]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/shared/dissect-image.c
Merge pull request #18575 from bugaevc/aa
[thirdparty/systemd.git] / src / shared / dissect-image.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #if HAVE_VALGRIND_MEMCHECK_H
4 #include <valgrind/memcheck.h>
5 #endif
6
7 #include <linux/dm-ioctl.h>
8 #include <linux/loop.h>
9 #include <sys/mount.h>
10 #include <sys/prctl.h>
11 #include <sys/wait.h>
12 #include <sysexits.h>
13
14 #include "sd-device.h"
15 #include "sd-id128.h"
16
17 #include "architecture.h"
18 #include "ask-password-api.h"
19 #include "blkid-util.h"
20 #include "blockdev-util.h"
21 #include "copy.h"
22 #include "cryptsetup-util.h"
23 #include "def.h"
24 #include "device-nodes.h"
25 #include "device-util.h"
26 #include "discover-image.h"
27 #include "dissect-image.h"
28 #include "dm-util.h"
29 #include "env-file.h"
30 #include "fd-util.h"
31 #include "fileio.h"
32 #include "fs-util.h"
33 #include "fsck-util.h"
34 #include "gpt.h"
35 #include "hexdecoct.h"
36 #include "hostname-setup.h"
37 #include "id128-util.h"
38 #include "import-util.h"
39 #include "mkdir.h"
40 #include "mount-util.h"
41 #include "mountpoint-util.h"
42 #include "namespace-util.h"
43 #include "nulstr-util.h"
44 #include "os-util.h"
45 #include "path-util.h"
46 #include "process-util.h"
47 #include "raw-clone.h"
48 #include "signal-util.h"
49 #include "stat-util.h"
50 #include "stdio-util.h"
51 #include "string-table.h"
52 #include "string-util.h"
53 #include "strv.h"
54 #include "tmpfile-util.h"
55 #include "udev-util.h"
56 #include "user-util.h"
57 #include "xattr-util.h"
58
59 /* how many times to wait for the device nodes to appear */
60 #define N_DEVICE_NODE_LIST_ATTEMPTS 10
61
62 int probe_filesystem(const char *node, char **ret_fstype) {
63 /* Try to find device content type and return it in *ret_fstype. If nothing is found,
64 * 0/NULL will be returned. -EUCLEAN will be returned for ambiguous results, and an
65 * different error otherwise. */
66
67 #if HAVE_BLKID
68 _cleanup_(blkid_free_probep) blkid_probe b = NULL;
69 const char *fstype;
70 int r;
71
72 errno = 0;
73 b = blkid_new_probe_from_filename(node);
74 if (!b)
75 return errno_or_else(ENOMEM);
76
77 blkid_probe_enable_superblocks(b, 1);
78 blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE);
79
80 errno = 0;
81 r = blkid_do_safeprobe(b);
82 if (r == 1) {
83 log_debug("No type detected on partition %s", node);
84 goto not_found;
85 }
86 if (r == -2)
87 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN),
88 "Results ambiguous for partition %s", node);
89 if (r != 0)
90 return errno_or_else(EIO);
91
92 (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
93
94 if (fstype) {
95 char *t;
96
97 t = strdup(fstype);
98 if (!t)
99 return -ENOMEM;
100
101 *ret_fstype = t;
102 return 1;
103 }
104
105 not_found:
106 *ret_fstype = NULL;
107 return 0;
108 #else
109 return -EOPNOTSUPP;
110 #endif
111 }
112
113 #if HAVE_BLKID
114 static int enumerator_for_parent(sd_device *d, sd_device_enumerator **ret) {
115 _cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
116 int r;
117
118 assert(d);
119 assert(ret);
120
121 r = sd_device_enumerator_new(&e);
122 if (r < 0)
123 return r;
124
125 r = sd_device_enumerator_allow_uninitialized(e);
126 if (r < 0)
127 return r;
128
129 r = sd_device_enumerator_add_match_parent(e, d);
130 if (r < 0)
131 return r;
132
133 *ret = TAKE_PTR(e);
134 return 0;
135 }
136
137 static int device_is_partition(sd_device *d, blkid_partition pp) {
138 blkid_loff_t bsize, bstart;
139 uint64_t size, start;
140 int partno, bpartno, r;
141 const char *ss, *v;
142
143 assert(d);
144 assert(pp);
145
146 r = sd_device_get_subsystem(d, &ss);
147 if (r < 0)
148 return r;
149 if (!streq(ss, "block"))
150 return false;
151
152 r = sd_device_get_sysattr_value(d, "partition", &v);
153 if (r == -ENOENT || /* Not a partition device */
154 ERRNO_IS_PRIVILEGE(r)) /* Not ready to access? */
155 return false;
156 if (r < 0)
157 return r;
158 r = safe_atoi(v, &partno);
159 if (r < 0)
160 return r;
161
162 errno = 0;
163 bpartno = blkid_partition_get_partno(pp);
164 if (bpartno < 0)
165 return errno_or_else(EIO);
166
167 if (partno != bpartno)
168 return false;
169
170 r = sd_device_get_sysattr_value(d, "start", &v);
171 if (r < 0)
172 return r;
173 r = safe_atou64(v, &start);
174 if (r < 0)
175 return r;
176
177 errno = 0;
178 bstart = blkid_partition_get_start(pp);
179 if (bstart < 0)
180 return errno_or_else(EIO);
181
182 if (start != (uint64_t) bstart)
183 return false;
184
185 r = sd_device_get_sysattr_value(d, "size", &v);
186 if (r < 0)
187 return r;
188 r = safe_atou64(v, &size);
189 if (r < 0)
190 return r;
191
192 errno = 0;
193 bsize = blkid_partition_get_size(pp);
194 if (bsize < 0)
195 return errno_or_else(EIO);
196
197 if (size != (uint64_t) bsize)
198 return false;
199
200 return true;
201 }
202
203 static int find_partition(
204 sd_device *parent,
205 blkid_partition pp,
206 sd_device **ret) {
207
208 _cleanup_(sd_device_enumerator_unrefp) sd_device_enumerator *e = NULL;
209 sd_device *q;
210 int r;
211
212 assert(parent);
213 assert(pp);
214 assert(ret);
215
216 r = enumerator_for_parent(parent, &e);
217 if (r < 0)
218 return r;
219
220 FOREACH_DEVICE(e, q) {
221 r = device_is_partition(q, pp);
222 if (r < 0)
223 return r;
224 if (r > 0) {
225 *ret = sd_device_ref(q);
226 return 0;
227 }
228 }
229
230 return -ENXIO;
231 }
232
233 struct wait_data {
234 sd_device *parent_device;
235 blkid_partition blkidp;
236 sd_device *found;
237 };
238
239 static inline void wait_data_done(struct wait_data *d) {
240 sd_device_unref(d->found);
241 }
242
243 static int device_monitor_handler(sd_device_monitor *monitor, sd_device *device, void *userdata) {
244 const char *parent1_path, *parent2_path;
245 struct wait_data *w = userdata;
246 sd_device *pp;
247 int r;
248
249 assert(w);
250
251 if (device_for_action(device, SD_DEVICE_REMOVE))
252 return 0;
253
254 r = sd_device_get_parent(device, &pp);
255 if (r < 0)
256 return 0; /* Doesn't have a parent? No relevant to us */
257
258 r = sd_device_get_syspath(pp, &parent1_path); /* Check parent of device of this action */
259 if (r < 0)
260 goto finish;
261
262 r = sd_device_get_syspath(w->parent_device, &parent2_path); /* Check parent of device we are looking for */
263 if (r < 0)
264 goto finish;
265
266 if (!path_equal(parent1_path, parent2_path))
267 return 0; /* Has a different parent than what we need, not interesting to us */
268
269 r = device_is_partition(device, w->blkidp);
270 if (r < 0)
271 goto finish;
272 if (r == 0) /* Not the one we need */
273 return 0;
274
275 /* It's the one we need! Yay! */
276 assert(!w->found);
277 w->found = sd_device_ref(device);
278 r = 0;
279
280 finish:
281 return sd_event_exit(sd_device_monitor_get_event(monitor), r);
282 }
283
284 static int wait_for_partition_device(
285 sd_device *parent,
286 blkid_partition pp,
287 usec_t deadline,
288 sd_device **ret) {
289
290 _cleanup_(sd_event_source_unrefp) sd_event_source *timeout_source = NULL;
291 _cleanup_(sd_device_monitor_unrefp) sd_device_monitor *monitor = NULL;
292 _cleanup_(sd_event_unrefp) sd_event *event = NULL;
293 int r;
294
295 assert(parent);
296 assert(pp);
297 assert(ret);
298
299 r = find_partition(parent, pp, ret);
300 if (r != -ENXIO)
301 return r;
302
303 r = sd_event_new(&event);
304 if (r < 0)
305 return r;
306
307 r = sd_device_monitor_new(&monitor);
308 if (r < 0)
309 return r;
310
311 r = sd_device_monitor_filter_add_match_subsystem_devtype(monitor, "block", "partition");
312 if (r < 0)
313 return r;
314
315 r = sd_device_monitor_attach_event(monitor, event);
316 if (r < 0)
317 return r;
318
319 _cleanup_(wait_data_done) struct wait_data w = {
320 .parent_device = parent,
321 .blkidp = pp,
322 };
323
324 r = sd_device_monitor_start(monitor, device_monitor_handler, &w);
325 if (r < 0)
326 return r;
327
328 /* Check again, the partition might have appeared in the meantime */
329 r = find_partition(parent, pp, ret);
330 if (r != -ENXIO)
331 return r;
332
333 if (deadline != USEC_INFINITY) {
334 r = sd_event_add_time(
335 event, &timeout_source,
336 CLOCK_MONOTONIC, deadline, 0,
337 NULL, INT_TO_PTR(-ETIMEDOUT));
338 if (r < 0)
339 return r;
340 }
341
342 r = sd_event_loop(event);
343 if (r < 0)
344 return r;
345
346 assert(w.found);
347 *ret = TAKE_PTR(w.found);
348 return 0;
349 }
350
351 static void check_partition_flags(
352 const char *node,
353 unsigned long long pflags,
354 unsigned long long supported) {
355
356 assert(node);
357
358 /* Mask away all flags supported by this partition's type and the three flags the UEFI spec defines generically */
359 pflags &= ~(supported | GPT_FLAG_REQUIRED_PARTITION | GPT_FLAG_NO_BLOCK_IO_PROTOCOL | GPT_FLAG_LEGACY_BIOS_BOOTABLE);
360
361 if (pflags == 0)
362 return;
363
364 /* If there are other bits set, then log about it, to make things discoverable */
365 for (unsigned i = 0; i < sizeof(pflags) * 8; i++) {
366 unsigned long long bit = 1ULL << i;
367 if (!FLAGS_SET(pflags, bit))
368 continue;
369
370 log_debug("Unexpected partition flag %llu set on %s!", bit, node);
371 }
372 }
373
374 static int device_wait_for_initialization_harder(
375 sd_device *device,
376 const char *subsystem,
377 usec_t deadline,
378 sd_device **ret) {
379
380 _cleanup_free_ char *uevent = NULL;
381 usec_t start, left, retrigger_timeout;
382 int r;
383
384 start = now(CLOCK_MONOTONIC);
385 left = usec_sub_unsigned(deadline, start);
386
387 if (DEBUG_LOGGING) {
388 char buf[FORMAT_TIMESPAN_MAX];
389 const char *sn = NULL;
390
391 (void) sd_device_get_sysname(device, &sn);
392 log_debug("Waiting for device '%s' to initialize for %s.", strna(sn), format_timespan(buf, sizeof(buf), left, 0));
393 }
394
395 if (left != USEC_INFINITY)
396 retrigger_timeout = CLAMP(left / 4, 1 * USEC_PER_SEC, 5 * USEC_PER_SEC); /* A fourth of the total timeout, but let's clamp to 1s…5s range */
397 else
398 retrigger_timeout = 2 * USEC_PER_SEC;
399
400 for (;;) {
401 usec_t local_deadline, n;
402 bool last_try;
403
404 n = now(CLOCK_MONOTONIC);
405 assert(n >= start);
406
407 /* Find next deadline, when we'll retrigger */
408 local_deadline = start +
409 DIV_ROUND_UP(n - start, retrigger_timeout) * retrigger_timeout;
410
411 if (deadline != USEC_INFINITY && deadline <= local_deadline) {
412 local_deadline = deadline;
413 last_try = true;
414 } else
415 last_try = false;
416
417 r = device_wait_for_initialization(device, subsystem, local_deadline, ret);
418 if (r >= 0 && DEBUG_LOGGING) {
419 char buf[FORMAT_TIMESPAN_MAX];
420 const char *sn = NULL;
421
422 (void) sd_device_get_sysname(device, &sn);
423 log_debug("Successfully waited for device '%s' to initialize for %s.", strna(sn), format_timespan(buf, sizeof(buf), usec_sub_unsigned(now(CLOCK_MONOTONIC), start), 0));
424
425 }
426 if (r != -ETIMEDOUT || last_try)
427 return r;
428
429 if (!uevent) {
430 const char *syspath;
431
432 r = sd_device_get_syspath(device, &syspath);
433 if (r < 0)
434 return r;
435
436 uevent = path_join(syspath, "uevent");
437 if (!uevent)
438 return -ENOMEM;
439 }
440
441 if (DEBUG_LOGGING) {
442 char buf[FORMAT_TIMESPAN_MAX];
443
444 log_debug("Device didn't initialize within %s, assuming lost event. Retriggering device through %s.",
445 format_timespan(buf, sizeof(buf), usec_sub_unsigned(now(CLOCK_MONOTONIC), start), 0),
446 uevent);
447 }
448
449 r = write_string_file(uevent, "change", WRITE_STRING_FILE_DISABLE_BUFFER);
450 if (r < 0)
451 return r;
452 }
453 }
454 #endif
455
456 #define DEVICE_TIMEOUT_USEC (45 * USEC_PER_SEC)
457
458 int dissect_image(
459 int fd,
460 const VeritySettings *verity,
461 const MountOptions *mount_options,
462 DissectImageFlags flags,
463 DissectedImage **ret) {
464
465 #if HAVE_BLKID
466 #ifdef GPT_ROOT_NATIVE
467 sd_id128_t root_uuid = SD_ID128_NULL, root_verity_uuid = SD_ID128_NULL;
468 #endif
469 #ifdef GPT_USR_NATIVE
470 sd_id128_t usr_uuid = SD_ID128_NULL, usr_verity_uuid = SD_ID128_NULL;
471 #endif
472 bool is_gpt, is_mbr, generic_rw, multiple_generic = false;
473 _cleanup_(sd_device_unrefp) sd_device *d = NULL;
474 _cleanup_(dissected_image_unrefp) DissectedImage *m = NULL;
475 _cleanup_(blkid_free_probep) blkid_probe b = NULL;
476 _cleanup_free_ char *generic_node = NULL;
477 sd_id128_t generic_uuid = SD_ID128_NULL;
478 const char *pttype = NULL, *sysname = NULL;
479 blkid_partlist pl;
480 int r, generic_nr, n_partitions;
481 struct stat st;
482 usec_t deadline;
483
484 assert(fd >= 0);
485 assert(ret);
486 assert(!verity || verity->root_hash || verity->root_hash_size == 0);
487 assert(!((flags & DISSECT_IMAGE_GPT_ONLY) && (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)));
488
489 /* Probes a disk image, and returns information about what it found in *ret.
