1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
6 #include "alloc-util.h"
7 #include "ansi-color.h"
10 #include "creds-util.h"
11 #include "cryptsetup-util.h"
12 #include "dirent-util.h"
13 #include "dlfcn-util.h"
15 #include "extract-word.h"
18 #include "format-table.h"
20 #include "hexdecoct.h"
22 #include "initrd-util.h"
24 #include "json-util.h"
26 #include "logarithm.h"
27 #include "memory-util.h"
29 #include "ordered-set.h"
30 #include "random-util.h"
31 #include "recurse-dir.h"
32 #include "siphash24.h"
33 #include "sort-util.h"
34 #include "sparse-endian.h"
35 #include "stat-util.h"
36 #include "string-table.h"
37 #include "string-util.h"
39 #include "sync-util.h"
40 #include "time-util.h"
42 #include "tpm2-util.h"
46 # include <openssl/hmac.h>
50 static void *libtss2_esys_dl
= NULL
;
51 static void *libtss2_rc_dl
= NULL
;
52 static void *libtss2_mu_dl
= NULL
;
54 static DLSYM_PROTOTYPE(Esys_Create
) = NULL
;
55 static DLSYM_PROTOTYPE(Esys_CreateLoaded
) = NULL
;
56 static DLSYM_PROTOTYPE(Esys_CreatePrimary
) = NULL
;
57 static DLSYM_PROTOTYPE(Esys_EvictControl
) = NULL
;
58 static DLSYM_PROTOTYPE(Esys_Finalize
) = NULL
;
59 static DLSYM_PROTOTYPE(Esys_FlushContext
) = NULL
;
60 static DLSYM_PROTOTYPE(Esys_Free
) = NULL
;
61 static DLSYM_PROTOTYPE(Esys_GetCapability
) = NULL
;
62 static DLSYM_PROTOTYPE(Esys_GetRandom
) = NULL
;
63 static DLSYM_PROTOTYPE(Esys_Import
) = NULL
;
64 static DLSYM_PROTOTYPE(Esys_Initialize
) = NULL
;
65 static DLSYM_PROTOTYPE(Esys_Load
) = NULL
;
66 static DLSYM_PROTOTYPE(Esys_LoadExternal
) = NULL
;
67 static DLSYM_PROTOTYPE(Esys_NV_DefineSpace
) = NULL
;
68 static DLSYM_PROTOTYPE(Esys_NV_UndefineSpace
) = NULL
;
69 static DLSYM_PROTOTYPE(Esys_NV_Write
) = NULL
;
70 static DLSYM_PROTOTYPE(Esys_PCR_Extend
) = NULL
;
71 static DLSYM_PROTOTYPE(Esys_PCR_Read
) = NULL
;
72 static DLSYM_PROTOTYPE(Esys_PolicyAuthValue
) = NULL
;
73 static DLSYM_PROTOTYPE(Esys_PolicyAuthorize
) = NULL
;
74 static DLSYM_PROTOTYPE(Esys_PolicyAuthorizeNV
) = NULL
;
75 static DLSYM_PROTOTYPE(Esys_PolicyGetDigest
) = NULL
;
76 static DLSYM_PROTOTYPE(Esys_PolicyOR
) = NULL
;
77 static DLSYM_PROTOTYPE(Esys_PolicyPCR
) = NULL
;
78 static DLSYM_PROTOTYPE(Esys_PolicySigned
) = NULL
;
79 static DLSYM_PROTOTYPE(Esys_ReadPublic
) = NULL
;
80 static DLSYM_PROTOTYPE(Esys_StartAuthSession
) = NULL
;
81 static DLSYM_PROTOTYPE(Esys_Startup
) = NULL
;
82 static DLSYM_PROTOTYPE(Esys_TestParms
) = NULL
;
83 static DLSYM_PROTOTYPE(Esys_TR_Close
) = NULL
;
84 static DLSYM_PROTOTYPE(Esys_TR_Deserialize
) = NULL
;
85 static DLSYM_PROTOTYPE(Esys_TR_FromTPMPublic
) = NULL
;
86 static DLSYM_PROTOTYPE(Esys_TR_GetName
) = NULL
;
87 static DLSYM_PROTOTYPE(Esys_TR_GetTpmHandle
) = NULL
;
88 static DLSYM_PROTOTYPE(Esys_TR_Serialize
) = NULL
;
89 static DLSYM_PROTOTYPE(Esys_TR_SetAuth
) = NULL
;
90 static DLSYM_PROTOTYPE(Esys_TRSess_GetAttributes
) = NULL
;
91 static DLSYM_PROTOTYPE(Esys_TRSess_GetNonceTPM
) = NULL
;
92 static DLSYM_PROTOTYPE(Esys_TRSess_SetAttributes
) = NULL
;
93 static DLSYM_PROTOTYPE(Esys_Unseal
) = NULL
;
94 static DLSYM_PROTOTYPE(Esys_VerifySignature
) = NULL
;
96 static DLSYM_PROTOTYPE(Tss2_MU_TPM2_CC_Marshal
) = NULL
;
97 static DLSYM_PROTOTYPE(Tss2_MU_TPM2_HANDLE_Marshal
) = NULL
;
98 static DLSYM_PROTOTYPE(Tss2_MU_TPM2B_DIGEST_Marshal
) = NULL
;
99 static DLSYM_PROTOTYPE(Tss2_MU_TPM2B_ENCRYPTED_SECRET_Marshal
) = NULL
;
100 static DLSYM_PROTOTYPE(Tss2_MU_TPM2B_ENCRYPTED_SECRET_Unmarshal
) = NULL
;
101 static DLSYM_PROTOTYPE(Tss2_MU_TPM2B_NAME_Marshal
) = NULL
;
102 static DLSYM_PROTOTYPE(Tss2_MU_TPM2B_PRIVATE_Marshal
) = NULL
;
103 static DLSYM_PROTOTYPE(Tss2_MU_TPM2B_PRIVATE_Unmarshal
) = NULL
;
104 static DLSYM_PROTOTYPE(Tss2_MU_TPM2B_PUBLIC_Marshal
) = NULL
;
105 static DLSYM_PROTOTYPE(Tss2_MU_TPM2B_PUBLIC_Unmarshal
) = NULL
;
106 static DLSYM_PROTOTYPE(Tss2_MU_TPM2B_SENSITIVE_Marshal
) = NULL
;
107 static DLSYM_PROTOTYPE(Tss2_MU_TPML_PCR_SELECTION_Marshal
) = NULL
;
108 static DLSYM_PROTOTYPE(Tss2_MU_TPMS_NV_PUBLIC_Marshal
) = NULL
;
109 static DLSYM_PROTOTYPE(Tss2_MU_TPM2B_NV_PUBLIC_Marshal
) = NULL
;
110 static DLSYM_PROTOTYPE(Tss2_MU_TPM2B_NV_PUBLIC_Unmarshal
) = NULL
;
111 static DLSYM_PROTOTYPE(Tss2_MU_TPMS_ECC_POINT_Marshal
) = NULL
;
112 static DLSYM_PROTOTYPE(Tss2_MU_TPMT_HA_Marshal
) = NULL
;
113 static DLSYM_PROTOTYPE(Tss2_MU_TPMT_PUBLIC_Marshal
) = NULL
;
114 static DLSYM_PROTOTYPE(Tss2_MU_UINT32_Marshal
) = NULL
;
116 static DLSYM_PROTOTYPE(Tss2_RC_Decode
) = NULL
;
118 static int dlopen_tpm2_esys(void) {
121 ELF_NOTE_DLOPEN("tpm",
123 ELF_NOTE_DLOPEN_PRIORITY_SUGGESTED
,
124 "libtss2-esys.so.0");
126 r
= dlopen_many_sym_or_warn(
127 &libtss2_esys_dl
, "libtss2-esys.so.0", LOG_DEBUG
,
128 DLSYM_ARG(Esys_Create
),
129 DLSYM_ARG(Esys_CreateLoaded
),
130 DLSYM_ARG(Esys_CreatePrimary
),
131 DLSYM_ARG(Esys_EvictControl
),
132 DLSYM_ARG(Esys_Finalize
),
133 DLSYM_ARG(Esys_FlushContext
),
134 DLSYM_ARG(Esys_Free
),
135 DLSYM_ARG(Esys_GetCapability
),
136 DLSYM_ARG(Esys_GetRandom
),
137 DLSYM_ARG(Esys_Import
),
138 DLSYM_ARG(Esys_Initialize
),
139 DLSYM_ARG(Esys_Load
),
140 DLSYM_ARG(Esys_LoadExternal
),
141 DLSYM_ARG(Esys_NV_DefineSpace
),
142 DLSYM_ARG(Esys_NV_UndefineSpace
),
143 DLSYM_ARG(Esys_NV_Write
),
144 DLSYM_ARG(Esys_PCR_Extend
),
145 DLSYM_ARG(Esys_PCR_Read
),
146 DLSYM_ARG(Esys_PolicyAuthValue
),
147 DLSYM_ARG(Esys_PolicyAuthorize
),
148 DLSYM_ARG(Esys_PolicyAuthorizeNV
),
149 DLSYM_ARG(Esys_PolicyGetDigest
),
150 DLSYM_ARG(Esys_PolicyOR
),
151 DLSYM_ARG(Esys_PolicyPCR
),
152 DLSYM_ARG(Esys_PolicySigned
),
153 DLSYM_ARG(Esys_ReadPublic
),
154 DLSYM_ARG(Esys_StartAuthSession
),
155 DLSYM_ARG(Esys_Startup
),
156 DLSYM_ARG(Esys_TestParms
),
157 DLSYM_ARG(Esys_TR_Close
),
158 DLSYM_ARG(Esys_TR_Deserialize
),
159 DLSYM_ARG(Esys_TR_FromTPMPublic
),
160 DLSYM_ARG(Esys_TR_GetName
),
161 DLSYM_ARG(Esys_TR_Serialize
),
162 DLSYM_ARG(Esys_TR_SetAuth
),
163 DLSYM_ARG(Esys_TRSess_GetAttributes
),
164 DLSYM_ARG(Esys_TRSess_GetNonceTPM
),
165 DLSYM_ARG(Esys_TRSess_SetAttributes
),
166 DLSYM_ARG(Esys_Unseal
),
167 DLSYM_ARG(Esys_VerifySignature
));
171 /* Esys_TR_GetTpmHandle was added to tpm2-tss in version 2.4.0. Once we can set a minimum tpm2-tss
172 * version of 2.4.0 this sym can be moved up to the normal list above. */
173 r
= dlsym_many_or_warn(libtss2_esys_dl
, LOG_DEBUG
, DLSYM_ARG_FORCE(Esys_TR_GetTpmHandle
));
175 log_debug("libtss2-esys too old, does not include Esys_TR_GetTpmHandle.");
180 static int dlopen_tpm2_rc(void) {
181 ELF_NOTE_DLOPEN("tpm",
183 ELF_NOTE_DLOPEN_PRIORITY_SUGGESTED
,
186 return dlopen_many_sym_or_warn(
187 &libtss2_rc_dl
, "libtss2-rc.so.0", LOG_DEBUG
,
188 DLSYM_ARG(Tss2_RC_Decode
));
191 static int dlopen_tpm2_mu(void) {
192 ELF_NOTE_DLOPEN("tpm",
194 ELF_NOTE_DLOPEN_PRIORITY_SUGGESTED
,
197 return dlopen_many_sym_or_warn(
198 &libtss2_mu_dl
, "libtss2-mu.so.0", LOG_DEBUG
,
199 DLSYM_ARG(Tss2_MU_TPM2_CC_Marshal
),
200 DLSYM_ARG(Tss2_MU_TPM2_HANDLE_Marshal
),
201 DLSYM_ARG(Tss2_MU_TPM2B_DIGEST_Marshal
),
202 DLSYM_ARG(Tss2_MU_TPM2B_ENCRYPTED_SECRET_Marshal
),
203 DLSYM_ARG(Tss2_MU_TPM2B_ENCRYPTED_SECRET_Unmarshal
),
204 DLSYM_ARG(Tss2_MU_TPM2B_NAME_Marshal
),
205 DLSYM_ARG(Tss2_MU_TPM2B_PRIVATE_Marshal
),
206 DLSYM_ARG(Tss2_MU_TPM2B_PRIVATE_Unmarshal
),
207 DLSYM_ARG(Tss2_MU_TPM2B_PUBLIC_Marshal
),
208 DLSYM_ARG(Tss2_MU_TPM2B_PUBLIC_Unmarshal
),
209 DLSYM_ARG(Tss2_MU_TPM2B_SENSITIVE_Marshal
),
210 DLSYM_ARG(Tss2_MU_TPML_PCR_SELECTION_Marshal
),
211 DLSYM_ARG(Tss2_MU_TPMS_NV_PUBLIC_Marshal
),
212 DLSYM_ARG(Tss2_MU_TPM2B_NV_PUBLIC_Marshal
),
213 DLSYM_ARG(Tss2_MU_TPM2B_NV_PUBLIC_Unmarshal
),
214 DLSYM_ARG(Tss2_MU_TPMS_ECC_POINT_Marshal
),
215 DLSYM_ARG(Tss2_MU_TPMT_HA_Marshal
),
216 DLSYM_ARG(Tss2_MU_TPMT_PUBLIC_Marshal
),
217 DLSYM_ARG(Tss2_MU_UINT32_Marshal
));
220 int dlopen_tpm2(void) {
223 r
= dlopen_tpm2_esys();
227 r
= dlopen_tpm2_rc();
231 r
= dlopen_tpm2_mu();
238 void Esys_Freep(void *p
) {
242 sym_Esys_Free(*(void**) p
);
245 static void tpm2b_sensitive_data_erase_and_esys_freep(TPM2B_SENSITIVE_DATA
**p
) {
251 explicit_bzero_safe((*p
)->buffer
, (*p
)->size
);
255 /* Get a specific TPM capability (or capabilities).
257 * Returns 0 if there are no more capability properties of the requested type, or 1 if there are more, or < 0
258 * on any error. Both 0 and 1 indicate this completed successfully, but do not indicate how many capability
259 * properties were provided in 'ret_capability_data'. To find the number of provided properties, check the
260 * specific type's 'count' field (e.g. for TPM2_CAP_ALGS, check ret_capability_data->algorithms.count).
262 * This calls TPM2_GetCapability() and does not alter the provided data, so it is important to understand how
263 * that TPM function works. It is recommended to check the TCG TPM specification Part 3 ("Commands") section
264 * on TPM2_GetCapability() for full details, but a short summary is: if this returns 0, all available
265 * properties have been provided in ret_capability_data, or no properties were available. If this returns 1,
266 * there are between 1 and "count" properties provided in ret_capability_data, and there are more available.
