #include "resize-fs.h"
64 #include "signal-util.h"
65 #include "sparse-endian.h"
66 #include "stat-util.h"
67 #include "stdio-util.h"
68 #include "string-table.h"
69 #include "string-util.h"
70 #include "strv.h"
71 #include "tmpfile-util.h"
72 #include "udev-util.h"
73 #include "user-util.h"
74 #include "xattr-util.h"
75
76 /* how many times to wait for the device nodes to appear */
77 #define N_DEVICE_NODE_LIST_ATTEMPTS 10
78
79 int dissect_fstype_ok(const char *fstype) {
80 const char *e;
81 bool b;
82
83 /* When we automatically mount file systems, be a bit conservative by default what we are willing to
84 * mount, just as an extra safety net to not mount with badly maintained legacy file system
85 * drivers. */
86
87 e = secure_getenv("SYSTEMD_DISSECT_FILE_SYSTEMS");
88 if (e) {
89 _cleanup_strv_free_ char **l = NULL;
90
91 l = strv_split(e, ":");
92 if (!l)
93 return -ENOMEM;
94
95 b = strv_contains(l, fstype);
96 } else
97 b = STR_IN_SET(fstype,
98 "btrfs",
99 "erofs",
100 "ext4",
101 "squashfs",
102 "vfat",
103 "xfs");
104 if (b)
105 return true;
106
107 log_debug("File system type '%s' is not allowed to be mounted as result of automatic dissection.", fstype);
108 return false;
109 }
110
111 int probe_sector_size(int fd, uint32_t *ret) {
112
113 struct gpt_header {
114 char signature[8];
115 le32_t revision;
116 le32_t header_size;
117 le32_t crc32;
118 le32_t reserved;
119 le64_t my_lba;
120 le64_t alternate_lba;
121 le64_t first_usable_lba;
122 le64_t last_usable_lba;
123 sd_id128_t disk_guid;
124 le64_t partition_entry_lba;
125 le32_t number_of_partition_entries;
126 le32_t size_of_partition_entry;
127 le32_t partition_entry_array_crc32;
128 } _packed_;
129
130 /* Disk images might be for 512B or for 4096 sector sizes, let's try to auto-detect that by searching
131 * for the GPT headers at the relevant byte offsets */
132
133 assert_cc(sizeof(struct gpt_header) == 92);
134
135 /* We expect a sector size in the range 512…4096. The GPT header is located in the second
136 * sector. Hence it could be at byte 512 at the earliest, and at byte 4096 at the latest. And we must
137 * read with granularity of the largest sector size we care about. Which means 8K. */
138 uint8_t sectors[2 * 4096];
139 uint32_t found = 0;
140 ssize_t n;
141
142 assert(fd >= 0);
143 assert(ret);
144
145 n = pread(fd, sectors, sizeof(sectors), 0);
146 if (n < 0)
147 return -errno;
148 if (n != sizeof(sectors)) /* too short? */
149 goto not_found;
150
151 /* Let's see if we find the GPT partition header with various expected sector sizes */
152 for (uint32_t sz = 512; sz <= 4096; sz <<= 1) {
153 struct gpt_header *p;
154
155 assert(sizeof(sectors) >= sz * 2);
156 p = (struct gpt_header*) (sectors + sz);
157
158 if (memcmp(p->signature, (const char[8]) { 'E', 'F', 'I', ' ', 'P', 'A', 'R', 'T' }, 8) != 0)
159 continue;
160
161 if (le32toh(p->revision) != UINT32_C(0x00010000)) /* the only known revision of the spec: 1.0 */
162 continue;
163
164 if (le32toh(p->header_size) < sizeof(struct gpt_header))
165 continue;
166
167 if (le32toh(p->header_size) > 4096) /* larger than a sector? something is off… */
168 continue;
169
170 if (le64toh(p->my_lba) != 1) /* this sector must claim to be at sector offset 1 */
171 continue;
172
173 if (found != 0)
174 return log_debug_errno(SYNTHETIC_ERRNO(ENOTUNIQ),
175 "Detected valid partition table at offsets matching multiple sector sizes, refusing.");
176
177 found = sz;
178 }
179
180 if (found != 0) {
181 log_debug("Determined sector size %" PRIu32 " based on discovered partition table.", found);
182 *ret = found;
183 return 1; /* indicate we *did* find it */
184 }
185
186 not_found:
187 log_debug("Couldn't find any partition table to derive sector size of.");
188 *ret = 512; /* pick the traditional default */
189 return 0; /* indicate we didn't find it */
190 }
191
192 int probe_sector_size_prefer_ioctl(int fd, uint32_t *ret) {
193 struct stat st;
194
195 assert(fd >= 0);
196 assert(ret);
197
198 /* Just like probe_sector_size(), but if we are looking at a block device, will use the already
199 * configured sector size rather than probing by contents */
200
201 if (fstat(fd, &st) < 0)
202 return -errno;
203
204 if (S_ISBLK(st.st_mode))
205 return blockdev_get_sector_size(fd, ret);
206
207 return probe_sector_size(fd, ret);
208 }
209
210 int probe_filesystem_full(
211 int fd,
212 const char *path,
213 uint64_t offset,
214 uint64_t size,
215 char **ret_fstype) {
216
217 /* Try to find device content type and return it in *ret_fstype. If nothing is found,
218 * 0/NULL will be returned. -EUCLEAN will be returned for ambiguous results, and a
219 * different error otherwise. */
220
221 #if HAVE_BLKID
222 _cleanup_(blkid_free_probep) blkid_probe b = NULL;
223 _cleanup_free_ char *path_by_fd = NULL;
224 _cleanup_close_ int fd_close = -EBADF;
225 const char *fstype;
226 int r;
227
228 assert(fd >= 0 || path);
229 assert(ret_fstype);
230
231 if (fd < 0) {
232 fd_close = open(path, O_RDONLY|O_NONBLOCK|O_CLOEXEC|O_NOCTTY);
233 if (fd_close < 0)
234 return -errno;
235
236 fd = fd_close;
237 }
238
239 if (!path) {
240 r = fd_get_path(fd, &path_by_fd);
241 if (r < 0)
242 return r;
243
244 path = path_by_fd;
245 }
246
247 if (size == 0) /* empty size? nothing found! */
248 goto not_found;
249
250 b = blkid_new_probe();
251 if (!b)
252 return -ENOMEM;
253
254 errno = 0;
255 r = blkid_probe_set_device(
256 b,
257 fd,
258 offset,
259 size == UINT64_MAX ? 0 : size); /* when blkid sees size=0 it understands "everything". We prefer using UINT64_MAX for that */
260 if (r != 0)
261 return errno_or_else(ENOMEM);
262
263 blkid_probe_enable_superblocks(b, 1);
264 blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE);
265
266 errno = 0;
267 r = blkid_do_safeprobe(b);
268 if (r == _BLKID_SAFEPROBE_NOT_FOUND)
269 goto not_found;
270 if (r == _BLKID_SAFEPROBE_AMBIGUOUS)
271 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN),
272 "Results ambiguous for partition %s", path);
273 if (r == _BLKID_SAFEPROBE_ERROR)
274 return log_debug_errno(errno_or_else(EIO), "Failed to probe partition %s: %m", path);
275
276 assert(r == _BLKID_SAFEPROBE_FOUND);
277
278 (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
279
280 if (fstype) {
281 char *t;
282
283 log_debug("Probed fstype '%s' on partition %s.", fstype, path);
284
285 t = strdup(fstype);
286 if (!t)
287 return -ENOMEM;
288
289 *ret_fstype = t;
290 return 1;
291 }
292
293 not_found:
294 log_debug("No type detected on partition %s", path);
295 *ret_fstype = NULL;
296 return 0;
297 #else
298 return -EOPNOTSUPP;
299 #endif
300 }
301
302 #if HAVE_BLKID
303 static int dissected_image_probe_filesystems(DissectedImage *m, int fd) {
304 int r;
305
306 assert(m);
307
308 /* Fill in file system types if we don't know them yet. */
309
310 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
311 DissectedPartition *p = m->partitions + i;
312
313 if (!p->found)
314 continue;
315
316 if (!p->fstype) {
317 /* If we have an fd referring to the partition block device, use that. Otherwise go
318 * via the whole block device or backing regular file, and read via offset. */
319 if (p->mount_node_fd >= 0)
320 r = probe_filesystem_full(p->mount_node_fd, p->node, 0, UINT64_MAX, &p->fstype);
321 else
322 r = probe_filesystem_full(fd, p->node, p->offset, p->size, &p->fstype);
323 if (r < 0)
324 return r;
325 }
326
327 if (streq_ptr(p->fstype, "crypto_LUKS"))
328 m->encrypted = true;
329
330 if (p->fstype && fstype_is_ro(p->fstype))
331 p->rw = false;
332
333 if (!p->rw)
334 p->growfs = false;
335 }
336
337 return 0;
338 }
339
340 static void check_partition_flags(
341 const char *node,
342 unsigned long long pflags,
343 unsigned long long supported) {
344
345 assert(node);
346
347 /* Mask away all flags supported by this partition's type and the three flags the UEFI spec defines generically */
348 pflags &= ~(supported |
349 SD_GPT_FLAG_REQUIRED_PARTITION |
350 SD_GPT_FLAG_NO_BLOCK_IO_PROTOCOL |
351 SD_GPT_FLAG_LEGACY_BIOS_BOOTABLE);
352
353 if (pflags == 0)
354 return;
355
356 /* If there are other bits set, then log about it, to make things discoverable */
357 for (unsigned i = 0; i < sizeof(pflags) * 8; i++) {
358 unsigned long long bit = 1ULL << i;
359 if (!FLAGS_SET(pflags, bit))
360 continue;
361
362 log_debug("Unexpected partition flag %llu set on %s!", bit, node);
363 }
364 }
365 #endif
366
367 #if HAVE_BLKID
368 static int dissected_image_new(const char *path, DissectedImage **ret) {
369 _cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
370 _cleanup_free_ char *name = NULL;
371 int r;
372
373 assert(ret);
374
375 if (path) {
376 _cleanup_free_ char *filename = NULL;
377
378 r = path_extract_filename(path, &filename);
379 if (r < 0)
380 return r;
381
382 r = raw_strip_suffixes(filename, &name);
383 if (r < 0)
384 return r;
385
386 if (!image_name_is_valid(name)) {
387 log_debug("Image name %s is not valid, ignoring.", strna(name));
388 name = mfree(name);
389 }
390 }
391
392 m = new(DissectedImage, 1);
393 if (!m)
394 return -ENOMEM;
395
396 *m = (DissectedImage) {
397 .has_init_system = -1,
398 .image_name = TAKE_PTR(name),
399 };
400
401 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++)
402 m->partitions[i] = DISSECTED_PARTITION_NULL;
403
404 *ret = TAKE_PTR(m);
405 return 0;
406 }
407 #endif
408
409 static void dissected_partition_done(DissectedPartition *p) {
410 assert(p);
411
412 free(p->fstype);
413 free(p->node);
414 free(p->label);
415 free(p->decrypted_fstype);
416 free(p->decrypted_node);
417 free(p->mount_options);
418 safe_close(p->mount_node_fd);
419
420 *p = DISSECTED_PARTITION_NULL;
421 }
422
423 #if HAVE_BLKID
424 static int make_partition_devname(
425 const char *whole_devname,
426 uint64_t diskseq,
427 int nr,
428 DissectImageFlags flags,
429 char **ret) {
430
431 _cleanup_free_ char *s = NULL;
432 int r;
433
434 assert(whole_devname);
435 assert(nr != 0); /* zero is not a valid partition nr */
436 assert(ret);
437
438 if (!FLAGS_SET(flags, DISSECT_IMAGE_DISKSEQ_DEVNODE) || diskseq == 0) {
439
440 /* Given a whole block device node name (e.g. /dev/sda or /dev/loop7) generate a partition
441 * device name (e.g. /dev/sda7 or /dev/loop7p5). The rule the kernel uses is simple: if whole
442 * block device node name ends in a digit, then suffix a 'p', followed by the partition
443 * number. Otherwise, just suffix the partition number without any 'p'. */
444
445 if (nr < 0) { /* whole disk? */
446 s = strdup(whole_devname);
447 if (!s)
448 return -ENOMEM;
449 } else {
450 size_t l = strlen(whole_devname);
451 if (l < 1) /* underflow check for the subtraction below */
452 return -EINVAL;
453
454 bool need_p = ascii_isdigit(whole_devname[l-1]); /* Last char a digit? */
455
456 if (asprintf(&s, "%s%s%i", whole_devname, need_p ? "p" : "", nr) < 0)
457 return -ENOMEM;
458 }
459 } else {
460 if (nr < 0) /* whole disk? */
461 r = asprintf(&s, "/dev/disk/by-diskseq/%" PRIu64, diskseq);
462 else
463 r = asprintf(&s, "/dev/disk/by-diskseq/%" PRIu64 "-part%i", diskseq, nr);
464 if (r < 0)
465 return -ENOMEM;
466 }
467
468 *ret = TAKE_PTR(s);
469 return 0;
470 }
471
472 static int open_partition(
473 const char *node,
474 bool is_partition,
475 const LoopDevice *loop) {
476
477 _cleanup_(sd_device_unrefp) sd_device *dev = NULL;
478 _cleanup_close_ int fd = -EBADF;
479 dev_t devnum;
480 int r;
481
482 assert(node);
483 assert(loop);
484
485 fd = open(node, O_RDONLY|O_NONBLOCK|O_CLOEXEC|O_NOCTTY);
486 if (fd < 0)
487 return -errno;
488
489 /* Check if the block device is a child of (or equivalent to) the originally provided one. */
490 r = block_device_new_from_fd(fd, is_partition ? BLOCK_DEVICE_LOOKUP_WHOLE_DISK : 0, &dev);
491 if (r < 0)
492 return r;
493
494 r = sd_device_get_devnum(dev, &devnum);
495 if (r < 0)
496 return r;
497
498 if (loop->devno != devnum)
499 return -ENXIO;
500
501 /* Also check diskseq. */
502 if (loop->diskseq != 0) {
503 uint64_t diskseq;
504
505 r = fd_get_diskseq(fd, &diskseq);
506 if (r < 0)
507 return r;
508
509 if (loop->diskseq != diskseq)
510 return -ENXIO;
511 }
512
513 log_debug("Opened %s (fd=%i, whole_block_devnum=" DEVNUM_FORMAT_STR ", diskseq=%" PRIu64 ").",
514 node, fd, DEVNUM_FORMAT_VAL(loop->devno), loop->diskseq);
515 return TAKE_FD(fd);
516 }
517
518 static int compare_arch(Architecture a, Architecture b) {
519 if (a == b)
520 return 0;
521
522 if (a == native_architecture())
523 return 1;
524
525 if (b == native_architecture())
526 return -1;
527
528 #ifdef ARCHITECTURE_SECONDARY
529 if (a == ARCHITECTURE_SECONDARY)
530 return 1;
531
532 if (b == ARCHITECTURE_SECONDARY)
533 return -1;
534 #endif
535
536 return 0;
537 }
538
539 static int dissect_image(
540 DissectedImage *m,
541 int fd,
542 const char *devname,
543 const VeritySettings *verity,
544 const MountOptions *mount_options,
545 DissectImageFlags flags) {
546
547 sd_id128_t root_uuid = SD_ID128_NULL, root_verity_uuid = SD_ID128_NULL;
548 sd_id128_t usr_uuid = SD_ID128_NULL, usr_verity_uuid = SD_ID128_NULL;
549 bool is_gpt, is_mbr, multiple_generic = false,
550 generic_rw = false, /* initialize to appease gcc */
551 generic_growfs = false;
552 _cleanup_(blkid_free_probep) blkid_probe b = NULL;
553 _cleanup_free_ char *generic_node = NULL;
554 sd_id128_t generic_uuid = SD_ID128_NULL;
555 const char *pttype = NULL, *sptuuid = NULL;
556 blkid_partlist pl;
557 int r, generic_nr = -1, n_partitions;
558
559 assert(m);
560 assert(fd >= 0);
561 assert(devname);
562 assert(!verity || verity->designator < 0 || IN_SET(verity->designator, PARTITION_ROOT, PARTITION_USR));
563 assert(!verity || verity->root_hash || verity->root_hash_size == 0);
564 assert(!verity || verity->root_hash_sig || verity->root_hash_sig_size == 0);
565 assert(!verity || (verity->root_hash || !verity->root_hash_sig));
566 assert(!((flags & DISSECT_IMAGE_GPT_ONLY) && (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)));
567 assert(m->sector_size > 0);
568
569 /* Probes a disk image, and returns information about what it found in *ret.