490 *
491 * Returns -ENOPKG if no suitable partition table or file system could be found.
492 * Returns -EADDRNOTAVAIL if a root hash was specified but no matching root/verity partitions found. */
493
494 if (verity && verity->root_hash) {
495 sd_id128_t fsuuid, vuuid;
496
497 /* If a root hash is supplied, then we use the root partition that has a UUID that match the
498 * first 128bit of the root hash. And we use the verity partition that has a UUID that match
499 * the final 128bit. */
500
501 if (verity->root_hash_size < sizeof(sd_id128_t))
502 return -EINVAL;
503
504 memcpy(&fsuuid, verity->root_hash, sizeof(sd_id128_t));
505 memcpy(&vuuid, (const uint8_t*) verity->root_hash + verity->root_hash_size - sizeof(sd_id128_t), sizeof(sd_id128_t));
506
507 if (sd_id128_is_null(fsuuid))
508 return -EINVAL;
509 if (sd_id128_is_null(vuuid))
510 return -EINVAL;
511
512 /* If the verity data declares it's for the /usr partition, then search for that, in all
513 * other cases assume it's for the root partition. */
514 #ifdef GPT_USR_NATIVE
515 if (verity->designator == PARTITION_USR) {
516 usr_uuid = fsuuid;
517 usr_verity_uuid = vuuid;
518 } else {
519 #endif
520 #ifdef GPT_ROOT_NATIVE
521 root_uuid = fsuuid;
522 root_verity_uuid = vuuid;
523 #endif
524 #ifdef GPT_USR_NATIVE
525 }
526 #endif
527 }
528
529 if (fstat(fd, &st) < 0)
530 return -errno;
531
532 if (!S_ISBLK(st.st_mode))
533 return -ENOTBLK;
534
535 r = sd_device_new_from_stat_rdev(&d, &st);
536 if (r < 0)
537 return r;
538
539 if (!FLAGS_SET(flags, DISSECT_IMAGE_NO_UDEV)) {
540 _cleanup_(sd_device_unrefp) sd_device *initialized = NULL;
541
542 /* If udev support is enabled, then let's wait for the device to be initialized before we doing anything. */
543
544 r = device_wait_for_initialization_harder(
545 d,
546 "block",
547 usec_add(now(CLOCK_MONOTONIC), DEVICE_TIMEOUT_USEC),
548 &initialized);
549 if (r < 0)
550 return r;
551
552 sd_device_unref(d);
553 d = TAKE_PTR(initialized);
554 }
555
556 b = blkid_new_probe();
557 if (!b)
558 return -ENOMEM;
559
560 errno = 0;
561 r = blkid_probe_set_device(b, fd, 0, 0);
562 if (r != 0)
563 return errno_or_else(ENOMEM);
564
565 if ((flags & DISSECT_IMAGE_GPT_ONLY) == 0) {
566 /* Look for file system superblocks, unless we only shall look for GPT partition tables */
567 blkid_probe_enable_superblocks(b, 1);
568 blkid_probe_set_superblocks_flags(b, BLKID_SUBLKS_TYPE|BLKID_SUBLKS_USAGE);
569 }
570
571 blkid_probe_enable_partitions(b, 1);
572 blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS);
573
574 errno = 0;
575 r = blkid_do_safeprobe(b);
576 if (IN_SET(r, -2, 1))
577 return log_debug_errno(SYNTHETIC_ERRNO(ENOPKG), "Failed to identify any partition table.");
578 if (r != 0)
579 return errno_or_else(EIO);
580
581 m = new0(DissectedImage, 1);
582 if (!m)
583 return -ENOMEM;
584
585 r = sd_device_get_sysname(d, &sysname);
586 if (r < 0)
587 return log_debug_errno(r, "Failed to get device sysname: %m");
588 if (startswith(sysname, "loop")) {
589 _cleanup_free_ char *name_stripped = NULL;
590 const char *full_path;
591
592 r = sd_device_get_sysattr_value(d, "loop/backing_file", &full_path);
593 if (r < 0)
594 log_debug_errno(r, "Failed to lookup image name via loop device backing file sysattr, ignoring: %m");
595 else {
596 r = raw_strip_suffixes(basename(full_path), &name_stripped);
597 if (r < 0)
598 return r;
599 }
600
601 free_and_replace(m->image_name, name_stripped);
602 } else {
603 r = free_and_strdup(&m->image_name, sysname);
604 if (r < 0)
605 return r;
606 }
607
608 if (!image_name_is_valid(m->image_name)) {
609 log_debug("Image name %s is not valid, ignoring", strempty(m->image_name));
610 m->image_name = mfree(m->image_name);
611 }
612
613 if ((!(flags & DISSECT_IMAGE_GPT_ONLY) &&
614 (flags & DISSECT_IMAGE_REQUIRE_ROOT)) ||
615 (flags & DISSECT_IMAGE_NO_PARTITION_TABLE)) {
616 const char *usage = NULL;
617
618 /* If flags permit this, also allow using non-partitioned single-filesystem images */
619
620 (void) blkid_probe_lookup_value(b, "USAGE", &usage, NULL);
621 if (STRPTR_IN_SET(usage, "filesystem", "crypto")) {
622 const char *fstype = NULL, *options = NULL, *devname = NULL;
623 _cleanup_free_ char *t = NULL, *n = NULL, *o = NULL;
624
625 /* OK, we have found a file system, that's our root partition then. */
626 (void) blkid_probe_lookup_value(b, "TYPE", &fstype, NULL);
627
628 if (fstype) {
629 t = strdup(fstype);
630 if (!t)
631 return -ENOMEM;
632 }
633
634 r = sd_device_get_devname(d, &devname);
635 if (r < 0)
636 return r;
637
638 n = strdup(devname);
639 if (!n)
640 return -ENOMEM;
641
642 m->single_file_system = true;
643 m->verity = verity && verity->root_hash && verity->data_path && (verity->designator < 0 || verity->designator == PARTITION_ROOT);
644 m->can_verity = verity && verity->data_path;
645
646 options = mount_options_from_designator(mount_options, PARTITION_ROOT);
647 if (options) {
648 o = strdup(options);
649 if (!o)
650 return -ENOMEM;
651 }
652
653 m->partitions[PARTITION_ROOT] = (DissectedPartition) {
654 .found = true,
655 .rw = !m->verity,
656 .partno = -1,
657 .architecture = _ARCHITECTURE_INVALID,
658 .fstype = TAKE_PTR(t),
659 .node = TAKE_PTR(n),
660 .mount_options = TAKE_PTR(o),
661 };
662
663 m->encrypted = streq_ptr(fstype, "crypto_LUKS");
664
665 *ret = TAKE_PTR(m);
666 return 0;
667 }
668 }
669
670 (void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL);
671 if (!pttype)
672 return -ENOPKG;
673
674 is_gpt = streq_ptr(pttype, "gpt");
675 is_mbr = streq_ptr(pttype, "dos");
676
677 if (!is_gpt && ((flags & DISSECT_IMAGE_GPT_ONLY) || !is_mbr))
678 return -ENOPKG;
679
680 /* Safety check: refuse block devices that carry a partition table but for which the kernel doesn't
681 * do partition scanning. */
682 r = blockdev_partscan_enabled(fd);
683 if (r < 0)
684 return r;
685 if (r == 0)
686 return -EPROTONOSUPPORT;
687
688 errno = 0;
689 pl = blkid_probe_get_partitions(b);
690 if (!pl)
691 return errno_or_else(ENOMEM);
692
693 errno = 0;
694 n_partitions = blkid_partlist_numof_partitions(pl);
695 if (n_partitions < 0)
696 return errno_or_else(EIO);
697
698 deadline = usec_add(now(CLOCK_MONOTONIC), DEVICE_TIMEOUT_USEC);
699 for (int i = 0; i < n_partitions; i++) {
700 _cleanup_(sd_device_unrefp) sd_device *q = NULL;
701 unsigned long long pflags;
702 blkid_partition pp;
703 const char *node;
704 int nr;
705
706 errno = 0;
707 pp = blkid_partlist_get_partition(pl, i);
708 if (!pp)
709 return errno_or_else(EIO);
710
711 r = wait_for_partition_device(d, pp, deadline, &q);
712 if (r < 0)
713 return r;
714
715 r = sd_device_get_devname(q, &node);
716 if (r < 0)
717 return r;
718
719 pflags = blkid_partition_get_flags(pp);
720
721 errno = 0;
722 nr = blkid_partition_get_partno(pp);
723 if (nr < 0)
724 return errno_or_else(EIO);
725
726 if (is_gpt) {
727 PartitionDesignator designator = _PARTITION_DESIGNATOR_INVALID;
728 int architecture = _ARCHITECTURE_INVALID;
729 const char *stype, *sid, *fstype = NULL;
730 sd_id128_t type_id, id;
731 bool rw = true;
732
733 sid = blkid_partition_get_uuid(pp);
734 if (!sid)
735 continue;
736 if (sd_id128_from_string(sid, &id) < 0)
737 continue;
738
739 stype = blkid_partition_get_type_string(pp);
740 if (!stype)
741 continue;
742 if (sd_id128_from_string(stype, &type_id) < 0)
743 continue;
744
745 if (sd_id128_equal(type_id, GPT_HOME)) {
746
747 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
748
749 if (pflags & GPT_FLAG_NO_AUTO)
750 continue;
751
752 designator = PARTITION_HOME;
753 rw = !(pflags & GPT_FLAG_READ_ONLY);
754
755 } else if (sd_id128_equal(type_id, GPT_SRV)) {
756
757 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
758
759 if (pflags & GPT_FLAG_NO_AUTO)
760 continue;
761
762 designator = PARTITION_SRV;
763 rw = !(pflags & GPT_FLAG_READ_ONLY);
764
765 } else if (sd_id128_equal(type_id, GPT_ESP)) {
766
767 /* Note that we don't check the GPT_FLAG_NO_AUTO flag for the ESP, as it is
768 * not defined there. We instead check the GPT_FLAG_NO_BLOCK_IO_PROTOCOL, as
769 * recommended by the UEFI spec (See "12.3.3 Number and Location of System
770 * Partitions"). */
771
772 if (pflags & GPT_FLAG_NO_BLOCK_IO_PROTOCOL)
773 continue;
774
775 designator = PARTITION_ESP;
776 fstype = "vfat";
777
778 } else if (sd_id128_equal(type_id, GPT_XBOOTLDR)) {
779
780 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
781
782 if (pflags & GPT_FLAG_NO_AUTO)
783 continue;
784
785 designator = PARTITION_XBOOTLDR;
786 rw = !(pflags & GPT_FLAG_READ_ONLY);
787 }
788 #ifdef GPT_ROOT_NATIVE
789 else if (sd_id128_equal(type_id, GPT_ROOT_NATIVE)) {
790
791 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
792
793 if (pflags & GPT_FLAG_NO_AUTO)
794 continue;
795
796 /* If a root ID is specified, ignore everything but the root id */
797 if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id))
798 continue;
799
800 designator = PARTITION_ROOT;
801 architecture = native_architecture();
802 rw = !(pflags & GPT_FLAG_READ_ONLY);
803
804 } else if (sd_id128_equal(type_id, GPT_ROOT_NATIVE_VERITY)) {
805
806 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
807
808 if (pflags & GPT_FLAG_NO_AUTO)
809 continue;
810
811 m->can_verity = true;
812
813 /* Ignore verity unless a root hash is specified */
814 if (sd_id128_is_null(root_verity_uuid) || !sd_id128_equal(root_verity_uuid, id))
815 continue;
816
817 designator = PARTITION_ROOT_VERITY;
818 fstype = "DM_verity_hash";
819 architecture = native_architecture();
820 rw = false;
821 }
822 #endif
823 #ifdef GPT_ROOT_SECONDARY
824 else if (sd_id128_equal(type_id, GPT_ROOT_SECONDARY)) {
825
826 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
827
828 if (pflags & GPT_FLAG_NO_AUTO)
829 continue;
830
831 /* If a root ID is specified, ignore everything but the root id */