267 * Note that this may provide less than "count" properties even if the TPM has more available. Also, each
268 * capability category may have more specific requirements than described here; see the spec for exact
270 static int tpm2_get_capability(
275 TPMU_CAPABILITIES
*ret_capability_data
) {
277 _cleanup_(Esys_Freep
) TPMS_CAPABILITY_DATA
*capabilities
= NULL
;
283 log_debug("Getting TPM2 capability 0x%04" PRIx32
" property 0x%04" PRIx32
" count %" PRIu32
".",
284 capability
, property
, count
);
286 rc
= sym_Esys_GetCapability(
296 if (rc
== TPM2_RC_VALUE
)
297 return log_debug_errno(SYNTHETIC_ERRNO(ENXIO
),
298 "Requested TPM2 capability 0x%04" PRIx32
" property 0x%04" PRIx32
" apparently doesn't exist: %s",
299 capability
, property
, sym_Tss2_RC_Decode(rc
));
300 if (rc
!= TSS2_RC_SUCCESS
)
301 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
302 "Failed to get TPM2 capability 0x%04" PRIx32
" property 0x%04" PRIx32
": %s",
303 capability
, property
, sym_Tss2_RC_Decode(rc
));
304 if (capabilities
->capability
!= capability
)
305 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
306 "TPM provided wrong capability: 0x%04" PRIx32
" instead of 0x%04" PRIx32
".",
307 capabilities
->capability
, capability
);
309 if (ret_capability_data
)
310 *ret_capability_data
= capabilities
->data
;
312 return more
== TPM2_YES
;
315 #define TPMA_CC_TO_TPM2_CC(cca) (((cca) & TPMA_CC_COMMANDINDEX_MASK) >> TPMA_CC_COMMANDINDEX_SHIFT)
317 static int tpm2_cache_capabilities(Tpm2Context
*c
) {
318 TPMU_CAPABILITIES capability
;
323 /* Cache the algorithms. The spec indicates supported algorithms can only be modified during runtime
324 * by the SetAlgorithmSet() command. Unfortunately, the spec doesn't require a TPM reinitialization
325 * after changing the algorithm set (unless the PCR algorithms are changed). However, the spec also
326 * indicates the TPM behavior after SetAlgorithmSet() is "vendor-dependent", giving the example of
327 * flushing sessions and objects, erasing policies, etc. So, if the algorithm set is programmatically
328 * changed while we are performing some operation, it's reasonable to assume it will break us even if
329 * we don't cache the algorithms, thus they should be "safe" to cache. */
330 TPM2_ALG_ID current_alg
= TPM2_ALG_FIRST
;
332 r
= tpm2_get_capability(
335 (uint32_t) current_alg
, /* The spec states to cast TPM2_ALG_ID to uint32_t. */
341 TPML_ALG_PROPERTY algorithms
= capability
.algorithms
;
343 /* We should never get 0; the TPM must support some algorithms, and it must not set 'more' if
344 * there are no more. */
345 assert(algorithms
.count
> 0);
347 if (!GREEDY_REALLOC_APPEND(
348 c
->capability_algorithms
,
349 c
->n_capability_algorithms
,
350 algorithms
.algProperties
,
352 return log_oom_debug();
357 /* Set current_alg to alg id after last alg id the TPM provided */
358 current_alg
= algorithms
.algProperties
[algorithms
.count
- 1].alg
+ 1;
361 /* Cache the command capabilities. The spec isn't actually clear if commands can be added/removed
362 * while running, but that would be crazy, so let's hope it is not possible. */
363 TPM2_CC current_cc
= TPM2_CC_FIRST
;
365 r
= tpm2_get_capability(
374 TPML_CCA commands
= capability
.command
;
376 /* We should never get 0; the TPM must support some commands, and it must not set 'more' if
377 * there are no more. */
378 assert(commands
.count
> 0);
380 if (!GREEDY_REALLOC_APPEND(
381 c
->capability_commands
,
382 c
->n_capability_commands
,
383 commands
.commandAttributes
,
385 return log_oom_debug();
390 /* Set current_cc to index after last cc the TPM provided */
391 current_cc
= TPMA_CC_TO_TPM2_CC(commands
.commandAttributes
[commands
.count
- 1]) + 1;
394 /* Cache the ECC curves. The spec isn't actually clear if ECC curves can be added/removed
395 * while running, but that would be crazy, so let's hope it is not possible. */
396 TPM2_ECC_CURVE current_ecc_curve
= TPM2_ECC_NONE
;
398 r
= tpm2_get_capability(
404 if (r
== -ENXIO
) /* If the TPM doesn't support ECC, it might return TPM2_RC_VALUE rather than capability.eccCurves == 0 */
409 TPML_ECC_CURVE ecc_curves
= capability
.eccCurves
;
411 /* ECC support isn't required */
412 if (ecc_curves
.count
== 0)
415 if (!GREEDY_REALLOC_APPEND(
416 c
->capability_ecc_curves
,
417 c
->n_capability_ecc_curves
,
418 ecc_curves
.eccCurves
,
420 return log_oom_debug();
425 /* Set current_ecc_curve to index after last ecc curve the TPM provided */
426 current_ecc_curve
= ecc_curves
.eccCurves
[ecc_curves
.count
- 1] + 1;
429 /* Cache the PCR capabilities, which are safe to cache, as the only way they can change is
430 * TPM2_PCR_Allocate(), which changes the allocation after the next _TPM_Init(). If the TPM is
431 * reinitialized while we are using it, all our context and sessions will be invalid, so we can
432 * safely assume the TPM PCR allocation will not change while we are using it. */
433 r
= tpm2_get_capability(
442 /* This should never happen. Part 3 ("Commands") of the TCG TPM2 spec in the section for
443 * TPM2_GetCapability states: "TPM_CAP_PCRS – Returns the current allocation of PCR in a
444 * TPML_PCR_SELECTION. The property parameter shall be zero. The TPM will always respond to
445 * this command with the full PCR allocation and moreData will be NO." */
446 log_debug("TPM bug: reported multiple PCR sets; using only first set.");
447 c
->capability_pcrs
= capability
.assignedPCR
;
452 /* Get the TPMA_ALGORITHM for a TPM2_ALG_ID. Returns true if the TPM supports the algorithm and the
453 * TPMA_ALGORITHM is provided, otherwise false. */
454 static bool tpm2_get_capability_alg(Tpm2Context
*c
, TPM2_ALG_ID alg
, TPMA_ALGORITHM
*ret
) {
457 FOREACH_ARRAY(alg_prop
, c
->capability_algorithms
, c
->n_capability_algorithms
)
458 if (alg_prop
->alg
== alg
) {
460 *ret
= alg_prop
->algProperties
;
464 log_debug("TPM does not support alg 0x%02" PRIx16
".", alg
);
471 bool tpm2_supports_alg(Tpm2Context
*c
, TPM2_ALG_ID alg
) {
472 return tpm2_get_capability_alg(c
, alg
, NULL
);
475 /* Get the TPMA_CC for a TPM2_CC. Returns true if the TPM supports the command and the TPMA_CC is provided,
476 * otherwise false. */
477 static bool tpm2_get_capability_command(Tpm2Context
*c
, TPM2_CC command
, TPMA_CC
*ret
) {
480 FOREACH_ARRAY(cca
, c
->capability_commands
, c
->n_capability_commands
)
481 if (TPMA_CC_TO_TPM2_CC(*cca
) == command
) {
487 log_debug("TPM does not support command 0x%04" PRIx32
".", command
);
494 bool tpm2_supports_command(Tpm2Context
*c
, TPM2_CC command
) {
495 return tpm2_get_capability_command(c
, command
, NULL
);
498 /* Returns true if the TPM supports the ECC curve, otherwise false. */
499 bool tpm2_supports_ecc_curve(Tpm2Context
*c
, TPM2_ECC_CURVE ecc_curve
) {
502 FOREACH_ARRAY(curve
, c
->capability_ecc_curves
, c
->n_capability_ecc_curves
)
503 if (*curve
== ecc_curve
)
506 log_debug("TPM does not support ECC curve 0x%" PRIx16
".", ecc_curve
);
510 /* Query the TPM for populated handles.
512 * This provides an array of handle indexes populated in the TPM, starting at the requested handle. The array will
513 * contain only populated handle addresses (which might not include the requested handle). The number of
514 * handles will be no more than the 'max' number requested. This will not search past the end of the handle
515 * range (i.e. handle & 0xff000000).
517 * Returns 0 if all populated handles in the range (starting at the requested handle) were provided (or no
518 * handles were in the range), or 1 if there are more populated handles in the range, or < 0 on any error. */
519 static int tpm2_get_capability_handles(
523 TPM2_HANDLE
**ret_handles
,
524 size_t *ret_n_handles
) {
526 _cleanup_free_ TPM2_HANDLE
*handles
= NULL
;
527 size_t n_handles
= 0;
528 TPM2_HANDLE current
= start
;
533 assert(ret_n_handles
);
535 max
= MIN(max
, UINT32_MAX
);
538 TPMU_CAPABILITIES capability
;
539 r
= tpm2_get_capability(c
, TPM2_CAP_HANDLES
, current
, (uint32_t) max
, &capability
);
543 TPML_HANDLE handle_list
= capability
.handles
;
544 if (handle_list
.count
== 0)
547 assert(handle_list
.count
<= max
);
549 if (n_handles
> SIZE_MAX
- handle_list
.count
)
550 return log_oom_debug();
552 if (!GREEDY_REALLOC_APPEND(handles
, n_handles
, handle_list
.handle
, handle_list
.count
))
553 return log_oom_debug();
555 max
-= handle_list
.count
;
557 /* Update current to the handle index after the last handle in the list. */
558 current
= handles
[n_handles
- 1] + 1;
561 /* No more handles in this range. */
565 *ret_handles
= TAKE_PTR(handles
);
566 *ret_n_handles
= n_handles
;
571 #define TPM2_HANDLE_RANGE(h) ((TPM2_HANDLE)((h) & TPM2_HR_RANGE_MASK))
572 #define TPM2_HANDLE_TYPE(h) ((TPM2_HT)(TPM2_HANDLE_RANGE(h) >> TPM2_HR_SHIFT))
574 /* Returns 1 if the handle is populated in the TPM, 0 if not, and < 0 on any error. */
575 static int tpm2_get_capability_handle(Tpm2Context
*c
, TPM2_HANDLE handle
) {
576 _cleanup_free_ TPM2_HANDLE
*handles
= NULL
;
577 size_t n_handles
= 0;
580 r
= tpm2_get_capability_handles(c
, handle
, 1, &handles
, &n_handles
);
584 return n_handles
== 0 ? false : handles
[0] == handle
;
587 /* Returns 1 if the TPM supports the parms, or 0 if the TPM does not support the parms. */
588 bool tpm2_test_parms(Tpm2Context
*c
, TPMI_ALG_PUBLIC alg
, const TPMU_PUBLIC_PARMS
*parms
) {
594 TPMT_PUBLIC_PARMS parameters
= {
596 .parameters
= *parms
,
599 rc
= sym_Esys_TestParms(c
->esys_context
, ESYS_TR_NONE
, ESYS_TR_NONE
, ESYS_TR_NONE
, ¶meters
);
600 if (rc
!= TSS2_RC_SUCCESS
)
601 /* The spec says if the parms are not supported the TPM returns "...the appropriate
602 * unmarshaling error if a parameter is not valid". Since the spec (currently) defines 15
603 * unmarshaling errors, instead of checking for them all here, let's just assume any error
604 * indicates unsupported parms, and log the specific error text. */
605 log_debug("TPM does not support tested parms: %s", sym_Tss2_RC_Decode(rc
));
607 return rc
== TSS2_RC_SUCCESS
;
610 static bool tpm2_supports_tpmt_public(Tpm2Context
*c
, const TPMT_PUBLIC
*public) {
614 return tpm2_test_parms(c
, public->type
, &public->parameters
);
617 static bool tpm2_supports_tpmt_sym_def_object(Tpm2Context
*c
, const TPMT_SYM_DEF_OBJECT
*parameters
) {
621 TPMU_PUBLIC_PARMS parms
= {
622 .symDetail
.sym
= *parameters
,
625 return tpm2_test_parms(c
, TPM2_ALG_SYMCIPHER
, &parms
);
628 static bool tpm2_supports_tpmt_sym_def(Tpm2Context
*c
, const TPMT_SYM_DEF
*parameters
) {
632 /* Unfortunately, TPMT_SYM_DEF and TPMT_SYM_DEF_OBEJECT are separately defined, even though they are
633 * functionally identical. */
634 TPMT_SYM_DEF_OBJECT object
= {
635 .algorithm
= parameters
->algorithm
,
636 .keyBits
= parameters
->keyBits
,
637 .mode
= parameters
->mode
,
640 return tpm2_supports_tpmt_sym_def_object(c
, &object
);
643 static Tpm2Context
*tpm2_context_free(Tpm2Context
*c
) {
648 sym_Esys_Finalize(&c
->esys_context
);
650 c
->tcti_context
= mfree(c
->tcti_context
);
651 c
->tcti_dl
= safe_dlclose(c
->tcti_dl
);
653 c
->capability_algorithms
= mfree(c
->capability_algorithms
);
654 c
->capability_commands
= mfree(c
->capability_commands
);
655 c
->capability_ecc_curves
= mfree(c
->capability_ecc_curves
);
660 DEFINE_TRIVIAL_REF_UNREF_FUNC(Tpm2Context
, tpm2_context
, tpm2_context_free
);
662 static const TPMT_SYM_DEF SESSION_TEMPLATE_SYM_AES_128_CFB
= {
663 .algorithm
= TPM2_ALG_AES
,
665 .mode
.aes
= TPM2_ALG_CFB
, /* The spec requires sessions to use CFB. */
668 int tpm2_context_new(const char *device
, Tpm2Context
**ret_context
) {
669 _cleanup_(tpm2_context_unrefp
) Tpm2Context
*context
= NULL
;
675 context
= new(Tpm2Context
, 1);
677 return log_oom_debug();
679 *context
= (Tpm2Context
) {
685 return log_debug_errno(r
, "TPM2 support not installed: %m");
688 device
= secure_getenv("SYSTEMD_TPM2_DEVICE");
690 /* Setting the env var to an empty string forces tpm2-tss' own device picking
691 * logic to be used. */
692 device
= empty_to_null(device
);
694 /* If nothing was specified explicitly, we'll use a hardcoded default: the "device" tcti
695 * driver and the "/dev/tpmrm0" device. We do this since on some distributions the tpm2-abrmd
696 * might be used and we really don't want that, since it is a system service and that creates
697 * various ordering issues/deadlocks during early boot. */
698 device
= "device:/dev/tpmrm0";
702 const char *param
, *driver
, *fn
;
703 const TSS2_TCTI_INFO
* info
;
704 TSS2_TCTI_INFO_FUNC func
;
707 param
= strchr(device
, ':');
709 /* Syntax #1: Pair of driver string and arbitrary parameter */
710 driver
= strndupa_safe(device
, param
- device
);
712 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "TPM2 driver name is empty, refusing.");
715 } else if (path_is_absolute(device
) && path_is_valid(device
)) {
716 /* Syntax #2: TPM device node */
720 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "Invalid TPM2 driver string, refusing.");
722 log_debug("Using TPM2 TCTI driver '%s' with device '%s'.", driver
, param
);
724 fn
= strjoina("libtss2-tcti-", driver
, ".so.0");
726 /* Better safe than sorry, let's refuse strings that cannot possibly be valid driver early, before going to disk. */
727 if (!filename_is_valid(fn
))
728 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "TPM2 driver name '%s' not valid, refusing.", driver
);
730 context
->tcti_dl
= dlopen(fn
, RTLD_NOW
|RTLD_NODELETE
);
731 if (!context
->tcti_dl
)
732 return log_debug_errno(SYNTHETIC_ERRNO(ENOPKG
), "Failed to load %s: %s", fn
, dlerror());
734 log_debug("Loaded '%s' via dlopen()", fn
);
736 func
= dlsym(context
->tcti_dl
, TSS2_TCTI_INFO_SYMBOL
);
738 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
739 "Failed to find TCTI info symbol " TSS2_TCTI_INFO_SYMBOL
": %s",
744 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
), "Unable to get TCTI info data.");
746 log_debug("Loaded TCTI module '%s' (%s) [Version %" PRIu32
"]", info
->name
, info
->description
, info
->version
);
748 rc
= info
->init(/* context= */ NULL
, &sz
, /* param= */ NULL
);
749 if (rc
!= TPM2_RC_SUCCESS
)
750 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
751 "Failed to initialize TCTI context: %s", sym_Tss2_RC_Decode(rc
));
753 context
->tcti_context
= malloc0(sz
);
754 if (!context
->tcti_context
)
755 return log_oom_debug();
757 rc
= info
->init(context
->tcti_context
, &sz
, param
);
758 if (rc
!= TPM2_RC_SUCCESS
)
759 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
760 "Failed to initialize TCTI context: %s", sym_Tss2_RC_Decode(rc
));
763 rc
= sym_Esys_Initialize(&context
->esys_context
, context
->tcti_context
, NULL
);
764 if (rc
!= TSS2_RC_SUCCESS
)
765 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
766 "Failed to initialize TPM context: %s", sym_Tss2_RC_Decode(rc
));
768 rc
= sym_Esys_Startup(context
->esys_context
, TPM2_SU_CLEAR
);
769 if (rc
== TPM2_RC_INITIALIZE
)
770 log_debug("TPM already started up.");
771 else if (rc
== TSS2_RC_SUCCESS
)
772 log_debug("TPM successfully started up.");
774 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
775 "Failed to start up TPM: %s", sym_Tss2_RC_Decode(rc
));
777 r
= tpm2_cache_capabilities(context
);
779 return log_debug_errno(r
, "Failed to cache TPM capabilities: %m");
781 /* We require AES and CFB support for session encryption. */
782 if (!tpm2_supports_alg(context
, TPM2_ALG_AES
))
783 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "TPM does not support AES.");
785 if (!tpm2_supports_alg(context
, TPM2_ALG_CFB
))
786 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "TPM does not support CFB.");
788 if (!tpm2_supports_tpmt_sym_def(context
, &SESSION_TEMPLATE_SYM_AES_128_CFB
))
789 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "TPM does not support AES-128-CFB.");
791 *ret_context
= TAKE_PTR(context
);
796 int tpm2_context_new_or_warn(const char *device
, Tpm2Context
**ret_context
) {
801 r
= tpm2_context_new(device
, ret_context
);
802 if (r
== -EOPNOTSUPP
)
803 return log_error_errno(r
, "TPM device not usable as it does not support the required functionality (AES-128-CFB missing?).");
805 return log_error_errno(r
, "TPM TCTI driver not available.");
807 return log_error_errno(r
, "TPM device not found.");
809 return log_error_errno(r
, "Failed to create TPM2 context: %m");
814 static void tpm2_handle_cleanup(ESYS_CONTEXT
*esys_context
, ESYS_TR esys_handle
, bool flush
) {
817 if (!esys_context
|| esys_handle
== ESYS_TR_NONE
)
820 /* Closing the handle removes its reference from the esys_context, but leaves the corresponding
821 * handle in the actual TPM. Flushing the handle removes its reference from the esys_context as well
822 * as removing its corresponding handle from the actual TPM. */
824 rc
= sym_Esys_FlushContext(esys_context
, esys_handle
);
826 /* We can't use Esys_TR_Close() because the tpm2-tss library does not use reference counting
827 * for handles, and a single Esys_TR_Close() will remove the handle (internal to the tpm2-tss
828 * library) that might be in use by other code that is using the same ESYS_CONTEXT. This
829 * directly affects us; for example the src/test/test-tpm2.c test function
830 * check_seal_unseal() will encounter this issue and will result in a failure when trying to
831 * cleanup (i.e. Esys_FlushContext) the transient primary key that the test function
832 * generates. However, not calling Esys_TR_Close() here should be ok, since any leaked handle
833 * references will be cleaned up when we free our ESYS_CONTEXT.