570 *
571 * Returns -ENOPKG if no suitable partition table or file system could be found.
572 * Returns -EADDRNOTAVAIL if a root hash was specified but no matching root/verity partitions found.
573 * Returns -ENXIO if we couldn't find any partition suitable as root or /usr partition
574 * Returns -ENOTUNIQ if we only found multiple generic partitions and thus don't know what to do with that */
575
576 uint64_t diskseq = m->loop ? m->loop->diskseq : 0;
577
578 if (verity && verity->root_hash) {
579 sd_id128_t fsuuid, vuuid;
580
581 /* If a root hash is supplied, then we use the root partition that has a UUID that match the
582 * first 128bit of the root hash. And we use the verity partition that has a UUID that match
583 * the final 128bit. */
584
585 if (verity->root_hash_size < sizeof(sd_id128_t))
586 return -EINVAL;
587
588 memcpy(&fsuuid, verity->root_hash, sizeof(sd_id128_t));
589 memcpy(&vuuid, (const uint8_t*) verity->root_hash + verity->root_hash_size - sizeof(sd_id128_t), sizeof(sd_id128_t));
590
591 if (sd_id128_is_null(fsuuid))
592 return -EINVAL;
593 if (sd_id128_is_null(vuuid))
594 return -EINVAL;
595
596 /* If the verity data declares it's for the /usr partition, then search for that, in all
597 * other cases assume it's for the root partition. */
598 if (verity->designator == PARTITION_USR) {
599 usr_uuid = fsuuid;
600 usr_verity_uuid = vuuid;
601 } else {
602 root_uuid = fsuuid;
603 root_verity_uuid = vuuid;
604 }
605 }
606
607 b = blkid_new_probe();
608 if (!b)
609 return -ENOMEM;
610
611 errno = 0;
612 r = blkid_probe_set_device(b, fd, 0, 0);
613 if (r != 0)
614 return errno_or_else(ENOMEM);
615
616 errno = 0;
617 r = blkid_probe_set_sectorsize(b, m->sector_size);
618 if (r != 0)
619 return errno_or_else(EIO);
620
621 if ((flags & DISSECT_IMAGE_GPT_ONLY) == 0) {
622 /* Look for file system superblocks, unless we only shall look for GPT partition tables */
623 blkid_probe_enable_superblocks(b, 1);
624 blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE|BLKID_SUBLKS_USAGE|BLKID_SUBLKS_UUID);
625 }
626
627 blkid_probe_enable_partitions(b, 1);
628 blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS);
629
630 errno = 0;
631 r = blkid_do_safeprobe(b);
632 if (r == _BLKID_SAFEPROBE_ERROR)
633 return errno_or_else(EIO);
634 if (IN_SET(r, _BLKID_SAFEPROBE_AMBIGUOUS, _BLKID_SAFEPROBE_NOT_FOUND))
635 return log_debug_errno(SYNTHETIC_ERRNO(ENOPKG), "Failed to identify any partition table.");
636
637 assert(r == _BLKID_SAFEPROBE_FOUND);
638
639 if ((!(flags & DISSECT_IMAGE_GPT_ONLY) &&
640 (flags & DISSECT_IMAGE_GENERIC_ROOT)) ||
641 (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)) {
642 const char *usage = NULL;
643
644 /* If flags permit this, also allow using non-partitioned single-filesystem images */
645
646 (void) blkid_probe_lookup_value(b, "USAGE", &usage, NULL);
647 if (STRPTR_IN_SET(usage, "filesystem", "crypto")) {
648 _cleanup_free_ char *t = NULL, *n = NULL, *o = NULL;
649 const char *fstype = NULL, *options = NULL, *suuid = NULL;
650 _cleanup_close_ int mount_node_fd = -EBADF;
651 sd_id128_t uuid = SD_ID128_NULL;
652
653 if (FLAGS_SET(flags, DISSECT_IMAGE_PIN_PARTITION_DEVICES)) {
654 mount_node_fd = open_partition(devname, /* is_partition = */ false, m->loop);
655 if (mount_node_fd < 0)
656 return mount_node_fd;
657 }
658
659 /* OK, we have found a file system, that's our root partition then. */
660 (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
661 (void) blkid_probe_lookup_value(b, "UUID", &suuid, NULL);
662
663 if (fstype) {
664 t = strdup(fstype);
665 if (!t)
666 return -ENOMEM;
667 }
668
669 if (suuid) {
670 /* blkid will return FAT's serial number as UUID, hence it is quite possible
671 * that parsing this will fail. We'll ignore the ID, since it's just too
672 * short to be useful as tru identifier. */
673 r = sd_id128_from_string(suuid, &uuid);
674 if (r < 0)
675 log_debug_errno(r, "Failed to parse file system UUID '%s', ignoring: %m", suuid);
676 }
677
678 r = make_partition_devname(devname, diskseq, -1, flags, &n);
679 if (r < 0)
680 return r;
681
682 m->single_file_system = true;
683 m->encrypted = streq_ptr(fstype, "crypto_LUKS");
684
685 m->has_verity = verity && verity->data_path;
686 m->verity_ready = verity_settings_data_covers(verity, PARTITION_ROOT);
687
688 m->has_verity_sig = false; /* signature not embedded, must be specified */
689 m->verity_sig_ready = m->verity_ready && verity->root_hash_sig;
690
691 m->image_uuid = uuid;
692
693 options = mount_options_from_designator(mount_options, PARTITION_ROOT);
694 if (options) {
695 o = strdup(options);
696 if (!o)
697 return -ENOMEM;
698 }
699
700 m->partitions[PARTITION_ROOT] = (DissectedPartition) {
701 .found = true,
702 .rw = !m->verity_ready && !fstype_is_ro(fstype),
703 .partno = -1,
704 .architecture = _ARCHITECTURE_INVALID,
705 .fstype = TAKE_PTR(t),
706 .node = TAKE_PTR(n),
707 .mount_options = TAKE_PTR(o),
708 .mount_node_fd = TAKE_FD(mount_node_fd),
709 .offset = 0,
710 .size = UINT64_MAX,
711 };
712
713 return 0;
714 }
715 }
716
717 (void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL);
718 if (!pttype)
719 return -ENOPKG;
720
721 is_gpt = streq_ptr(pttype, "gpt");
722 is_mbr = streq_ptr(pttype, "dos");
723
724 if (!is_gpt && ((flags & DISSECT_IMAGE_GPT_ONLY) || !is_mbr))
725 return -ENOPKG;
726
727 /* We support external verity data partitions only if the image has no partition table */
728 if (verity && verity->data_path)
729 return -EBADR;
730
731 if (FLAGS_SET(flags, DISSECT_IMAGE_ADD_PARTITION_DEVICES)) {
732 /* Safety check: refuse block devices that carry a partition table but for which the kernel doesn't
733 * do partition scanning. */
734 r = blockdev_partscan_enabled(fd);
735 if (r < 0)
736 return r;
737 if (r == 0)
738 return -EPROTONOSUPPORT;
739 }
740
741 (void) blkid_probe_lookup_value(b, "PTUUID", &sptuuid, NULL);
742 if (sptuuid) {
743 r = sd_id128_from_string(sptuuid, &m->image_uuid);
744 if (r < 0)
745 log_debug_errno(r, "Failed to parse partition table UUID '%s', ignoring: %m", sptuuid);
746 }
747
748 errno = 0;
749 pl = blkid_probe_get_partitions(b);
750 if (!pl)
751 return errno_or_else(ENOMEM);
752
753 errno = 0;
754 n_partitions = blkid_partlist_numof_partitions(pl);
755 if (n_partitions < 0)
756 return errno_or_else(EIO);
757
758 for (int i = 0; i < n_partitions; i++) {
759 _cleanup_free_ char *node = NULL;
760 unsigned long long pflags;
761 blkid_loff_t start, size;
762 blkid_partition pp;
763 int nr;
764
765 errno = 0;
766 pp = blkid_partlist_get_partition(pl, i);
767 if (!pp)
768 return errno_or_else(EIO);
769
770 pflags = blkid_partition_get_flags(pp);
771
772 errno = 0;
773 nr = blkid_partition_get_partno(pp);
774 if (nr < 0)
775 return errno_or_else(EIO);
776
777 errno = 0;
778 start = blkid_partition_get_start(pp);
779 if (start < 0)
780 return errno_or_else(EIO);
781
782 assert((uint64_t) start < UINT64_MAX/512);
783
784 errno = 0;
785 size = blkid_partition_get_size(pp);
786 if (size < 0)
787 return errno_or_else(EIO);
788
789 assert((uint64_t) size < UINT64_MAX/512);
790
791 /* While probing we need the non-diskseq device node name to access the thing, hence mask off
792 * DISSECT_IMAGE_DISKSEQ_DEVNODE. */
793 r = make_partition_devname(devname, diskseq, nr, flags & ~DISSECT_IMAGE_DISKSEQ_DEVNODE, &node);
794 if (r < 0)
795 return r;
796
797 /* So here's the thing: after the main ("whole") block device popped up it might take a while
798 * before the kernel fully probed the partition table. Waiting for that to finish is icky in
799 * userspace. So here's what we do instead. We issue the BLKPG_ADD_PARTITION ioctl to add the
800 * partition ourselves, racing against the kernel. Good thing is: if this call fails with
801 * EBUSY then the kernel was quicker than us, and that's totally OK, the outcome is good for
802 * us: the device node will exist. If OTOH our call was successful we won the race. Which is
803 * also good as the outcome is the same: the partition block device exists, and we can use
804 * it.
805 *
806 * Kernel returns EBUSY if there's already a partition by that number or an overlapping
807 * partition already existent. */
808
809 if (FLAGS_SET(flags, DISSECT_IMAGE_ADD_PARTITION_DEVICES)) {
810 r = block_device_add_partition(fd, node, nr, (uint64_t) start * 512, (uint64_t) size * 512);
811 if (r < 0) {
812 if (r != -EBUSY)
813 return log_debug_errno(r, "BLKPG_ADD_PARTITION failed: %m");
814
815 log_debug_errno(r, "Kernel was quicker than us in adding partition %i.", nr);
816 } else
817 log_debug("We were quicker than kernel in adding partition %i.", nr);
818 }
819
820 if (is_gpt) {
821 const char *fstype = NULL, *label;
822 sd_id128_t type_id, id;
823 GptPartitionType type;
824 bool rw = true, growfs = false;
825
826 r = blkid_partition_get_uuid_id128(pp, &id);
827 if (r < 0) {
828 log_debug_errno(r, "Failed to read partition UUID, ignoring: %m");
829 continue;
830 }
831
832 r = blkid_partition_get_type_id128(pp, &type_id);
833 if (r < 0) {
834 log_debug_errno(r, "Failed to read partition type UUID, ignoring: %m");
835 continue;
836 }
837
838 type = gpt_partition_type_from_uuid(type_id);
839
840 label = blkid_partition_get_name(pp); /* libblkid returns NULL here if empty */
841
842 if (IN_SET(type.designator,
843 PARTITION_HOME,
844 PARTITION_SRV,
845 PARTITION_XBOOTLDR,
846 PARTITION_TMP)) {
847
848 check_partition_flags(node, pflags,
849 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
850
851 if (pflags & SD_GPT_FLAG_NO_AUTO)
852 continue;
853
854 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
855 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
856
857 } else if (type.designator == PARTITION_ESP) {
858
859 /* Note that we don't check the SD_GPT_FLAG_NO_AUTO flag for the ESP, as it is
860 * not defined there. We instead check the SD_GPT_FLAG_NO_BLOCK_IO_PROTOCOL, as
861 * recommended by the UEFI spec (See "12.3.3 Number and Location of System
862 * Partitions"). */
863
864 if (pflags & SD_GPT_FLAG_NO_BLOCK_IO_PROTOCOL)
865 continue;
866
867 fstype = "vfat";
868
869 } else if (type.designator == PARTITION_ROOT) {
870
871 check_partition_flags(node, pflags,
872 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
873
874 if (pflags & SD_GPT_FLAG_NO_AUTO)
875 continue;
876
877 /* If a root ID is specified, ignore everything but the root id */
878 if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id))
879 continue;
880
881 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
882 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
883
884 } else if (type.designator == PARTITION_ROOT_VERITY) {
885
886 check_partition_flags(node, pflags,
887 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY);
888
889 if (pflags & SD_GPT_FLAG_NO_AUTO)
890 continue;
891
892 m->has_verity = true;
893
894 /* If no verity configuration is specified, then don't do verity */
895 if (!verity)
896 continue;
897 if (verity->designator >= 0 && verity->designator != PARTITION_ROOT)
898 continue;
899
900 /* If root hash is specified, then ignore everything but the root id */
901 if (!sd_id128_is_null(root_verity_uuid) && !sd_id128_equal(root_verity_uuid, id))
902 continue;
903
904 fstype = "DM_verity_hash";
905 rw = false;
906
907 } else if (type.designator == PARTITION_ROOT_VERITY_SIG) {
908
909 check_partition_flags(node, pflags,
910 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY);
911
912 if (pflags & SD_GPT_FLAG_NO_AUTO)
913 continue;
914
915 m->has_verity_sig = true;
916
917 if (!verity)
918 continue;
919 if (verity->designator >= 0 && verity->designator != PARTITION_ROOT)
920 continue;
921
922 fstype = "verity_hash_signature";
923 rw = false;
924
925 } else if (type.designator == PARTITION_USR) {
926
927 check_partition_flags(node, pflags,
928 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
929
930 if (pflags & SD_GPT_FLAG_NO_AUTO)
931 continue;
932
933 /* If a usr ID is specified, ignore everything but the usr id */
934 if (!sd_id128_is_null(usr_uuid) && !sd_id128_equal(usr_uuid, id))
935 continue;
936
937 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
938 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
939
940 } else if (type.designator == PARTITION_USR_VERITY) {
941
942 check_partition_flags(node, pflags,
943 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY);
944
945 if (pflags & SD_GPT_FLAG_NO_AUTO)
946 continue;
947
948 m->has_verity = true;
949
950 if (!verity)
951 continue;
952 if (verity->designator >= 0 && verity->designator != PARTITION_USR)
953 continue;
954
955 /* If usr hash is specified, then ignore everything but the usr id */
956 if (!sd_id128_is_null(usr_verity_uuid) && !sd_id128_equal(usr_verity_uuid, id))
957 continue;
958
959 fstype = "DM_verity_hash";
960 rw = false;
961
962 } else if (type.designator == PARTITION_USR_VERITY_SIG) {
963
964 check_partition_flags(node, pflags,
965 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY);
966
967 if (pflags & SD_GPT_FLAG_NO_AUTO)
968 continue;
969
970 m->has_verity_sig = true;
971
972 if (!verity)
973 continue;
974 if (verity->designator >= 0 && verity->designator != PARTITION_USR)
975 continue;
976
977 fstype = "verity_hash_signature";
978 rw = false;
979
980 } else if (type.designator == PARTITION_SWAP) {
981
982 check_partition_flags(node, pflags, SD_GPT_FLAG_NO_AUTO);
983
984 if (pflags & SD_GPT_FLAG_NO_AUTO)
985 continue;
986
987 fstype = "swap";
988
989 /* We don't have a designator for SD_GPT_LINUX_GENERIC so check the UUID instead. */
990 } else if (sd_id128_equal(type.uuid, SD_GPT_LINUX_GENERIC)) {
991
992 check_partition_flags(node, pflags,
993 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
994
995 if (pflags & SD_GPT_FLAG_NO_AUTO)
996 continue;
997
998 if (generic_node)
999 multiple_generic = true;
1000 else {
1001 generic_nr = nr;
1002 generic_rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
1003 generic_growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