832 if (!sd_id128_is_null(root_uuid) && !sd_id128_equal(root_uuid, id))
833 continue;
834
835 designator = PARTITION_ROOT_SECONDARY;
836 architecture = SECONDARY_ARCHITECTURE;
837 rw = !(pflags & GPT_FLAG_READ_ONLY);
838
839 } else if (sd_id128_equal(type_id, GPT_ROOT_SECONDARY_VERITY)) {
840
841 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
842
843 if (pflags & GPT_FLAG_NO_AUTO)
844 continue;
845
846 m->can_verity = true;
847
848 /* Ignore verity unless root has is specified */
849 if (sd_id128_is_null(root_verity_uuid) || !sd_id128_equal(root_verity_uuid, id))
850 continue;
851
852 designator = PARTITION_ROOT_SECONDARY_VERITY;
853 fstype = "DM_verity_hash";
854 architecture = SECONDARY_ARCHITECTURE;
855 rw = false;
856 }
857 #endif
858 #ifdef GPT_USR_NATIVE
859 else if (sd_id128_equal(type_id, GPT_USR_NATIVE)) {
860
861 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
862
863 if (pflags & GPT_FLAG_NO_AUTO)
864 continue;
865
866 /* If a usr ID is specified, ignore everything but the usr id */
867 if (!sd_id128_is_null(usr_uuid) && !sd_id128_equal(usr_uuid, id))
868 continue;
869
870 designator = PARTITION_USR;
871 architecture = native_architecture();
872 rw = !(pflags & GPT_FLAG_READ_ONLY);
873
874 } else if (sd_id128_equal(type_id, GPT_USR_NATIVE_VERITY)) {
875
876 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
877
878 if (pflags & GPT_FLAG_NO_AUTO)
879 continue;
880
881 m->can_verity = true;
882
883 /* Ignore verity unless a usr hash is specified */
884 if (sd_id128_is_null(usr_verity_uuid) || !sd_id128_equal(usr_verity_uuid, id))
885 continue;
886
887 designator = PARTITION_USR_VERITY;
888 fstype = "DM_verity_hash";
889 architecture = native_architecture();
890 rw = false;
891 }
892 #endif
893 #ifdef GPT_USR_SECONDARY
894 else if (sd_id128_equal(type_id, GPT_USR_SECONDARY)) {
895
896 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
897
898 if (pflags & GPT_FLAG_NO_AUTO)
899 continue;
900
901 /* If a usr ID is specified, ignore everything but the usr id */
902 if (!sd_id128_is_null(usr_uuid) && !sd_id128_equal(usr_uuid, id))
903 continue;
904
905 designator = PARTITION_USR_SECONDARY;
906 architecture = SECONDARY_ARCHITECTURE;
907 rw = !(pflags & GPT_FLAG_READ_ONLY);
908
909 } else if (sd_id128_equal(type_id, GPT_USR_SECONDARY_VERITY)) {
910
911 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
912
913 if (pflags & GPT_FLAG_NO_AUTO)
914 continue;
915
916 m->can_verity = true;
917
918 /* Ignore verity unless usr has is specified */
919 if (sd_id128_is_null(usr_verity_uuid) || !sd_id128_equal(usr_verity_uuid, id))
920 continue;
921
922 designator = PARTITION_USR_SECONDARY_VERITY;
923 fstype = "DM_verity_hash";
924 architecture = SECONDARY_ARCHITECTURE;
925 rw = false;
926 }
927 #endif
928 else if (sd_id128_equal(type_id, GPT_SWAP)) {
929
930 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO);
931
932 if (pflags & GPT_FLAG_NO_AUTO)
933 continue;
934
935 designator = PARTITION_SWAP;
936 fstype = "swap";
937
938 } else if (sd_id128_equal(type_id, GPT_LINUX_GENERIC)) {
939
940 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
941
942 if (pflags & GPT_FLAG_NO_AUTO)
943 continue;
944
945 if (generic_node)
946 multiple_generic = true;
947 else {
948 generic_nr = nr;
949 generic_rw = !(pflags & GPT_FLAG_READ_ONLY);
950 generic_uuid = id;
951 generic_node = strdup(node);
952 if (!generic_node)
953 return -ENOMEM;
954 }
955
956 } else if (sd_id128_equal(type_id, GPT_TMP)) {
957
958 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
959
960 if (pflags & GPT_FLAG_NO_AUTO)
961 continue;
962
963 designator = PARTITION_TMP;
964 rw = !(pflags & GPT_FLAG_READ_ONLY);
965
966 } else if (sd_id128_equal(type_id, GPT_VAR)) {
967
968 check_partition_flags(node, pflags, GPT_FLAG_NO_AUTO|GPT_FLAG_READ_ONLY);
969
970 if (pflags & GPT_FLAG_NO_AUTO)
971 continue;
972
973 if (!FLAGS_SET(flags, DISSECT_IMAGE_RELAX_VAR_CHECK)) {
974 sd_id128_t var_uuid;
975
976 /* For /var we insist that the uuid of the partition matches the
977 * HMAC-SHA256 of the /var GPT partition type uuid, keyed by machine
978 * ID. Why? Unlike the other partitions /var is inherently
979 * installation specific, hence we need to be careful not to mount it
980 * in the wrong installation. By hashing the partition UUID from
981 * /etc/machine-id we can securely bind the partition to the
982 * installation. */
983
984 r = sd_id128_get_machine_app_specific(GPT_VAR, &var_uuid);
985 if (r < 0)
986 return r;
987
988 if (!sd_id128_equal(var_uuid, id)) {
989 log_debug("Found a /var/ partition, but its UUID didn't match our expectations, ignoring.");
990 continue;
991 }
992 }
993
994 designator = PARTITION_VAR;
995 rw = !(pflags & GPT_FLAG_READ_ONLY);
996 }
997
998 if (designator != _PARTITION_DESIGNATOR_INVALID) {
999 _cleanup_free_ char *t = NULL, *n = NULL, *o = NULL;
1000 const char *options = NULL;
1001
1002 /* First one wins */
1003 if (m->partitions[designator].found)
1004 continue;
1005
1006 if (fstype) {
1007 t = strdup(fstype);
1008 if (!t)
1009 return -ENOMEM;
1010 }
1011
1012 n = strdup(node);
1013 if (!n)
1014 return -ENOMEM;
1015
1016 options = mount_options_from_designator(mount_options, designator);
1017 if (options) {
1018 o = strdup(options);
1019 if (!o)
1020 return -ENOMEM;
1021 }
1022
1023 m->partitions[designator] = (DissectedPartition) {
1024 .found = true,
1025 .partno = nr,
1026 .rw = rw,
1027 .architecture = architecture,
1028 .node = TAKE_PTR(n),
1029 .fstype = TAKE_PTR(t),
1030 .uuid = id,
1031 .mount_options = TAKE_PTR(o),
1032 };
1033 }
1034
1035 } else if (is_mbr) {
1036
1037 switch (blkid_partition_get_type(pp)) {
1038
1039 case 0x83: /* Linux partition */
1040
1041 if (pflags != 0x80) /* Bootable flag */
1042 continue;
1043
1044 if (generic_node)
1045 multiple_generic = true;
1046 else {
1047 generic_nr = nr;
1048 generic_rw = true;
1049 generic_node = strdup(node);
1050 if (!generic_node)
1051 return -ENOMEM;
1052 }
1053
1054 break;
1055
1056 case 0xEA: { /* Boot Loader Spec extended $BOOT partition */
1057 _cleanup_free_ char *n = NULL, *o = NULL;
1058 sd_id128_t id = SD_ID128_NULL;
1059 const char *sid, *options = NULL;
1060
1061 /* First one wins */
1062 if (m->partitions[PARTITION_XBOOTLDR].found)
1063 continue;
1064
1065 sid = blkid_partition_get_uuid(pp);
1066 if (sid)
1067 (void) sd_id128_from_string(sid, &id);
1068
1069 n = strdup(node);
1070 if (!n)
1071 return -ENOMEM;
1072
1073 options = mount_options_from_designator(mount_options, PARTITION_XBOOTLDR);
1074 if (options) {
1075 o = strdup(options);
1076 if (!o)
1077 return -ENOMEM;
1078 }
1079
1080 m->partitions[PARTITION_XBOOTLDR] = (DissectedPartition) {
1081 .found = true,
1082 .partno = nr,
1083 .rw = true,
1084 .architecture = _ARCHITECTURE_INVALID,
1085 .node = TAKE_PTR(n),
1086 .uuid = id,
1087 .mount_options = TAKE_PTR(o),
1088 };
1089
1090 break;
1091 }}
1092 }
1093 }
1094
1095 if (m->partitions[PARTITION_ROOT].found) {
1096 /* If we found the primary arch, then invalidate the secondary arch to avoid any ambiguities,
1097 * since we never want to mount the secondary arch in this case. */
1098 m->partitions[PARTITION_ROOT_SECONDARY].found = false;
1099 m->partitions[PARTITION_ROOT_SECONDARY_VERITY].found = false;
1100 m->partitions[PARTITION_USR_SECONDARY].found = false;
1101 m->partitions[PARTITION_USR_SECONDARY_VERITY].found = false;
1102 } else {
1103 /* No root partition found? Then let's see if ther's one for the secondary architecture. And if not
1104 * either, then check if there's a single generic one, and use that. */
1105
1106 if (m->partitions[PARTITION_ROOT_VERITY].found)
1107 return -EADDRNOTAVAIL;
1108
1109 /* We didn't find a primary architecture root, but we found a primary architecture /usr? Refuse that for now. */
1110 if (m->partitions[PARTITION_USR].found || m->partitions[PARTITION_USR_VERITY].found)
1111 return -EADDRNOTAVAIL;
1112
1113 if (m->partitions[PARTITION_ROOT_SECONDARY].found) {
1114 /* Upgrade secondary arch to first */
1115 m->partitions[PARTITION_ROOT] = m->partitions[PARTITION_ROOT_SECONDARY];
1116 zero(m->partitions[PARTITION_ROOT_SECONDARY]);
1117 m->partitions[PARTITION_ROOT_VERITY] = m->partitions[PARTITION_ROOT_SECONDARY_VERITY];
1118 zero(m->partitions[PARTITION_ROOT_SECONDARY_VERITY]);
1119
1120 m->partitions[PARTITION_USR] = m->partitions[PARTITION_USR_SECONDARY];
1121 zero(m->partitions[PARTITION_USR_SECONDARY]);
1122 m->partitions[PARTITION_USR_VERITY] = m->partitions[PARTITION_USR_SECONDARY_VERITY];
1123 zero(m->partitions[PARTITION_USR_SECONDARY_VERITY]);
1124
1125 } else if (flags & DISSECT_IMAGE_REQUIRE_ROOT) {
1126 _cleanup_free_ char *o = NULL;
1127 const char *options = NULL;
1128
1129 /* If the root hash was set, then we won't fall back to a generic node, because the
1130 * root hash decides. */
1131 if (verity && verity->root_hash)
1132 return -EADDRNOTAVAIL;
1133
1134 /* If we didn't find a generic node, then we can't fix this up either */
1135 if (!generic_node)
1136 return -ENXIO;
1137
1138 /* If we didn't find a properly marked root partition, but we did find a single suitable
1139 * generic Linux partition, then use this as root partition, if the caller asked for it. */
1140 if (multiple_generic)
1141 return -ENOTUNIQ;
1142
1143 options = mount_options_from_designator(mount_options, PARTITION_ROOT);
1144 if (options) {
1145 o = strdup(options);
1146 if (!o)
1147 return -ENOMEM;
1148 }
1149
1150 m->partitions[PARTITION_ROOT] = (DissectedPartition) {
1151 .found = true,
1152 .rw = generic_rw,
1153 .partno = generic_nr,
1154 .architecture = _ARCHITECTURE_INVALID,
1155 .node = TAKE_PTR(generic_node),
1156 .uuid = generic_uuid,
1157 .mount_options = TAKE_PTR(o),
1158 };
1159 }
1160 }
1161
1162 /* Refuse if we found a verity partition for /usr but no matching file system partition */