835 * An upstream bug is open here: https://github.com/tpm2-software/tpm2-tss/issues/2693 */
836 rc
= TSS2_RC_SUCCESS
; // FIXME: restore sym_Esys_TR_Close() use once tpm2-tss is fixed and adopted widely enough
837 if (rc
!= TSS2_RC_SUCCESS
)
838 /* We ignore failures here (besides debug logging), since this is called in error paths,
839 * where we cannot do anything about failures anymore. And when it is called in successful
840 * codepaths by this time we already did what we wanted to do, and got the results we wanted
841 * so there's no reason to make this fail more loudly than necessary. */
842 log_debug("Failed to %s TPM handle, ignoring: %s", flush
? "flush" : "close", sym_Tss2_RC_Decode(rc
));
845 Tpm2Handle
*tpm2_handle_free(Tpm2Handle
*handle
) {
849 _cleanup_(tpm2_context_unrefp
) Tpm2Context
*context
= (Tpm2Context
*)handle
->tpm2_context
;
851 tpm2_handle_cleanup(context
->esys_context
, handle
->esys_handle
, handle
->flush
);
853 return mfree(handle
);
856 int tpm2_handle_new(Tpm2Context
*context
, Tpm2Handle
**ret_handle
) {
857 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*handle
= NULL
;
861 handle
= new(Tpm2Handle
, 1);
863 return log_oom_debug();
865 *handle
= (Tpm2Handle
) {
866 .tpm2_context
= tpm2_context_ref(context
),
867 .esys_handle
= ESYS_TR_NONE
,
871 *ret_handle
= TAKE_PTR(handle
);
876 static int tpm2_read_public(
878 const Tpm2Handle
*session
,
879 const Tpm2Handle
*handle
,
880 TPM2B_PUBLIC
**ret_public
,
881 TPM2B_NAME
**ret_name
,
882 TPM2B_NAME
**ret_qname
) {
889 rc
= sym_Esys_ReadPublic(
892 session
? session
->esys_handle
: ESYS_TR_NONE
,
898 if (rc
!= TSS2_RC_SUCCESS
)
899 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
900 "Failed to read public info: %s", sym_Tss2_RC_Decode(rc
));
905 /* Create a Tpm2Handle object that references a pre-existing handle in the TPM, at the handle index provided.
906 * This should be used only for persistent, transient, or NV handles; and the handle must already exist in
907 * the TPM at the specified handle index. The handle index should not be 0. Returns 1 if found, 0 if the
908 * index is empty, or < 0 on error. Also see tpm2_get_srk() below; the SRK is a commonly used persistent
910 int tpm2_index_to_handle(
913 const Tpm2Handle
*session
,
914 TPM2B_PUBLIC
**ret_public
,
915 TPM2B_NAME
**ret_name
,
916 TPM2B_NAME
**ret_qname
,
917 Tpm2Handle
**ret_handle
) {
924 /* Only allow persistent, transient, or NV index handle types. */
925 switch (TPM2_HANDLE_TYPE(index
)) {
926 case TPM2_HT_PERSISTENT
:
927 case TPM2_HT_NV_INDEX
:
928 case TPM2_HT_TRANSIENT
:
931 /* PCR handles are referenced by their actual index number and do not need a Tpm2Handle */
932 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
),
933 "Invalid handle 0x%08" PRIx32
" (in PCR range).", index
);
934 case TPM2_HT_HMAC_SESSION
:
935 case TPM2_HT_POLICY_SESSION
:
936 /* Session indexes are only used internally by tpm2-tss (or lower code) */
937 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
),
938 "Invalid handle 0x%08" PRIx32
" (in session range).", index
);
939 case TPM2_HT_PERMANENT
:
940 /* Permanent handles are defined, e.g. ESYS_TR_RH_OWNER. */
941 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
),
942 "Invalid handle 0x%08" PRIx32
" (in permanent range).", index
);
944 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
),
945 "Invalid handle 0x%08" PRIx32
" (in unknown range).", index
);
948 /* For transient handles, the kernel tpm "resource manager" (i.e. /dev/tpmrm0) performs mapping
949 * which breaks GetCapability requests, so only check GetCapability if it's not a transient handle.
950 * https://bugzilla.kernel.org/show_bug.cgi?id=218009 */
951 if (TPM2_HANDLE_TYPE(index
) != TPM2_HT_TRANSIENT
) { // FIXME: once kernel bug is fixed, check transient handles too
952 r
= tpm2_get_capability_handle(c
, index
);
956 log_debug("TPM handle 0x%08" PRIx32
" not populated.", index
);
969 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*handle
= NULL
;
970 r
= tpm2_handle_new(c
, &handle
);
974 /* Since we didn't create this handle in the TPM (this is only creating an ESYS_TR handle for the
975 * pre-existing TPM handle), we shouldn't flush (or evict) it on cleanup. */
976 handle
->flush
= false;
978 rc
= sym_Esys_TR_FromTPMPublic(
981 session
? session
->esys_handle
: ESYS_TR_NONE
,
984 &handle
->esys_handle
);
985 if (rc
!= TSS2_RC_SUCCESS
)
986 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
987 "Failed to read public info: %s", sym_Tss2_RC_Decode(rc
));
989 if (ret_public
|| ret_name
|| ret_qname
) {
990 r
= tpm2_read_public(c
, session
, handle
, ret_public
, ret_name
, ret_qname
);
996 *ret_handle
= TAKE_PTR(handle
);
1001 /* Get the handle index for the provided Tpm2Handle. */
1002 int tpm2_index_from_handle(Tpm2Context
*c
, const Tpm2Handle
*handle
, TPM2_HANDLE
*ret_index
) {
1009 /* Esys_TR_GetTpmHandle was added to tpm2-tss in version 2.4.0. Once we can set a minimum tpm2-tss
1010 * version of 2.4.0 this check can be removed. */
1011 if (!sym_Esys_TR_GetTpmHandle
)
1012 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
1013 "libtss2-esys too old, does not include Esys_TR_GetTpmHandle.");
1015 rc
= sym_Esys_TR_GetTpmHandle(c
->esys_context
, handle
->esys_handle
, ret_index
);
1016 if (rc
!= TSS2_RC_SUCCESS
)
1017 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
1018 "Failed to get handle index: %s", sym_Tss2_RC_Decode(rc
));
1023 /* Copy an object in the TPM at a transient handle to a persistent handle.
1025 * The provided transient handle must exist in the TPM in the transient range. The persistent handle may be 0
1026 * or any handle in the persistent range. If 0, this will try each handle in the persistent range, in
1027 * ascending order, until an available one is found. If non-zero, only the requested persistent handle will
1030 * Note that the persistent handle parameter is an handle index (i.e. number), while the transient handle is
1031 * a Tpm2Handle object. The returned persistent handle will be a Tpm2Handle object that is located in the TPM
1032 * at the requested persistent handle index (or the first available if none was requested).
1034 * Returns 1 if the object was successfully persisted, or 0 if there is already a key at the requested
1035 * handle, or < 0 on error. Theoretically, this would also return 0 if no specific persistent handle is
1036 * requested but all persistent handles are used, but it is extremely unlikely the TPM has enough internal
1037 * memory to store the entire persistent range, in which case an error will be returned if the TPM is out of
1038 * memory for persistent storage. The persistent handle is only provided when returning 1. */
1039 static int tpm2_persist_handle(
1041 const Tpm2Handle
*transient_handle
,
1042 const Tpm2Handle
*session
,
1043 TPMI_DH_PERSISTENT persistent_handle_index
,
1044 Tpm2Handle
**ret_persistent_handle
) {
1046 /* We don't use TPM2_PERSISTENT_FIRST and TPM2_PERSISTENT_LAST here due to:
1047 * https://github.com/systemd/systemd/pull/27713#issuecomment-1591864753 */
1048 TPMI_DH_PERSISTENT first
= UINT32_C(0x81000000), last
= UINT32_C(0x81ffffff);
1053 assert(transient_handle
);
1055 /* If persistent handle index specified, only try that. */
1056 if (persistent_handle_index
!= 0) {
1057 if (TPM2_HANDLE_TYPE(persistent_handle_index
) != TPM2_HT_PERSISTENT
)
1058 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
),
1059 "Handle not in persistent range: 0x%x", persistent_handle_index
);
1061 first
= last
= persistent_handle_index
;
1064 for (TPMI_DH_PERSISTENT requested
= first
; requested
<= last
; requested
++) {
1065 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*persistent_handle
= NULL
;
1066 r
= tpm2_handle_new(c
, &persistent_handle
);
1070 /* Since this is a persistent handle, don't flush it. */
1071 persistent_handle
->flush
= false;
1073 rc
= sym_Esys_EvictControl(
1076 transient_handle
->esys_handle
,
1077 session
? session
->esys_handle
: ESYS_TR_PASSWORD
,
1081 &persistent_handle
->esys_handle
);
1082 if (rc
== TSS2_RC_SUCCESS
) {
1083 if (ret_persistent_handle
)
1084 *ret_persistent_handle
= TAKE_PTR(persistent_handle
);
1088 if (rc
!= TPM2_RC_NV_DEFINED
)
1089 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
1090 "Failed to persist handle: %s", sym_Tss2_RC_Decode(rc
));
1093 if (ret_persistent_handle
)
1094 *ret_persistent_handle
= NULL
;
1099 #define TPM2_CREDIT_RANDOM_FLAG_PATH "/run/systemd/tpm-rng-credited"
1101 static int tpm2_credit_random(Tpm2Context
*c
) {
1102 size_t rps
, done
= 0;
1109 /* Pulls some entropy from the TPM and adds it into the kernel RNG pool. That way we can say that the
1110 * key we will ultimately generate with the kernel random pool is at least as good as the TPM's RNG,
1111 * but likely better. Note that we don't trust the TPM RNG very much, hence do not actually credit
1114 if (access(TPM2_CREDIT_RANDOM_FLAG_PATH
, F_OK
) < 0) {
1115 if (errno
!= ENOENT
)
1116 log_debug_errno(errno
, "Failed to detect if '" TPM2_CREDIT_RANDOM_FLAG_PATH
"' exists, ignoring: %m");
1118 log_debug("Not adding TPM2 entropy to the kernel random pool again.");
1119 return 0; /* Already done */
1122 t
= now(CLOCK_MONOTONIC
);
1124 for (rps
= random_pool_size(); rps
> 0;) {
1125 _cleanup_(Esys_Freep
) TPM2B_DIGEST
*buffer
= NULL
;
1127 rc
= sym_Esys_GetRandom(
1132 MIN(rps
, 32U), /* 32 is supposedly a safe choice, given that AES 256bit keys are this long, and TPM2 baseline requires support for those. */
1134 if (rc
!= TSS2_RC_SUCCESS
)
1135 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
1136 "Failed to acquire entropy from TPM: %s", sym_Tss2_RC_Decode(rc
));
1138 if (buffer
->size
== 0)
1139 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
1140 "Zero-sized entropy returned from TPM.");
1142 r
= random_write_entropy(-1, buffer
->buffer
, buffer
->size
, /* credit= */ false);
1144 return log_debug_errno(r
, "Failed wo write entropy to kernel: %m");
1146 done
+= buffer
->size
;
1147 rps
= LESS_BY(rps
, buffer
->size
);
1150 log_debug("Added %zu bytes of TPM2 entropy to the kernel random pool in %s.", done
, FORMAT_TIMESPAN(now(CLOCK_MONOTONIC
) - t
, 0));
1152 r
= touch(TPM2_CREDIT_RANDOM_FLAG_PATH
);
1154 log_debug_errno(r
, "Failed to touch '" TPM2_CREDIT_RANDOM_FLAG_PATH
"', ignoring: %m");
1159 /* Get one of the legacy primary key templates.
1161 * The legacy templates should only be used for older sealed data that did not use the SRK. Instead of a
1162 * persistent SRK, a transient key was created to seal the data and then flushed; and the exact same template
1163 * must be used to recreate the same transient key to unseal the data. The alg parameter must be TPM2_ALG_RSA
1164 * or TPM2_ALG_ECC. This does not check if the alg is actually supported on this TPM. */
1165 static int tpm2_get_legacy_template(TPMI_ALG_PUBLIC alg
, TPMT_PUBLIC
*ret_template
) {
1166 /* Do not modify. */
1167 static const TPMT_PUBLIC legacy_ecc
= {
1168 .type
= TPM2_ALG_ECC
,
1169 .nameAlg
= TPM2_ALG_SHA256
,
1171 TPMA_OBJECT_RESTRICTED
|
1172 TPMA_OBJECT_DECRYPT
|
1173 TPMA_OBJECT_FIXEDTPM
|
1174 TPMA_OBJECT_FIXEDPARENT
|
1175 TPMA_OBJECT_SENSITIVEDATAORIGIN
|
1176 TPMA_OBJECT_USERWITHAUTH
,
1177 .parameters
.eccDetail
= {
1179 .algorithm
= TPM2_ALG_AES
,
1181 .mode
.aes
= TPM2_ALG_CFB
,
1183 .scheme
.scheme
= TPM2_ALG_NULL
,
1184 .curveID
= TPM2_ECC_NIST_P256
,
1185 .kdf
.scheme
= TPM2_ALG_NULL
,
1189 /* Do not modify. */
1190 static const TPMT_PUBLIC legacy_rsa
= {
1191 .type
= TPM2_ALG_RSA
,
1192 .nameAlg
= TPM2_ALG_SHA256
,
1193 .objectAttributes
= TPMA_OBJECT_RESTRICTED
|TPMA_OBJECT_DECRYPT
|TPMA_OBJECT_FIXEDTPM
|TPMA_OBJECT_FIXEDPARENT
|TPMA_OBJECT_SENSITIVEDATAORIGIN
|TPMA_OBJECT_USERWITHAUTH
,
1194 .parameters
.rsaDetail
= {
1196 .algorithm
= TPM2_ALG_AES
,
1198 .mode
.aes
= TPM2_ALG_CFB
,
1200 .scheme
.scheme
= TPM2_ALG_NULL
,
1205 assert(ret_template
);
1207 if (alg
== TPM2_ALG_ECC
)
1208 *ret_template
= legacy_ecc
;
1209 else if (alg
== TPM2_ALG_RSA
)
1210 *ret_template
= legacy_rsa
;
1212 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
1213 "Unsupported legacy SRK alg: 0x%x", alg
);
1218 /* Get a Storage Root Key (SRK) template.
1220 * The SRK template values are recommended by the "TCG TPM v2.0 Provisioning Guidance" document in section
1221 * 7.5.1 "Storage Primary Key (SRK) Templates", referencing "TCG EK Credential Profile for TPM Family 2.0".
1222 * The EK Credential Profile version 2.0 provides only a single template each for RSA and ECC, while later EK
1223 * Credential Profile versions provide more templates, and keep the original templates as "L-1" (for RSA) and
1226 * https://trustedcomputinggroup.org/resource/tcg-tpm-v2-0-provisioning-guidance
1227 * https://trustedcomputinggroup.org/resource/http-trustedcomputinggroup-org-wp-content-uploads-tcg-ek-credential-profile
1229 * These templates are only needed to create a new persistent SRK (or a new transient key that is
1230 * SRK-compatible). Preferably, the TPM should contain a shared SRK located at the reserved shared SRK handle
1231 * (see TPM2_SRK_HANDLE in tpm2-util.h, and tpm2_get_srk() below).
1233 * Returns 0 if the specified algorithm is ECC or RSA, otherwise -EOPNOTSUPP. */
1234 int tpm2_get_srk_template(TPMI_ALG_PUBLIC alg
, TPMT_PUBLIC
*ret_template
) {
1235 /* The attributes are the same between ECC and RSA templates. This has the changes specified in the
1236 * Provisioning Guidance document, specifically:
1237 * TPMA_OBJECT_USERWITHAUTH is added.
1238 * TPMA_OBJECT_ADMINWITHPOLICY is removed.