1004 generic_uuid = id;
1005 generic_node = TAKE_PTR(node);
1006 }
1007
1008 } else if (type.designator == PARTITION_VAR) {
1009
1010 check_partition_flags(node, pflags,
1011 SD_GPT_FLAG_NO_AUTO | SD_GPT_FLAG_READ_ONLY | SD_GPT_FLAG_GROWFS);
1012
1013 if (pflags & SD_GPT_FLAG_NO_AUTO)
1014 continue;
1015
1016 if (!FLAGS_SET(flags, DISSECT_IMAGE_RELAX_VAR_CHECK)) {
1017 sd_id128_t var_uuid;
1018
1019 /* For /var we insist that the uuid of the partition matches the
1020 * HMAC-SHA256 of the /var GPT partition type uuid, keyed by machine
1021 * ID. Why? Unlike the other partitions /var is inherently
1022 * installation specific, hence we need to be careful not to mount it
1023 * in the wrong installation. By hashing the partition UUID from
1024 * /etc/machine-id we can securely bind the partition to the
1025 * installation. */
1026
1027 r = sd_id128_get_machine_app_specific(SD_GPT_VAR, &var_uuid);
1028 if (r < 0)
1029 return r;
1030
1031 if (!sd_id128_equal(var_uuid, id)) {
1032 log_debug("Found a /var/ partition, but its UUID didn't match our expectations "
1033 "(found: " SD_ID128_UUID_FORMAT_STR ", expected: " SD_ID128_UUID_FORMAT_STR "), ignoring.",
1034 SD_ID128_FORMAT_VAL(id), SD_ID128_FORMAT_VAL(var_uuid));
1035 continue;
1036 }
1037 }
1038
1039 rw = !(pflags & SD_GPT_FLAG_READ_ONLY);
1040 growfs = FLAGS_SET(pflags, SD_GPT_FLAG_GROWFS);
1041 }
1042
1043 if (type.designator != _PARTITION_DESIGNATOR_INVALID) {
1044 _cleanup_free_ char *t = NULL, *o = NULL, *l = NULL, *n = NULL;
1045 _cleanup_close_ int mount_node_fd = -EBADF;
1046 const char *options = NULL;
1047
1048 if (m->partitions[type.designator].found) {
1049 /* For most partition types the first one we see wins. Except for the
1050 * rootfs and /usr, where we do a version compare of the label, and
1051 * let the newest version win. This permits a simple A/B versioning
1052 * scheme in OS images. */
1053
1054 if (compare_arch(type.arch, m->partitions[type.designator].architecture) <= 0)
1055 continue;
1056
1057 if (!partition_designator_is_versioned(type.designator) ||
1058 strverscmp_improved(m->partitions[type.designator].label, label) >= 0)
1059 continue;
1060
1061 dissected_partition_done(m->partitions + type.designator);
1062 }
1063
1064 if (FLAGS_SET(flags, DISSECT_IMAGE_PIN_PARTITION_DEVICES) &&
1065 type.designator != PARTITION_SWAP) {
1066 mount_node_fd = open_partition(node, /* is_partition = */ true, m->loop);
1067 if (mount_node_fd < 0)
1068 return mount_node_fd;
1069 }
1070
1071 r = make_partition_devname(devname, diskseq, nr, flags, &n);
1072 if (r < 0)
1073 return r;
1074
1075 if (fstype) {
1076 t = strdup(fstype);
1077 if (!t)
1078 return -ENOMEM;
1079 }
1080
1081 if (label) {
1082 l = strdup(label);
1083 if (!l)
1084 return -ENOMEM;
1085 }
1086
1087 options = mount_options_from_designator(mount_options, type.designator);
1088 if (options) {
1089 o = strdup(options);
1090 if (!o)
1091 return -ENOMEM;
1092 }
1093
1094 m->partitions[type.designator] = (DissectedPartition) {
1095 .found = true,
1096 .partno = nr,
1097 .rw = rw,
1098 .growfs = growfs,
1099 .architecture = type.arch,
1100 .node = TAKE_PTR(n),
1101 .fstype = TAKE_PTR(t),
1102 .label = TAKE_PTR(l),
1103 .uuid = id,
1104 .mount_options = TAKE_PTR(o),
1105 .mount_node_fd = TAKE_FD(mount_node_fd),
1106 .offset = (uint64_t) start * 512,
1107 .size = (uint64_t) size * 512,
1108 .gpt_flags = pflags,
1109 };
1110 }
1111
1112 } else if (is_mbr) {
1113
1114 switch (blkid_partition_get_type(pp)) {
1115
1116 case 0x83: /* Linux partition */
1117
1118 if (pflags != 0x80) /* Bootable flag */
1119 continue;
1120
1121 if (generic_node)
1122 multiple_generic = true;
1123 else {
1124 generic_nr = nr;
1125 generic_rw = true;
1126 generic_growfs = false;
1127 generic_node = TAKE_PTR(node);
1128 }
1129
1130 break;
1131
1132 case 0xEA: { /* Boot Loader Spec extended $BOOT partition */
1133 _cleanup_close_ int mount_node_fd = -EBADF;
1134 _cleanup_free_ char *o = NULL, *n = NULL;
1135 sd_id128_t id = SD_ID128_NULL;
1136 const char *options = NULL;
1137
1138 /* First one wins */
1139 if (m->partitions[PARTITION_XBOOTLDR].found)
1140 continue;
1141
1142 if (FLAGS_SET(flags, DISSECT_IMAGE_PIN_PARTITION_DEVICES)) {
1143 mount_node_fd = open_partition(node, /* is_partition = */ true, m->loop);
1144 if (mount_node_fd < 0)
1145 return mount_node_fd;
1146 }
1147
1148 (void) blkid_partition_get_uuid_id128(pp, &id);
1149
1150 r = make_partition_devname(devname, diskseq, nr, flags, &n);
1151 if (r < 0)
1152 return r;
1153
1154 options = mount_options_from_designator(mount_options, PARTITION_XBOOTLDR);
1155 if (options) {
1156 o = strdup(options);
1157 if (!o)
1158 return -ENOMEM;
1159 }
1160
1161 m->partitions[PARTITION_XBOOTLDR] = (DissectedPartition) {
1162 .found = true,
1163 .partno = nr,
1164 .rw = true,
1165 .growfs = false,
1166 .architecture = _ARCHITECTURE_INVALID,
1167 .node = TAKE_PTR(n),
1168 .uuid = id,
1169 .mount_options = TAKE_PTR(o),
1170 .mount_node_fd = TAKE_FD(mount_node_fd),
1171 .offset = (uint64_t) start * 512,
1172 .size = (uint64_t) size * 512,
1173 };
1174
1175 break;
1176 }}
1177 }
1178 }
1179
1180 if (!m->partitions[PARTITION_ROOT].found &&
1181 (m->partitions[PARTITION_ROOT_VERITY].found ||
1182 m->partitions[PARTITION_ROOT_VERITY_SIG].found))
1183 return -EADDRNOTAVAIL; /* Verity found but no matching rootfs? Something is off, refuse. */
1184
1185 /* Hmm, we found a signature partition but no Verity data? Something is off. */
1186 if (m->partitions[PARTITION_ROOT_VERITY_SIG].found && !m->partitions[PARTITION_ROOT_VERITY].found)
1187 return -EADDRNOTAVAIL;
1188
1189 if (!m->partitions[PARTITION_USR].found &&
1190 (m->partitions[PARTITION_USR_VERITY].found ||
1191 m->partitions[PARTITION_USR_VERITY_SIG].found))
1192 return -EADDRNOTAVAIL; /* as above */
1193
1194 /* as above */
1195 if (m->partitions[PARTITION_USR_VERITY_SIG].found && !m->partitions[PARTITION_USR_VERITY].found)
1196 return -EADDRNOTAVAIL;
1197
1198 /* If root and /usr are combined then insist that the architecture matches */
1199 if (m->partitions[PARTITION_ROOT].found &&
1200 m->partitions[PARTITION_USR].found &&
1201 (m->partitions[PARTITION_ROOT].architecture >= 0 &&
1202 m->partitions[PARTITION_USR].architecture >= 0 &&
1203 m->partitions[PARTITION_ROOT].architecture != m->partitions[PARTITION_USR].architecture))
1204 return -EADDRNOTAVAIL;
1205
1206 if (!m->partitions[PARTITION_ROOT].found &&
1207 !m->partitions[PARTITION_USR].found &&
1208 (flags & DISSECT_IMAGE_GENERIC_ROOT) &&
1209 (!verity || !verity->root_hash || verity->designator != PARTITION_USR)) {
1210
1211 /* OK, we found nothing usable, then check if there's a single generic partition, and use
1212 * that. If the root hash was set however, then we won't fall back to a generic node, because
1213 * the root hash decides. */
1214
1215 /* If we didn't find a properly marked root partition, but we did find a single suitable
1216 * generic Linux partition, then use this as root partition, if the caller asked for it. */
1217 if (multiple_generic)
1218 return -ENOTUNIQ;
1219
1220 /* If we didn't find a generic node, then we can't fix this up either */
1221 if (generic_node) {
1222 _cleanup_close_ int mount_node_fd = -EBADF;
1223 _cleanup_free_ char *o = NULL, *n = NULL;
1224 const char *options;
1225
1226 if (FLAGS_SET(flags, DISSECT_IMAGE_PIN_PARTITION_DEVICES)) {
1227 mount_node_fd = open_partition(generic_node, /* is_partition = */ true, m->loop);
1228 if (mount_node_fd < 0)
1229 return mount_node_fd;
1230 }
1231
1232 r = make_partition_devname(devname, diskseq, generic_nr, flags, &n);
1233 if (r < 0)
1234 return r;
1235
1236 options = mount_options_from_designator(mount_options, PARTITION_ROOT);
1237 if (options) {
1238 o = strdup(options);
1239 if (!o)
1240 return -ENOMEM;
1241 }
1242
1243 assert(generic_nr >= 0);
1244 m->partitions[PARTITION_ROOT] = (DissectedPartition) {
1245 .found = true,
1246 .rw = generic_rw,
1247 .growfs = generic_growfs,
1248 .partno = generic_nr,
1249 .architecture = _ARCHITECTURE_INVALID,
1250 .node = TAKE_PTR(n),
1251 .uuid = generic_uuid,
1252 .mount_options = TAKE_PTR(o),
1253 .mount_node_fd = TAKE_FD(mount_node_fd),
1254 .offset = UINT64_MAX,
1255 .size = UINT64_MAX,
1256 };
1257 }
1258 }
1259
1260 /* Check if we have a root fs if we are told to do check. /usr alone is fine too, but only if appropriate flag for that is set too */
1261 if (FLAGS_SET(flags, DISSECT_IMAGE_REQUIRE_ROOT) &&
1262 !(m->partitions[PARTITION_ROOT].found || (m->partitions[PARTITION_USR].found && FLAGS_SET(flags, DISSECT_IMAGE_USR_NO_ROOT))))
1263 return -ENXIO;
1264
1265 if (m->partitions[PARTITION_ROOT_VERITY].found) {
1266 /* We only support one verity partition per image, i.e. can't do for both /usr and root fs */
1267 if (m->partitions[PARTITION_USR_VERITY].found)
1268 return -ENOTUNIQ;
1269
1270 /* We don't support verity enabled root with a split out /usr. Neither with nor without
1271 * verity there. (Note that we do support verity-less root with verity-full /usr, though.) */
1272 if (m->partitions[PARTITION_USR].found)
1273 return -EADDRNOTAVAIL;
1274 }
1275
1276 if (verity) {
1277 /* If a verity designator is specified, then insist that the matching partition exists */
1278 if (verity->designator >= 0 && !m->partitions[verity->designator].found)
1279 return -EADDRNOTAVAIL;
1280
1281 bool have_verity_sig_partition =
1282 m->partitions[verity->designator == PARTITION_USR ? PARTITION_USR_VERITY_SIG : PARTITION_ROOT_VERITY_SIG].found;
1283
1284 if (verity->root_hash) {
1285 /* If we have an explicit root hash and found the partitions for it, then we are ready to use
1286 * Verity, set things up for it */
1287
1288 if (verity->designator < 0 || verity->designator == PARTITION_ROOT) {
1289 if (!m->partitions[PARTITION_ROOT_VERITY].found || !m->partitions[PARTITION_ROOT].found)
1290 return -EADDRNOTAVAIL;
1291
1292 /* If we found a verity setup, then the root partition is necessarily read-only. */
1293 m->partitions[PARTITION_ROOT].rw = false;
1294 m->verity_ready = true;
1295
1296 } else {
1297 assert(verity->designator == PARTITION_USR);
1298
1299 if (!m->partitions[PARTITION_USR_VERITY].found || !m->partitions[PARTITION_USR].found)
1300 return -EADDRNOTAVAIL;
1301
1302 m->partitions[PARTITION_USR].rw = false;
1303 m->verity_ready = true;
1304 }
1305
1306 if (m->verity_ready)
1307 m->verity_sig_ready = verity->root_hash_sig || have_verity_sig_partition;
1308
1309 } else if (have_verity_sig_partition) {
1310
1311 /* If we found an embedded signature partition, we are ready, too. */
1312
1313 m->verity_ready = m->verity_sig_ready = true;
1314 m->partitions[verity->designator == PARTITION_USR ? PARTITION_USR : PARTITION_ROOT].rw = false;
1315 }
1316 }
1317
1318 r = dissected_image_probe_filesystems(m, fd);
1319 if (r < 0)
1320 return r;
1321
1322 return 0;
1323 }
1324 #endif
1325
1326 int dissect_image_file(
1327 const char *path,
1328 const VeritySettings *verity,
1329 const MountOptions *mount_options,
1330 DissectImageFlags flags,
1331 DissectedImage **ret) {
1332
1333 #if HAVE_BLKID
1334 _cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
1335 _cleanup_close_ int fd = -EBADF;
1336 int r;
1337
1338 assert(path);
1339 assert(ret);
1340
1341 fd = open(path, O_RDONLY|O_CLOEXEC|O_NONBLOCK|O_NOCTTY);
1342 if (fd < 0)
1343 return -errno;
1344
1345 r = fd_verify_regular(fd);
1346 if (r < 0)
1347 return r;
1348
1349 r = dissected_image_new(path, &m);
1350 if (r < 0)
1351 return r;
1352
1353 r = probe_sector_size(fd, &m->sector_size);
1354 if (r < 0)
1355 return r;
1356
1357 r = dissect_image(m, fd, path, verity, mount_options, flags);
1358 if (r < 0)
1359 return r;
1360
1361 *ret = TAKE_PTR(m);
1362 return 0;
1363 #else
1364 return -EOPNOTSUPP;
1365 #endif
1366 }
1367
1368 DissectedImage* dissected_image_unref(DissectedImage *m) {
1369 if (!m)
1370 return NULL;
1371
1372 /* First, clear dissected partitions. */
1373 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++)
1374 dissected_partition_done(m->partitions + i);
1375
1376 /* Second, free decrypted images. This must be after dissected_partition_done(), as freeing
1377 * DecryptedImage may try to deactivate partitions. */
1378 decrypted_image_unref(m->decrypted_image);
1379
1380 /* Third, unref LoopDevice. This must be called after the above two, as freeing LoopDevice may try to
1381 * remove existing partitions on the loopback block device. */
1382 loop_device_unref(m->loop);
1383
1384 free(m->image_name);
1385 free(m->hostname);
1386 strv_free(m->machine_info);
1387 strv_free(m->os_release);
1388 strv_free(m->initrd_release);
1389 strv_free(m->extension_release);
1390
1391 return mfree(m);
1392 }
1393
1394 static int is_loop_device(const char *path) {
1395 char s[SYS_BLOCK_PATH_MAX("/../loop/")];
1396 struct stat st;
1397
1398 assert(path);
1399
1400 if (stat(path, &st) < 0)
1401 return -errno;
1402
1403 if (!S_ISBLK(st.st_mode))
1404 return -ENOTBLK;
1405
1406 xsprintf_sys_block_path(s, "/loop/", st.st_dev);
1407 if (access(s, F_OK) < 0) {
1408 if (errno != ENOENT)
1409 return -errno;
1410
1411 /* The device itself isn't a loop device, but maybe it's a partition and its parent is? */
1412 xsprintf_sys_block_path(s, "/../loop/", st.st_dev);
1413 if (access(s, F_OK) < 0)
1414 return errno == ENOENT ? false : -errno;
1415 }
1416
1417 return true;
1418 }
1419
1420 static int run_fsck(int node_fd, const char *fstype) {
1421 int r, exit_status;
1422 pid_t pid;
1423
1424 assert(node_fd >= 0);
1425 assert(fstype);
1426
1427 r = fsck_exists_for_fstype(fstype);
1428 if (r < 0) {
1429 log_debug_errno(r, "Couldn't determine whether fsck for %s exists, proceeding anyway.", fstype);
1430 return 0;
1431 }
1432 if (r == 0) {
1433 log_debug("Not checking partition %s, as fsck for %s does not exist.", FORMAT_PROC_FD_PATH(node_fd), fstype);
1434 return 0;
1435 }
1436
1437 r = safe_fork_full(
1438 "(fsck)",