1163 if (!m->partitions[PARTITION_USR].found && m->partitions[PARTITION_USR_VERITY].found)
1164 return -EADDRNOTAVAIL;
1165
1166 /* Combinations of verity /usr with verity-less root is OK, but the reverse is not */
1167 if (m->partitions[PARTITION_ROOT_VERITY].found && m->partitions[PARTITION_USR].found && !m->partitions[PARTITION_USR_VERITY].found)
1168 return -EADDRNOTAVAIL;
1169
1170 if (verity && verity->root_hash) {
1171 if (verity->designator < 0 || verity->designator == PARTITION_ROOT) {
1172 if (!m->partitions[PARTITION_ROOT_VERITY].found || !m->partitions[PARTITION_ROOT].found)
1173 return -EADDRNOTAVAIL;
1174
1175 /* If we found a verity setup, then the root partition is necessarily read-only. */
1176 m->partitions[PARTITION_ROOT].rw = false;
1177 m->verity = true;
1178 }
1179
1180 if (verity->designator == PARTITION_USR) {
1181 if (!m->partitions[PARTITION_USR_VERITY].found || !m->partitions[PARTITION_USR].found)
1182 return -EADDRNOTAVAIL;
1183
1184 m->partitions[PARTITION_USR].rw = false;
1185 m->verity = true;
1186 }
1187 }
1188
1189 blkid_free_probe(b);
1190 b = NULL;
1191
1192 /* Fill in file system types if we don't know them yet. */
1193 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
1194 DissectedPartition *p = m->partitions + i;
1195
1196 if (!p->found)
1197 continue;
1198
1199 if (!p->fstype && p->node) {
1200 r = probe_filesystem(p->node, &p->fstype);
1201 if (r < 0 && r != -EUCLEAN)
1202 return r;
1203 }
1204
1205 if (streq_ptr(p->fstype, "crypto_LUKS"))
1206 m->encrypted = true;
1207
1208 if (p->fstype && fstype_is_ro(p->fstype))
1209 p->rw = false;
1210 }
1211
1212 *ret = TAKE_PTR(m);
1213 return 0;
1214 #else
1215 return -EOPNOTSUPP;
1216 #endif
1217 }
1218
1219 DissectedImage* dissected_image_unref(DissectedImage *m) {
1220 if (!m)
1221 return NULL;
1222
1223 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
1224 free(m->partitions[i].fstype);
1225 free(m->partitions[i].node);
1226 free(m->partitions[i].decrypted_fstype);
1227 free(m->partitions[i].decrypted_node);
1228 free(m->partitions[i].mount_options);
1229 }
1230
1231 free(m->image_name);
1232 free(m->hostname);
1233 strv_free(m->machine_info);
1234 strv_free(m->os_release);
1235 strv_free(m->extension_release);
1236
1237 return mfree(m);
1238 }
1239
1240 static int is_loop_device(const char *path) {
1241 char s[SYS_BLOCK_PATH_MAX("/../loop/")];
1242 struct stat st;
1243
1244 assert(path);
1245
1246 if (stat(path, &st) < 0)
1247 return -errno;
1248
1249 if (!S_ISBLK(st.st_mode))
1250 return -ENOTBLK;
1251
1252 xsprintf_sys_block_path(s, "/loop/", st.st_dev);
1253 if (access(s, F_OK) < 0) {
1254 if (errno != ENOENT)
1255 return -errno;
1256
1257 /* The device itself isn't a loop device, but maybe it's a partition and its parent is? */
1258 xsprintf_sys_block_path(s, "/../loop/", st.st_dev);
1259 if (access(s, F_OK) < 0)
1260 return errno == ENOENT ? false : -errno;
1261 }
1262
1263 return true;
1264 }
1265
1266 static int run_fsck(const char *node, const char *fstype) {
1267 int r, exit_status;
1268 pid_t pid;
1269
1270 assert(node);
1271 assert(fstype);
1272
1273 r = fsck_exists(fstype);
1274 if (r < 0) {
1275 log_debug_errno(r, "Couldn't determine whether fsck for %s exists, proceeding anyway.", fstype);
1276 return 0;
1277 }
1278 if (r == 0) {
1279 log_debug("Not checking partition %s, as fsck for %s does not exist.", node, fstype);
1280 return 0;
1281 }
1282
1283 r = safe_fork("(fsck)", FORK_RESET_SIGNALS|FORK_CLOSE_ALL_FDS|FORK_RLIMIT_NOFILE_SAFE|FORK_DEATHSIG|FORK_NULL_STDIO, &pid);
1284 if (r < 0)
1285 return log_debug_errno(r, "Failed to fork off fsck: %m");
1286 if (r == 0) {
1287 /* Child */
1288 execl("/sbin/fsck", "/sbin/fsck", "-aT", node, NULL);
1289 log_debug_errno(errno, "Failed to execl() fsck: %m");
1290 _exit(FSCK_OPERATIONAL_ERROR);
1291 }
1292
1293 exit_status = wait_for_terminate_and_check("fsck", pid, 0);
1294 if (exit_status < 0)
1295 return log_debug_errno(exit_status, "Failed to fork off /sbin/fsck: %m");
1296
1297 if ((exit_status & ~FSCK_ERROR_CORRECTED) != FSCK_SUCCESS) {
1298 log_debug("fsck failed with exit status %i.", exit_status);
1299
1300 if ((exit_status & (FSCK_SYSTEM_SHOULD_REBOOT|FSCK_ERRORS_LEFT_UNCORRECTED)) != 0)
1301 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN), "File system is corrupted, refusing.");
1302
1303 log_debug("Ignoring fsck error.");
1304 }
1305
1306 return 0;
1307 }
1308
1309 static int mount_partition(
1310 DissectedPartition *m,
1311 const char *where,
1312 const char *directory,
1313 uid_t uid_shift,
1314 DissectImageFlags flags) {
1315
1316 _cleanup_free_ char *chased = NULL, *options = NULL;
1317 const char *p, *node, *fstype;
1318 bool rw;
1319 int r;
1320
1321 assert(m);
1322 assert(where);
1323
1324 /* Use decrypted node and matching fstype if available, otherwise use the original device */
1325 node = m->decrypted_node ?: m->node;
1326 fstype = m->decrypted_node ? m->decrypted_fstype: m->fstype;
1327
1328 if (!m->found || !node)
1329 return 0;
1330 if (!fstype)
1331 return -EAFNOSUPPORT;
1332
1333 /* We are looking at an encrypted partition? This either means stacked encryption, or the caller didn't call dissected_image_decrypt() beforehand. Let's return a recognizable error for this case. */
1334 if (streq(fstype, "crypto_LUKS"))
1335 return -EUNATCH;
1336
1337 rw = m->rw && !(flags & DISSECT_IMAGE_READ_ONLY);
1338
1339 if (FLAGS_SET(flags, DISSECT_IMAGE_FSCK) && rw) {
1340 r = run_fsck(node, fstype);
1341 if (r < 0)
1342 return r;
1343 }
1344
1345 if (directory) {
1346 if (!FLAGS_SET(flags, DISSECT_IMAGE_READ_ONLY)) {
1347 /* Automatically create missing mount points, if necessary. */
1348 r = mkdir_p_root(where, directory, uid_shift, (gid_t) uid_shift, 0755);
1349 if (r < 0)
1350 return r;
1351 }
1352
1353 r = chase_symlinks(directory, where, CHASE_PREFIX_ROOT, &chased, NULL);
1354 if (r < 0)
1355 return r;
1356
1357 p = chased;
1358 } else
1359 p = where;
1360
1361 /* If requested, turn on discard support. */
1362 if (fstype_can_discard(fstype) &&
1363 ((flags & DISSECT_IMAGE_DISCARD) ||
1364 ((flags & DISSECT_IMAGE_DISCARD_ON_LOOP) && is_loop_device(m->node) > 0))) {
1365 options = strdup("discard");
1366 if (!options)
1367 return -ENOMEM;
1368 }
1369
1370 if (uid_is_valid(uid_shift) && uid_shift != 0 && fstype_can_uid_gid(fstype)) {
1371 _cleanup_free_ char *uid_option = NULL;
1372
1373 if (asprintf(&uid_option, "uid=" UID_FMT ",gid=" GID_FMT, uid_shift, (gid_t) uid_shift) < 0)
1374 return -ENOMEM;
1375
1376 if (!strextend_with_separator(&options, ",", uid_option))
1377 return -ENOMEM;
1378 }
1379
1380 if (!isempty(m->mount_options))
1381 if (!strextend_with_separator(&options, ",", m->mount_options))
1382 return -ENOMEM;
1383
1384 if (FLAGS_SET(flags, DISSECT_IMAGE_MKDIR)) {
1385 r = mkdir_p(p, 0755);
1386 if (r < 0)
1387 return r;
1388 }
1389
1390 r = mount_nofollow_verbose(LOG_DEBUG, node, p, fstype, MS_NODEV|(rw ? 0 : MS_RDONLY), options);
1391 if (r < 0)
1392 return r;
1393
1394 return 1;
1395 }
1396
1397 int dissected_image_mount(DissectedImage *m, const char *where, uid_t uid_shift, DissectImageFlags flags) {
1398 int r, xbootldr_mounted;
1399
1400 assert(m);
1401 assert(where);
1402
1403 /* Returns:
1404 *
1405 * -ENXIO → No root partition found
1406 * -EMEDIUMTYPE → DISSECT_IMAGE_VALIDATE_OS set but no os-release/extension-release file found
1407 * -EUNATCH → Encrypted partition found for which no dm-crypt was set up yet
1408 * -EUCLEAN → fsck for file system failed
1409 * -EBUSY → File system already mounted/used elsewhere (kernel)
1410 * -EAFNOSUPPORT → File system type not supported or not known
1411 */
1412
1413 if (!m->partitions[PARTITION_ROOT].found)
1414 return -ENXIO;
1415
1416 if ((flags & DISSECT_IMAGE_MOUNT_NON_ROOT_ONLY) == 0) {
1417 r = mount_partition(m->partitions + PARTITION_ROOT, where, NULL, uid_shift, flags);
1418 if (r < 0)
1419 return r;
1420 }
1421
1422 /* Mask DISSECT_IMAGE_MKDIR for all subdirs: the idea is that only the top-level mount point is
1423 * created if needed, but the image itself not modified. */
1424 flags &= ~DISSECT_IMAGE_MKDIR;
1425
1426 if ((flags & DISSECT_IMAGE_MOUNT_NON_ROOT_ONLY) == 0) {
1427 /* For us mounting root always means mounting /usr as well */
1428 r = mount_partition(m->partitions + PARTITION_USR, where, "/usr", uid_shift, flags);
1429 if (r < 0)
1430 return r;
1431
1432 if (flags & DISSECT_IMAGE_VALIDATE_OS) {
1433 r = path_is_os_tree(where);
1434 if (r < 0)
1435 return r;
1436 if (r == 0) {
1437 r = path_is_extension_tree(where, m->image_name);
1438 if (r < 0)
1439 return r;
1440 if (r == 0)
1441 return -EMEDIUMTYPE;
1442 }
1443 }
1444 }
1445
1446 if (flags & DISSECT_IMAGE_MOUNT_ROOT_ONLY)
1447 return 0;
1448
1449 r = mount_partition(m->partitions + PARTITION_HOME, where, "/home", uid_shift, flags);
1450 if (r < 0)
1451 return r;
1452
1453 r = mount_partition(m->partitions + PARTITION_SRV, where, "/srv", uid_shift, flags);
1454 if (r < 0)
1455 return r;
1456
1457 r = mount_partition(m->partitions + PARTITION_VAR, where, "/var", uid_shift, flags);
1458 if (r < 0)
1459 return r;
1460
1461 r = mount_partition(m->partitions + PARTITION_TMP, where, "/var/tmp", uid_shift, flags);
1462 if (r < 0)
1463 return r;
1464
1465 xbootldr_mounted = mount_partition(m->partitions + PARTITION_XBOOTLDR, where, "/boot", uid_shift, flags);
1466 if (xbootldr_mounted < 0)
1467 return xbootldr_mounted;
1468
1469 if (m->partitions[PARTITION_ESP].found) {
1470 int esp_done = false;
1471
1472 /* Mount the ESP to /efi if it exists. If it doesn't exist, use /boot instead, but only if it
1473 * exists and is empty, and we didn't already mount the XBOOTLDR partition into it. */
1474
1475 r = chase_symlinks("/efi", where, CHASE_PREFIX_ROOT, NULL, NULL);
1476 if (r < 0) {
1477 if (r != -ENOENT)