1239 * TPMA_OBJECT_NODA is added. */
1240 TPMA_OBJECT srk_attributes
=
1241 TPMA_OBJECT_DECRYPT
|
1242 TPMA_OBJECT_FIXEDPARENT
|
1243 TPMA_OBJECT_FIXEDTPM
|
1245 TPMA_OBJECT_RESTRICTED
|
1246 TPMA_OBJECT_SENSITIVEDATAORIGIN
|
1247 TPMA_OBJECT_USERWITHAUTH
;
1249 /* The symmetric configuration is the same between ECC and RSA templates. */
1250 TPMT_SYM_DEF_OBJECT srk_symmetric
= {
1251 .algorithm
= TPM2_ALG_AES
,
1253 .mode
.aes
= TPM2_ALG_CFB
,
1256 /* Both templates have an empty authPolicy as specified by the Provisioning Guidance document. */
1258 /* From the EK Credential Profile template "L-2". */
1259 TPMT_PUBLIC srk_ecc
= {
1260 .type
= TPM2_ALG_ECC
,
1261 .nameAlg
= TPM2_ALG_SHA256
,
1262 .objectAttributes
= srk_attributes
,
1263 .parameters
.eccDetail
= {
1264 .symmetric
= srk_symmetric
,
1265 .scheme
.scheme
= TPM2_ALG_NULL
,
1266 .curveID
= TPM2_ECC_NIST_P256
,
1267 .kdf
.scheme
= TPM2_ALG_NULL
,
1271 /* From the EK Credential Profile template "L-1". */
1272 TPMT_PUBLIC srk_rsa
= {
1273 .type
= TPM2_ALG_RSA
,
1274 .nameAlg
= TPM2_ALG_SHA256
,
1275 .objectAttributes
= srk_attributes
,
1276 .parameters
.rsaDetail
= {
1277 .symmetric
= srk_symmetric
,
1278 .scheme
.scheme
= TPM2_ALG_NULL
,
1283 assert(ret_template
);
1287 *ret_template
= srk_ecc
;
1290 *ret_template
= srk_rsa
;
1294 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "No SRK for algorithm 0x%" PRIx16
, alg
);
1297 /* Get the best supported SRK template. ECC is preferred, then RSA. */
1298 int tpm2_get_best_srk_template(Tpm2Context
*c
, TPMT_PUBLIC
*ret_template
) {
1299 TPMT_PUBLIC
template;
1303 assert(ret_template
);
1305 r
= tpm2_get_srk_template(TPM2_ALG_ECC
, &template);
1309 if (!tpm2_supports_alg(c
, TPM2_ALG_ECC
))
1310 log_debug("TPM does not support ECC.");
1311 else if (!tpm2_supports_ecc_curve(c
, template.parameters
.eccDetail
.curveID
))
1312 log_debug("TPM does not support ECC-NIST-P256 curve.");
1313 else if (!tpm2_supports_tpmt_public(c
, &template))
1314 log_debug("TPM does not support SRK ECC template L-2.");
1316 *ret_template
= template;
1320 r
= tpm2_get_srk_template(TPM2_ALG_RSA
, &template);
1324 if (!tpm2_supports_alg(c
, TPM2_ALG_RSA
))
1325 log_debug("TPM does not support RSA.");
1326 else if (!tpm2_supports_tpmt_public(c
, &template))
1327 log_debug("TPM does not support SRK RSA template L-1.");
1329 *ret_template
= template;
1333 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
1334 "TPM does not support either SRK template L-1 (RSA) or L-2 (ECC).");
1337 /* Get the SRK. Returns 1 if SRK is found, 0 if there is no SRK, or < 0 on error. Also see
1338 * tpm2_get_or_create_srk() below. */
1341 const Tpm2Handle
*session
,
1342 TPM2B_PUBLIC
**ret_public
,
1343 TPM2B_NAME
**ret_name
,
1344 TPM2B_NAME
**ret_qname
,
1345 Tpm2Handle
**ret_handle
) {
1347 return tpm2_index_to_handle(c
, TPM2_SRK_HANDLE
, session
, ret_public
, ret_name
, ret_qname
, ret_handle
);
1350 /* Get the SRK, creating one if needed. Returns 1 if a new SRK was created and persisted, 0 if an SRK already
1351 * exists, or < 0 on error. */
1352 int tpm2_get_or_create_srk(
1354 const Tpm2Handle
*session
,
1355 TPM2B_PUBLIC
**ret_public
,
1356 TPM2B_NAME
**ret_name
,
1357 TPM2B_NAME
**ret_qname
,
1358 Tpm2Handle
**ret_handle
) {
1362 r
= tpm2_get_srk(c
, session
, ret_public
, ret_name
, ret_qname
, ret_handle
);
1366 return 0; /* 0 → SRK already set up */
1368 /* No SRK, create and persist one */
1369 TPM2B_PUBLIC
template = {
1370 .size
= sizeof(TPMT_PUBLIC
),
1372 r
= tpm2_get_best_srk_template(c
, &template.publicArea
);
1374 return log_debug_errno(r
, "Could not get best SRK template: %m");
1376 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*transient_handle
= NULL
;
1377 r
= tpm2_create_primary(
1381 /* sensitive= */ NULL
,
1382 /* ret_public= */ NULL
,
1387 /* Try to persist the transient SRK we created. No locking needed; if multiple threads are trying to
1388 * persist SRKs concurrently, only one will succeed (r == 1) while the rest will fail (r == 0). In
1389 * either case, all threads will get the persistent SRK below. */
1390 r
= tpm2_persist_handle(c
, transient_handle
, session
, TPM2_SRK_HANDLE
, /* ret_persistent_handle= */ NULL
);
1394 /* The SRK should exist now. */
1395 r
= tpm2_get_srk(c
, session
, ret_public
, ret_name
, ret_qname
, ret_handle
);
1399 /* This should never happen. */
1400 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
), "SRK we just persisted couldn't be found.");
1402 return 1; /* > 0 → SRK newly set up */
1405 /* Utility functions for TPMS_PCR_SELECTION. */
1407 /* Convert a TPMS_PCR_SELECTION object to a mask. */
1408 uint32_t tpm2_tpms_pcr_selection_to_mask(const TPMS_PCR_SELECTION
*s
) {
1410 assert(s
->sizeofSelect
<= sizeof(s
->pcrSelect
));
1413 for (unsigned i
= 0; i
< s
->sizeofSelect
; i
++)
1414 SET_FLAG(mask
, (uint32_t)s
->pcrSelect
[i
] << (i
* 8), true);
1418 /* Convert a mask and hash alg to a TPMS_PCR_SELECTION object. */
1419 void tpm2_tpms_pcr_selection_from_mask(uint32_t mask
, TPMI_ALG_HASH hash_alg
, TPMS_PCR_SELECTION
*ret
) {
1422 /* This is currently hardcoded at 24 PCRs, above. */
1423 if (!TPM2_PCR_MASK_VALID(mask
))
1424 log_debug("PCR mask selections (%x) out of range, ignoring.",
1425 mask
& ~((uint32_t)TPM2_PCRS_MASK
));
1427 *ret
= (TPMS_PCR_SELECTION
){
1429 .sizeofSelect
= TPM2_PCRS_MAX
/ 8,
1430 .pcrSelect
[0] = mask
& 0xff,
1431 .pcrSelect
[1] = (mask
>> 8) & 0xff,
1432 .pcrSelect
[2] = (mask
>> 16) & 0xff,
1436 /* Test if all bits in the mask are set in the TPMS_PCR_SELECTION. */
1437 bool tpm2_tpms_pcr_selection_has_mask(const TPMS_PCR_SELECTION
*s
, uint32_t mask
) {
1440 return FLAGS_SET(tpm2_tpms_pcr_selection_to_mask(s
), mask
);
1443 static void tpm2_tpms_pcr_selection_update_mask(TPMS_PCR_SELECTION
*s
, uint32_t mask
, bool b
) {
1446 tpm2_tpms_pcr_selection_from_mask(UPDATE_FLAG(tpm2_tpms_pcr_selection_to_mask(s
), mask
, b
), s
->hash
, s
);
1449 /* Add all PCR selections in the mask. */
1450 void tpm2_tpms_pcr_selection_add_mask(TPMS_PCR_SELECTION
*s
, uint32_t mask
) {
1451 tpm2_tpms_pcr_selection_update_mask(s
, mask
, 1);
1454 /* Remove all PCR selections in the mask. */
1455 void tpm2_tpms_pcr_selection_sub_mask(TPMS_PCR_SELECTION
*s
, uint32_t mask
) {
1456 tpm2_tpms_pcr_selection_update_mask(s
, mask
, 0);
1459 /* Add all PCR selections in 'b' to 'a'. Both must have the same hash alg. */
1460 void tpm2_tpms_pcr_selection_add(TPMS_PCR_SELECTION
*a
, const TPMS_PCR_SELECTION
*b
) {
1463 assert(a
->hash
== b
->hash
);
1465 tpm2_tpms_pcr_selection_add_mask(a
, tpm2_tpms_pcr_selection_to_mask(b
));
1468 /* Remove all PCR selections in 'b' from 'a'. Both must have the same hash alg. */
1469 void tpm2_tpms_pcr_selection_sub(TPMS_PCR_SELECTION
*a
, const TPMS_PCR_SELECTION
*b
) {
1472 assert(a
->hash
== b
->hash
);
1474 tpm2_tpms_pcr_selection_sub_mask(a
, tpm2_tpms_pcr_selection_to_mask(b
));
1477 /* Move all PCR selections in 'b' to 'a'. Both must have the same hash alg. */
1478 void tpm2_tpms_pcr_selection_move(TPMS_PCR_SELECTION
*a
, TPMS_PCR_SELECTION
*b
) {
1482 tpm2_tpms_pcr_selection_add(a
, b
);
1483 tpm2_tpms_pcr_selection_from_mask(0, b
->hash
, b
);
1486 #define FOREACH_TPMS_PCR_SELECTION_IN_TPML_PCR_SELECTION(tpms, tpml) \
1487 _FOREACH_TPMS_PCR_SELECTION_IN_TPML_PCR_SELECTION(tpms, tpml, UNIQ_T(l, UNIQ))
1488 #define _FOREACH_TPMS_PCR_SELECTION_IN_TPML_PCR_SELECTION(tpms, tpml, l) \
1489 for (typeof(tpml) (l) = (tpml); (l); (l) = NULL) \
1490 FOREACH_ARRAY(tpms, (l)->pcrSelections, (l)->count)
1492 #define FOREACH_PCR_IN_TPMS_PCR_SELECTION(pcr, tpms) \
1493 FOREACH_PCR_IN_MASK(pcr, tpm2_tpms_pcr_selection_to_mask(tpms))
1495 #define FOREACH_PCR_IN_TPML_PCR_SELECTION(pcr, tpms, tpml) \
1496 FOREACH_TPMS_PCR_SELECTION_IN_TPML_PCR_SELECTION(tpms, tpml) \
1497 FOREACH_PCR_IN_TPMS_PCR_SELECTION(pcr, tpms)
1499 char* tpm2_tpms_pcr_selection_to_string(const TPMS_PCR_SELECTION
*s
) {
1502 const char *algstr
= strna(tpm2_hash_alg_to_string(s
->hash
));
1504 _cleanup_free_
char *mask
= tpm2_pcr_mask_to_string(tpm2_tpms_pcr_selection_to_mask(s
));
1508 return strjoin(algstr
, "(", mask
, ")");
1511 size_t tpm2_tpms_pcr_selection_weight(const TPMS_PCR_SELECTION
*s
) {
1514 return popcount(tpm2_tpms_pcr_selection_to_mask(s
));
1517 /* Utility functions for TPML_PCR_SELECTION. */
1519 /* Remove the (0-based) index entry from 'l', shift all following entries, and update the count. */
1520 static void tpm2_tpml_pcr_selection_remove_index(TPML_PCR_SELECTION
*l
, uint32_t index
) {
1522 assert(l
->count
<= ELEMENTSOF(l
->pcrSelections
));
1523 assert(index
< l
->count
);
1525 size_t s
= l
->count
- (index
+ 1);
1526 memmove(&l
->pcrSelections
[index
], &l
->pcrSelections
[index
+ 1], s
* sizeof(l
->pcrSelections
[0]));
1530 /* Get a TPMS_PCR_SELECTION from a TPML_PCR_SELECTION for the given hash alg. Returns NULL if there is no
1531 * entry for the hash alg. This guarantees the returned entry contains all the PCR selections for the given
1532 * hash alg, which may require modifying the TPML_PCR_SELECTION by removing duplicate entries. */
1533 static TPMS_PCR_SELECTION
*tpm2_tpml_pcr_selection_get_tpms_pcr_selection(
1534 TPML_PCR_SELECTION
*l
,
1535 TPMI_ALG_HASH hash_alg
) {
1538 assert(l
->count
<= ELEMENTSOF(l
->pcrSelections
));
1540 TPMS_PCR_SELECTION
*selection
= NULL
;
1541 FOREACH_TPMS_PCR_SELECTION_IN_TPML_PCR_SELECTION(s
, l
)
1542 if (s
->hash
== hash_alg
) {
1550 /* Iterate backwards through the entries, removing any other entries for the hash alg. */
1551 for (uint32_t i
= l
->count
- 1; i
> 0; i
--) {
1552 TPMS_PCR_SELECTION
*s
= &l
->pcrSelections
[i
];
1557 if (s
->hash
== hash_alg
) {
1558 tpm2_tpms_pcr_selection_move(selection
, s
);
1559 tpm2_tpml_pcr_selection_remove_index(l
, i
);
1566 /* Combine all duplicate (same hash alg) TPMS_PCR_SELECTION entries in 'l'. */
1567 static void tpm2_tpml_pcr_selection_cleanup(TPML_PCR_SELECTION
*l
) {
1568 /* Can't use FOREACH_TPMS_PCR_SELECTION_IN_TPML_PCR_SELECTION() because we might modify l->count */
1569 for (uint32_t i
= 0; i
< l
->count
; i
++)
1570 /* This removes all duplicate TPMS_PCR_SELECTION entries for this hash. */
1571 (void) tpm2_tpml_pcr_selection_get_tpms_pcr_selection(l
, l
->pcrSelections
[i
].hash
);
1574 /* Convert a TPML_PCR_SELECTION object to a mask. Returns empty mask (i.e. 0) if 'hash_alg' is not in the object. */
1575 uint32_t tpm2_tpml_pcr_selection_to_mask(const TPML_PCR_SELECTION
*l
, TPMI_ALG_HASH hash_alg
) {
1578 /* Make a copy, as tpm2_tpml_pcr_selection_get_tpms_pcr_selection() will modify the object if there
1579 * are multiple entries with the requested hash alg. */
1580 TPML_PCR_SELECTION lcopy
= *l
;
1582 TPMS_PCR_SELECTION
*s
;
1583 s
= tpm2_tpml_pcr_selection_get_tpms_pcr_selection(&lcopy
, hash_alg
);
1587 return tpm2_tpms_pcr_selection_to_mask(s
);
1590 /* Convert a mask and hash alg to a TPML_PCR_SELECTION object. */
1591 void tpm2_tpml_pcr_selection_from_mask(uint32_t mask
, TPMI_ALG_HASH hash_alg
, TPML_PCR_SELECTION
*ret
) {
1594 TPMS_PCR_SELECTION s
;
1595 tpm2_tpms_pcr_selection_from_mask(mask
, hash_alg
, &s
);
1597 *ret
= (TPML_PCR_SELECTION
){
1599 .pcrSelections
[0] = s
,
1603 /* Add the PCR selections in 's' to the corresponding hash alg TPMS_PCR_SELECTION entry in 'l'. Adds a new
1604 * TPMS_PCR_SELECTION entry for the hash alg if needed. This may modify the TPML_PCR_SELECTION by combining
1605 * entries with the same hash alg. */
1606 void tpm2_tpml_pcr_selection_add_tpms_pcr_selection(TPML_PCR_SELECTION
*l
, const TPMS_PCR_SELECTION
*s
) {
1610 if (tpm2_tpms_pcr_selection_is_empty(s
))
1613 TPMS_PCR_SELECTION
*selection
= tpm2_tpml_pcr_selection_get_tpms_pcr_selection(l
, s
->hash
);
1615 tpm2_tpms_pcr_selection_add(selection
, s
);
1619 /* It's already broken if the count is higher than the array has size for. */
1620 assert(l
->count
<= ELEMENTSOF(l
->pcrSelections
));
1622 /* If full, the cleanup should result in at least one available entry. */
1623 if (l
->count
== ELEMENTSOF(l
->pcrSelections
))
1624 tpm2_tpml_pcr_selection_cleanup(l
);
1626 assert(l
->count
< ELEMENTSOF(l
->pcrSelections
));
1627 l
->pcrSelections
[l
->count
++] = *s
;
1630 /* Remove the PCR selections in 's' from the corresponding hash alg TPMS_PCR_SELECTION entry in 'l'. This
1631 * will combine all entries for 's->hash' in 'l'. */
1632 void tpm2_tpml_pcr_selection_sub_tpms_pcr_selection(TPML_PCR_SELECTION
*l
, const TPMS_PCR_SELECTION
*s
) {
1636 if (tpm2_tpms_pcr_selection_is_empty(s
))
1639 TPMS_PCR_SELECTION
*selection
= tpm2_tpml_pcr_selection_get_tpms_pcr_selection(l
, s
->hash
);
1641 tpm2_tpms_pcr_selection_sub(selection
, s
);
1644 /* Test if all bits in the mask for the hash are set in the TPML_PCR_SELECTION. */
1645 bool tpm2_tpml_pcr_selection_has_mask(const TPML_PCR_SELECTION
*l
, TPMI_ALG_HASH hash
, uint32_t mask
) {
1648 return FLAGS_SET(tpm2_tpml_pcr_selection_to_mask(l
, hash
), mask
);
1651 /* Add the PCR selections in the mask, with the provided hash. */
1652 void tpm2_tpml_pcr_selection_add_mask(TPML_PCR_SELECTION
*l
, TPMI_ALG_HASH hash
, uint32_t mask
) {
1653 TPMS_PCR_SELECTION tpms
;
1657 tpm2_tpms_pcr_selection_from_mask(mask
, hash
, &tpms
);
1658 tpm2_tpml_pcr_selection_add_tpms_pcr_selection(l
, &tpms
);
1661 /* Add all PCR selections in 'b' to 'a'. */
1662 void tpm2_tpml_pcr_selection_add(TPML_PCR_SELECTION
*a
, const TPML_PCR_SELECTION
*b
) {
1666 FOREACH_TPMS_PCR_SELECTION_IN_TPML_PCR_SELECTION(selection_b
, b
)
1667 tpm2_tpml_pcr_selection_add_tpms_pcr_selection(a
, selection_b
);
1670 /* Remove all PCR selections in 'b' from 'a'. */
1671 void tpm2_tpml_pcr_selection_sub(TPML_PCR_SELECTION
*a
, const TPML_PCR_SELECTION
*b
) {
1675 FOREACH_TPMS_PCR_SELECTION_IN_TPML_PCR_SELECTION(selection_b
, b
)
1676 tpm2_tpml_pcr_selection_sub_tpms_pcr_selection(a
, selection_b
);
1679 char* tpm2_tpml_pcr_selection_to_string(const TPML_PCR_SELECTION
*l
) {
1682 _cleanup_free_
char *banks
= NULL
;
1683 FOREACH_TPMS_PCR_SELECTION_IN_TPML_PCR_SELECTION(s
, l
) {
1684 if (tpm2_tpms_pcr_selection_is_empty(s
))
1687 _cleanup_free_
char *str
= tpm2_tpms_pcr_selection_to_string(s
);
1688 if (!str
|| !strextend_with_separator(&banks
, ",", str
))
1692 return strjoin("[", strempty(banks
), "]");
1695 size_t tpm2_tpml_pcr_selection_weight(const TPML_PCR_SELECTION
*l
) {
1697 assert(l
->count
<= ELEMENTSOF(l
->pcrSelections
));
1700 FOREACH_TPMS_PCR_SELECTION_IN_TPML_PCR_SELECTION(s
, l
) {
1701 size_t w
= tpm2_tpms_pcr_selection_weight(s
);
1702 assert(weight
<= SIZE_MAX
- w
);
1709 bool tpm2_pcr_value_valid(const Tpm2PCRValue
*pcr_value
) {
1715 if (!TPM2_PCR_INDEX_VALID(pcr_value
->index
)) {
1716 log_debug("PCR index %u invalid.", pcr_value
->index
);
1720 /* If it contains a value, the value size must match the hash size. */
1721 if (pcr_value
->value
.size
> 0) {
1722 r
= tpm2_hash_alg_to_size(pcr_value
->hash
);
1726 if (pcr_value
->value
.size
!= (size_t) r
) {
1727 log_debug("PCR hash 0x%" PRIx16
" expected size %d does not match actual size %" PRIu16
".",
1728 pcr_value
->hash
, r
, pcr_value
->value
.size
);
1736 /* Verify all entries are valid, and consistent with each other. The requirements for consistency are:
1738 * 1) all entries must be sorted in ascending order (e.g. using tpm2_sort_pcr_values())
1739 * 2) all entries must be unique, i.e. there cannot be 2 entries with the same hash and index
1741 * Returns true if all entries are valid (or if no entries are provided), false otherwise.