1439 &node_fd, 1, /* Leave the node fd open */
1440 FORK_RESET_SIGNALS|FORK_CLOSE_ALL_FDS|FORK_RLIMIT_NOFILE_SAFE|FORK_DEATHSIG|FORK_NULL_STDIO|FORK_CLOEXEC_OFF,
1441 &pid);
1442 if (r < 0)
1443 return log_debug_errno(r, "Failed to fork off fsck: %m");
1444 if (r == 0) {
1445 /* Child */
1446 execl("/sbin/fsck", "/sbin/fsck", "-aT", FORMAT_PROC_FD_PATH(node_fd), NULL);
1447 log_open();
1448 log_debug_errno(errno, "Failed to execl() fsck: %m");
1449 _exit(FSCK_OPERATIONAL_ERROR);
1450 }
1451
1452 exit_status = wait_for_terminate_and_check("fsck", pid, 0);
1453 if (exit_status < 0)
1454 return log_debug_errno(exit_status, "Failed to fork off /sbin/fsck: %m");
1455
1456 if ((exit_status & ~FSCK_ERROR_CORRECTED) != FSCK_SUCCESS) {
1457 log_debug("fsck failed with exit status %i.", exit_status);
1458
1459 if ((exit_status & (FSCK_SYSTEM_SHOULD_REBOOT|FSCK_ERRORS_LEFT_UNCORRECTED)) != 0)
1460 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN), "File system is corrupted, refusing.");
1461
1462 log_debug("Ignoring fsck error.");
1463 }
1464
1465 return 0;
1466 }
1467
1468 static int fs_grow(const char *node_path, const char *mount_path) {
1469 _cleanup_close_ int mount_fd = -EBADF, node_fd = -EBADF;
1470 uint64_t size, newsize;
1471 int r;
1472
1473 node_fd = open(node_path, O_RDONLY|O_CLOEXEC|O_NONBLOCK|O_NOCTTY);
1474 if (node_fd < 0)
1475 return log_debug_errno(errno, "Failed to open node device %s: %m", node_path);
1476
1477 if (ioctl(node_fd, BLKGETSIZE64, &size) != 0)
1478 return log_debug_errno(errno, "Failed to get block device size of %s: %m", node_path);
1479
1480 mount_fd = open(mount_path, O_RDONLY|O_DIRECTORY|O_CLOEXEC);
1481 if (mount_fd < 0)
1482 return log_debug_errno(errno, "Failed to open mountd file system %s: %m", mount_path);
1483
1484 log_debug("Resizing \"%s\" to %"PRIu64" bytes...", mount_path, size);
1485 r = resize_fs(mount_fd, size, &newsize);
1486 if (r < 0)
1487 return log_debug_errno(r, "Failed to resize \"%s\" to %"PRIu64" bytes: %m", mount_path, size);
1488
1489 if (newsize == size)
1490 log_debug("Successfully resized \"%s\" to %s bytes.",
1491 mount_path, FORMAT_BYTES(newsize));
1492 else {
1493 assert(newsize < size);
1494 log_debug("Successfully resized \"%s\" to %s bytes (%"PRIu64" bytes lost due to blocksize).",
1495 mount_path, FORMAT_BYTES(newsize), size - newsize);
1496 }
1497
1498 return 0;
1499 }
1500
1501 static int mount_partition(
1502 DissectedPartition *m,
1503 const char *where,
1504 const char *directory,
1505 uid_t uid_shift,
1506 uid_t uid_range,
1507 DissectImageFlags flags) {
1508
1509 _cleanup_free_ char *chased = NULL, *options = NULL;
1510 const char *p, *node, *fstype;
1511 bool rw, remap_uid_gid = false;
1512 int r;
1513
1514 assert(m);
1515 assert(where);
1516
1517 if (m->mount_node_fd < 0)
1518 return 0;
1519
1520 /* Use decrypted node and matching fstype if available, otherwise use the original device */
1521 node = FORMAT_PROC_FD_PATH(m->mount_node_fd);
1522 fstype = m->decrypted_node ? m->decrypted_fstype: m->fstype;
1523
1524 if (!fstype)
1525 return -EAFNOSUPPORT;
1526 r = dissect_fstype_ok(fstype);
1527 if (r < 0)
1528 return r;
1529 if (!r)
1530 return -EIDRM; /* Recognizable error */
1531
1532 /* We are looking at an encrypted partition? This either means stacked encryption, or the caller
1533 * didn't call dissected_image_decrypt() beforehand. Let's return a recognizable error for this
1534 * case. */
1535 if (streq(fstype, "crypto_LUKS"))
1536 return -EUNATCH;
1537
1538 rw = m->rw && !(flags & DISSECT_IMAGE_MOUNT_READ_ONLY);
1539
1540 if (FLAGS_SET(flags, DISSECT_IMAGE_FSCK) && rw) {
1541 r = run_fsck(m->mount_node_fd, fstype);
1542 if (r < 0)
1543 return r;
1544 }
1545
1546 if (directory) {
1547 /* Automatically create missing mount points inside the image, if necessary. */
1548 r = mkdir_p_root(where, directory, uid_shift, (gid_t) uid_shift, 0755);
1549 if (r < 0 && r != -EROFS)
1550 return r;
1551
1552 r = chase_symlinks(directory, where, CHASE_PREFIX_ROOT, &chased, NULL);
1553 if (r < 0)
1554 return r;
1555
1556 p = chased;
1557 } else {
1558 /* Create top-level mount if missing – but only if this is asked for. This won't modify the
1559 * image (as the branch above does) but the host hierarchy, and the created directory might
1560 * survive our mount in the host hierarchy hence. */
1561 if (FLAGS_SET(flags, DISSECT_IMAGE_MKDIR)) {
1562 r = mkdir_p(where, 0755);
1563 if (r < 0)
1564 return r;
1565 }
1566
1567 p = where;
1568 }
1569
1570 /* If requested, turn on discard support. */
1571 if (fstype_can_discard(fstype) &&
1572 ((flags & DISSECT_IMAGE_DISCARD) ||
1573 ((flags & DISSECT_IMAGE_DISCARD_ON_LOOP) && is_loop_device(m->node) > 0))) {
1574 options = strdup("discard");
1575 if (!options)
1576 return -ENOMEM;
1577 }
1578
1579 if (uid_is_valid(uid_shift) && uid_shift != 0) {
1580
1581 if (fstype_can_uid_gid(fstype)) {
1582 _cleanup_free_ char *uid_option = NULL;
1583
1584 if (asprintf(&uid_option, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0)
1585 return -ENOMEM;
1586
1587 if (!strextend_with_separator(&options, ",", uid_option))
1588 return -ENOMEM;
1589 } else if (FLAGS_SET(flags, DISSECT_IMAGE_MOUNT_IDMAPPED))
1590 remap_uid_gid = true;
1591 }
1592
1593 if (!isempty(m->mount_options))
1594 if (!strextend_with_separator(&options, ",", m->mount_options))
1595 return -ENOMEM;
1596
1597 /* So, when you request MS_RDONLY from ext4, then this means nothing. It happily still writes to the
1598 * backing storage. What's worse, the BLKRO[GS]ET flag and (in case of loopback devices)
1599 * LO_FLAGS_READ_ONLY don't mean anything, they affect userspace accesses only, and write accesses
1600 * from the upper file system still get propagated through to the underlying file system,
1601 * unrestricted. To actually get ext4/xfs/btrfs to stop writing to the device we need to specify
1602 * "norecovery" as mount option, in addition to MS_RDONLY. Yes, this sucks, since it means we need to
1603 * carry a per file system table here.
1604 *
1605 * Note that this means that we might not be able to mount corrupted file systems as read-only
1606 * anymore (since in some cases the kernel implementations will refuse mounting when corrupted,
1607 * read-only and "norecovery" is specified). But I think for the case of automatically determined
1608 * mount options for loopback devices this is the right choice, since otherwise using the same
1609 * loopback file twice even in read-only mode, is going to fail badly sooner or later. The usecase of
1610 * making reuse of the immutable images "just work" is more relevant to us than having read-only
1611 * access that actually modifies stuff work on such image files. Or to say this differently: if
1612 * people want their file systems to be fixed up they should just open them in writable mode, where
1613 * all these problems don't exist. */
1614 if (!rw && STRPTR_IN_SET(fstype, "ext3", "ext4", "xfs", "btrfs"))
1615 if (!strextend_with_separator(&options, ",", "norecovery"))
1616 return -ENOMEM;
1617
1618 r = mount_nofollow_verbose(LOG_DEBUG, node, p, fstype, MS_NODEV|(rw ? 0 : MS_RDONLY), options);
1619 if (r < 0)
1620 return r;
1621
1622 if (rw && m->growfs && FLAGS_SET(flags, DISSECT_IMAGE_GROWFS))
1623 (void) fs_grow(node, p);
1624
1625 if (remap_uid_gid) {
1626 r = remount_idmap(p, uid_shift, uid_range, UID_INVALID, REMOUNT_IDMAPPING_HOST_ROOT);
1627 if (r < 0)
1628 return r;
1629 }
1630
1631 return 1;
1632 }
1633
1634 static int mount_root_tmpfs(const char *where, uid_t uid_shift, DissectImageFlags flags) {
1635 _cleanup_free_ char *options = NULL;
1636 int r;
1637
1638 assert(where);
1639
1640 /* For images that contain /usr/ but no rootfs, let's mount rootfs as tmpfs */
1641
1642 if (FLAGS_SET(flags, DISSECT_IMAGE_MKDIR)) {
1643 r = mkdir_p(where, 0755);
1644 if (r < 0)
1645 return r;
1646 }
1647
1648 if (uid_is_valid(uid_shift)) {
1649 if (asprintf(&options, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0)
1650 return -ENOMEM;
1651 }
1652
1653 r = mount_nofollow_verbose(LOG_DEBUG, "rootfs", where, "tmpfs", MS_NODEV, options);
1654 if (r < 0)
1655 return r;
1656
1657 return 1;
1658 }
1659
1660 int dissected_image_mount(
1661 DissectedImage *m,
1662 const char *where,
1663 uid_t uid_shift,
1664 uid_t uid_range,
1665 DissectImageFlags flags) {
1666
1667 int r, xbootldr_mounted;
1668
1669 assert(m);
1670 assert(where);
1671
1672 /* Returns:
1673 *
1674 * -ENXIO → No root partition found
1675 * -EMEDIUMTYPE → DISSECT_IMAGE_VALIDATE_OS set but no os-release/extension-release file found
1676 * -EUNATCH → Encrypted partition found for which no dm-crypt was set up yet
1677 * -EUCLEAN → fsck for file system failed
1678 * -EBUSY → File system already mounted/used elsewhere (kernel)
1679 * -EAFNOSUPPORT → File system type not supported or not known
1680 * -EIDRM → File system is not among allowlisted "common" file systems
1681 */
1682
1683 if (!(m->partitions[PARTITION_ROOT].found ||
1684 (m->partitions[PARTITION_USR].found && FLAGS_SET(flags, DISSECT_IMAGE_USR_NO_ROOT))))
1685 return -ENXIO; /* Require a root fs or at least a /usr/ fs (the latter is subject to a flag of its own) */
1686
1687 if ((flags & DISSECT_IMAGE_MOUNT_NON_ROOT_ONLY) == 0) {
1688
1689 /* First mount the root fs. If there's none we use a tmpfs. */
1690 if (m->partitions[PARTITION_ROOT].found)
1691 r = mount_partition(m->partitions + PARTITION_ROOT, where, NULL, uid_shift, uid_range, flags);
1692 else
1693 r = mount_root_tmpfs(where, uid_shift, flags);
1694 if (r < 0)
1695 return r;
1696
1697 /* For us mounting root always means mounting /usr as well */
1698 r = mount_partition(m->partitions + PARTITION_USR, where, "/usr", uid_shift, uid_range, flags);
1699 if (r < 0)
1700 return r;
1701
1702 if ((flags & (DISSECT_IMAGE_VALIDATE_OS|DISSECT_IMAGE_VALIDATE_OS_EXT)) != 0) {
1703 /* If either one of the validation flags are set, ensure that the image qualifies
1704 * as one or the other (or both). */
1705 bool ok = false;
1706
1707 if (FLAGS_SET(flags, DISSECT_IMAGE_VALIDATE_OS)) {
1708 r = path_is_os_tree(where);
1709 if (r < 0)
1710 return r;
1711 if (r > 0)
1712 ok = true;
1713 }
1714 if (!ok && FLAGS_SET(flags, DISSECT_IMAGE_VALIDATE_OS_EXT)) {
1715 r = path_is_extension_tree(where, m->image_name, FLAGS_SET(flags, DISSECT_IMAGE_RELAX_SYSEXT_CHECK));
1716 if (r < 0)
1717 return r;
1718 if (r > 0)
1719 ok = true;
1720 }
1721
1722 if (!ok)
1723 return -ENOMEDIUM;
1724 }
1725 }
1726
1727 if (flags & DISSECT_IMAGE_MOUNT_ROOT_ONLY)
1728 return 0;
1729
1730 r = mount_partition(m->partitions + PARTITION_HOME, where, "/home", uid_shift, uid_range, flags);
1731 if (r < 0)
1732 return r;
1733
1734 r = mount_partition(m->partitions + PARTITION_SRV, where, "/srv", uid_shift, uid_range, flags);
1735 if (r < 0)
1736 return r;
1737
1738 r = mount_partition(m->partitions + PARTITION_VAR, where, "/var", uid_shift, uid_range, flags);
1739 if (r < 0)
1740 return r;
1741
1742 r = mount_partition(m->partitions + PARTITION_TMP, where, "/var/tmp", uid_shift, uid_range, flags);
1743 if (r < 0)
1744 return r;
1745
1746 xbootldr_mounted = mount_partition(m->partitions + PARTITION_XBOOTLDR, where, "/boot", uid_shift, uid_range, flags);
1747 if (xbootldr_mounted < 0)
1748 return xbootldr_mounted;
1749
1750 if (m->partitions[PARTITION_ESP].found) {
1751 int esp_done = false;
1752
1753 /* Mount the ESP to /efi if it exists. If it doesn't exist, use /boot instead, but only if it
1754 * exists and is empty, and we didn't already mount the XBOOTLDR partition into it. */
1755
1756 r = chase_symlinks("/efi", where, CHASE_PREFIX_ROOT, NULL, NULL);
1757 if (r < 0) {
1758 if (r != -ENOENT)
1759 return r;
1760
1761 /* /efi doesn't exist. Let's see if /boot is suitable then */
1762
1763 if (!xbootldr_mounted) {
1764 _cleanup_free_ char *p = NULL;
1765
1766 r = chase_symlinks("/boot", where, CHASE_PREFIX_ROOT, &p, NULL);
1767 if (r < 0) {
1768 if (r != -ENOENT)
1769 return r;
1770 } else if (dir_is_empty(p, /* ignore_hidden_or_backup= */ false) > 0) {
1771 /* It exists and is an empty directory. Let's mount the ESP there. */
1772 r = mount_partition(m->partitions + PARTITION_ESP, where, "/boot", uid_shift, uid_range, flags);
1773 if (r < 0)
1774 return r;
1775
1776 esp_done = true;
1777 }
1778 }
1779 }
1780
1781 if (!esp_done) {
1782 /* OK, let's mount the ESP now to /efi (possibly creating the dir if missing) */
1783
1784 r = mount_partition(m->partitions + PARTITION_ESP, where, "/efi", uid_shift, uid_range, flags);
1785 if (r < 0)
1786 return r;
1787 }
1788 }
1789
1790 return 0;
1791 }
1792
1793 int dissected_image_mount_and_warn(
1794 DissectedImage *m,
1795 const char *where,
1796 uid_t uid_shift,
1797 uid_t uid_range,
1798 DissectImageFlags flags) {
1799
1800 int r;
1801
1802 assert(m);
1803 assert(where);
1804
1805 r = dissected_image_mount(m, where, uid_shift, uid_range, flags);
1806 if (r == -ENXIO)
1807 return log_error_errno(r, "Not root file system found in image.");
1808 if (r == -EMEDIUMTYPE)
1809 return log_error_errno(r, "No suitable os-release/extension-release file in image found.");
1810 if (r == -EUNATCH)
1811 return log_error_errno(r, "Encrypted file system discovered, but decryption not requested.");
1812 if (r == -EUCLEAN)
1813 return log_error_errno(r, "File system check on image failed.");
1814 if (r == -EBUSY)
1815 return log_error_errno(r, "File system already mounted elsewhere.");
1816 if (r == -EAFNOSUPPORT)
1817 return log_error_errno(r, "File system type not supported or not known.");
1818 if (r == -EIDRM)
1819 return log_error_errno(r, "File system is too uncommon, refused.");
1820 if (r < 0)
1821 return log_error_errno(r, "Failed to mount image: %m");
1822
1823 return r;
1824 }
1825
1826 #if HAVE_LIBCRYPTSETUP
1827 struct DecryptedPartition {
1828 struct crypt_device *device;
1829 char *name;
1830 bool relinquished;
1831 };
1832 #endif
1833
1834 typedef struct DecryptedPartition DecryptedPartition;
1835