1478 return r;
1479
1480 /* /efi doesn't exist. Let's see if /boot is suitable then */
1481
1482 if (!xbootldr_mounted) {
1483 _cleanup_free_ char *p = NULL;
1484
1485 r = chase_symlinks("/boot", where, CHASE_PREFIX_ROOT, &p, NULL);
1486 if (r < 0) {
1487 if (r != -ENOENT)
1488 return r;
1489 } else if (dir_is_empty(p) > 0) {
1490 /* It exists and is an empty directory. Let's mount the ESP there. */
1491 r = mount_partition(m->partitions + PARTITION_ESP, where, "/boot", uid_shift, flags);
1492 if (r < 0)
1493 return r;
1494
1495 esp_done = true;
1496 }
1497 }
1498 }
1499
1500 if (!esp_done) {
1501 /* OK, let's mount the ESP now to /efi (possibly creating the dir if missing) */
1502
1503 r = mount_partition(m->partitions + PARTITION_ESP, where, "/efi", uid_shift, flags);
1504 if (r < 0)
1505 return r;
1506 }
1507 }
1508
1509 return 0;
1510 }
1511
1512 int dissected_image_mount_and_warn(DissectedImage *m, const char *where, uid_t uid_shift, DissectImageFlags flags) {
1513 int r;
1514
1515 assert(m);
1516 assert(where);
1517
1518 r = dissected_image_mount(m, where, uid_shift, flags);
1519 if (r == -ENXIO)
1520 return log_error_errno(r, "Not root file system found in image.");
1521 if (r == -EMEDIUMTYPE)
1522 return log_error_errno(r, "No suitable os-release/extension-release file in image found.");
1523 if (r == -EUNATCH)
1524 return log_error_errno(r, "Encrypted file system discovered, but decryption not requested.");
1525 if (r == -EUCLEAN)
1526 return log_error_errno(r, "File system check on image failed.");
1527 if (r == -EBUSY)
1528 return log_error_errno(r, "File system already mounted elsewhere.");
1529 if (r == -EAFNOSUPPORT)
1530 return log_error_errno(r, "File system type not supported or not known.");
1531 if (r < 0)
1532 return log_error_errno(r, "Failed to mount image: %m");
1533
1534 return r;
1535 }
1536
1537 #if HAVE_LIBCRYPTSETUP
1538 typedef struct DecryptedPartition {
1539 struct crypt_device *device;
1540 char *name;
1541 bool relinquished;
1542 } DecryptedPartition;
1543
1544 struct DecryptedImage {
1545 DecryptedPartition *decrypted;
1546 size_t n_decrypted;
1547 size_t n_allocated;
1548 };
1549 #endif
1550
1551 DecryptedImage* decrypted_image_unref(DecryptedImage* d) {
1552 #if HAVE_LIBCRYPTSETUP
1553 size_t i;
1554 int r;
1555
1556 if (!d)
1557 return NULL;
1558
1559 for (i = 0; i < d->n_decrypted; i++) {
1560 DecryptedPartition *p = d->decrypted + i;
1561
1562 if (p->device && p->name && !p->relinquished) {
1563 r = sym_crypt_deactivate_by_name(p->device, p->name, 0);
1564 if (r < 0)
1565 log_debug_errno(r, "Failed to deactivate encrypted partition %s", p->name);
1566 }
1567
1568 if (p->device)
1569 sym_crypt_free(p->device);
1570 free(p->name);
1571 }
1572
1573 free(d);
1574 #endif
1575 return NULL;
1576 }
1577
1578 #if HAVE_LIBCRYPTSETUP
1579
1580 static int make_dm_name_and_node(const void *original_node, const char *suffix, char **ret_name, char **ret_node) {
1581 _cleanup_free_ char *name = NULL, *node = NULL;
1582 const char *base;
1583
1584 assert(original_node);
1585 assert(suffix);
1586 assert(ret_name);
1587 assert(ret_node);
1588
1589 base = strrchr(original_node, '/');
1590 if (!base)
1591 base = original_node;
1592 else
1593 base++;
1594 if (isempty(base))
1595 return -EINVAL;
1596
1597 name = strjoin(base, suffix);
1598 if (!name)
1599 return -ENOMEM;
1600 if (!filename_is_valid(name))
1601 return -EINVAL;
1602
1603 node = path_join(sym_crypt_get_dir(), name);
1604 if (!node)
1605 return -ENOMEM;
1606
1607 *ret_name = TAKE_PTR(name);
1608 *ret_node = TAKE_PTR(node);
1609
1610 return 0;
1611 }
1612
1613 static int decrypt_partition(
1614 DissectedPartition *m,
1615 const char *passphrase,
1616 DissectImageFlags flags,
1617 DecryptedImage *d) {
1618
1619 _cleanup_free_ char *node = NULL, *name = NULL;
1620 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
1621 int r;
1622
1623 assert(m);
1624 assert(d);
1625
1626 if (!m->found || !m->node || !m->fstype)
1627 return 0;
1628
1629 if (!streq(m->fstype, "crypto_LUKS"))
1630 return 0;
1631
1632 if (!passphrase)
1633 return -ENOKEY;
1634
1635 r = dlopen_cryptsetup();
1636 if (r < 0)
1637 return r;
1638
1639 r = make_dm_name_and_node(m->node, "-decrypted", &name, &node);
1640 if (r < 0)
1641 return r;
1642
1643 if (!GREEDY_REALLOC0(d->decrypted, d->n_allocated, d->n_decrypted + 1))
1644 return -ENOMEM;
1645
1646 r = sym_crypt_init(&cd, m->node);
1647 if (r < 0)
1648 return log_debug_errno(r, "Failed to initialize dm-crypt: %m");
1649
1650 cryptsetup_enable_logging(cd);
1651
1652 r = sym_crypt_load(cd, CRYPT_LUKS, NULL);
1653 if (r < 0)
1654 return log_debug_errno(r, "Failed to load LUKS metadata: %m");
1655
1656 r = sym_crypt_activate_by_passphrase(cd, name, CRYPT_ANY_SLOT, passphrase, strlen(passphrase),
1657 ((flags & DISSECT_IMAGE_READ_ONLY) ? CRYPT_ACTIVATE_READONLY : 0) |
1658 ((flags & DISSECT_IMAGE_DISCARD_ON_CRYPTO) ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0));
1659 if (r < 0) {
1660 log_debug_errno(r, "Failed to activate LUKS device: %m");
1661 return r == -EPERM ? -EKEYREJECTED : r;
1662 }
1663
1664 d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
1665 .name = TAKE_PTR(name),
1666 .device = TAKE_PTR(cd),
1667 };
1668
1669 m->decrypted_node = TAKE_PTR(node);
1670
1671 return 0;
1672 }
1673
1674 static int verity_can_reuse(
1675 const VeritySettings *verity,
1676 const char *name,
1677 struct crypt_device **ret_cd) {
1678
1679 /* If the same volume was already open, check that the root hashes match, and reuse it if they do */
1680 _cleanup_free_ char *root_hash_existing = NULL;
1681 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
1682 struct crypt_params_verity crypt_params = {};
1683 size_t root_hash_existing_size;
1684 int r;
1685
1686 assert(verity);
1687 assert(name);
1688 assert(ret_cd);
1689
1690 r = sym_crypt_init_by_name(&cd, name);
1691 if (r < 0)
1692 return log_debug_errno(r, "Error opening verity device, crypt_init_by_name failed: %m");
1693
1694 r = sym_crypt_get_verity_info(cd, &crypt_params);
1695 if (r < 0)
1696 return log_debug_errno(r, "Error opening verity device, crypt_get_verity_info failed: %m");
1697
1698 root_hash_existing_size = verity->root_hash_size;
1699 root_hash_existing = malloc0(root_hash_existing_size);
1700 if (!root_hash_existing)
1701 return -ENOMEM;
1702
1703 r = sym_crypt_volume_key_get(cd, CRYPT_ANY_SLOT, root_hash_existing, &root_hash_existing_size, NULL, 0);
1704 if (r < 0)
1705 return log_debug_errno(r, "Error opening verity device, crypt_volume_key_get failed: %m");
1706 if (verity->root_hash_size != root_hash_existing_size ||
1707 memcmp(root_hash_existing, verity->root_hash, verity->root_hash_size) != 0)
1708 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but root hashes are different.");
1709
1710 #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
1711 /* Ensure that, if signatures are supported, we only reuse the device if the previous mount used the
1712 * same settings, so that a previous unsigned mount will not be reused if the user asks to use
1713 * signing for the new one, and vice versa. */
1714 if (!!verity->root_hash_sig != !!(crypt_params.flags & CRYPT_VERITY_ROOT_HASH_SIGNATURE))
1715 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL), "Error opening verity device, it already exists but signature settings are not the same.");
1716 #endif
1717
1718 *ret_cd = TAKE_PTR(cd);
1719 return 0;
1720 }
1721
1722 static inline char* dm_deferred_remove_clean(char *name) {
1723 if (!name)
1724 return NULL;
1725
1726 (void) sym_crypt_deactivate_by_name(NULL, name, CRYPT_DEACTIVATE_DEFERRED);
1727 return mfree(name);
1728 }
1729 DEFINE_TRIVIAL_CLEANUP_FUNC(char *, dm_deferred_remove_clean);
1730
1731 static int verity_partition(
1732 PartitionDesignator designator,
1733 DissectedPartition *m,
1734 DissectedPartition *v,
1735 const VeritySettings *verity,
1736 DissectImageFlags flags,
1737 DecryptedImage *d) {
1738
1739 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
1740 _cleanup_(dm_deferred_remove_cleanp) char *restore_deferred_remove = NULL;
1741 _cleanup_free_ char *node = NULL, *name = NULL;
1742 int r;
1743
1744 assert(m);
1745 assert(v || (verity && verity->data_path));
1746
1747 if (!verity || !verity->root_hash)
1748 return 0;
1749 if (!((verity->designator < 0 && designator == PARTITION_ROOT) ||
1750 (verity->designator == designator)))
1751 return 0;
1752
1753 if (!m->found || !m->node || !m->fstype)
1754 return 0;
1755 if (!verity->data_path) {
1756 if (!v->found || !v->node || !v->fstype)
1757 return 0;
1758
1759 if (!streq(v->fstype, "DM_verity_hash"))
1760 return 0;
1761 }
1762
1763 r = dlopen_cryptsetup();
1764 if (r < 0)
1765 return r;
1766
1767 if (FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE)) {
1768 /* Use the roothash, which is unique per volume, as the device node name, so that it can be reused */
1769 _cleanup_free_ char *root_hash_encoded = NULL;
1770
1771 root_hash_encoded = hexmem(verity->root_hash, verity->root_hash_size);
1772 if (!root_hash_encoded)
1773 return -ENOMEM;
1774
1775 r = make_dm_name_and_node(root_hash_encoded, "-verity", &name, &node);
1776 } else
1777 r = make_dm_name_and_node(m->node, "-verity", &name, &node);
1778 if (r < 0)
1779 return r;
1780
1781 r = sym_crypt_init(&cd, verity->data_path ?: v->node);
1782 if (r < 0)
1783 return r;
1784
1785 cryptsetup_enable_logging(cd);
1786
1787 r = sym_crypt_load(cd, CRYPT_VERITY, NULL);
1788 if (r < 0)
1789 return r;
1790
1791 r = sym_crypt_set_data_device(cd, m->node);
1792 if (r < 0)
1793 return r;
1794
1795 if (!GREEDY_REALLOC0(d->decrypted, d->n_allocated, d->n_decrypted + 1))
1796 return -ENOMEM;
1797
1798 /* If activating fails because the device already exists, check the metadata and reuse it if it matches.