1743 bool tpm2_pcr_values_valid(const Tpm2PCRValue
*pcr_values
, size_t n_pcr_values
) {
1744 if (!pcr_values
&& n_pcr_values
> 0)
1747 const Tpm2PCRValue
*previous
= NULL
;
1748 FOREACH_ARRAY(current
, pcr_values
, n_pcr_values
) {
1749 if (!tpm2_pcr_value_valid(current
))
1757 /* Hashes must be sorted in ascending order */
1758 if (current
->hash
< previous
->hash
) {
1759 log_debug("PCR values not in ascending order, hash %" PRIu16
" is after %" PRIu16
".",
1760 current
->hash
, previous
->hash
);
1764 if (current
->hash
== previous
->hash
) {
1765 /* Indexes (for the same hash) must be sorted in ascending order */
1766 if (current
->index
< previous
->index
) {
1767 log_debug("PCR values not in ascending order, hash %" PRIu16
" index %u is after %u.",
1768 current
->hash
, current
->index
, previous
->index
);
1772 /* Indexes (for the same hash) must not be duplicates */
1773 if (current
->index
== previous
->index
) {
1774 log_debug("PCR values contain duplicates for hash %" PRIu16
" index %u.",
1775 current
->hash
, previous
->index
);
1784 /* Returns true if any of the provided PCR values has an actual hash value included, false otherwise. */
1785 bool tpm2_pcr_values_has_any_values(const Tpm2PCRValue
*pcr_values
, size_t n_pcr_values
) {
1786 assert(pcr_values
|| n_pcr_values
== 0);
1788 FOREACH_ARRAY(v
, pcr_values
, n_pcr_values
)
1789 if (v
->value
.size
> 0)
1795 /* Returns true if all of the provided PCR values has an actual hash value included, false otherwise. */
1796 bool tpm2_pcr_values_has_all_values(const Tpm2PCRValue
*pcr_values
, size_t n_pcr_values
) {
1797 assert(pcr_values
|| n_pcr_values
== 0);
1799 FOREACH_ARRAY(v
, pcr_values
, n_pcr_values
)
1800 if (v
->value
.size
== 0)
1806 static int cmp_pcr_values(const Tpm2PCRValue
*a
, const Tpm2PCRValue
*b
) {
1810 return CMP(a
->hash
, b
->hash
) ?: CMP(a
->index
, b
->index
);
1813 /* Sort the array of Tpm2PCRValue entries in-place. This sorts first in ascending order of hash algorithm
1814 * (sorting simply by the TPM2 hash algorithm number), and then sorting by pcr index. */
1815 void tpm2_sort_pcr_values(Tpm2PCRValue
*pcr_values
, size_t n_pcr_values
) {
1816 typesafe_qsort(pcr_values
, n_pcr_values
, cmp_pcr_values
);
1819 int tpm2_pcr_values_to_mask(
1820 const Tpm2PCRValue
*pcr_values
,
1821 size_t n_pcr_values
,
1823 uint32_t *ret_mask
) {
1825 assert(pcr_values
|| n_pcr_values
== 0);
1828 if (!tpm2_pcr_values_valid(pcr_values
, n_pcr_values
))
1829 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "Invalid PCR values.");
1832 FOREACH_ARRAY(v
, pcr_values
, n_pcr_values
)
1833 if (hash
== 0 || v
->hash
== hash
)
1834 SET_BIT(mask
, v
->index
);
1840 int tpm2_tpml_pcr_selection_from_pcr_values(
1841 const Tpm2PCRValue
*pcr_values
,
1842 size_t n_pcr_values
,
1843 TPML_PCR_SELECTION
*ret_selection
,
1844 TPM2B_DIGEST
**ret_values
,
1845 size_t *ret_n_values
) {
1847 TPML_PCR_SELECTION selection
= {};
1848 _cleanup_free_ TPM2B_DIGEST
*values
= NULL
;
1849 size_t n_values
= 0;
1851 assert(pcr_values
|| n_pcr_values
== 0);
1853 if (!tpm2_pcr_values_valid(pcr_values
, n_pcr_values
))
1854 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "PCR values are not valid.");
1856 FOREACH_ARRAY(v
, pcr_values
, n_pcr_values
) {
1857 tpm2_tpml_pcr_selection_add_mask(&selection
, v
->hash
, INDEX_TO_MASK(uint32_t, v
->index
));
1859 if (!GREEDY_REALLOC_APPEND(values
, n_values
, &v
->value
, 1))
1860 return log_oom_debug();
1864 *ret_selection
= selection
;
1866 *ret_values
= TAKE_PTR(values
);
1868 *ret_n_values
= n_values
;
1873 /* Count the number of different hash algorithms for all the entries. */
1874 int tpm2_pcr_values_hash_count(const Tpm2PCRValue
*pcr_values
, size_t n_pcr_values
, size_t *ret_count
) {
1875 TPML_PCR_SELECTION selection
;
1881 r
= tpm2_tpml_pcr_selection_from_pcr_values(
1885 /* ret_values= */ NULL
,
1886 /* ret_n_values= */ NULL
);
1890 *ret_count
= selection
.count
;
1895 /* Parse a string argument into a Tpm2PCRValue object.
1897 * The format is <index>[:hash[=value]] where index is the index number (or name) of the PCR, e.g. 0 (or
1898 * platform-code), hash is the name of the hash algorithm (e.g. sha256) and value is the hex hash digest
1899 * value, optionally with a leading 0x. This does not check for validity of the fields. */
1900 int tpm2_pcr_value_from_string(const char *arg
, Tpm2PCRValue
*ret_pcr_value
) {
1901 Tpm2PCRValue pcr_value
= {};
1902 const char *p
= arg
;
1906 assert(ret_pcr_value
);
1908 _cleanup_free_
char *index
= NULL
;
1909 r
= extract_first_word(&p
, &index
, ":", /* flags= */ 0);
1911 return log_debug_errno(r
, "Could not parse pcr value '%s': %m", p
);
1913 r
= tpm2_pcr_index_from_string(index
);
1915 return log_debug_errno(r
, "Invalid pcr index '%s': %m", index
);
1916 pcr_value
.index
= (unsigned) r
;
1919 _cleanup_free_
char *hash
= NULL
;
1920 r
= extract_first_word(&p
, &hash
, "=", /* flags= */ 0);
1922 return log_debug_errno(r
, "Could not parse pcr hash algorithm '%s': %m", p
);
1924 r
= tpm2_hash_alg_from_string(hash
);
1926 return log_debug_errno(r
, "Invalid pcr hash algorithm '%s': %m", hash
);
1927 pcr_value
.hash
= (TPMI_ALG_HASH
) r
;
1930 /* Remove leading 0x if present */
1931 p
= startswith_no_case(p
, "0x") ?: p
;
1933 _cleanup_free_
void *buf
= NULL
;
1934 size_t buf_size
= 0;
1935 r
= unhexmem(p
, &buf
, &buf_size
);
1937 return log_debug_errno(r
, "Invalid pcr hash value '%s': %m", p
);
1939 r
= TPM2B_DIGEST_CHECK_SIZE(buf_size
);
1941 return log_debug_errno(r
, "PCR hash value size %zu too large.", buf_size
);
1943 pcr_value
.value
= TPM2B_DIGEST_MAKE(buf
, buf_size
);
1947 *ret_pcr_value
= pcr_value
;
1952 /* Return a string for the PCR value. The format is described in tpm2_pcr_value_from_string(). Note that if
1953 * the hash algorithm is not recognized, neither hash name nor hash digest value is included in the
1954 * string. This does not check for validity. */
1955 char* tpm2_pcr_value_to_string(const Tpm2PCRValue
*pcr_value
) {
1956 _cleanup_free_
char *index
= NULL
, *value
= NULL
;
1958 if (asprintf(&index
, "%u", pcr_value
->index
) < 0)
1961 const char *hash
= pcr_value
->hash
> 0 ? tpm2_hash_alg_to_string(pcr_value
->hash
) : NULL
;
1963 if (hash
&& pcr_value
->value
.size
> 0) {
1964 value
= hexmem(pcr_value
->value
.buffer
, pcr_value
->value
.size
);
1969 return strjoin(index
, hash
? ":" : "", strempty(hash
), value
? "=" : "", strempty(value
));
1972 /* Parse a string argument into an array of Tpm2PCRValue objects.