1836 struct DecryptedImage {
1837 unsigned n_ref;
1838 DecryptedPartition *decrypted;
1839 size_t n_decrypted;
1840 };
1841
1842 static DecryptedImage* decrypted_image_free(DecryptedImage *d) {
1843 #if HAVE_LIBCRYPTSETUP
1844 int r;
1845
1846 if (!d)
1847 return NULL;
1848
1849 for (size_t i = 0; i < d->n_decrypted; i++) {
1850 DecryptedPartition *p = d->decrypted + i;
1851
1852 if (p->device && p->name && !p->relinquished) {
1853 _cleanup_free_ char *node = NULL;
1854
1855 node = path_join("/dev/mapper", p->name);
1856 if (node) {
1857 r = btrfs_forget_device(node);
1858 if (r < 0 && r != -ENOENT)
1859 log_debug_errno(r, "Failed to forget btrfs device %s, ignoring: %m", node);
1860 } else
1861 log_oom_debug();
1862
1863 /* Let's deactivate lazily, as the dm volume may be already/still used by other processes. */
1864 r = sym_crypt_deactivate_by_name(p->device, p->name, CRYPT_DEACTIVATE_DEFERRED);
1865 if (r < 0)
1866 log_debug_errno(r, "Failed to deactivate encrypted partition %s", p->name);
1867 }
1868
1869 if (p->device)
1870 sym_crypt_free(p->device);
1871 free(p->name);
1872 }
1873
1874 free(d->decrypted);
1875 free(d);
1876 #endif
1877 return NULL;
1878 }
1879
1880 DEFINE_TRIVIAL_REF_UNREF_FUNC(DecryptedImage, decrypted_image, decrypted_image_free);
1881
1882 #if HAVE_LIBCRYPTSETUP
1883 static int decrypted_image_new(DecryptedImage **ret) {
1884 _cleanup_(decrypted_image_unrefp) DecryptedImage *d = NULL;
1885
1886 assert(ret);
1887
1888 d = new(DecryptedImage, 1);
1889 if (!d)
1890 return -ENOMEM;
1891
1892 *d = (DecryptedImage) {
1893 .n_ref = 1,
1894 };
1895
1896 *ret = TAKE_PTR(d);
1897 return 0;
1898 }
1899
1900 static int make_dm_name_and_node(const void *original_node, const char *suffix, char **ret_name, char **ret_node) {
1901 _cleanup_free_ char *name = NULL, *node = NULL;
1902 const char *base;
1903
1904 assert(original_node);
1905 assert(suffix);
1906 assert(ret_name);
1907 assert(ret_node);
1908
1909 base = strrchr(original_node, '/');
1910 if (!base)
1911 base = original_node;
1912 else
1913 base++;
1914 if (isempty(base))
1915 return -EINVAL;
1916
1917 name = strjoin(base, suffix);
1918 if (!name)
1919 return -ENOMEM;
1920 if (!filename_is_valid(name))
1921 return -EINVAL;
1922
1923 node = path_join(sym_crypt_get_dir(), name);
1924 if (!node)
1925 return -ENOMEM;
1926
1927 *ret_name = TAKE_PTR(name);
1928 *ret_node = TAKE_PTR(node);
1929
1930 return 0;
1931 }
1932
1933 static int decrypt_partition(
1934 DissectedPartition *m,
1935 const char *passphrase,
1936 DissectImageFlags flags,
1937 DecryptedImage *d) {
1938
1939 _cleanup_free_ char *node = NULL, *name = NULL;
1940 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
1941 _cleanup_close_ int fd = -EBADF;
1942 int r;
1943
1944 assert(m);
1945 assert(d);
1946
1947 if (!m->found || !m->node || !m->fstype)
1948 return 0;
1949
1950 if (!streq(m->fstype, "crypto_LUKS"))
1951 return 0;
1952
1953 if (!passphrase)
1954 return -ENOKEY;
1955
1956 r = dlopen_cryptsetup();
1957 if (r < 0)
1958 return r;
1959
1960 r = make_dm_name_and_node(m->node, "-decrypted", &name, &node);
1961 if (r < 0)
1962 return r;
1963
1964 if (!GREEDY_REALLOC0(d->decrypted, d->n_decrypted + 1))
1965 return -ENOMEM;
1966
1967 r = sym_crypt_init(&cd, m->node);
1968 if (r < 0)
1969 return log_debug_errno(r, "Failed to initialize dm-crypt: %m");
1970
1971 cryptsetup_enable_logging(cd);
1972
1973 r = sym_crypt_load(cd, CRYPT_LUKS, NULL);
1974 if (r < 0)
1975 return log_debug_errno(r, "Failed to load LUKS metadata: %m");
1976
1977 r = sym_crypt_activate_by_passphrase(cd, name, CRYPT_ANY_SLOT, passphrase, strlen(passphrase),
1978 ((flags & DISSECT_IMAGE_DEVICE_READ_ONLY) ? CRYPT_ACTIVATE_READONLY : 0) |
1979 ((flags & DISSECT_IMAGE_DISCARD_ON_CRYPTO) ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0));
1980 if (r < 0) {
1981 log_debug_errno(r, "Failed to activate LUKS device: %m");
1982 return r == -EPERM ? -EKEYREJECTED : r;
1983 }
1984
1985 fd = open(node, O_RDONLY|O_NONBLOCK|O_CLOEXEC|O_NOCTTY);
1986 if (fd < 0)
1987 return log_debug_errno(errno, "Failed to open %s: %m", node);
1988
1989 d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
1990 .name = TAKE_PTR(name),
1991 .device = TAKE_PTR(cd),
1992 };
1993
1994 m->decrypted_node = TAKE_PTR(node);
1995 close_and_replace(m->mount_node_fd, fd);
1996
1997 return 0;
1998 }
1999
2000 static int verity_can_reuse(
2001 const VeritySettings *verity,
2002 const char *name,
2003 struct crypt_device **ret_cd) {
2004
2005 /* If the same volume was already open, check that the root hashes match, and reuse it if they do */
2006 _cleanup_free_ char *root_hash_existing = NULL;
2007 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
2008 struct crypt_params_verity crypt_params = {};
2009 size_t root_hash_existing_size;
2010 int r;
2011
2012 assert(verity);
2013 assert(name);
2014 assert(ret_cd);
2015
2016 r = sym_crypt_init_by_name(&cd, name);
2017 if (r < 0)
2018 return log_debug_errno(r, "Error opening verity device, crypt_init_by_name failed: %m");
2019
2020 cryptsetup_enable_logging(cd);
2021
2022 r = sym_crypt_get_verity_info(cd, &crypt_params);
2023 if (r < 0)
2024 return log_debug_errno(r, "Error opening verity device, crypt_get_verity_info failed: %m");
2025
2026 root_hash_existing_size = verity->root_hash_size;
2027 root_hash_existing = malloc0(root_hash_existing_size);
2028 if (!root_hash_existing)
2029 return -ENOMEM;
2030
2031 r = sym_crypt_volume_key_get(cd, CRYPT_ANY_SLOT, root_hash_existing, &root_hash_existing_size, NULL, 0);
2032 if (r < 0)
2033 return log_debug_errno(r, "Error opening verity device, crypt_volume_key_get failed: %m");
2034 if (verity->root_hash_size != root_hash_existing_size ||
2035 memcmp(root_hash_existing, verity->root_hash, verity->root_hash_size) != 0)
2036 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but root hashes are different.");
2037
2038 #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
2039 /* Ensure that, if signatures are supported, we only reuse the device if the previous mount used the
2040 * same settings, so that a previous unsigned mount will not be reused if the user asks to use
2041 * signing for the new one, and vice versa. */
2042 if (!!verity->root_hash_sig != !!(crypt_params.flags & CRYPT_VERITY_ROOT_HASH_SIGNATURE))
2043 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but signature settings are not the same.");
2044 #endif
2045
2046 *ret_cd = TAKE_PTR(cd);
2047 return 0;
2048 }
2049
2050 static inline char* dm_deferred_remove_clean(char *name) {
2051 if (!name)
2052 return NULL;
2053
2054 (void) sym_crypt_deactivate_by_name(NULL, name, CRYPT_DEACTIVATE_DEFERRED);
2055 return mfree(name);
2056 }
2057 DEFINE_TRIVIAL_CLEANUP_FUNC(char *, dm_deferred_remove_clean);
2058
2059 static int validate_signature_userspace(const VeritySettings *verity) {
2060 #if HAVE_OPENSSL
2061 _cleanup_(sk_X509_free_allp) STACK_OF(X509) *sk = NULL;
2062 _cleanup_strv_free_ char **certs = NULL;
2063 _cleanup_(PKCS7_freep) PKCS7 *p7 = NULL;
2064 _cleanup_free_ char *s = NULL;
2065 _cleanup_(BIO_freep) BIO *bio = NULL; /* 'bio' must be freed first, 's' second, hence keep this order
2066 * of declaration in place, please */
2067 const unsigned char *d;
2068 int r;
2069
2070 assert(verity);
2071 assert(verity->root_hash);
2072 assert(verity->root_hash_sig);
2073
2074 /* Because installing a signature certificate into the kernel chain is so messy, let's optionally do
2075 * userspace validation. */
2076
2077 r = conf_files_list_nulstr(&certs, ".crt", NULL, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, CONF_PATHS_NULSTR("verity.d"));
2078 if (r < 0)
2079 return log_debug_errno(r, "Failed to enumerate certificates: %m");
2080 if (strv_isempty(certs)) {
2081 log_debug("No userspace dm-verity certificates found.");
2082 return 0;
2083 }
2084
2085 d = verity->root_hash_sig;
2086 p7 = d2i_PKCS7(NULL, &d, (long) verity->root_hash_sig_size);
2087 if (!p7)
2088 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Failed to parse PKCS7 DER signature data.");
2089
2090 s = hexmem(verity->root_hash, verity->root_hash_size);
2091 if (!s)
2092 return log_oom_debug();
2093
2094 bio = BIO_new_mem_buf(s, strlen(s));
2095 if (!bio)
2096 return log_oom_debug();
2097
2098 sk = sk_X509_new_null();
2099 if (!sk)
2100 return log_oom_debug();
2101
2102 STRV_FOREACH(i, certs) {
2103 _cleanup_(X509_freep) X509 *c = NULL;
2104 _cleanup_fclose_ FILE *f = NULL;
2105
2106 f = fopen(*i, "re");
2107 if (!f) {
2108 log_debug_errno(errno, "Failed to open '%s', ignoring: %m", *i);
2109 continue;
2110 }
2111
2112 c = PEM_read_X509(f, NULL, NULL, NULL);
2113 if (!c) {
2114 log_debug("Failed to load X509 certificate '%s', ignoring.", *i);
2115 continue;
2116 }
2117
2118 if (sk_X509_push(sk, c) == 0)
2119 return log_oom_debug();
2120
2121 TAKE_PTR(c);
2122 }
2123
2124 r = PKCS7_verify(p7, sk, NULL, bio, NULL, PKCS7_NOINTERN|PKCS7_NOVERIFY);
2125 if (r)
2126 log_debug("Userspace PKCS#7 validation succeeded.");
2127 else
2128 log_debug("Userspace PKCS#7 validation failed: %s", ERR_error_string(ERR_get_error(), NULL));
2129
2130 return r;
2131 #else
2132 log_debug("Not doing client-side validation of dm-verity root hash signatures, OpenSSL support disabled.");
2133 return 0;
2134 #endif
2135 }
2136
2137 static int do_crypt_activate_verity(
2138 struct crypt_device *cd,
2139 const char *name,
2140 const VeritySettings *verity) {
2141
2142 bool check_signature;
2143 int r;
2144
2145 assert(cd);
2146 assert(name);
2147 assert(verity);
2148
2149 if (verity->root_hash_sig) {
2150 r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_SIGNATURE");
2151 if (r < 0 && r != -ENXIO)
2152 log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_SIGNATURE");
2153
2154 check_signature = r != 0;
2155 } else
2156 check_signature = false;
2157
2158 if (check_signature) {
2159
2160 #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
2161 /* First, if we have support for signed keys in the kernel, then try that first. */
2162 r = sym_crypt_activate_by_signed_key(
2163 cd,
2164 name,
2165 verity->root_hash,
2166 verity->root_hash_size,
2167 verity->root_hash_sig,
2168 verity->root_hash_sig_size,
2169 CRYPT_ACTIVATE_READONLY);
2170 if (r >= 0)
2171 return r;
2172
2173 log_debug("Validation of dm-verity signature failed via the kernel, trying userspace validation instead.");
2174 #else
2175 log_debug("Activation of verity device with signature requested, but not supported via the kernel by %s due to missing crypt_activate_by_signed_key(), trying userspace validation instead.",
2176 program_invocation_short_name);
2177 #endif
2178
2179 /* So this didn't work via the kernel, then let's try userspace validation instead. If that
2180 * works we'll try to activate without telling the kernel the signature. */
2181
2182 r = validate_signature_userspace(verity);
2183 if (r < 0)
2184 return r;
2185 if (r == 0)
2186 return log_debug_errno(SYNTHETIC_ERRNO(ENOKEY),
2187 "Activation of signed Verity volume worked neither via the kernel nor in userspace, can't activate.");
2188 }
2189
2190 return sym_crypt_activate_by_volume_key(
2191 cd,
2192 name,
2193 verity->root_hash,
2194 verity->root_hash_size,
2195 CRYPT_ACTIVATE_READONLY);
2196 }
2197
2198 static usec_t verity_timeout(void) {
2199 usec_t t = 100 * USEC_PER_MSEC;
2200 const char *e;
2201 int r;
2202
2203 /* On slower machines, like non-KVM vm, setting up device may take a long time.
2204 * Let's make the timeout configurable. */
2205
2206 e = getenv("SYSTEMD_DISSECT_VERITY_TIMEOUT_SEC");
2207 if (!e)
2208 return t;
2209
2210 r = parse_sec(e, &t);
2211 if (r < 0)
2212 log_debug_errno(r,
2213 "Failed to parse timeout specified in $SYSTEMD_DISSECT_VERITY_TIMEOUT_SEC, "
2214 "using the default timeout (%s).",
2215 FORMAT_TIMESPAN(t, USEC_PER_MSEC));
2216
2217 return t;
2218 }
2219
2220 static int verity_partition(
2221 PartitionDesignator designator,
2222 DissectedPartition *m,
2223 DissectedPartition *v,
2224 const VeritySettings *verity,
2225 DissectImageFlags flags,
2226 DecryptedImage *d) {
2227
2228 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
2229 _cleanup_(dm_deferred_remove_cleanp) char *restore_deferred_remove = NULL;
2230 _cleanup_free_ char *node = NULL, *name = NULL;
2231 _cleanup_close_ int mount_node_fd = -EBADF;
2232 int r;
2233
2234 assert(m);
2235 assert(v || (verity && verity->data_path));
2236
2237 if (!verity || !verity->root_hash)
2238 return 0;
2239 if (!((verity->designator < 0 && designator == PARTITION_ROOT) ||
2240 (verity->designator == designator)))
2241 return 0;
2242
2243 if (!m->found || !m->node || !m->fstype)
2244 return 0;
2245 if (!verity->data_path) {
2246 if (!v->found || !v->node || !v->fstype)
2247 return 0;
2248
2249 if (!streq(v->fstype, "DM_verity_hash"))
2250 return 0;
2251 }
2252
2253 r = dlopen_cryptsetup();
2254 if (r < 0)
2255 return r;
2256
2257 if (FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) {
2258 /* Use the roothash, which is unique per volume, as the device node name, so that it can be reused */
2259 _cleanup_free_ char *root_hash_encoded = NULL;
2260
2261 root_hash_encoded = hexmem(verity->root_hash, verity->root_hash_size);
2262 if (!root_hash_encoded)
2263 return -ENOMEM;
2264
2265 r = make_dm_name_and_node(root_hash_encoded, "-verity", &name, &node);
2266 } else
2267 r = make_dm_name_and_node(m->node, "-verity", &name, &node);
2268 if (r < 0)
2269 return r;
2270
2271 r = sym_crypt_init(&cd, verity->data_path ?: v->node);
2272 if (r < 0)
2273 return r;
2274
2275 cryptsetup_enable_logging(cd);
2276
2277 r = sym_crypt_load(cd, CRYPT_VERITY, NULL);
2278 if (r < 0)
2279 return r;
2280
2281 r = sym_crypt_set_data_device(cd, m->node);
2282 if (r < 0)
2283 return r;
2284
2285 if (!GREEDY_REALLOC0(d->decrypted, d->n_decrypted + 1))
2286 return -ENOMEM;
2287
2288 /* If activating fails because the device already exists, check the metadata and reuse it if it matches.