1799 * In case of ENODEV/ENOENT, which can happen if another process is activating at the exact same time,
1800 * retry a few times before giving up. */
1801 for (unsigned i = 0; i < N_DEVICE_NODE_LIST_ATTEMPTS; i++) {
1802 if (verity->root_hash_sig) {
1803 #if HAVE_CRYPT_ACTIVATE_BY_SIGNED_KEY
1804 r = sym_crypt_activate_by_signed_key(
1805 cd,
1806 name,
1807 verity->root_hash,
1808 verity->root_hash_size,
1809 verity->root_hash_sig,
1810 verity->root_hash_sig_size,
1811 CRYPT_ACTIVATE_READONLY);
1812 #else
1813 r = log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP),
1814 "Activation of verity device with signature requested, but not supported by %s due to missing crypt_activate_by_signed_key().", program_invocation_short_name);
1815 #endif
1816 } else
1817 r = sym_crypt_activate_by_volume_key(
1818 cd,
1819 name,
1820 verity->root_hash,
1821 verity->root_hash_size,
1822 CRYPT_ACTIVATE_READONLY);
1823 /* libdevmapper can return EINVAL when the device is already in the activation stage.
1824 * There's no way to distinguish this situation from a genuine error due to invalid
1825 * parameters, so immediately fall back to activating the device with a unique name.
1826 * Improvements in libcrypsetup can ensure this never happens:
1827 * https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/96 */
1828 if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
1829 return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
1830 if (!IN_SET(r,
1831 0, /* Success */
1832 -EEXIST, /* Volume is already open and ready to be used */
1833 -EBUSY, /* Volume is being opened but not ready, crypt_init_by_name can fetch details */
1834 -ENODEV /* Volume is being opened but not ready, crypt_init_by_name would fail, try to open again */))
1835 return r;
1836 if (IN_SET(r, -EEXIST, -EBUSY)) {
1837 struct crypt_device *existing_cd = NULL;
1838
1839 if (!restore_deferred_remove){
1840 /* To avoid races, disable automatic removal on umount while setting up the new device. Restore it on failure. */
1841 r = dm_deferred_remove_cancel(name);
1842 /* If activation returns EBUSY there might be no deferred removal to cancel, that's fine */
1843 if (r < 0 && r != -ENXIO)
1844 return log_debug_errno(r, "Disabling automated deferred removal for verity device %s failed: %m", node);
1845 if (r == 0) {
1846 restore_deferred_remove = strdup(name);
1847 if (!restore_deferred_remove)
1848 return -ENOMEM;
1849 }
1850 }
1851
1852 r = verity_can_reuse(verity, name, &existing_cd);
1853 /* Same as above, -EINVAL can randomly happen when it actually means -EEXIST */
1854 if (r == -EINVAL && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
1855 return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
1856 if (!IN_SET(r, 0, -ENODEV, -ENOENT, -EBUSY))
1857 return log_debug_errno(r, "Checking whether existing verity device %s can be reused failed: %m", node);
1858 if (r == 0) {
1859 /* devmapper might say that the device exists, but the devlink might not yet have been
1860 * created. Check and wait for the udev event in that case. */
1861 r = device_wait_for_devlink(node, "block", usec_add(now(CLOCK_MONOTONIC), 100 * USEC_PER_MSEC), NULL);
1862 /* Fallback to activation with a unique device if it's taking too long */
1863 if (r == -ETIMEDOUT)
1864 break;
1865 if (r < 0)
1866 return r;
1867
1868 if (cd)
1869 sym_crypt_free(cd);
1870 cd = existing_cd;
1871 }
1872 }
1873 if (r == 0)
1874 break;
1875
1876 /* Device is being opened by another process, but it has not finished yet, yield for 2ms */
1877 (void) usleep(2 * USEC_PER_MSEC);
1878 }
1879
1880 /* An existing verity device was reported by libcryptsetup/libdevmapper, but we can't use it at this time.
1881 * Fall back to activating it with a unique device name. */
1882 if (r != 0 && FLAGS_SET(flags, DISSECT_IMAGE_VERITY_SHARE))
1883 return verity_partition(designator, m, v, verity, flags & ~DISSECT_IMAGE_VERITY_SHARE, d);
1884
1885 /* Everything looks good and we'll be able to mount the device, so deferred remove will be re-enabled at that point. */
1886 restore_deferred_remove = mfree(restore_deferred_remove);
1887
1888 d->decrypted[d->n_decrypted++] = (DecryptedPartition) {
1889 .name = TAKE_PTR(name),
1890 .device = TAKE_PTR(cd),
1891 };
1892
1893 m->decrypted_node = TAKE_PTR(node);
1894
1895 return 0;
1896 }
1897 #endif
1898
1899 int dissected_image_decrypt(
1900 DissectedImage *m,
1901 const char *passphrase,
1902 const VeritySettings *verity,
1903 DissectImageFlags flags,
1904 DecryptedImage **ret) {
1905
1906 #if HAVE_LIBCRYPTSETUP
1907 _cleanup_(decrypted_image_unrefp) DecryptedImage *d = NULL;
1908 int r;
1909 #endif
1910
1911 assert(m);
1912 assert(!verity || verity->root_hash || verity->root_hash_size == 0);
1913
1914 /* Returns:
1915 *
1916 * = 0 → There was nothing to decrypt
1917 * > 0 → Decrypted successfully
1918 * -ENOKEY → There's something to decrypt but no key was supplied
1919 * -EKEYREJECTED → Passed key was not correct
1920 */
1921
1922 if (verity && verity->root_hash && verity->root_hash_size < sizeof(sd_id128_t))
1923 return -EINVAL;
1924
1925 if (!m->encrypted && !m->verity) {
1926 *ret = NULL;
1927 return 0;
1928 }
1929
1930 #if HAVE_LIBCRYPTSETUP
1931 d = new0(DecryptedImage, 1);
1932 if (!d)
1933 return -ENOMEM;
1934
1935 for (PartitionDesignator i = 0; i < _PARTITION_DESIGNATOR_MAX; i++) {
1936 DissectedPartition *p = m->partitions + i;
1937 PartitionDesignator k;
1938
1939 if (!p->found)
1940 continue;
1941
1942 r = decrypt_partition(p, passphrase, flags, d);
1943 if (r < 0)
1944 return r;
1945
1946 k = PARTITION_VERITY_OF(i);
1947 if (k >= 0) {
1948 r = verity_partition(i, p, m->partitions + k, verity, flags | DISSECT_IMAGE_VERITY_SHARE, d);
1949 if (r < 0)
1950 return r;
1951 }
1952
1953 if (!p->decrypted_fstype && p->decrypted_node) {
1954 r = probe_filesystem(p->decrypted_node, &p->decrypted_fstype);
1955 if (r < 0 && r != -EUCLEAN)
1956 return r;
1957 }
1958 }
1959
1960 *ret = TAKE_PTR(d);
1961
1962 return 1;
1963 #else
1964 return -EOPNOTSUPP;
1965 #endif
1966 }
1967
1968 int dissected_image_decrypt_interactively(
1969 DissectedImage *m,
1970 const char *passphrase,
1971 const VeritySettings *verity,
1972 DissectImageFlags flags,
1973 DecryptedImage **ret) {
1974
1975 _cleanup_strv_free_erase_ char **z = NULL;
1976 int n = 3, r;
1977
1978 if (passphrase)
1979 n--;
1980
1981 for (;;) {
1982 r = dissected_image_decrypt(m, passphrase, verity, flags, ret);
1983 if (r >= 0)
1984 return r;
1985 if (r == -EKEYREJECTED)
1986 log_error_errno(r, "Incorrect passphrase, try again!");
1987 else if (r != -ENOKEY)
1988 return log_error_errno(r, "Failed to decrypt image: %m");
1989
1990 if (--n < 0)
1991 return log_error_errno(SYNTHETIC_ERRNO(EKEYREJECTED),
1992 "Too many retries.");
1993
1994 z = strv_free(z);
1995
1996 r = ask_password_auto("Please enter image passphrase:", NULL, "dissect", "dissect", USEC_INFINITY, 0, &z);
1997 if (r < 0)
1998 return log_error_errno(r, "Failed to query for passphrase: %m");
1999
2000 passphrase = z[0];
2001 }
2002 }
2003
2004 int decrypted_image_relinquish(DecryptedImage *d) {
2005
2006 #if HAVE_LIBCRYPTSETUP
2007 size_t i;
2008 int r;
2009 #endif
2010
2011 assert(d);
2012
2013 /* Turns on automatic removal after the last use ended for all DM devices of this image, and sets a boolean so
2014 * that we don't clean it up ourselves either anymore */
2015
2016 #if HAVE_LIBCRYPTSETUP
2017 for (i = 0; i < d->n_decrypted; i++) {
2018 DecryptedPartition *p = d->decrypted + i;
2019
2020 if (p->relinquished)
2021 continue;
2022
2023 r = sym_crypt_deactivate_by_name(NULL, p->name, CRYPT_DEACTIVATE_DEFERRED);
2024 if (r < 0)
2025 return log_debug_errno(r, "Failed to mark %s for auto-removal: %m", p->name);
2026
2027 p->relinquished = true;
2028 }
2029 #endif
2030
2031 return 0;
2032 }
2033
2034 static char *build_auxiliary_path(const char *image, const char *suffix) {
2035 const char *e;
2036 char *n;
2037
2038 assert(image);
2039 assert(suffix);
2040
2041 e = endswith(image, ".raw");
2042 if (!e)
2043 return strjoin(e, suffix);
2044
2045 n = new(char, e - image + strlen(suffix) + 1);
2046 if (!n)
2047 return NULL;
2048
2049 strcpy(mempcpy(n, image, e - image), suffix);
2050 return n;
2051 }
2052
2053 void verity_settings_done(VeritySettings *v) {
2054 assert(v);
2055
2056 v->root_hash = mfree(v->root_hash);
2057 v->root_hash_size = 0;
2058
2059 v->root_hash_sig = mfree(v->root_hash_sig);
2060 v->root_hash_sig_size = 0;
2061
2062 v->data_path = mfree(v->data_path);
2063 }
2064
2065 int verity_settings_load(
2066 VeritySettings *verity,
2067 const char *image,
2068 const char *root_hash_path,
2069 const char *root_hash_sig_path) {
2070
2071 _cleanup_free_ void *root_hash = NULL, *root_hash_sig = NULL;
2072 size_t root_hash_size = 0, root_hash_sig_size = 0;
2073 _cleanup_free_ char *verity_data_path = NULL;
2074 PartitionDesignator designator;
2075 int r;
2076
2077 assert(verity);
2078 assert(image);
2079 assert(verity->designator < 0 || IN_SET(verity->designator, PARTITION_ROOT, PARTITION_USR));
2080
2081 /* If we are asked to load the root hash for a device node, exit early */
2082 if (is_device_path(image))
2083 return 0;
2084
2085 designator = verity->designator;
2086