1974 * The format is zero or more entries separated by ',' or '+'. The format of each entry is described in
1975 * tpm2_pcr_value_from_string(). This does not check for validity of the entries. */
1976 int tpm2_pcr_values_from_string(const char *arg
, Tpm2PCRValue
**ret_pcr_values
, size_t *ret_n_pcr_values
) {
1977 const char *p
= arg
;
1981 assert(ret_pcr_values
);
1982 assert(ret_n_pcr_values
);
1984 _cleanup_free_ Tpm2PCRValue
*pcr_values
= NULL
;
1985 size_t n_pcr_values
= 0;
1988 _cleanup_free_
char *pcr_arg
= NULL
;
1989 r
= extract_first_word(&p
, &pcr_arg
, ",+", /* flags= */ 0);
1991 return log_debug_errno(r
, "Could not parse pcr values '%s': %m", p
);
1995 Tpm2PCRValue pcr_value
;
1996 r
= tpm2_pcr_value_from_string(pcr_arg
, &pcr_value
);
2000 if (!GREEDY_REALLOC_APPEND(pcr_values
, n_pcr_values
, &pcr_value
, 1))
2001 return log_oom_debug();
2004 *ret_pcr_values
= TAKE_PTR(pcr_values
);
2005 *ret_n_pcr_values
= n_pcr_values
;
2010 void tpm2_log_debug_tpml_pcr_selection(const TPML_PCR_SELECTION
*l
, const char *msg
) {
2011 if (!DEBUG_LOGGING
|| !l
)
2014 _cleanup_free_
char *s
= tpm2_tpml_pcr_selection_to_string(l
);
2015 log_debug("%s: %s", msg
?: "PCR selection", strna(s
));
2018 void tpm2_log_debug_pcr_value(const Tpm2PCRValue
*pcr_value
, const char *msg
) {
2019 if (!DEBUG_LOGGING
|| !pcr_value
)
2022 _cleanup_free_
char *s
= tpm2_pcr_value_to_string(pcr_value
);
2023 log_debug("%s: %s", msg
?: "PCR value", strna(s
));
2026 void tpm2_log_debug_buffer(const void *buffer
, size_t size
, const char *msg
) {
2027 if (!DEBUG_LOGGING
|| !buffer
|| size
== 0)
2030 _cleanup_free_
char *h
= hexmem(buffer
, size
);
2031 log_debug("%s: %s", msg
?: "Buffer", strna(h
));
2034 void tpm2_log_debug_digest(const TPM2B_DIGEST
*digest
, const char *msg
) {
2036 tpm2_log_debug_buffer(digest
->buffer
, digest
->size
, msg
?: "Digest");
2039 void tpm2_log_debug_name(const TPM2B_NAME
*name
, const char *msg
) {
2041 tpm2_log_debug_buffer(name
->name
, name
->size
, msg
?: "Name");
2044 static int tpm2_get_policy_digest(
2046 const Tpm2Handle
*session
,
2047 TPM2B_DIGEST
**ret_policy_digest
) {
2051 if (!DEBUG_LOGGING
&& !ret_policy_digest
)
2057 log_debug("Acquiring policy digest.");
2059 _cleanup_(Esys_Freep
) TPM2B_DIGEST
*policy_digest
= NULL
;
2060 rc
= sym_Esys_PolicyGetDigest(
2062 session
->esys_handle
,
2067 if (rc
!= TSS2_RC_SUCCESS
)
2068 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2069 "Failed to get policy digest from TPM: %s", sym_Tss2_RC_Decode(rc
));
2071 tpm2_log_debug_digest(policy_digest
, "Session policy digest");
2073 if (ret_policy_digest
)
2074 *ret_policy_digest
= TAKE_PTR(policy_digest
);
2079 int tpm2_create_primary(
2081 const Tpm2Handle
*session
,
2082 const TPM2B_PUBLIC
*template,
2083 const TPM2B_SENSITIVE_CREATE
*sensitive
,
2084 TPM2B_PUBLIC
**ret_public
,
2085 Tpm2Handle
**ret_handle
) {
2094 log_debug("Creating primary key on TPM.");
2096 ts
= now(CLOCK_MONOTONIC
);
2098 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*handle
= NULL
;
2099 r
= tpm2_handle_new(c
, &handle
);
2103 _cleanup_(Esys_Freep
) TPM2B_PUBLIC
*public = NULL
;
2104 rc
= sym_Esys_CreatePrimary(
2107 session
? session
->esys_handle
: ESYS_TR_PASSWORD
,
2110 sensitive
?: &(TPM2B_SENSITIVE_CREATE
) {},
2112 /* outsideInfo= */ NULL
,
2113 &(TPML_PCR_SELECTION
) {},
2114 &handle
->esys_handle
,
2116 /* creationData= */ NULL
,
2117 /* creationHash= */ NULL
,
2118 /* creationTicket= */ NULL
);
2119 if (rc
== TPM2_RC_BAD_AUTH
)
2120 return log_debug_errno(SYNTHETIC_ERRNO(EDEADLK
), "Authorization failure while attempting to create primary key.");
2121 if (rc
!= TSS2_RC_SUCCESS
)
2122 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2123 "Failed to generate primary key in TPM: %s",
2124 sym_Tss2_RC_Decode(rc
));
2126 log_debug("Successfully created primary key on TPM in %s.",
2127 FORMAT_TIMESPAN(now(CLOCK_MONOTONIC
) - ts
, USEC_PER_MSEC
));
2130 *ret_public
= TAKE_PTR(public);
2132 *ret_handle
= TAKE_PTR(handle
);
2137 /* Create a TPM object. Do not use this to create primary keys, because some HW TPMs refuse to allow that;
2138 * instead use tpm2_create_primary(). */
2139 int tpm2_create(Tpm2Context
*c
,
2140 const Tpm2Handle
*parent
,
2141 const Tpm2Handle
*session
,
2142 const TPMT_PUBLIC
*template,
2143 const TPMS_SENSITIVE_CREATE
*sensitive
,
2144 TPM2B_PUBLIC
**ret_public
,
2145 TPM2B_PRIVATE
**ret_private
) {
2154 log_debug("Creating object on TPM.");
2156 ts
= now(CLOCK_MONOTONIC
);
2158 TPM2B_PUBLIC tpm2b_public
= {
2159 .size
= sizeof(*template) - sizeof(template->unique
),
2160 .publicArea
= *template,
2163 /* Zero the unique area. */
2164 zero(tpm2b_public
.publicArea
.unique
);
2166 TPM2B_SENSITIVE_CREATE tpm2b_sensitive
;
2168 tpm2b_sensitive
= (TPM2B_SENSITIVE_CREATE
) {
2169 .size
= sizeof(*sensitive
),
2170 .sensitive
= *sensitive
,
2173 tpm2b_sensitive
= (TPM2B_SENSITIVE_CREATE
) {};
2175 _cleanup_(Esys_Freep
) TPM2B_PUBLIC
*public = NULL
;
2176 _cleanup_(Esys_Freep
) TPM2B_PRIVATE
*private = NULL
;
2177 rc
= sym_Esys_Create(
2179 parent
->esys_handle
,
2180 session
? session
->esys_handle
: ESYS_TR_PASSWORD
,
2185 /* outsideInfo= */ NULL
,
2186 &(TPML_PCR_SELECTION
) {},
2189 /* creationData= */ NULL
,
2190 /* creationHash= */ NULL
,
2191 /* creationTicket= */ NULL
);
2192 if (rc
!= TSS2_RC_SUCCESS
)
2193 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2194 "Failed to generate object in TPM: %s",
2195 sym_Tss2_RC_Decode(rc
));
2197 log_debug("Successfully created object on TPM in %s.",
2198 FORMAT_TIMESPAN(now(CLOCK_MONOTONIC
) - ts
, USEC_PER_MSEC
));
2201 *ret_public
= TAKE_PTR(public);
2203 *ret_private
= TAKE_PTR(private);
2210 const Tpm2Handle
*parent
,
2211 const Tpm2Handle
*session
,
2212 const TPM2B_PUBLIC
*public,
2213 const TPM2B_PRIVATE
*private,
2214 Tpm2Handle
**ret_handle
) {
2224 log_debug("Loading object into TPM.");
2226 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*handle
= NULL
;
2227 r
= tpm2_handle_new(c
, &handle
);
2233 parent
? parent
->esys_handle
: ESYS_TR_RH_OWNER
,
2234 session
? session
->esys_handle
: ESYS_TR_PASSWORD
,
2239 &handle
->esys_handle
);
2240 if (rc
== TPM2_RC_LOCKOUT
)
2241 return log_debug_errno(SYNTHETIC_ERRNO(ENOLCK
),
2242 "TPM2 device is in dictionary attack lockout mode.");
2243 if ((rc
& ~(TPM2_RC_N_MASK
|TPM2_RC_P
)) == TPM2_RC_INTEGRITY
) /* Return a recognizable error if this key does not belong to the local TPM */
2244 return log_debug_errno(SYNTHETIC_ERRNO(EREMOTE
),
2245 "Key invalid or does not belong to current TPM.");
2246 if (rc
!= TSS2_RC_SUCCESS
)
2247 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2248 "Failed to load key into TPM: %s", sym_Tss2_RC_Decode(rc
));
2250 *ret_handle
= TAKE_PTR(handle
);
2255 static int tpm2_load_external(
2257 const Tpm2Handle
*session
,
2258 const TPM2B_PUBLIC
*public,
2259 const TPM2B_SENSITIVE
*private,
2260 Tpm2Handle
**ret_handle
) {
2268 log_debug("Loading external key into TPM.");
2270 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*handle
= NULL
;
2271 r
= tpm2_handle_new(c
, &handle
);
2275 rc
= sym_Esys_LoadExternal(
2277 session
? session
->esys_handle
: ESYS_TR_NONE
,
2283 /* tpm2-tss >= 3.0.0 requires a ESYS_TR_RH_* constant specifying the requested
2284 * hierarchy, older versions need TPM2_RH_* instead. */
2285 private ? ESYS_TR_RH_NULL
: ESYS_TR_RH_OWNER
,
2287 private ? TPM2_RH_NULL
: TPM2_RH_OWNER
,
2289 &handle
->esys_handle
);
2290 if (rc
!= TSS2_RC_SUCCESS
)
2291 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2292 "Failed to load public key into TPM: %s", sym_Tss2_RC_Decode(rc
));
2294 *ret_handle
= TAKE_PTR(handle
);
2299 static int tpm2_marshal_private(const TPM2B_PRIVATE
*private, void **ret
, size_t *ret_size
) {
2300 size_t max_size
= sizeof(*private), blob_size
= 0;
2301 _cleanup_free_
void *blob
= NULL
;
2308 blob
= malloc0(max_size
);
2310 return log_oom_debug();
2312 rc
= sym_Tss2_MU_TPM2B_PRIVATE_Marshal(private, blob
, max_size
, &blob_size
);
2313 if (rc
!= TSS2_RC_SUCCESS
)
2314 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2315 "Failed to marshal private key: %s", sym_Tss2_RC_Decode(rc
));
2317 *ret
= TAKE_PTR(blob
);
2318 *ret_size
= blob_size
;
2322 static int tpm2_unmarshal_private(const void *data
, size_t size
, TPM2B_PRIVATE
*ret_private
) {
2323 TPM2B_PRIVATE
private = {};
2327 assert(data
|| size
== 0);
2328 assert(ret_private
);
2330 rc
= sym_Tss2_MU_TPM2B_PRIVATE_Unmarshal(data
, size
, &offset
, &private);
2331 if (rc
!= TSS2_RC_SUCCESS
)
2332 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2333 "Failed to unmarshal private key: %s", sym_Tss2_RC_Decode(rc
));
2335 return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2336 "Garbage at end of private key marshal data.");
2338 *ret_private
= private;
2342 int tpm2_marshal_public(const TPM2B_PUBLIC
*public, void **ret
, size_t *ret_size
) {
2343 size_t max_size
= sizeof(*public), blob_size
= 0;
2344 _cleanup_free_
void *blob
= NULL
;
2351 blob
= malloc0(max_size
);
2353 return log_oom_debug();
2355 rc
= sym_Tss2_MU_TPM2B_PUBLIC_Marshal(public, blob
, max_size
, &blob_size
);
2356 if (rc
!= TSS2_RC_SUCCESS
)
2357 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2358 "Failed to marshal public key: %s", sym_Tss2_RC_Decode(rc
));
2360 *ret
= TAKE_PTR(blob
);
2361 *ret_size
= blob_size
;
2365 static int tpm2_unmarshal_public(const void *data
, size_t size
, TPM2B_PUBLIC
*ret_public
) {
2366 TPM2B_PUBLIC
public = {};
2370 assert(data
|| size
== 0);
2373 rc
= sym_Tss2_MU_TPM2B_PUBLIC_Unmarshal(data
, size
, &offset
, &public);
2374 if (rc
!= TSS2_RC_SUCCESS
)
2375 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2376 "Failed to unmarshal public key: %s", sym_Tss2_RC_Decode(rc
));
2378 return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2379 "Garbage at end of public key marshal data.");
2381 *ret_public
= public;
2385 int tpm2_marshal_nv_public(const TPM2B_NV_PUBLIC
*nv_public
, void **ret
, size_t *ret_size
) {
2386 size_t max_size
= sizeof(*nv_public
), blob_size
= 0;
2387 _cleanup_free_
void *blob
= NULL
;
2394 blob
= malloc0(max_size
);
2396 return log_oom_debug();
2398 rc
= sym_Tss2_MU_TPM2B_NV_PUBLIC_Marshal(nv_public
, blob
, max_size
, &blob_size
);
2399 if (rc
!= TSS2_RC_SUCCESS
)
2400 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2401 "Failed to marshal NV public structure: %s", sym_Tss2_RC_Decode(rc
));
2403 *ret
= TAKE_PTR(blob
);
2404 *ret_size
= blob_size
;
2408 int tpm2_unmarshal_nv_public(const void *data
, size_t size
, TPM2B_NV_PUBLIC
*ret_nv_public
) {
2409 TPM2B_NV_PUBLIC nv_public
= {};
2413 assert(data
|| size
== 0);
2414 assert(ret_nv_public
);
2416 rc
= sym_Tss2_MU_TPM2B_NV_PUBLIC_Unmarshal(data
, size
, &offset
, &nv_public
);
2417 if (rc
!= TSS2_RC_SUCCESS
)
2418 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2419 "Failed to unmarshal NV public structure: %s", sym_Tss2_RC_Decode(rc
));
2421 return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2422 "Garbage at end of NV public structure marshal data.");
2424 *ret_nv_public
= nv_public
;
2428 static int tpm2_import(
2430 const Tpm2Handle
*parent
,
2431 const Tpm2Handle
*session
,
2432 const TPM2B_PUBLIC
*public,
2433 const TPM2B_PRIVATE
*private,
2434 const TPM2B_ENCRYPTED_SECRET
*seed
,
2435 const TPM2B_DATA
*encryption_key
,
2436 const TPMT_SYM_DEF_OBJECT
*symmetric
,
2437 TPM2B_PRIVATE
**ret_private
) {
2443 assert(!!encryption_key
== !!symmetric
);
2447 assert(ret_private
);
2449 log_debug("Importing key into TPM.");
2451 rc
= sym_Esys_Import(
2453 parent
->esys_handle
,
2454 session
? session
->esys_handle
: ESYS_TR_PASSWORD
,
2461 symmetric
?: &(TPMT_SYM_DEF_OBJECT
){ .algorithm
= TPM2_ALG_NULL
, },
2463 if (rc
!= TSS2_RC_SUCCESS
)
2464 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2465 "Failed to import key into TPM: %s", sym_Tss2_RC_Decode(rc
));
2470 /* Read hash values from the specified PCR selection. Provides a Tpm2PCRValue array that contains all
2471 * requested PCR values, in the order provided by the TPM. Normally, the provided pcr values will match
2472 * exactly what is in the provided selection, but the TPM may ignore some selected PCRs (for example, if an
2473 * unimplemented PCR index is requested), in which case those PCRs will be absent from the provided pcr
2477 const TPML_PCR_SELECTION
*pcr_selection
,
2478 Tpm2PCRValue
**ret_pcr_values
,
2479 size_t *ret_n_pcr_values
) {
2481 _cleanup_free_ Tpm2PCRValue
*pcr_values
= NULL
;
2482 size_t n_pcr_values
= 0;
2486 assert(pcr_selection
);
2487 assert(ret_pcr_values
);
2488 assert(ret_n_pcr_values
);
2490 TPML_PCR_SELECTION remaining
= *pcr_selection
;
2491 while (!tpm2_tpml_pcr_selection_is_empty(&remaining
)) {
2492 _cleanup_(Esys_Freep
) TPML_PCR_SELECTION
*current_read
= NULL
;
2493 _cleanup_(Esys_Freep
) TPML_DIGEST
*current_values
= NULL
;
2495 tpm2_log_debug_tpml_pcr_selection(&remaining
, "Reading PCR selection");
2497 /* Unfortunately, PCR_Read will not return more than 8 values. */
2498 rc
= sym_Esys_PCR_Read(
2507 if (rc
!= TSS2_RC_SUCCESS
)
2508 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2509 "Failed to read TPM2 PCRs: %s", sym_Tss2_RC_Decode(rc
));
2511 tpm2_log_debug_tpml_pcr_selection(current_read
, "Read PCR selection");
2513 if (tpm2_tpml_pcr_selection_is_empty(current_read
)) {
2514 log_debug("TPM2 refused to read possibly unimplemented PCRs, ignoring.");
2519 FOREACH_PCR_IN_TPML_PCR_SELECTION(index
, tpms
, current_read
) {
2520 assert(i
< current_values
->count
);
2521 Tpm2PCRValue pcr_value
= {
2524 .value
= current_values
->digests
[i
++],
2527 tpm2_log_debug_pcr_value(&pcr_value
, /* msg= */ NULL