2289 * In case of ENODEV/ENOENT, which can happen if another process is activating at the exact same time,
2290 * retry a few times before giving up. */
2291 for (unsigned i = 0; i < N_DEVICE_NODE_LIST_ATTEMPTS; i++) {
2292 _cleanup_(sym_crypt_freep) struct crypt_device *existing_cd = NULL;
2293 _cleanup_close_ int fd = -EBADF;
2294
2295 /* First, check if the device already exists. */
2296 fd = open(node, O_RDONLY|O_NONBLOCK|O_CLOEXEC|O_NOCTTY);
2297 if (fd < 0 && !ERRNO_IS_DEVICE_ABSENT(errno))
2298 return log_debug_errno(errno, "Failed to open verity device %s: %m", node);
2299 if (fd >= 0)
2300 goto check; /* The device already exists. Let's check it. */
2301
2302 /* The symlink to the device node does not exist yet. Assume not activated, and let's activate it. */
2303 r = do_crypt_activate_verity(cd, name, verity);
2304 if (r >= 0)
2305 goto try_open; /* The device is activated. Let's open it. */
2306 /* libdevmapper can return EINVAL when the device is already in the activation stage.
2307 * There's no way to distinguish this situation from a genuine error due to invalid
2308 * parameters, so immediately fall back to activating the device with a unique name.
2309 * Improvements in libcrypsetup can ensure this never happens:
2310 * https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/96 */
2311 if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
2312 break;
2313 if (r == -ENODEV) /* Volume is being opened but not ready, crypt_init_by_name would fail, try to open again */
2314 goto try_again;
2315 if (!IN_SET(r,
2316 -EEXIST, /* Volume has already been opened and ready to be used. */
2317 -EBUSY /* Volume is being opened but not ready, crypt_init_by_name() can fetch details. */))
2318 return log_debug_errno(r, "Failed to activate verity device %s: %m", node);
2319
2320 check:
2321 if (!restore_deferred_remove){
2322 /* To avoid races, disable automatic removal on umount while setting up the new device. Restore it on failure. */
2323 r = dm_deferred_remove_cancel(name);
2324 /* -EBUSY and -ENXIO: the device has already been removed or being removed. We cannot
2325 * use the device, try to open again. See target_message() in drivers/md/dm-ioctl.c
2326 * and dm_cancel_deferred_remove() in drivers/md/dm.c */
2327 if (IN_SET(r, -EBUSY, -ENXIO))
2328 goto try_again;
2329 if (r < 0)
2330 return log_debug_errno(r, "Failed to disable automated deferred removal for verity device %s: %m", node);
2331
2332 restore_deferred_remove = strdup(name);
2333 if (!restore_deferred_remove)
2334 return log_oom_debug();
2335 }
2336
2337 r = verity_can_reuse(verity, name, &existing_cd);
2338 /* Same as above, -EINVAL can randomly happen when it actually means -EEXIST */
2339 if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
2340 break;
2341 if (IN_SET(r,
2342 -ENOENT, /* Removed?? */
2343 -EBUSY, /* Volume is being opened but not ready, crypt_init_by_name() can fetch details. */
2344 -ENODEV /* Volume is being opened but not ready, crypt_init_by_name() would fail, try to open again. */ ))
2345 goto try_again;
2346 if (r < 0)
2347 return log_debug_errno(r, "Failed to check if existing verity device %s can be reused: %m", node);
2348
2349 if (fd < 0) {
2350 /* devmapper might say that the device exists, but the devlink might not yet have been
2351 * created. Check and wait for the udev event in that case. */
2352 r = device_wait_for_devlink(node, "block", verity_timeout(), NULL);
2353 /* Fallback to activation with a unique device if it's taking too long */
2354 if (r == -ETIMEDOUT && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
2355 break;
2356 if (r < 0)
2357 return log_debug_errno(r, "Failed to wait device node symlink %s: %m", node);
2358 }
2359
2360 try_open:
2361 if (fd < 0) {
2362 /* Now, the device is activated and devlink is created. Let's open it. */
2363 fd = open(node, O_RDONLY|O_NONBLOCK|O_CLOEXEC|O_NOCTTY);
2364 if (fd < 0) {
2365 if (!ERRNO_IS_DEVICE_ABSENT(errno))
2366 return log_debug_errno(errno, "Failed to open verity device %s: %m", node);
2367
2368 /* The device has already been removed?? */
2369 goto try_again;
2370 }
2371 }
2372
2373 mount_node_fd = TAKE_FD(fd);
2374 if (existing_cd)
2375 crypt_free_and_replace(cd, existing_cd);
2376
2377 goto success;
2378
2379 try_again:
2380 /* Device is being removed by another process. Let's wait for a while. */
2381 (void) usleep(2 * USEC_PER_MSEC);
2382 }
2383
2384 /* All trials failed or a conflicting verity device exists. Let's try to activate with a unique name. */
2385 if (FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) {
2386 /* Before trying to activate with unique name, we need to free crypt_device object.
2387 * Otherwise, we get error from libcryptsetup like the following:
2388 * ------
2389 * systemd[1234]: Cannot use device /dev/loop5 which is in use (already mapped or mounted).
2390 * ------
2391 */
2392 sym_crypt_free(cd);
2393 cd = NULL;
2394 return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
2395 }
2396
2397 return log_debug_errno(SYNTHETIC_ERRNO(EBUSY), "All attempts to activate verity device %s failed.", name);
2398
2399 success:
2400 /* Everything looks good and we'll be able to mount the device, so deferred remove will be re-enabled at that point. */
2401 restore_deferred_remove = mfree(restore_deferred_remove);
2402
2403 d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
2404 .name = TAKE_PTR(name),
2405 .device = TAKE_PTR(cd),
2406 };
2407
2408 m->decrypted_node = TAKE_PTR(node);
2409 close_and_replace(m->mount_node_fd, mount_node_fd);
2410
2411 return 0;
2412 }
2413 #endif
2414
2415 int dissected_image_decrypt(
2416 DissectedImage *m,
2417 const char *passphrase,
2418 const VeritySettings *verity,
2419 DissectImageFlags flags) {
2420
2421 #if HAVE_LIBCRYPTSETUP
2422 _cleanup_(decrypted_image_unrefp) DecryptedImage *d = NULL;
2423 int r;
2424 #endif
2425
2426 assert(m);
2427 assert(!verity || verity->root_hash || verity->root_hash_size == 0);
2428
2429 /* Returns:
2430 *
2431 * = 0 → There was nothing to decrypt
2432 * > 0 → Decrypted successfully
2433 * -ENOKEY → There's something to decrypt but no key was supplied
2434 * -EKEYREJECTED → Passed key was not correct
2435 */
2436
2437 if (verity && verity->root_hash && verity->root_hash_size < sizeof(sd_id128_t))
2438 return -EINVAL;
2439
2440 if (!m->encrypted && !m->verity_ready)
2441 return 0;
2442
2443 #if HAVE_LIBCRYPTSETUP
2444 r = decrypted_image_new(&d);
2445 if (r < 0)
2446 return r;
2447
2448 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
2449 DissectedPartition *p = m->partitions + i;
2450 PartitionDesignator k;
2451
2452 if (!p->found)
2453 continue;
2454
2455 r = decrypt_partition(p, passphrase, flags, d);
2456 if (r < 0)
2457 return r;
2458
2459 k = partition_verity_of(i);
2460 if (k >= 0) {
2461 r = verity_partition(i, p, m->partitions + k, verity, flags | DISSECT_IMAGE_VERITY_SHARE, d);
2462 if (r < 0)
2463 return r;
2464 }
2465
2466 if (!p->decrypted_fstype && p->mount_node_fd >= 0 && p->decrypted_node) {
2467 r = probe_filesystem_full(p->mount_node_fd, p->decrypted_node, 0, UINT64_MAX, &p->decrypted_fstype);
2468 if (r < 0 && r != -EUCLEAN)
2469 return r;
2470 }
2471 }
2472
2473 m->decrypted_image = TAKE_PTR(d);
2474
2475 return 1;
2476 #else
2477 return -EOPNOTSUPP;
2478 #endif
2479 }
2480
2481 int dissected_image_decrypt_interactively(
2482 DissectedImage *m,
2483 const char *passphrase,
2484 const VeritySettings *verity,
2485 DissectImageFlags flags) {
2486
2487 _cleanup_strv_free_erase_ char **z = NULL;
2488 int n = 3, r;
2489
2490 if (passphrase)
2491 n--;
2492
2493 for (;;) {
2494 r = dissected_image_decrypt(m, passphrase, verity, flags);
2495 if (r >= 0)
2496 return r;
2497 if (r == -EKEYREJECTED)
2498 log_error_errno(r, "Incorrect passphrase, try again!");
2499 else if (r != -ENOKEY)
2500 return log_error_errno(r, "Failed to decrypt image: %m");
2501
2502 if (--n < 0)
2503 return log_error_errno(SYNTHETIC_ERRNO(EKEYREJECTED),
2504 "Too many retries.");
2505
2506 z = strv_free(z);
2507
2508 r = ask_password_auto("Please enter image passphrase:", NULL, "dissect", "dissect", "dissect.passphrase", USEC_INFINITY, 0, &z);
2509 if (r < 0)
2510 return log_error_errno(r, "Failed to query for passphrase: %m");
2511
2512 passphrase = z[0];
2513 }
2514 }
2515
2516 static int decrypted_image_relinquish(DecryptedImage *d) {
2517 assert(d);
2518
2519 /* Turns on automatic removal after the last use ended for all DM devices of this image, and sets a
2520 * boolean so that we don't clean it up ourselves either anymore */
2521
2522 #if HAVE_LIBCRYPTSETUP
2523 int r;
2524
2525 for (size_t i = 0; i < d->n_decrypted; i++) {
2526 DecryptedPartition *p = d->decrypted + i;
2527
2528 if (p->relinquished)
2529 continue;
2530
2531 r = sym_crypt_deactivate_by_name(NULL, p->name, CRYPT_DEACTIVATE_DEFERRED);
2532 if (r < 0)
2533 return log_debug_errno(r, "Failed to mark %s for auto-removal: %m", p->name);
2534
2535 p->relinquished = true;
2536 }
2537 #endif
2538
2539 return 0;
2540 }
2541
2542 int dissected_image_relinquish(DissectedImage *m) {
2543 int r;
2544
2545 assert(m);
2546
2547 if (m->decrypted_image) {
2548 r = decrypted_image_relinquish(m->decrypted_image);
2549 if (r < 0)
2550 return r;
2551 }
2552
2553 if (m->loop)
2554 loop_device_relinquish(m->loop);
2555
2556 return 0;
2557 }
2558
2559 static char *build_auxiliary_path(const char *image, const char *suffix) {
2560 const char *e;
2561 char *n;
2562
2563 assert(image);
2564 assert(suffix);
2565
2566 e = endswith(image, ".raw");
2567 if (!e)
2568 return strjoin(e, suffix);
2569
2570 n = new(char, e - image + strlen(suffix) + 1);
2571 if (!n)
2572 return NULL;
2573
2574 strcpy(mempcpy(n, image, e - image), suffix);
2575 return n;
2576 }
2577
2578 void verity_settings_done(VeritySettings *v) {
2579 assert(v);
2580
2581 v->root_hash = mfree(v->root_hash);
2582 v->root_hash_size = 0;
2583
2584 v->root_hash_sig = mfree(v->root_hash_sig);
2585 v->root_hash_sig_size = 0;
2586
2587 v->data_path = mfree(v->data_path);
2588 }
2589
2590 int verity_settings_load(
2591 VeritySettings *verity,
2592 const char *image,
2593 const char *root_hash_path,
2594 const char *root_hash_sig_path) {
2595
2596 _cleanup_free_ void *root_hash = NULL, *root_hash_sig = NULL;
2597 size_t root_hash_size = 0, root_hash_sig_size = 0;
2598 _cleanup_free_ char *verity_data_path = NULL;
2599 PartitionDesignator designator;
2600 int r;
2601
2602 assert(verity);
2603 assert(image);
2604 assert(verity->designator < 0 || IN_SET(verity->designator, PARTITION_ROOT, PARTITION_USR));
2605
2606 /* If we are asked to load the root hash for a device node, exit early */
2607 if (is_device_path(image))
2608 return 0;
2609
2610 r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_SIDECAR");
2611 if (r < 0 && r != -ENXIO)
2612 log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_SIDECAR, ignoring: %m");
2613 if (r == 0)
2614 return 0;
2615
2616 designator = verity->designator;
2617
2618 /* We only fill in what isn't already filled in */
2619
2620 if (!verity->root_hash) {
2621 _cleanup_free_ char *text = NULL;
2622
2623 if (root_hash_path) {
2624 /* If explicitly specified it takes precedence */
2625 r = read_one_line_file(root_hash_path, &text);
2626 if (r < 0)
2627 return r;
2628
2629 if (designator < 0)
2630 designator = PARTITION_ROOT;
2631 } else {
2632 /* Otherwise look for xattr and separate file, and first for the data for root and if
2633 * that doesn't exist for /usr */
2634
2635 if (designator < 0 || designator == PARTITION_ROOT) {
2636 r = getxattr_malloc(image, "user.verity.roothash", &text);
2637 if (r < 0) {
2638 _cleanup_free_ char *p = NULL;
2639
2640 if (r != -ENOENT && !ERRNO_IS_XATTR_ABSENT(r))
2641 return r;
2642
2643 p = build_auxiliary_path(image, ".roothash");
2644 if (!p)
2645 return -ENOMEM;
2646
2647 r = read_one_line_file(p, &text);
2648 if (r < 0 && r != -ENOENT)
2649 return r;
2650 }
2651
2652 if (text)
2653 designator = PARTITION_ROOT;
2654 }
2655
2656 if (!text && (designator < 0 || designator == PARTITION_USR)) {
2657 /* So in the "roothash" xattr/file name above the "root" of course primarily
2658 * refers to the root of the Verity Merkle tree. But coincidentally it also
2659 * is the hash for the *root* file system, i.e. the "root" neatly refers to
2660 * two distinct concepts called "root". Taking benefit of this happy
2661 * coincidence we call the file with the root hash for the /usr/ file system
2662 * `usrhash`, because `usrroothash` or `rootusrhash` would just be too
2663 * confusing. We thus drop the reference to the root of the Merkle tree, and
2664 * just indicate which file system it's about. */
2665 r = getxattr_malloc(image, "user.verity.usrhash", &text);
2666 if (r < 0) {
2667 _cleanup_free_ char *p = NULL;
2668
2669 if (r != -ENOENT && !ERRNO_IS_XATTR_ABSENT(r))
2670 return r;
2671
2672 p = build_auxiliary_path(image, ".usrhash");
2673 if (!p)
2674 return -ENOMEM;
2675
2676 r = read_one_line_file(p, &text);
2677 if (r < 0 && r != -ENOENT)
2678 return r;
2679 }
2680
2681 if (text)
2682 designator = PARTITION_USR;
2683 }
2684 }
2685
2686 if (text) {
2687 r = unhexmem(text, strlen(text), &root_hash, &root_hash_size);
2688 if (r < 0)
2689 return r;
2690 if (root_hash_size < sizeof(sd_id128_t))
2691 return -EINVAL;
2692 }
2693 }
2694
2695 if ((root_hash || verity->root_hash) && !verity->root_hash_sig) {
2696 if (root_hash_sig_path) {
2697 r = read_full_file(root_hash_sig_path, (char**) &root_hash_sig, &root_hash_sig_size);
2698 if (r < 0 && r != -ENOENT)
2699 return r;
2700
2701 if (designator < 0)
2702 designator = PARTITION_ROOT;
2703 } else {
2704 if (designator < 0 || designator == PARTITION_ROOT) {
2705 _cleanup_free_ char *p = NULL;
2706
2707 /* Follow naming convention recommended by the relevant RFC:
2708 * https://tools.ietf.org/html/rfc5751#section-3.2.1 */
2709 p = build_auxiliary_path(image, ".roothash.p7s");
2710 if (!p)
2711 return -ENOMEM;
2712
2713 r = read_full_file(p, (char**) &root_hash_sig, &root_hash_sig_size);
2714 if (r < 0 && r != -ENOENT)
2715 return r;
2716 if (r >= 0)
2717 designator = PARTITION_ROOT;
2718 }
2719
2720 if (!root_hash_sig && (designator < 0 || designator == PARTITION_USR)) {
2721 _cleanup_free_ char *p = NULL;
2722
2723 p = build_auxiliary_path(image, ".usrhash.p7s");
2724 if (!p)
2725 return -ENOMEM;
2726
2727 r = read_full_file(p, (char**) &root_hash_sig, &root_hash_sig_size);
2728 if (r < 0 && r != -ENOENT)
2729 return r;
2730 if (r >= 0)
2731 designator = PARTITION_USR;
2732 }
2733 }
2734
2735 if (root_hash_sig && root_hash_sig_size == 0) /* refuse empty size signatures */
2736 return -EINVAL;
2737 }
2738
2739 if (!verity->data_path) {
2740 _cleanup_free_ char *p = NULL;
2741
2742 p = build_auxiliary_path(image, ".verity");
2743 if (!p)
2744 return -ENOMEM;
2745
2746 if (access(p, F_OK) < 0) {
2747 if (errno != ENOENT)
2748 return -errno;
2749 } else
2750 verity_data_path = TAKE_PTR(p);
2751 }
2752
2753 if (root_hash) {
2754 verity->root_hash = TAKE_PTR(root_hash);
2755 verity->root_hash_size = root_hash_size;
2756 }
2757
2758 if (root_hash_sig) {
2759 verity->root_hash_sig = TAKE_PTR(root_hash_sig);