2087 /* We only fill in what isn't already filled in */
2088
2089 if (!verity->root_hash) {
2090 _cleanup_free_ char *text = NULL;
2091
2092 if (root_hash_path) {
2093 /* If explicitly specified it takes precedence */
2094 r = read_one_line_file(root_hash_path, &text);
2095 if (r < 0)
2096 return r;
2097
2098 if (designator < 0)
2099 designator = PARTITION_ROOT;
2100 } else {
2101 /* Otherwise look for xattr and separate file, and first for the data for root and if
2102 * that doesn't exist for /usr */
2103
2104 if (designator < 0 || designator == PARTITION_ROOT) {
2105 r = getxattr_malloc(image, "user.verity.roothash", &text, true);
2106 if (r < 0) {
2107 _cleanup_free_ char *p = NULL;
2108
2109 if (!IN_SET(r, -ENODATA, -ENOENT) && !ERRNO_IS_NOT_SUPPORTED(r))
2110 return r;
2111
2112 p = build_auxiliary_path(image, ".roothash");
2113 if (!p)
2114 return -ENOMEM;
2115
2116 r = read_one_line_file(p, &text);
2117 if (r < 0 && r != -ENOENT)
2118 return r;
2119 }
2120
2121 if (text)
2122 designator = PARTITION_ROOT;
2123 }
2124
2125 if (!text && (designator < 0 || designator == PARTITION_USR)) {
2126 /* So in the "roothash" xattr/file name above the "root" of course primarily
2127 * refers to the root of the Verity Merkle tree. But coincidentally it also
2128 * is the hash for the *root* file system, i.e. the "root" neatly refers to
2129 * two distinct concepts called "root". Taking benefit of this happy
2130 * coincidence we call the file with the root hash for the /usr/ file system
2131 * `usrhash`, because `usrroothash` or `rootusrhash` would just be too
2132 * confusing. We thus drop the reference to the root of the Merkle tree, and
2133 * just indicate which file system it's about. */
2134 r = getxattr_malloc(image, "user.verity.usrhash", &text, true);
2135 if (r < 0) {
2136 _cleanup_free_ char *p = NULL;
2137
2138 if (!IN_SET(r, -ENODATA, -ENOENT) && !ERRNO_IS_NOT_SUPPORTED(r))
2139 return r;
2140
2141 p = build_auxiliary_path(image, ".usrhash");
2142 if (!p)
2143 return -ENOMEM;
2144
2145 r = read_one_line_file(p, &text);
2146 if (r < 0 && r != -ENOENT)
2147 return r;
2148 }
2149
2150 if (text)
2151 designator = PARTITION_USR;
2152 }
2153 }
2154
2155 if (text) {
2156 r = unhexmem(text, strlen(text), &root_hash, &root_hash_size);
2157 if (r < 0)
2158 return r;
2159 if (root_hash_size < sizeof(sd_id128_t))
2160 return -EINVAL;
2161 }
2162 }
2163
2164 if ((root_hash || verity->root_hash) && !verity->root_hash_sig) {
2165 if (root_hash_sig_path) {
2166 r = read_full_file(root_hash_sig_path, (char**) &root_hash_sig, &root_hash_sig_size);
2167 if (r < 0 && r != -ENOENT)
2168 return r;
2169
2170 if (designator < 0)
2171 designator = PARTITION_ROOT;
2172 } else {
2173 if (designator < 0 || designator == PARTITION_ROOT) {
2174 _cleanup_free_ char *p = NULL;
2175
2176 /* Follow naming convention recommended by the relevant RFC:
2177 * https://tools.ietf.org/html/rfc5751#section-3.2.1 */
2178 p = build_auxiliary_path(image, ".roothash.p7s");
2179 if (!p)
2180 return -ENOMEM;
2181
2182 r = read_full_file(p, (char**) &root_hash_sig, &root_hash_sig_size);
2183 if (r < 0 && r != -ENOENT)
2184 return r;
2185 if (r >= 0)
2186 designator = PARTITION_ROOT;
2187 }
2188
2189 if (!root_hash_sig && (designator < 0 || designator == PARTITION_USR)) {
2190 _cleanup_free_ char *p = NULL;
2191
2192 p = build_auxiliary_path(image, ".usrhash.p7s");
2193 if (!p)
2194 return -ENOMEM;
2195
2196 r = read_full_file(p, (char**) &root_hash_sig, &root_hash_sig_size);
2197 if (r < 0 && r != -ENOENT)
2198 return r;
2199 if (r >= 0)
2200 designator = PARTITION_USR;
2201 }
2202 }
2203
2204 if (root_hash_sig && root_hash_sig_size == 0) /* refuse empty size signatures */
2205 return -EINVAL;
2206 }
2207
2208 if (!verity->data_path) {
2209 _cleanup_free_ char *p = NULL;
2210
2211 p = build_auxiliary_path(image, ".verity");
2212 if (!p)
2213 return -ENOMEM;
2214
2215 if (access(p, F_OK) < 0) {
2216 if (errno != ENOENT)
2217 return -errno;
2218 } else
2219 verity_data_path = TAKE_PTR(p);
2220 }
2221
2222 if (root_hash) {
2223 verity->root_hash = TAKE_PTR(root_hash);
2224 verity->root_hash_size = root_hash_size;
2225 }
2226
2227 if (root_hash_sig) {
2228 verity->root_hash_sig = TAKE_PTR(root_hash_sig);
2229 verity->root_hash_sig_size = root_hash_sig_size;
2230 }
2231
2232 if (verity_data_path)
2233 verity->data_path = TAKE_PTR(verity_data_path);
2234
2235 if (verity->designator < 0)
2236 verity->designator = designator;
2237
2238 return 1;
2239 }
2240
2241 int dissected_image_acquire_metadata(DissectedImage *m) {
2242
2243 enum {
2244 META_HOSTNAME,
2245 META_MACHINE_ID,
2246 META_MACHINE_INFO,
2247 META_OS_RELEASE,
2248 META_EXTENSION_RELEASE,
2249 _META_MAX,
2250 };
2251
2252 static const char *paths[_META_MAX] = {
2253 [META_HOSTNAME] = "/etc/hostname\0",
2254 [META_MACHINE_ID] = "/etc/machine-id\0",
2255 [META_MACHINE_INFO] = "/etc/machine-info\0",
2256 [META_OS_RELEASE] = ("/etc/os-release\0"
2257 "/usr/lib/os-release\0"),
2258 [META_EXTENSION_RELEASE] = NULL,
2259 };
2260
2261 _cleanup_strv_free_ char **machine_info = NULL, **os_release = NULL, **extension_release = NULL;
2262 _cleanup_close_pair_ int error_pipe[2] = { -1, -1 };
2263 _cleanup_(rmdir_and_freep) char *t = NULL;
2264 _cleanup_(sigkill_waitp) pid_t child = 0;
2265 sd_id128_t machine_id = SD_ID128_NULL;
2266 _cleanup_free_ char *hostname = NULL;
2267 unsigned n_meta_initialized = 0, k;
2268 int fds[2 * _META_MAX], r, v;
2269 ssize_t n;
2270
2271 BLOCK_SIGNALS(SIGCHLD);
2272
2273 assert(m);
2274
2275 /* As per the os-release spec, if the image is an extension it will have a file
2276 * named after the image name in extension-release.d/ */
2277 if (m->image_name)
2278 paths[META_EXTENSION_RELEASE] = strjoina("/usr/lib/extension-release.d/extension-release.", m->image_name);
2279 else
2280 log_debug("No image name available, will skip extension-release metadata");
2281
2282 for (; n_meta_initialized < _META_MAX; n_meta_initialized ++) {
2283 if (!paths[n_meta_initialized])
2284 continue;
2285 if (pipe2(fds + 2*n_meta_initialized, O_CLOEXEC) < 0) {
2286 r = -errno;
2287 goto finish;
2288 }
2289 }
2290
2291 r = mkdtemp_malloc("/tmp/dissect-XXXXXX", &t);
2292 if (r < 0)
2293 goto finish;
2294
2295 if (pipe2(error_pipe, O_CLOEXEC) < 0) {
2296 r = -errno;
2297 goto finish;
2298 }
2299
2300 r = safe_fork("(sd-dissect)", FORK_RESET_SIGNALS|FORK_DEATHSIG|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, &child);
2301 if (r < 0)
2302 goto finish;
2303 if (r == 0) {
2304 error_pipe[0] = safe_close(error_pipe[0]);
2305
2306 r = dissected_image_mount(m, t, UID_INVALID, DISSECT_IMAGE_READ_ONLY|DISSECT_IMAGE_MOUNT_ROOT_ONLY|DISSECT_IMAGE_VALIDATE_OS);
2307 if (r < 0) {
2308 /* Let parent know the error */
2309 (void) write(error_pipe[1], &r, sizeof(r));
2310
2311 log_debug_errno(r, "Failed to mount dissected image: %m");
2312 _exit(EXIT_FAILURE);
2313 }
2314
2315 for (k = 0; k < _META_MAX; k++) {
2316 _cleanup_close_ int fd = -ENOENT;
2317 const char *p;
2318
2319 if (!paths[k])
2320 continue;
2321
2322 fds[2*k] = safe_close(fds[2*k]);
2323
2324 NULSTR_FOREACH(p, paths[k]) {
2325 fd = chase_symlinks_and_open(p, t, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NOCTTY, NULL);
2326 if (fd >= 0)
2327 break;
2328 }
2329 if (fd < 0) {
2330 log_debug_errno(fd, "Failed to read %s file of image, ignoring: %m", paths[k]);
2331 fds[2*k+1] = safe_close(fds[2*k+1]);
2332 continue;
2333 }
2334
2335 r = copy_bytes(fd, fds[2*k+1], (uint64_t) -1, 0);
2336 if (r < 0) {
2337 (void) write(error_pipe[1], &r, sizeof(r));
2338 _exit(EXIT_FAILURE);
2339 }
2340
2341 fds[2*k+1] = safe_close(fds[2*k+1]);
2342 }
2343
2344 _exit(EXIT_SUCCESS);
2345 }
2346
2347 error_pipe[1] = safe_close(error_pipe[1]);
2348
2349 for (k = 0; k < _META_MAX; k++) {
2350 _cleanup_fclose_ FILE *f = NULL;
2351
2352 if (!paths[k])
2353 continue;
2354
2355 fds[2*k+1] = safe_close(fds[2*k+1]);
2356
2357 f = take_fdopen(&fds[2*k], "r");
2358 if (!f) {
2359 r = -errno;
2360 goto finish;
2361 }
2362
2363 switch (k) {
2364
2365 case META_HOSTNAME:
2366 r = read_etc_hostname_stream(f, &hostname);
2367 if (r < 0)
2368 log_debug_errno(r, "Failed to read /etc/hostname: %m");
2369
2370 break;
2371
2372 case META_MACHINE_ID: {
2373 _cleanup_free_ char *line = NULL;
2374
2375 r = read_line(f, LONG_LINE_MAX, &line);
2376 if (r < 0)
2377 log_debug_errno(r, "Failed to read /etc/machine-id: %m");
2378 else if (r == 33) {
2379 r = sd_id128_from_string(line, &machine_id);
2380 if (r < 0)
2381 log_debug_errno(r, "Image contains invalid /etc/machine-id: %s", line);
2382 } else if (r == 0)
2383 log_debug("/etc/machine-id file is empty.");
2384 else if (streq(line, "uninitialized"))
2385 log_debug("/etc/machine-id file is uninitialized (likely aborted first boot).");
2386 else
2387 log_debug("/etc/machine-id has unexpected length %i.", r);
2388
2389 break;
2390 }
2391
2392 case META_MACHINE_INFO:
2393 r = load_env_file_pairs(f, "machine-info", &machine_info);
2394 if (r < 0)
2395 log_debug_errno(r, "Failed to read /etc/machine-info: %m");
2396
2397 break;
2398
2399 case META_OS_RELEASE:
2400 r = load_env_file_pairs(f, "os-release", &os_release);
2401 if (r < 0)
2402 log_debug_errno(r, "Failed to read OS release file: %m");
2403
2404 break;