);
2529 if (!GREEDY_REALLOC_APPEND(pcr_values
, n_pcr_values
, &pcr_value
, 1))
2530 return log_oom_debug();
2532 assert(i
== current_values
->count
);
2534 tpm2_tpml_pcr_selection_sub(&remaining
, current_read
);
2537 tpm2_sort_pcr_values(pcr_values
, n_pcr_values
);
2539 if (!tpm2_pcr_values_valid(pcr_values
, n_pcr_values
))
2540 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
), "PCR values read from TPM are not valid.");
2542 *ret_pcr_values
= TAKE_PTR(pcr_values
);
2543 *ret_n_pcr_values
= n_pcr_values
;
2548 /* Read the PCR value for each TPM2PCRValue entry in the array that does not have a value set. If all entries
2549 * have an unset hash (i.e. hash == 0), this first detects the "best" PCR bank to use; otherwise, all entries
2550 * must have a valid hash set. All entries must have a valid index. If this cannot read a PCR value for all
2551 * appropriate entries, this returns an error. This does not check the array for validity. */
2552 int tpm2_pcr_read_missing_values(Tpm2Context
*c
, Tpm2PCRValue
*pcr_values
, size_t n_pcr_values
) {
2553 TPMI_ALG_HASH pcr_bank
= 0;
2557 assert(pcr_values
|| n_pcr_values
== 0);
2559 if (n_pcr_values
> 0) {
2561 r
= tpm2_pcr_values_hash_count(pcr_values
, n_pcr_values
, &hash_count
);
2563 return log_debug_errno(r
, "Could not get hash count from pcr values: %m");
2565 if (hash_count
== 1 && pcr_values
[0].hash
== 0) {
2567 r
= tpm2_pcr_values_to_mask(pcr_values
, n_pcr_values
, 0, &mask
);
2571 r
= tpm2_get_best_pcr_bank(c
, mask
, &pcr_bank
);
2577 FOREACH_ARRAY(v
, pcr_values
, n_pcr_values
) {
2581 if (v
->value
.size
> 0)
2584 TPML_PCR_SELECTION selection
;
2585 r
= tpm2_tpml_pcr_selection_from_pcr_values(v
, 1, &selection
, NULL
, NULL
);
2589 _cleanup_free_ Tpm2PCRValue
*read_values
= NULL
;
2590 size_t n_read_values
;
2591 r
= tpm2_pcr_read(c
, &selection
, &read_values
, &n_read_values
);
2595 if (n_read_values
== 0)
2596 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
2597 "Could not read PCR hash 0x%" PRIu16
" index %u",
2600 assert(n_read_values
== 1);
2601 assert(read_values
[0].hash
== v
->hash
);
2602 assert(read_values
[0].index
== v
->index
);
2604 v
->value
= read_values
[0].value
;
2610 static int tpm2_pcr_mask_good(
2615 TPML_PCR_SELECTION selection
;
2620 /* So we have the problem that some systems might have working TPM2 chips, but the firmware doesn't
2621 * actually measure into them, or only into a suboptimal bank. If so, the PCRs should be all zero or
2622 * all 0xFF. Detect that, so that we can warn and maybe pick a better bank. */
2624 tpm2_tpml_pcr_selection_from_mask(mask
, bank
, &selection
);
2626 _cleanup_free_ Tpm2PCRValue
*pcr_values
= NULL
;
2627 size_t n_pcr_values
;
2628 r
= tpm2_pcr_read(c
, &selection
, &pcr_values
, &n_pcr_values
);
2632 /* If at least one of the selected PCR values is something other than all 0x00 or all 0xFF we are happy. */
2633 FOREACH_ARRAY(v
, pcr_values
, n_pcr_values
)
2634 if (!memeqbyte(0x00, v
->value
.buffer
, v
->value
.size
) &&
2635 !memeqbyte(0xFF, v
->value
.buffer
, v
->value
.size
))
2641 static int tpm2_bank_has24(const TPMS_PCR_SELECTION
*selection
) {
2645 /* As per https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClient_PFP_r1p05_v23_pub.pdf a
2646 * TPM2 on a Client PC must have at least 24 PCRs. If this TPM has less, just skip over it. */
2647 if (selection
->sizeofSelect
< TPM2_PCRS_MAX
/8) {
2648 log_debug("Skipping TPM2 PCR bank %s with fewer than 24 PCRs.",
2649 strna(tpm2_hash_alg_to_string(selection
->hash
)));
2653 assert_cc(TPM2_PCRS_MAX
% 8 == 0);
2655 /* It's not enough to check how many PCRs there are, we also need to check that the 24 are
2656 * enabled for this bank. Otherwise this TPM doesn't qualify. */
2658 for (size_t j
= 0; j
< TPM2_PCRS_MAX
/8; j
++)
2659 if (selection
->pcrSelect
[j
] != 0xFF) {
2665 log_debug("TPM2 PCR bank %s has fewer than 24 PCR bits enabled, ignoring.",
2666 strna(tpm2_hash_alg_to_string(selection
->hash
)));
2671 int tpm2_get_best_pcr_bank(
2674 TPMI_ALG_HASH
*ret
) {
2676 TPMI_ALG_HASH supported_hash
= 0, hash_with_valid_pcr
= 0;
2682 if (pcr_mask
== 0) {
2683 log_debug("Asked to pick best PCR bank but no PCRs selected we could derive this from. Defaulting to SHA256.");
2684 *ret
= TPM2_ALG_SHA256
; /* if no PCRs are selected this doesn't matter anyway... */
2688 FOREACH_TPMS_PCR_SELECTION_IN_TPML_PCR_SELECTION(selection
, &c
->capability_pcrs
) {
2689 TPMI_ALG_HASH hash
= selection
->hash
;
2692 /* For now we are only interested in the SHA1 and SHA256 banks */
2693 if (!IN_SET(hash
, TPM2_ALG_SHA256
, TPM2_ALG_SHA1
))
2696 r
= tpm2_bank_has24(selection
);
2702 good
= tpm2_pcr_mask_good(c
, hash
, pcr_mask
);
2706 if (hash
== TPM2_ALG_SHA256
) {
2707 supported_hash
= TPM2_ALG_SHA256
;
2709 /* Great, SHA256 is supported and has initialized PCR values, we are done. */
2710 hash_with_valid_pcr
= TPM2_ALG_SHA256
;
2714 assert(hash
== TPM2_ALG_SHA1
);
2716 if (supported_hash
== 0)
2717 supported_hash
= TPM2_ALG_SHA1
;
2719 if (good
&& hash_with_valid_pcr
== 0)
2720 hash_with_valid_pcr
= TPM2_ALG_SHA1
;
2724 /* We preferably pick SHA256, but only if its PCRs are initialized or neither the SHA1 nor the SHA256
2725 * PCRs are initialized. If SHA256 is not supported but SHA1 is and its PCRs are too, we prefer
2728 * We log at LOG_NOTICE level whenever we end up using the SHA1 bank or when the PCRs we bind to are
2729 * not initialized. */
2731 if (hash_with_valid_pcr
== TPM2_ALG_SHA256
) {
2732 assert(supported_hash
== TPM2_ALG_SHA256
);
2733 log_debug("TPM2 device supports SHA256 PCR bank and SHA256 PCRs are valid, yay!");
2734 *ret
= TPM2_ALG_SHA256
;
2735 } else if (hash_with_valid_pcr
== TPM2_ALG_SHA1
) {
2736 if (supported_hash
== TPM2_ALG_SHA256
)
2737 log_notice("TPM2 device supports both SHA1 and SHA256 PCR banks, but only SHA1 PCRs are valid, falling back to SHA1 bank. This reduces the security level substantially.");
2739 assert(supported_hash
== TPM2_ALG_SHA1
);
2740 log_notice("TPM2 device lacks support for SHA256 PCR bank, but SHA1 bank is supported and SHA1 PCRs are valid, falling back to SHA1 bank. This reduces the security level substantially.");
2743 *ret
= TPM2_ALG_SHA1
;
2744 } else if (supported_hash
== TPM2_ALG_SHA256
) {
2745 log_notice("TPM2 device supports SHA256 PCR bank but none of the selected PCRs are valid! Firmware apparently did not initialize any of the selected PCRs. Proceeding anyway with SHA256 bank. PCR policy effectively unenforced!");
2746 *ret
= TPM2_ALG_SHA256
;
2747 } else if (supported_hash
== TPM2_ALG_SHA1
) {
2748 log_notice("TPM2 device lacks support for SHA256 bank, but SHA1 bank is supported, but none of the selected PCRs are valid! Firmware apparently did not initialize any of the selected PCRs. Proceeding anyway with SHA1 bank. PCR policy effectively unenforced!");
2749 *ret
= TPM2_ALG_SHA1
;
2751 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
2752 "TPM2 module supports neither SHA1 nor SHA256 PCR banks, cannot operate.");
2757 int tpm2_get_good_pcr_banks(
2760 TPMI_ALG_HASH
**ret
) {
2762 _cleanup_free_ TPMI_ALG_HASH
*good_banks
= NULL
, *fallback_banks
= NULL
;
2763 size_t n_good_banks
= 0, n_fallback_banks
= 0;
2769 FOREACH_TPMS_PCR_SELECTION_IN_TPML_PCR_SELECTION(selection
, &c
->capability_pcrs
) {
2770 TPMI_ALG_HASH hash
= selection
->hash
;
2772 /* Let's see if this bank is superficially OK, i.e. has at least 24 enabled registers */
2773 r
= tpm2_bank_has24(selection
);
2779 /* Let's now see if this bank has any of the selected PCRs actually initialized */
2780 r
= tpm2_pcr_mask_good(c
, hash
, pcr_mask
);
2784 if (n_good_banks
+ n_fallback_banks
>= INT_MAX
)
2785 return log_debug_errno(SYNTHETIC_ERRNO(E2BIG
), "Too many good TPM2 banks?");
2788 if (!GREEDY_REALLOC(good_banks
, n_good_banks
+1))
2789 return log_oom_debug();
2791 good_banks
[n_good_banks
++] = hash
;
2793 if (!GREEDY_REALLOC(fallback_banks
, n_fallback_banks
+1))
2794 return log_oom_debug();
2796 fallback_banks
[n_fallback_banks
++] = hash
;
2800 /* Preferably, use the good banks (i.e. the ones the PCR values are actually initialized so
2801 * far). Otherwise use the fallback banks (i.e. which exist and are enabled, but so far not used. */
2802 if (n_good_banks
> 0) {
2803 log_debug("Found %zu fully initialized TPM2 banks.", n_good_banks
);
2804 *ret
= TAKE_PTR(good_banks
);
2805 return (int) n_good_banks
;
2807 if (n_fallback_banks
> 0) {
2808 log_debug("Found %zu enabled but un-initialized TPM2 banks.", n_fallback_banks
);
2809 *ret
= TAKE_PTR(fallback_banks
);
2810 return (int) n_fallback_banks
;
2813 /* No suitable banks found. */
2818 int tpm2_get_good_pcr_banks_strv(
2824 _cleanup_free_ TPMI_ALG_HASH
*algs
= NULL
;
2825 _cleanup_strv_free_
char **l
= NULL
;
2831 n_algs
= tpm2_get_good_pcr_banks(c
, pcr_mask
, &algs
);
2835 FOREACH_ARRAY(a
, algs
, n_algs
) {
2836 _cleanup_free_
char *n
= NULL
;
2837 const EVP_MD
*implementation
;
2840 salg
= tpm2_hash_alg_to_string(*a
);
2842 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
), "TPM2 operates with unknown PCR algorithm, can't measure.");
2844 implementation
= EVP_get_digestbyname(salg
);
2845 if (!implementation
)
2846 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
), "TPM2 operates with unsupported PCR algorithm, can't measure.");
2848 n
= strdup(ASSERT_PTR(EVP_MD_name(implementation
)));
2850 return log_oom_debug();
2852 ascii_strlower(n
); /* OpenSSL uses uppercase digest names, we prefer them lower case. */
2854 if (strv_consume(&l
, TAKE_PTR(n
)) < 0)
2855 return log_oom_debug();
2860 #else /* HAVE_OPENSSL */
2861 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "OpenSSL support is disabled.");
2865 /* Hash data into the digest.
2867 * If 'extend' is true, the hashing operation starts with the existing digest hash (and the digest is
2868 * required to have a hash and its size must be correct). If 'extend' is false, the digest size is
2869 * initialized to the correct size for 'alg' and the hashing operation does not include any existing digest
2870 * hash. If 'extend' is false and no data is provided, the digest is initialized to a zero digest.
2872 * On success, the digest hash will be updated with the hashing operation result and the digest size will be
2873 * correct for 'alg'.
2875 * This currently only provides SHA256, so 'alg' must be TPM2_ALG_SHA256. */
2876 int tpm2_digest_many(
2878 TPM2B_DIGEST
*digest
,
2879 const struct iovec data
[],
2883 struct sha256_ctx ctx
;
2886 assert(data
|| n_data
== 0);
2888 if (alg
!= TPM2_ALG_SHA256
)
2889 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
2890 "Hash algorithm not supported: 0x%x", alg
);
2892 if (extend
&& digest
->size
!= SHA256_DIGEST_SIZE
)
2893 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
2894 "Digest size 0x%x, require 0x%x",
2895 digest
->size
, (unsigned)SHA256_DIGEST_SIZE
);
2897 /* Since we're hardcoding SHA256 (for now), we can check this at compile time. */
2898 assert_cc(sizeof(digest
->buffer
) >= SHA256_DIGEST_SIZE
);
2902 sha256_init_ctx(&ctx
);
2905 sha256_process_bytes(digest
->buffer
, digest
->size
, &ctx
);
2907 *digest
= (TPM2B_DIGEST
) {
2908 .size
= SHA256_DIGEST_SIZE
,
2910 if (n_data
== 0) /* If not extending and no data, return zero hash */
2914 FOREACH_ARRAY(d
, data
, n_data
)
2915 sha256_process_bytes(d
->iov_base
, d
->iov_len
, &ctx
);
2917 sha256_finish_ctx(&ctx
, digest
->buffer
);
2922 /* Same as tpm2_digest_many() but data is contained in TPM2B_DIGEST[]. The digests may be any size digests. */
2923 int tpm2_digest_many_digests(
2925 TPM2B_DIGEST
*digest
,
2926 const TPM2B_DIGEST data
[],
2930 _cleanup_free_
struct iovec
*iovecs
= NULL
;
2932 assert(data
|| n_data
== 0);
2934 iovecs
= new(struct iovec
, n_data
);
2936 return log_oom_debug();
2938 for (size_t i
= 0; i
< n_data
; i
++)
2939 iovecs
[i
] = IOVEC_MAKE((void*) data
[i
].buffer
, data
[i
].size
);
2941 return tpm2_digest_many(alg
, digest
, iovecs
, n_data
, extend
);
2944 /* This hashes the provided pin into a digest value, but also verifies that the final byte is not 0, because
2945 * the TPM specification Part 1 ("Architecture") section Authorization Values (subsection "Authorization Size
2946 * Convention") states "Trailing octets of zero are to be removed from any string before it is used as an
2947 * authValue". Since the TPM doesn't know if the auth value is a "string" or just a hash digest, any hash
2948 * digest that randomly happens to end in 0 must have the final 0(s) trimmed.
2950 * This is required at 2 points. First, when setting the authValue during creation of new sealed objects, in
2951 * tpm2_seal(). This only applies to newly created objects, of course. Second, when using a previously
2952 * created sealed object that has an authValue set, we use the sealed objects as the session bind key. This
2953 * requires calling SetAuth so tpm2-tss can correctly calculate the HMAC to use for the encryption session.
2955 * TPM implementations will perform the trimming for any authValue for existing sealed objects, so the
2956 * tpm2-tss library must also perform the trimming before HMAC calculation, but it does not yet; this bug is
2957 * open to add the trimming: https://github.com/tpm2-software/tpm2-tss/issues/2664
2959 * Until our minimum tpm2-tss version contains a fix for that bug, we must perform the trimming
2960 * ourselves. Note that since we are trimming, which is exactly what a TPM implementation would do, this will
2961 * work for both existing objects with a authValue ending in 0(s) as well as new sealed objects we create,
2962 * which we will trim the 0(s) from before sending to the TPM.