2760 verity->root_hash_sig_size = root_hash_sig_size;
2761 }
2762
2763 if (verity_data_path)
2764 verity->data_path = TAKE_PTR(verity_data_path);
2765
2766 if (verity->designator < 0)
2767 verity->designator = designator;
2768
2769 return 1;
2770 }
2771
2772 int dissected_image_load_verity_sig_partition(
2773 DissectedImage *m,
2774 int fd,
2775 VeritySettings *verity) {
2776
2777 _cleanup_free_ void *root_hash = NULL, *root_hash_sig = NULL;
2778 _cleanup_(json_variant_unrefp) JsonVariant *v = NULL;
2779 size_t root_hash_size, root_hash_sig_size;
2780 _cleanup_free_ char *buf = NULL;
2781 PartitionDesignator d;
2782 DissectedPartition *p;
2783 JsonVariant *rh, *sig;
2784 ssize_t n;
2785 char *e;
2786 int r;
2787
2788 assert(m);
2789 assert(fd >= 0);
2790 assert(verity);
2791
2792 if (verity->root_hash && verity->root_hash_sig) /* Already loaded? */
2793 return 0;
2794
2795 r = getenv_bool_secure("SYSTEMD_DISSECT_VERITY_EMBEDDED");
2796 if (r < 0 && r != -ENXIO)
2797 log_debug_errno(r, "Failed to parse $SYSTEMD_DISSECT_VERITY_EMBEDDED, ignoring: %m");
2798 if (r == 0)
2799 return 0;
2800
2801 d = partition_verity_sig_of(verity->designator < 0 ? PARTITION_ROOT : verity->designator);
2802 assert(d >= 0);
2803
2804 p = m->partitions + d;
2805 if (!p->found)
2806 return 0;
2807 if (p->offset == UINT64_MAX || p->size == UINT64_MAX)
2808 return -EINVAL;
2809
2810 if (p->size > 4*1024*1024) /* Signature data cannot possible be larger than 4M, refuse that */
2811 return -EFBIG;
2812
2813 buf = new(char, p->size+1);
2814 if (!buf)
2815 return -ENOMEM;
2816
2817 n = pread(fd, buf, p->size, p->offset);
2818 if (n < 0)
2819 return -ENOMEM;
2820 if ((uint64_t) n != p->size)
2821 return -EIO;
2822
2823 e = memchr(buf, 0, p->size);
2824 if (e) {
2825 /* If we found a NUL byte then the rest of the data must be NUL too */
2826 if (!memeqzero(e, p->size - (e - buf)))
2827 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature data contains embedded NUL byte.");
2828 } else
2829 buf[p->size] = 0;
2830
2831 r = json_parse(buf, 0, &v, NULL, NULL);
2832 if (r < 0)
2833 return log_debug_errno(r, "Failed to parse signature JSON data: %m");
2834
2835 rh = json_variant_by_key(v, "rootHash");
2836 if (!rh)
2837 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature JSON object lacks 'rootHash' field.");
2838 if (!json_variant_is_string(rh))
2839 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "'rootHash' field of signature JSON object is not a string.");
2840
2841 r = unhexmem(json_variant_string(rh), SIZE_MAX, &root_hash, &root_hash_size);
2842 if (r < 0)
2843 return log_debug_errno(r, "Failed to parse root hash field: %m");
2844
2845 /* Check if specified root hash matches if it is specified */
2846 if (verity->root_hash &&
2847 memcmp_nn(verity->root_hash, verity->root_hash_size, root_hash, root_hash_size) != 0) {
2848 _cleanup_free_ char *a = NULL, *b = NULL;
2849
2850 a = hexmem(root_hash, root_hash_size);
2851 b = hexmem(verity->root_hash, verity->root_hash_size);
2852
2853 return log_debug_errno(r, "Root hash in signature JSON data (%s) doesn't match configured hash (%s).", strna(a), strna(b));
2854 }
2855
2856 sig = json_variant_by_key(v, "signature");
2857 if (!sig)
2858 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Signature JSON object lacks 'signature' field.");
2859 if (!json_variant_is_string(sig))
2860 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "'signature' field of signature JSON object is not a string.");
2861
2862 r = unbase64mem(json_variant_string(sig), SIZE_MAX, &root_hash_sig, &root_hash_sig_size);
2863 if (r < 0)
2864 return log_debug_errno(r, "Failed to parse signature field: %m");
2865
2866 free_and_replace(verity->root_hash, root_hash);
2867 verity->root_hash_size = root_hash_size;
2868
2869 free_and_replace(verity->root_hash_sig, root_hash_sig);
2870 verity->root_hash_sig_size = root_hash_sig_size;
2871
2872 return 1;
2873 }
2874
2875 int dissected_image_acquire_metadata(DissectedImage *m, DissectImageFlags extra_flags) {
2876
2877 enum {
2878 META_HOSTNAME,
2879 META_MACHINE_ID,
2880 META_MACHINE_INFO,
2881 META_OS_RELEASE,
2882 META_INITRD_RELEASE,
2883 META_EXTENSION_RELEASE,
2884 META_HAS_INIT_SYSTEM,
2885 _META_MAX,
2886 };
2887
2888 static const char *const paths[_META_MAX] = {
2889 [META_HOSTNAME] = "/etc/hostname\0",
2890 [META_MACHINE_ID] = "/etc/machine-id\0",
2891 [META_MACHINE_INFO] = "/etc/machine-info\0",
2892 [META_OS_RELEASE] = ("/etc/os-release\0"
2893 "/usr/lib/os-release\0"),
2894 [META_INITRD_RELEASE] = ("/etc/initrd-release\0"
2895 "/usr/lib/initrd-release\0"),
2896 [META_EXTENSION_RELEASE] = "extension-release\0", /* Used only for logging. */
2897 [META_HAS_INIT_SYSTEM] = "has-init-system\0", /* ditto */
2898 };
2899
2900 _cleanup_strv_free_ char **machine_info = NULL, **os_release = NULL, **initrd_release = NULL, **extension_release = NULL;
2901 _cleanup_close_pair_ int error_pipe[2] = PIPE_EBADF;
2902 _cleanup_(rmdir_and_freep) char *t = NULL;
2903 _cleanup_(sigkill_waitp) pid_t child = 0;
2904 sd_id128_t machine_id = SD_ID128_NULL;
2905 _cleanup_free_ char *hostname = NULL;
2906 unsigned n_meta_initialized = 0;
2907 int fds[2 * _META_MAX], r, v;
2908 int has_init_system = -1;
2909 ssize_t n;
2910
2911 BLOCK_SIGNALS(SIGCHLD);
2912
2913 assert(m);
2914
2915 for (; n_meta_initialized < _META_MAX; n_meta_initialized ++) {
2916 if (!paths[n_meta_initialized]) {
2917 fds[2*n_meta_initialized] = fds[2*n_meta_initialized+1] = -EBADF;
2918 continue;
2919 }
2920
2921 if (pipe2(fds + 2*n_meta_initialized, O_CLOEXEC) < 0) {
2922 r = -errno;
2923 goto finish;
2924 }
2925 }
2926
2927 r = mkdtemp_malloc("/tmp/dissect-XXXXXX", &t);
2928 if (r < 0)
2929 goto finish;
2930
2931 if (pipe2(error_pipe, O_CLOEXEC) < 0) {
2932 r = -errno;
2933 goto finish;
2934 }
2935
2936 r = safe_fork("(sd-dissect)", FORK_RESET_SIGNALS|FORK_DEATHSIG|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, &child);
2937 if (r < 0)
2938 goto finish;
2939 if (r == 0) {
2940 /* Child in a new mount namespace */
2941 error_pipe[0] = safe_close(error_pipe[0]);
2942
2943 r = dissected_image_mount(
2944 m,
2945 t,
2946 UID_INVALID,
2947 UID_INVALID,
2948 extra_flags |
2949 DISSECT_IMAGE_READ_ONLY |
2950 DISSECT_IMAGE_MOUNT_ROOT_ONLY |
2951 DISSECT_IMAGE_USR_NO_ROOT);
2952 if (r < 0) {
2953 log_debug_errno(r, "Failed to mount dissected image: %m");
2954 goto inner_fail;
2955 }
2956
2957 for (unsigned k = 0; k < _META_MAX; k++) {
2958 _cleanup_close_ int fd = -ENOENT;
2959
2960 if (!paths[k])
2961 continue;
2962
2963 fds[2*k] = safe_close(fds[2*k]);
2964
2965 switch (k) {
2966
2967 case META_EXTENSION_RELEASE:
2968 /* As per the os-release spec, if the image is an extension it will have a file
2969 * named after the image name in extension-release.d/ - we use the image name
2970 * and try to resolve it with the extension-release helpers, as sometimes
2971 * the image names are mangled on deployment and do not match anymore.
2972 * Unlike other paths this is not fixed, and the image name
2973 * can be mangled on deployment, so by calling into the helper
2974 * we allow a fallback that matches on the first extension-release
2975 * file found in the directory, if one named after the image cannot
2976 * be found first. */
2977 r = open_extension_release(t, m->image_name, /* relax_extension_release_check= */ false, NULL, &fd);
2978 if (r < 0)
2979 fd = r; /* Propagate the error. */
2980 break;
2981
2982 case META_HAS_INIT_SYSTEM: {
2983 bool found = false;
2984
2985 FOREACH_STRING(init,
2986 "/usr/lib/systemd/systemd", /* systemd on /usr merged system */
2987 "/lib/systemd/systemd", /* systemd on /usr non-merged systems */
2988 "/sbin/init") { /* traditional path the Linux kernel invokes */
2989
2990 r = chase_symlinks(init, t, CHASE_PREFIX_ROOT, NULL, NULL);
2991 if (r < 0) {
2992 if (r != -ENOENT)
2993 log_debug_errno(r, "Failed to resolve %s, ignoring: %m", init);
2994 } else {
2995 found = true;
2996 break;
2997 }
2998 }
2999
3000 r = loop_write(fds[2*k+1], &found, sizeof(found), false);
3001 if (r < 0)
3002 goto inner_fail;
3003
3004 continue;
3005 }
3006
3007 default:
3008 NULSTR_FOREACH(p, paths[k]) {
3009 fd = chase_symlinks_and_open(p, t, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NOCTTY, NULL);
3010 if (fd >= 0)
3011 break;
3012 }
3013 }
3014
3015 if (fd < 0) {
3016 log_debug_errno(fd, "Failed to read %s file of image, ignoring: %m", paths[k]);
3017 fds[2*k+1] = safe_close(fds[2*k+1]);
3018 continue;
3019 }
3020
3021 r = copy_bytes(fd, fds[2*k+1], UINT64_MAX, 0);
3022 if (r < 0)
3023 goto inner_fail;
3024
3025 fds[2*k+1] = safe_close(fds[2*k+1]);
3026 }
3027
3028 _exit(EXIT_SUCCESS);
3029
3030 inner_fail:
3031 /* Let parent know the error */
3032 (void) write(error_pipe[1], &r, sizeof(r));
3033 _exit(EXIT_FAILURE);
3034 }
3035
3036 error_pipe[1] = safe_close(error_pipe[1]);
3037
3038 for (unsigned k = 0; k < _META_MAX; k++) {
3039 _cleanup_fclose_ FILE *f = NULL;
3040
3041 if (!paths[k])
3042 continue;
3043
3044 fds[2*k+1] = safe_close(fds[2*k+1]);
3045
3046 f = take_fdopen(&fds[2*k], "r");
3047 if (!f) {
3048 r = -errno;
3049 goto finish;
3050 }
3051
3052 switch (k) {
3053
3054 case META_HOSTNAME:
3055 r = read_etc_hostname_stream(f, &hostname);
3056 if (r < 0)
3057 log_debug_errno(r, "Failed to read /etc/hostname of image: %m");
3058
3059 break;
3060
3061 case META_MACHINE_ID: {
3062 _cleanup_free_ char *line = NULL;
3063
3064 r = read_line(f, LONG_LINE_MAX, &line);
3065 if (r < 0)
3066 log_debug_errno(r, "Failed to read /etc/machine-id of image: %m");
3067 else if (r == 33) {
3068 r = sd_id128_from_string(line, &machine_id);
3069 if (r < 0)
3070 log_debug_errno(r, "Image contains invalid /etc/machine-id: %s", line);
3071 } else if (r == 0)
3072 log_debug("/etc/machine-id file of image is empty.");
3073 else if (streq(line, "uninitialized"))
3074 log_debug("/etc/machine-id file of image is uninitialized (likely aborted first boot).");
3075 else
3076 log_debug("/etc/machine-id file of image has unexpected length %i.", r);
3077
3078 break;
3079 }
3080
3081 case META_MACHINE_INFO:
3082 r = load_env_file_pairs(f, "machine-info", &machine_info);
3083 if (r < 0)
3084 log_debug_errno(r, "Failed to read /etc/machine-info of image: %m");
3085
3086 break;
3087
3088 case META_OS_RELEASE:
3089 r = load_env_file_pairs(f, "os-release", &os_release);
3090 if (r < 0)
3091 log_debug_errno(r, "Failed to read OS release file of image: %m");
3092
3093 break;
3094
3095 case META_INITRD_RELEASE:
3096 r = load_env_file_pairs(f, "initrd-release", &initrd_release);
3097 if (r < 0)
3098 log_debug_errno(r, "Failed to read initrd release file of image: %m");
3099
3100 break;
3101
3102 case META_EXTENSION_RELEASE:
3103 r = load_env_file_pairs(f, "extension-release", &extension_release);
3104 if (r < 0)
3105 log_debug_errno(r, "Failed to read extension release file of image: %m");
3106
3107 break;
3108
3109 case META_HAS_INIT_SYSTEM: {
3110 bool b = false;
3111 size_t nr;
3112
3113 errno = 0;
3114 nr = fread(&b, 1, sizeof(b), f);
3115 if (nr != sizeof(b))
3116 log_debug_errno(errno_or_else(EIO), "Failed to read has-init-system boolean: %m");
3117 else
3118 has_init_system = b;
3119
3120 break;
3121 }}
3122 }
3123
3124 r = wait_for_terminate_and_check("(sd-dissect)", child, 0);
3125 child = 0;
3126 if (r < 0)
3127 return r;
3128
3129 n = read(error_pipe[0], &v, sizeof(v));
3130 if (n < 0)
3131 return -errno;
3132 if (n == sizeof(v))
3133 return v; /* propagate error sent to us from child */
3134 if (n != 0)
3135 return -EIO;
3136
3137 if (r != EXIT_SUCCESS)
3138 return -EPROTO;
3139
3140 free_and_replace(m->hostname, hostname);
3141 m->machine_id = machine_id;
3142 strv_free_and_replace(m->machine_info, machine_info);
3143 strv_free_and_replace(m->os_release, os_release);
3144 strv_free_and_replace(m->initrd_release, initrd_release);
3145 strv_free_and_replace(m->extension_release, extension_release);
3146 m->has_init_system = has_init_system;
3147
3148 finish:
3149 for (unsigned k = 0; k < n_meta_initialized; k++)
3150 safe_close_pair(fds + 2*k);
3151
3152 return r;
3153 }
3154
3155 int dissect_loop_device(
3156 LoopDevice *loop,
3157 const VeritySettings *verity,
3158 const MountOptions *mount_options,
3159 DissectImageFlags flags,
3160 DissectedImage **ret) {
3161
3162 #if HAVE_BLKID
3163 _cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
3164 int r;
3165
3166 assert(loop);
3167 assert(ret);
3168
3169 r = dissected_image_new(loop->backing_file ?: loop->node, &m);
3170 if (r < 0)
3171 return r;
3172
3173 m->loop = loop_device_ref(loop);
3174 m->sector_size = m->loop->sector_size;
3175
3176 r = dissect_image(m, loop->fd, loop->node, verity, mount_options, flags);
3177 if (r < 0)
3178 return r;
3179
3180 *ret = TAKE_PTR(m);
3181 return 0;
3182 #else
3183 return -EOPNOTSUPP;
3184 #endif
3185 }
3186
3187 int dissect_loop_device_and_warn(
3188 LoopDevice *loop,
3189 const VeritySettings *verity,
3190 const MountOptions *mount_options,
3191 DissectImageFlags flags,
3192 DissectedImage **ret) {
3193
3194 const char *name;
3195 int r;
3196
3197 assert(loop);
3198 assert(loop->fd >= 0);
3199
3200 name = ASSERT_PTR(loop->backing_file ?: loop->node);
3201
3202 r = dissect_loop_device(loop, verity, mount_options, flags, ret);
3203 switch (r) {
3204
3205 case -EOPNOTSUPP:
3206 return log_error_errno(r, "Dissecting images is not supported, compiled without blkid support.");
3207
3208 case -ENOPKG:
3209 return log_error_errno(r, "%s: Couldn't identify a suitable partition table or file system.", name);
3210
3211 case -ENOMEDIUM:
3212 return log_error_errno(r, "%s: The image does not pass validation.", name);
3213
3214 case -EADDRNOTAVAIL:
3215 return log_error_errno(r, "%s: No root partition for specified root hash found.", name);
3216
3217 case -ENOTUNIQ:
3218 return log_error_errno(r, "%s: Multiple suitable root partitions found in image.", name);
3219
3220 case -ENXIO:
3221 return log_error_errno(r, "%s: No suitable root partition found in image.", name);
3222
3223 case -EPROTONOSUPPORT:
3224 return log_error_errno(r, "Device '%s' is loopback block device with partition scanning turned off, please turn it on.", name);
3225
3226 case -ENOTBLK:
3227 return log_error_errno(r, "%s: Image is not a block device.", name);
3228
3229 case -EBADR:
3230 return log_error_errno(r,
3231 "Combining partitioned images (such as '%s') with external Verity data (such as '%s') not supported. "
3232 "(Consider setting $SYSTEMD_DISSECT_VERITY_SIDECAR=0 to disable automatic discovery of external Verity data.)",
3233 name, strna(verity ? verity->data_path : NULL));
3234
3235 default:
3236 if (r < 0)
3237 return log_error_errno(r, "Failed to dissect image '%s': %m", name);
3238
3239 return r;
3240 }
3241 }
3242
3243 bool dissected_image_verity_candidate(const DissectedImage *image, PartitionDesignator partition_designator) {
3244 assert(image);
3245
3246 /* Checks if this partition could theoretically do Verity. For non-partitioned images this only works
3247 * if there's an external verity file supplied, for which we can consult .has_verity. For partitioned
3248 * images we only check the partition type.