2405
2406 case META_EXTENSION_RELEASE:
2407 r = load_env_file_pairs(f, "extension-release", &extension_release);
2408 if (r < 0)
2409 log_debug_errno(r, "Failed to read extension release file: %m");
2410
2411 break;
2412 }
2413 }
2414
2415 r = wait_for_terminate_and_check("(sd-dissect)", child, 0);
2416 child = 0;
2417 if (r < 0)
2418 return r;
2419
2420 n = read(error_pipe[0], &v, sizeof(v));
2421 if (n < 0)
2422 return -errno;
2423 if (n == sizeof(v))
2424 return v; /* propagate error sent to us from child */
2425 if (n != 0)
2426 return -EIO;
2427
2428 if (r != EXIT_SUCCESS)
2429 return -EPROTO;
2430
2431 free_and_replace(m->hostname, hostname);
2432 m->machine_id = machine_id;
2433 strv_free_and_replace(m->machine_info, machine_info);
2434 strv_free_and_replace(m->os_release, os_release);
2435 strv_free_and_replace(m->extension_release, extension_release);
2436
2437 finish:
2438 for (k = 0; k < n_meta_initialized; k++) {
2439 if (!paths[k])
2440 continue;
2441 safe_close_pair(fds + 2*k);
2442 }
2443
2444 return r;
2445 }
2446
2447 int dissect_image_and_warn(
2448 int fd,
2449 const char *name,
2450 const VeritySettings *verity,
2451 const MountOptions *mount_options,
2452 DissectImageFlags flags,
2453 DissectedImage **ret) {
2454
2455 _cleanup_free_ char *buffer = NULL;
2456 int r;
2457
2458 if (!name) {
2459 r = fd_get_path(fd, &buffer);
2460 if (r < 0)
2461 return r;
2462
2463 name = buffer;
2464 }
2465
2466 r = dissect_image(fd, verity, mount_options, flags, ret);
2467 switch (r) {
2468
2469 case -EOPNOTSUPP:
2470 return log_error_errno(r, "Dissecting images is not supported, compiled without blkid support.");
2471
2472 case -ENOPKG:
2473 return log_error_errno(r, "Couldn't identify a suitable partition table or file system in '%s'.", name);
2474
2475 case -EADDRNOTAVAIL:
2476 return log_error_errno(r, "No root partition for specified root hash found in '%s'.", name);
2477
2478 case -ENOTUNIQ:
2479 return log_error_errno(r, "Multiple suitable root partitions found in image '%s'.", name);
2480
2481 case -ENXIO:
2482 return log_error_errno(r, "No suitable root partition found in image '%s'.", name);
2483
2484 case -EPROTONOSUPPORT:
2485 return log_error_errno(r, "Device '%s' is loopback block device with partition scanning turned off, please turn it on.", name);
2486
2487 default:
2488 if (r < 0)
2489 return log_error_errno(r, "Failed to dissect image '%s': %m", name);
2490
2491 return r;
2492 }
2493 }
2494
2495 bool dissected_image_can_do_verity(const DissectedImage *image, PartitionDesignator partition_designator) {
2496 if (image->single_file_system)
2497 return partition_designator == PARTITION_ROOT && image->can_verity;
2498
2499 return PARTITION_VERITY_OF(partition_designator) >= 0;
2500 }
2501
2502 bool dissected_image_has_verity(const DissectedImage *image, PartitionDesignator partition_designator) {
2503 int k;
2504
2505 if (image->single_file_system)
2506 return partition_designator == PARTITION_ROOT && image->verity;
2507
2508 k = PARTITION_VERITY_OF(partition_designator);
2509 return k >= 0 && image->partitions[k].found;
2510 }
2511
2512 MountOptions* mount_options_free_all(MountOptions *options) {
2513 MountOptions *m;
2514
2515 while ((m = options)) {
2516 LIST_REMOVE(mount_options, options, m);
2517 free(m->options);
2518 free(m);
2519 }
2520
2521 return NULL;
2522 }
2523
2524 const char* mount_options_from_designator(const MountOptions *options, PartitionDesignator designator) {
2525 const MountOptions *m;
2526
2527 LIST_FOREACH(mount_options, m, options)
2528 if (designator == m->partition_designator && !isempty(m->options))
2529 return m->options;
2530
2531 return NULL;
2532 }
2533
2534 int mount_image_privately_interactively(
2535 const char *image,
2536 DissectImageFlags flags,
2537 char **ret_directory,
2538 LoopDevice **ret_loop_device,
2539 DecryptedImage **ret_decrypted_image) {
2540
2541 _cleanup_(loop_device_unrefp) LoopDevice *d = NULL;
2542 _cleanup_(decrypted_image_unrefp) DecryptedImage *decrypted_image = NULL;
2543 _cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
2544 _cleanup_(rmdir_and_freep) char *created_dir = NULL;
2545 _cleanup_free_ char *temp = NULL;
2546 int r;
2547
2548 /* Mounts an OS image at a temporary place, inside a newly created mount namespace of our own. This
2549 * is used by tools such as systemd-tmpfiles or systemd-firstboot to operate on some disk image
2550 * easily. */
2551
2552 assert(image);
2553 assert(ret_directory);
2554 assert(ret_loop_device);
2555 assert(ret_decrypted_image);
2556
2557 r = tempfn_random_child(NULL, program_invocation_short_name, &temp);
2558 if (r < 0)
2559 return log_error_errno(r, "Failed to generate temporary mount directory: %m");
2560
2561 r = loop_device_make_by_path(
2562 image,
2563 FLAGS_SET(flags, DISSECT_IMAGE_READ_ONLY) ? O_RDONLY : O_RDWR,
2564 FLAGS_SET(flags, DISSECT_IMAGE_NO_PARTITION_TABLE) ? 0 : LO_FLAGS_PARTSCAN,
2565 &d);
2566 if (r < 0)
2567 return log_error_errno(r, "Failed to set up loopback device: %m");
2568
2569 r = dissect_image_and_warn(d->fd, image, NULL, NULL, flags, &dissected_image);
2570 if (r < 0)
2571 return r;
2572
2573 r = dissected_image_decrypt_interactively(dissected_image, NULL, NULL, flags, &decrypted_image);
2574 if (r < 0)
2575 return r;
2576
2577 r = detach_mount_namespace();
2578 if (r < 0)
2579 return log_error_errno(r, "Failed to detach mount namespace: %m");
2580
2581 r = mkdir_p(temp, 0700);
2582 if (r < 0)
2583 return log_error_errno(r, "Failed to create mount point: %m");
2584
2585 created_dir = TAKE_PTR(temp);
2586
2587 r = dissected_image_mount_and_warn(dissected_image, created_dir, UID_INVALID, flags);
2588 if (r < 0)
2589 return r;
2590
2591 if (decrypted_image) {
2592 r = decrypted_image_relinquish(decrypted_image);
2593 if (r < 0)
2594 return log_error_errno(r, "Failed to relinquish DM devices: %m");
2595 }
2596
2597 loop_device_relinquish(d);
2598
2599 *ret_directory = TAKE_PTR(created_dir);
2600 *ret_loop_device = TAKE_PTR(d);
2601 *ret_decrypted_image = TAKE_PTR(decrypted_image);
2602
2603 return 0;
2604 }
2605
2606 static const char *const partition_designator_table[] = {
2607 [PARTITION_ROOT] = "root",
2608 [PARTITION_ROOT_SECONDARY] = "root-secondary",
2609 [PARTITION_USR] = "usr",
2610 [PARTITION_USR_SECONDARY] = "usr-secondary",
2611 [PARTITION_HOME] = "home",
2612 [PARTITION_SRV] = "srv",
2613 [PARTITION_ESP] = "esp",
2614 [PARTITION_XBOOTLDR] = "xbootldr",
2615 [PARTITION_SWAP] = "swap",
2616 [PARTITION_ROOT_VERITY] = "root-verity",
2617 [PARTITION_ROOT_SECONDARY_VERITY] = "root-secondary-verity",
2618 [PARTITION_USR_VERITY] = "usr-verity",
2619 [PARTITION_USR_SECONDARY_VERITY] = "usr-secondary-verity",
2620 [PARTITION_TMP] = "tmp",
2621 [PARTITION_VAR] = "var",
2622 };
2623
2624 int verity_dissect_and_mount(const char *src, const char *dest, const MountOptions *options) {
2625 _cleanup_(loop_device_unrefp) LoopDevice *loop_device = NULL;
2626 _cleanup_(decrypted_image_unrefp) DecryptedImage *decrypted_image = NULL;
2627 _cleanup_(dissected_image_unrefp) DissectedImage *dissected_image = NULL;
2628 _cleanup_(verity_settings_done) VeritySettings verity = VERITY_SETTINGS_DEFAULT;
2629 DissectImageFlags dissect_image_flags;
2630 int r;
2631
2632 assert(src);
2633 assert(dest);
2634
2635 r = verity_settings_load(&verity, src, NULL, NULL);
2636 if (r < 0)
2637 return log_debug_errno(r, "Failed to load root hash: %m");
2638
2639 dissect_image_flags = verity.data_path ? DISSECT_IMAGE_NO_PARTITION_TABLE : 0;
2640
2641 r = loop_device_make_by_path(
2642 src,
2643 -1,
2644 verity.data_path ? 0 : LO_FLAGS_PARTSCAN,
2645 &loop_device);
2646 if (r < 0)
2647 return log_debug_errno(r, "Failed to create loop device for image: %m");
2648
2649 r = dissect_image(
2650 loop_device->fd,
2651 &verity,
2652 options,
2653 dissect_image_flags,
2654 &dissected_image);
2655 /* No partition table? Might be a single-filesystem image, try again */
2656 if (!verity.data_path && r == -ENOPKG)
2657 r = dissect_image(
2658 loop_device->fd,
2659 &verity,
2660 options,
2661 dissect_image_flags|DISSECT_IMAGE_NO_PARTITION_TABLE,
2662 &dissected_image);
2663 if (r < 0)
2664 return log_debug_errno(r, "Failed to dissect image: %m");
2665
2666 r = dissected_image_decrypt(
2667 dissected_image,
2668 NULL,
2669 &verity,
2670 dissect_image_flags,
2671 &decrypted_image);
2672 if (r < 0)
2673 return log_debug_errno(r, "Failed to decrypt dissected image: %m");
2674
2675 r = mkdir_p_label(dest, 0755);
2676 if (r < 0)
2677 return log_debug_errno(r, "Failed to create destination directory %s: %m", dest);
2678 r = umount_recursive(dest, 0);
2679 if (r < 0)
2680 return log_debug_errno(r, "Failed to umount under destination directory %s: %m", dest);
2681
2682 r = dissected_image_mount(dissected_image, dest, UID_INVALID, dissect_image_flags);
2683 if (r < 0)
2684 return log_debug_errno(r, "Failed to mount image: %m");
2685
2686 if (decrypted_image) {
2687 r = decrypted_image_relinquish(decrypted_image);
2688 if (r < 0)
2689 return log_debug_errno(r, "Failed to relinquish decrypted image: %m");
2690 }
2691
2692 loop_device_relinquish(loop_device);
2693
2694 return 0;
2695 }
2696
2697 DEFINE_STRING_TABLE_LOOKUP(partition_designator, PartitionDesignator);