3249 *
3250 * This call is used to decide whether to suppress or show a verity column in tabular output of the
3251 * image. */
3252
3253 if (image->single_file_system)
3254 return partition_designator == PARTITION_ROOT && image->has_verity;
3255
3256 return partition_verity_of(partition_designator) >= 0;
3257 }
3258
3259 bool dissected_image_verity_ready(const DissectedImage *image, PartitionDesignator partition_designator) {
3260 PartitionDesignator k;
3261
3262 assert(image);
3263
3264 /* Checks if this partition has verity data available that we can activate. For non-partitioned this
3265 * works for the root partition, for others only if the associated verity partition was found. */
3266
3267 if (!image->verity_ready)
3268 return false;
3269
3270 if (image->single_file_system)
3271 return partition_designator == PARTITION_ROOT;
3272
3273 k = partition_verity_of(partition_designator);
3274 return k >= 0 && image->partitions[k].found;
3275 }
3276
3277 bool dissected_image_verity_sig_ready(const DissectedImage *image, PartitionDesignator partition_designator) {
3278 PartitionDesignator k;
3279
3280 assert(image);
3281
3282 /* Checks if this partition has verity signature data available that we can use. */
3283
3284 if (!image->verity_sig_ready)
3285 return false;
3286
3287 if (image->single_file_system)
3288 return partition_designator == PARTITION_ROOT;
3289
3290 k = partition_verity_sig_of(partition_designator);
3291 return k >= 0 && image->partitions[k].found;
3292 }
3293
3294 MountOptions* mount_options_free_all(MountOptions *options) {
3295 MountOptions *m;
3296
3297 while ((m = options)) {
3298 LIST_REMOVE(mount_options, options, m);
3299 free(m->options);
3300 free(m);
3301 }
3302
3303 return NULL;
3304 }
3305
3306 const char* mount_options_from_designator(const MountOptions *options, PartitionDesignator designator) {
3307 LIST_FOREACH(mount_options, m, options)
3308 if (designator == m->partition_designator && !isempty(m->options))
3309 return m->options;
3310
3311 return NULL;
3312 }
3313
3314 int mount_image_privately_interactively(
3315 const char *image,
3316 DissectImageFlags flags,
3317 char **ret_directory,
3318 LoopDevice **ret_loop_device) {
3319
3320 _cleanup_(verity_settings_done) VeritySettings verity = VERITY_SETTINGS_DEFAULT;
3321 _cleanup_(loop_device_unrefp) LoopDevice *d = NULL;
3322 _cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
3323 _cleanup_(rmdir_and_freep) char *created_dir = NULL;
3324 _cleanup_free_ char *temp = NULL;
3325 int r;
3326
3327 /* Mounts an OS image at a temporary place, inside a newly created mount namespace of our own. This
3328 * is used by tools such as systemd-tmpfiles or systemd-firstboot to operate on some disk image
3329 * easily. */
3330
3331 assert(image);
3332 assert(ret_directory);
3333 assert(ret_loop_device);
3334
3335 /* We intend to mount this right-away, hence add the partitions if needed and pin them. */
3336 flags |= DISSECT_IMAGE_ADD_PARTITION_DEVICES |
3337 DISSECT_IMAGE_PIN_PARTITION_DEVICES;
3338
3339 r = verity_settings_load(&verity, image, NULL, NULL);
3340 if (r < 0)
3341 return log_error_errno(r, "Failed to load root hash data: %m");
3342
3343 r = tempfn_random_child(NULL, program_invocation_short_name, &temp);
3344 if (r < 0)
3345 return log_error_errno(r, "Failed to generate temporary mount directory: %m");
3346
3347 r = loop_device_make_by_path(
3348 image,
3349 FLAGS_SET(flags, DISSECT_IMAGE_DEVICE_READ_ONLY) ? O_RDONLY : O_RDWR,
3350 /* sector_size= */ UINT32_MAX,
3351 FLAGS_SET(flags, DISSECT_IMAGE_NO_PARTITION_TABLE) ? 0 : LO_FLAGS_PARTSCAN,
3352 LOCK_SH,
3353 &d);
3354 if (r < 0)
3355 return log_error_errno(r, "Failed to set up loopback device for %s: %m", image);
3356
3357 r = dissect_loop_device_and_warn(d, &verity, NULL, flags, &dissected_image);
3358 if (r < 0)
3359 return r;
3360
3361 r = dissected_image_load_verity_sig_partition(dissected_image, d->fd, &verity);
3362 if (r < 0)
3363 return r;
3364
3365 r = dissected_image_decrypt_interactively(dissected_image, NULL, &verity, flags);
3366 if (r < 0)
3367 return r;
3368
3369 r = detach_mount_namespace();
3370 if (r < 0)
3371 return log_error_errno(r, "Failed to detach mount namespace: %m");
3372
3373 r = mkdir_p(temp, 0700);
3374 if (r < 0)
3375 return log_error_errno(r, "Failed to create mount point: %m");
3376
3377 created_dir = TAKE_PTR(temp);
3378
3379 r = dissected_image_mount_and_warn(dissected_image, created_dir, UID_INVALID, UID_INVALID, flags);
3380 if (r < 0)
3381 return r;
3382
3383 r = loop_device_flock(d, LOCK_UN);
3384 if (r < 0)
3385 return r;
3386
3387 r = dissected_image_relinquish(dissected_image);
3388 if (r < 0)
3389 return log_error_errno(r, "Failed to relinquish DM and loopback block devices: %m");
3390
3391 *ret_directory = TAKE_PTR(created_dir);
3392 *ret_loop_device = TAKE_PTR(d);
3393
3394 return 0;
3395 }
3396
3397 static bool mount_options_relax_extension_release_checks(const MountOptions *options) {
3398 if (!options)
3399 return false;
3400
3401 return string_contains_word(mount_options_from_designator(options, PARTITION_ROOT), ",", "x-systemd.relax-extension-release-check") ||
3402 string_contains_word(mount_options_from_designator(options, PARTITION_USR), ",", "x-systemd.relax-extension-release-check") ||
3403 string_contains_word(options->options, ",", "x-systemd.relax-extension-release-check");
3404 }
3405
3406 int verity_dissect_and_mount(
3407 int src_fd,
3408 const char *src,
3409 const char *dest,
3410 const MountOptions *options,
3411 const char *required_host_os_release_id,
3412 const char *required_host_os_release_version_id,
3413 const char *required_host_os_release_sysext_level,
3414 const char *required_sysext_scope) {
3415
3416 _cleanup_(loop_device_unrefp) LoopDevice *loop_device = NULL;
3417 _cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
3418 _cleanup_(verity_settings_done) VeritySettings verity = VERITY_SETTINGS_DEFAULT;
3419 DissectImageFlags dissect_image_flags;
3420 bool relax_extension_release_check;
3421 int r;
3422
3423 assert(src);
3424 assert(dest);
3425
3426 relax_extension_release_check = mount_options_relax_extension_release_checks(options);
3427
3428 /* We might get an FD for the image, but we use the original path to look for the dm-verity files */
3429 r = verity_settings_load(&verity, src, NULL, NULL);
3430 if (r < 0)
3431 return log_debug_errno(r, "Failed to load root hash: %m");
3432
3433 dissect_image_flags = (verity.data_path ? DISSECT_IMAGE_NO_PARTITION_TABLE : 0) |
3434 (relax_extension_release_check ? DISSECT_IMAGE_RELAX_SYSEXT_CHECK : 0) |
3435 DISSECT_IMAGE_ADD_PARTITION_DEVICES |
3436 DISSECT_IMAGE_PIN_PARTITION_DEVICES;
3437
3438 /* Note that we don't use loop_device_make here, as the FD is most likely O_PATH which would not be
3439 * accepted by LOOP_CONFIGURE, so just let loop_device_make_by_path reopen it as a regular FD. */
3440 r = loop_device_make_by_path(
3441 src_fd >= 0 ? FORMAT_PROC_FD_PATH(src_fd) : src,
3442 /* open_flags= */ -1,
3443 /* sector_size= */ UINT32_MAX,
3444 verity.data_path ? 0 : LO_FLAGS_PARTSCAN,
3445 LOCK_SH,
3446 &loop_device);
3447 if (r < 0)
3448 return log_debug_errno(r, "Failed to create loop device for image: %m");
3449
3450 r = dissect_loop_device(
3451 loop_device,
3452 &verity,
3453 options,
3454 dissect_image_flags,
3455 &dissected_image);
3456 /* No partition table? Might be a single-filesystem image, try again */
3457 if (!verity.data_path && r == -ENOPKG)
3458 r = dissect_loop_device(
3459 loop_device,
3460 &verity,
3461 options,
3462 dissect_image_flags | DISSECT_IMAGE_NO_PARTITION_TABLE,
3463 &dissected_image);
3464 if (r < 0)
3465 return log_debug_errno(r, "Failed to dissect image: %m");
3466
3467 r = dissected_image_load_verity_sig_partition(dissected_image, loop_device->fd, &verity);
3468 if (r < 0)
3469 return r;
3470
3471 r = dissected_image_decrypt(
3472 dissected_image,
3473 NULL,
3474 &verity,
3475 dissect_image_flags);
3476 if (r < 0)
3477 return log_debug_errno(r, "Failed to decrypt dissected image: %m");
3478
3479 r = mkdir_p_label(dest, 0755);
3480 if (r < 0)
3481 return log_debug_errno(r, "Failed to create destination directory %s: %m", dest);
3482 r = umount_recursive(dest, 0);
3483 if (r < 0)
3484 return log_debug_errno(r, "Failed to umount under destination directory %s: %m", dest);
3485
3486 r = dissected_image_mount(dissected_image, dest, UID_INVALID, UID_INVALID, dissect_image_flags);
3487 if (r < 0)
3488 return log_debug_errno(r, "Failed to mount image: %m");
3489
3490 r = loop_device_flock(loop_device, LOCK_UN);
3491 if (r < 0)
3492 return log_debug_errno(r, "Failed to unlock loopback device: %m");
3493
3494 /* If we got os-release values from the caller, then we need to match them with the image's
3495 * extension-release.d/ content. Return -EINVAL if there's any mismatch.
3496 * First, check the distro ID. If that matches, then check the new SYSEXT_LEVEL value if
3497 * available, or else fallback to VERSION_ID. If neither is present (eg: rolling release),
3498 * then a simple match on the ID will be performed. */
3499 if (required_host_os_release_id) {
3500 _cleanup_strv_free_ char **extension_release = NULL;
3501
3502 assert(!isempty(required_host_os_release_id));
3503
3504 r = load_extension_release_pairs(dest, dissected_image->image_name, relax_extension_release_check, &extension_release);
3505 if (r < 0)
3506 return log_debug_errno(r, "Failed to parse image %s extension-release metadata: %m", dissected_image->image_name);
3507
3508 r = extension_release_validate(
3509 dissected_image->image_name,
3510 required_host_os_release_id,
3511 required_host_os_release_version_id,
3512 required_host_os_release_sysext_level,
3513 required_sysext_scope,
3514 extension_release);
3515 if (r == 0)
3516 return log_debug_errno(SYNTHETIC_ERRNO(ESTALE), "Image %s extension-release metadata does not match the root's", dissected_image->image_name);
3517 if (r < 0)
3518 return log_debug_errno(r, "Failed to compare image %s extension-release metadata with the root's os-release: %m", dissected_image->image_name);
3519 }
3520
3521 r = dissected_image_relinquish(dissected_image);
3522 if (r < 0)
3523 return log_debug_errno(r, "Failed to relinquish dissected image: %m");
3524
3525 return 0;
3526 }