2964 static void tpm2_trim_auth_value(TPM2B_AUTH
*auth
) {
2965 bool trimmed
= false;
2969 while (auth
->size
> 0 && auth
->buffer
[auth
->size
- 1] == 0) {
2975 log_debug("authValue ends in 0, trimming as required by the TPM2 specification Part 1 section 'HMAC Computation' authValue Note 2.");
2978 int tpm2_auth_value_from_pin(TPMI_ALG_HASH hash
, const char *pin
, TPM2B_AUTH
*ret_auth
) {
2979 TPM2B_AUTH auth
= {};
2985 r
= tpm2_digest_buffer(hash
, &auth
, pin
, strlen(pin
), /* extend= */ false);
2989 tpm2_trim_auth_value(&auth
);
2991 *ret_auth
= TAKE_STRUCT(auth
);
2996 int tpm2_set_auth_binary(Tpm2Context
*c
, const Tpm2Handle
*handle
, const TPM2B_AUTH
*auth
) {
3005 rc
= sym_Esys_TR_SetAuth(c
->esys_context
, handle
->esys_handle
, auth
);
3006 if (rc
!= TSS2_RC_SUCCESS
)
3007 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3008 "Failed to load PIN in TPM: %s", sym_Tss2_RC_Decode(rc
));
3013 int tpm2_set_auth(Tpm2Context
*c
, const Tpm2Handle
*handle
, const char *pin
) {
3014 TPM2B_AUTH auth
= {};
3023 CLEANUP_ERASE(auth
);
3025 r
= tpm2_auth_value_from_pin(TPM2_ALG_SHA256
, pin
, &auth
);
3029 return tpm2_set_auth_binary(c
, handle
, &auth
);
3032 static bool tpm2_is_encryption_session(Tpm2Context
*c
, const Tpm2Handle
*session
) {
3033 TPMA_SESSION flags
= 0;
3039 rc
= sym_Esys_TRSess_GetAttributes(c
->esys_context
, session
->esys_handle
, &flags
);
3040 if (rc
!= TSS2_RC_SUCCESS
)
3043 return (flags
& TPMA_SESSION_DECRYPT
) && (flags
& TPMA_SESSION_ENCRYPT
);
3046 int tpm2_make_encryption_session(
3048 const Tpm2Handle
*primary
,
3049 const Tpm2Handle
*bind_key
,
3050 Tpm2Handle
**ret_session
) {
3052 const TPMA_SESSION sessionAttributes
= TPMA_SESSION_DECRYPT
| TPMA_SESSION_ENCRYPT
|
3053 TPMA_SESSION_CONTINUESESSION
;
3059 assert(ret_session
);
3061 log_debug("Starting HMAC encryption session.");
3063 /* Start a salted, unbound HMAC session with a well-known key (e.g. primary key) as tpmKey, which
3064 * means that the random salt will be encrypted with the well-known key. That way, only the TPM can
3065 * recover the salt, which is then used for key derivation. */
3066 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*session
= NULL
;
3067 r
= tpm2_handle_new(c
, &session
);
3071 rc
= sym_Esys_StartAuthSession(
3073 primary
->esys_handle
,
3074 bind_key
? bind_key
->esys_handle
: ESYS_TR_NONE
,
3080 &SESSION_TEMPLATE_SYM_AES_128_CFB
,
3082 &session
->esys_handle
);
3083 if (rc
!= TSS2_RC_SUCCESS
)
3084 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3085 "Failed to open session in TPM: %s", sym_Tss2_RC_Decode(rc
));
3087 /* Enable parameter encryption/decryption with AES in CFB mode. Together with HMAC digests (which are
3088 * always used for sessions), this provides confidentiality, integrity and replay protection for
3089 * operations that use this session. */
3090 rc
= sym_Esys_TRSess_SetAttributes(c
->esys_context
, session
->esys_handle
, sessionAttributes
, 0xff);
3091 if (rc
!= TSS2_RC_SUCCESS
)
3092 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3093 "Failed to configure TPM session: %s", sym_Tss2_RC_Decode(rc
));
3095 *ret_session
= TAKE_PTR(session
);
3100 int tpm2_make_policy_session(
3102 const Tpm2Handle
*primary
,
3103 const Tpm2Handle
*encryption_session
,
3104 Tpm2Handle
**ret_session
) {
3111 assert(encryption_session
);
3112 assert(ret_session
);
3114 if (!tpm2_is_encryption_session(c
, encryption_session
))
3115 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
),
3116 "Missing encryption session");
3118 log_debug("Starting policy session.");
3120 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*session
= NULL
;
3121 r
= tpm2_handle_new(c
, &session
);
3125 rc
= sym_Esys_StartAuthSession(
3127 primary
->esys_handle
,
3129 encryption_session
->esys_handle
,
3134 &SESSION_TEMPLATE_SYM_AES_128_CFB
,
3136 &session
->esys_handle
);
3137 if ((rc
& ~TPM2_RC_N_MASK
) == TPM2_RC_AUTH_FAIL
)
3138 return log_debug_errno(SYNTHETIC_ERRNO(EILSEQ
),
3139 "Authorization failure from TPM: %s", sym_Tss2_RC_Decode(rc
));
3140 if (rc
== TPM2_RC_LOCKOUT
)
3141 return log_debug_errno(SYNTHETIC_ERRNO(ENOLCK
),
3142 "TPM2 device is in dictionary attack lockout mode.");
3143 if (rc
!= TSS2_RC_SUCCESS
)
3144 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3145 "Failed to open session in TPM: %s", sym_Tss2_RC_Decode(rc
));
3147 *ret_session
= TAKE_PTR(session
);
3152 static int find_signature(
3154 const TPML_PCR_SELECTION
*pcr_selection
,
3159 void *ret_signature
,
3160 size_t *ret_signature_size
) {
3163 sd_json_variant
*b
, *i
;
3167 /* Searches for a signature blob in the specified JSON object. Search keys are PCR bank, PCR mask,
3168 * public key, and policy digest. */
3170 if (!sd_json_variant_is_object(v
))
3171 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "Signature is not a JSON object.");
3173 uint16_t pcr_bank
= pcr_selection
->pcrSelections
[0].hash
;
3174 uint32_t pcr_mask
= tpm2_tpml_pcr_selection_to_mask(pcr_selection
, pcr_bank
);
3176 k
= tpm2_hash_alg_to_string(pcr_bank
);
3178 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "Don't know PCR bank %" PRIu16
, pcr_bank
);
3180 /* First, find field by bank */
3181 b
= sd_json_variant_by_key(v
, k
);
3183 return log_debug_errno(SYNTHETIC_ERRNO(ENXIO
), "Signature lacks data for PCR bank '%s'.", k
);
3185 if (!sd_json_variant_is_array(b
))
3186 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "Bank data is not a JSON array.");
3188 /* Now iterate through all signatures known for this bank */
3189 JSON_VARIANT_ARRAY_FOREACH(i
, b
) {
3190 _cleanup_free_
void *fpj_data
= NULL
, *polj_data
= NULL
;
3191 sd_json_variant
*maskj
, *fpj
, *sigj
, *polj
;
3192 size_t fpj_size
, polj_size
;
3193 uint32_t parsed_mask
;
3195 if (!sd_json_variant_is_object(i
))
3196 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "Bank data element is not a JSON object");
3198 /* Check if the PCR mask matches our expectations */
3199 maskj
= sd_json_variant_by_key(i
, "pcrs");
3203 r
= tpm2_parse_pcr_json_array(maskj
, &parsed_mask
);
3205 return log_debug_errno(r
, "Failed to parse JSON PCR mask");
3207 if (parsed_mask
!= pcr_mask
)
3208 continue; /* Not for this PCR mask */
3210 /* Then check if this is for the public key we operate with */
3211 fpj
= sd_json_variant_by_key(i
, "pkfp");
3215 r
= sd_json_variant_unhex(fpj
, &fpj_data
, &fpj_size
);
3217 return log_debug_errno(r
, "Failed to decode fingerprint in JSON data: %m");
3219 if (memcmp_nn(fp
, fp_size
, fpj_data
, fpj_size
) != 0)
3220 continue; /* Not for this public key */
3222 /* Finally, check if this is for the PCR policy we expect this to be */
3223 polj
= sd_json_variant_by_key(i
, "pol");
3227 r
= sd_json_variant_unhex(polj
, &polj_data
, &polj_size
);
3229 return log_debug_errno(r
, "Failed to decode policy hash JSON data: %m");
3231 if (memcmp_nn(policy
, policy_size
, polj_data
, polj_size
) != 0)
3234 /* This entry matches all our expectations, now return the signature included in it */
3235 sigj
= sd_json_variant_by_key(i
, "sig");
3239 return sd_json_variant_unbase64(sigj
, ret_signature
, ret_signature_size
);
3242 return log_debug_errno(SYNTHETIC_ERRNO(ENXIO
), "Couldn't find signature for this PCR bank, PCR index and public key.");
3243 #else /* HAVE_OPENSSL */
3244 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "OpenSSL support is disabled.");
3248 /* Calculates the "name" of a public key.
3250 * As specified in TPM2 spec "Part 1: Architecture", a key's "name" is its nameAlg value followed by a hash
3251 * of its TPM2 public area, all properly marshalled. This allows a key's "name" to be dependent not only on
3252 * the key fingerprint, but also on the TPM2-specific fields that associated with the key (i.e. all fields in
3253 * TPMT_PUBLIC). Note that this means an existing key may not change any of its TPMT_PUBLIC fields, since
3254 * that would also change the key name.
3256 * Since we (currently) hardcode to always using SHA256 for hashing, this returns an error if the public key
3257 * nameAlg is not TPM2_ALG_SHA256. */
3258 int tpm2_calculate_pubkey_name(const TPMT_PUBLIC
*public, TPM2B_NAME
*ret_name
) {
3267 return log_debug_errno(r
, "TPM2 support not installed: %m");
3269 if (public->nameAlg
!= TPM2_ALG_SHA256
)
3270 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
3271 "Unsupported nameAlg: 0x%x",
3274 _cleanup_free_
uint8_t *buf
= NULL
;
3277 buf
= (uint8_t*) new(TPMT_PUBLIC
, 1);
3279 return log_oom_debug();
3281 rc
= sym_Tss2_MU_TPMT_PUBLIC_Marshal(public, buf
, sizeof(TPMT_PUBLIC
), &size
);
3282 if (rc
!= TSS2_RC_SUCCESS
)
3283 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3284 "Failed to marshal public key: %s", sym_Tss2_RC_Decode(rc
));
3286 TPM2B_DIGEST digest
= {};
3287 r
= tpm2_digest_buffer(TPM2_ALG_SHA256
, &digest
, buf
, size
, /* extend= */ false);
3292 .hashAlg
= TPM2_ALG_SHA256
,
3294 assert(digest
.size
<= sizeof(ha
.digest
.sha256
));
3295 memcpy_safe(ha
.digest
.sha256
, digest
.buffer
, digest
.size
);
3299 rc
= sym_Tss2_MU_TPMT_HA_Marshal(&ha
, name
.name
, sizeof(name
.name
), &size
);
3300 if (rc
!= TSS2_RC_SUCCESS
)
3301 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3302 "Failed to marshal key name: %s", sym_Tss2_RC_Decode(rc
));
3305 tpm2_log_debug_name(&name
, "Calculated public key name");
3312 /* Get the "name" of a key from the TPM.
3314 * The "name" of a key is explained above in tpm2_calculate_pubkey_name().
3316 * The handle must reference a key already present in the TPM. It may be either a public key only, or a
3317 * public/private keypair. */
3320 const Tpm2Handle
*handle
,
3321 TPM2B_NAME
**ret_name
) {
3323 _cleanup_(Esys_Freep
) TPM2B_NAME
*name
= NULL
;
3330 rc
= sym_Esys_TR_GetName(c
->esys_context
, handle
->esys_handle
, &name
);
3331 if (rc
!= TSS2_RC_SUCCESS
)
3332 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3333 "Failed to get name of public key from TPM: %s", sym_Tss2_RC_Decode(rc
));
3335 tpm2_log_debug_name(name
, "Object name");
3337 *ret_name
= TAKE_PTR(name
);
3342 int tpm2_calculate_nv_index_name(const TPMS_NV_PUBLIC
*nvpublic
, TPM2B_NAME
*ret_name
) {
3351 return log_debug_errno(r
, "TPM2 support not installed: %m");
3353 if (nvpublic
->nameAlg
!= TPM2_ALG_SHA256
)
3354 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
3355 "Unsupported nameAlg: 0x%x",
3358 _cleanup_free_
uint8_t *buf
= NULL
;
3361 buf
= (uint8_t*) new(TPMS_NV_PUBLIC
, 1);
3363 return log_oom_debug();
3365 rc
= sym_Tss2_MU_TPMS_NV_PUBLIC_Marshal(nvpublic
, buf
, sizeof(TPMS_NV_PUBLIC
), &size
);
3366 if (rc
!= TSS2_RC_SUCCESS
)
3367 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3368 "Failed to marshal NV index: %s", sym_Tss2_RC_Decode(rc
));
3370 TPM2B_DIGEST digest
= {};
3371 r
= tpm2_digest_buffer(TPM2_ALG_SHA256
, &digest
, buf
, size
, /* extend= */ false);
3376 .hashAlg
= TPM2_ALG_SHA256
,
3378 assert(digest
.size
<= sizeof(ha
.digest
.sha256
));
3379 memcpy_safe(ha
.digest
.sha256
, digest
.buffer
, digest
.size
);
3383 rc
= sym_Tss2_MU_TPMT_HA_Marshal(&ha
, name
.name
, sizeof(name
.name
), &size
);
3384 if (rc
!= TSS2_RC_SUCCESS
)
3385 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3386 "Failed to marshal NV index name: %s", sym_Tss2_RC_Decode(rc
));
3389 tpm2_log_debug_name(&name
, "Calculated NV index name");
3396 /* Extend 'digest' with the PolicyAuthValue calculated hash. */
3397 int tpm2_calculate_policy_auth_value(TPM2B_DIGEST
*digest
) {
3398 TPM2_CC command
= TPM2_CC_PolicyAuthValue
;
3403 assert(digest
->size
== SHA256_DIGEST_SIZE
);
3407 return log_debug_errno(r
, "TPM2 support not installed: %m");
3409 uint8_t buf
[sizeof(command
)];
3412 rc
= sym_Tss2_MU_TPM2_CC_Marshal(command
, buf
, sizeof(buf
), &offset
);
3413 if (rc
!= TSS2_RC_SUCCESS
)
3414 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3415 "Failed to marshal PolicyAuthValue command: %s", sym_Tss2_RC_Decode(rc
));
3417 if (offset
!= sizeof(command
))
3418 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3419 "Offset 0x%zx wrong after marshalling PolicyAuthValue command", offset
);
3421 r
= tpm2_digest_buffer(TPM2_ALG_SHA256
, digest
, buf
, offset
, /* extend= */ true);
3425 tpm2_log_debug_digest(digest
, "PolicyAuthValue calculated digest");
3430 int tpm2_policy_auth_value(
3432 const Tpm2Handle
*session
,
3433 TPM2B_DIGEST
**ret_policy_digest
) {
3440 log_debug("Submitting AuthValue policy.");
3442 rc
= sym_Esys_PolicyAuthValue(
3444 session
->esys_handle
,
3448 if (rc
!= TSS2_RC_SUCCESS
)
3449 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3450 "Failed to add authValue policy to TPM: %s",
3451 sym_Tss2_RC_Decode(rc
));
3453 return tpm2_get_policy_digest(c
, session
, ret_policy_digest
);
3456 /* Extend 'digest' with the PolicySigned calculated hash. */
3457 int tpm2_calculate_policy_signed(TPM2B_DIGEST
*digest
, const TPM2B_NAME
*name
) {
3458 TPM2_CC command
= TPM2_CC_PolicySigned
;
3463 assert(digest
->size
== SHA256_DIGEST_SIZE
);
3468 return log_debug_errno(r
, "TPM2 support not installed: %m");
3470 uint8_t buf
[sizeof(command
)];
3473 rc
= sym_Tss2_MU_TPM2_CC_Marshal(command
, buf
, sizeof(buf
), &offset
);
3474 if (rc
!= TSS2_RC_SUCCESS
)
3475 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3476 "Failed to marshal PolicySigned command: %s", sym_Tss2_RC_Decode(rc
));
3478 if (offset
!= sizeof(command
))
3479 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3480 "Offset 0x%zx wrong after marshalling PolicySigned command", offset
);
3482 struct iovec data
[] = {
3483 IOVEC_MAKE(buf
, offset
),
3484 IOVEC_MAKE(name
->name
, name
->size
),
3487 r
= tpm2_digest_many(TPM2_ALG_SHA256
, digest
, data
, ELEMENTSOF(data
), /* extend= */ true);
3491 const TPM2B_NONCE policyRef
= {}; /* For now, we do not make use of the policyRef stuff */
3493 r
= tpm2_digest_buffer(TPM2_ALG_SHA256
, digest
, policyRef
.buffer
, policyRef
.size
, /* extend= */ true);
3497 tpm2_log_debug_digest(digest
, "PolicySigned calculated digest");
3502 int tpm2_policy_signed_hmac_sha256(
3504 const Tpm2Handle
*session
,
3505 const Tpm2Handle
*hmac_key_handle
,
3506 const struct iovec
*hmac_key
,
3507 TPM2B_DIGEST
**ret_policy_digest
) {
3515 assert(hmac_key_handle
);
3516 assert(iovec_is_set(hmac_key
));
3518 /* This sends a TPM2_PolicySigned command to the tpm. As signature key we use an HMAC-SHA256 key
3519 * specified in the hmac_key parameter. The secret key must be loaded into the TPM already and
3520 * referenced in hmac_key_handle. */
3522 log_debug("Submitting PolicySigned policy for HMAC-SHA256.");
3524 /* Acquire the nonce from the TPM that we shall sign */
3525 _cleanup_(Esys_Freep
) TPM2B_NONCE
*nonce
= NULL
;
3526 rc
= sym_Esys_TRSess_GetNonceTPM(
3528 session
->esys_handle
,
3530 if (rc
!= TSS2_RC_SUCCESS
)
3531 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3532 "Failed to determine NoneTPM of auth session: %s",
3533 sym_Tss2_RC_Decode(rc
));
3535 be32_t expiration
= htobe64(0);
3536 const TPM2B_DIGEST cpHashA
= {}; /* For now, we do not make use of the cpHashA stuff */
3537 const TPM2B_NONCE policyRef
= {}; /* ditto, we do not bother with policyRef */
3539 /* Put together the data to sign, as per TPM2 Spec Part 3, 23.3.1 */
3540 struct iovec data_to_sign
[] = {
3541 IOVEC_MAKE(nonce
->buffer
, nonce
->size
),
3542 IOVEC_MAKE(&expiration
, sizeof(expiration
)),
3543 IOVEC_MAKE(cpHashA
.buffer
, cpHashA
.size
),
3544 IOVEC_MAKE(policyRef
.buffer
, policyRef
.size
),
3547 /* Now calculate the digest of the data we put together */
3548 TPM2B_DIGEST digest_to_sign
;
3549 r
= tpm2_digest_many(TPM2_ALG_SHA256
, &digest_to_sign
, data_to_sign
, ELEMENTSOF(data_to_sign
), /* extend= */ false);
3553 unsigned char hmac_signature
[SHA256_DIGEST_SIZE
];
3554 unsigned hmac_signature_size
= sizeof(hmac_signature
);
3556 /* And sign this with our key */
3557 if (!HMAC(EVP_sha256(),
3560 digest_to_sign
.buffer
,
3561 digest_to_sign
.size
,
3563 &hmac_signature_size
))
3564 return -ENOTRECOVERABLE
;
3566 /* Now bring the signature into a format that the TPM understands */
3567 TPMT_SIGNATURE sig
= {
3568 .sigAlg
= TPM2_ALG_HMAC
,
3569 .signature
.hmac
.hashAlg
= TPM2_ALG_SHA256
,
3571 assert(hmac_signature_size
== sizeof(sig
.signature
.hmac
.digest
.sha256
));
3572 memcpy(sig
.signature
.hmac
.digest
.sha256
, hmac_signature
, hmac_signature_size
);
3574 /* And submit the whole shebang to the TPM */
3575 rc
= sym_Esys_PolicySigned(
3577 hmac_key_handle
->esys_handle
,
3578 session
->esys_handle
,
3579 /* shandle1= */ ESYS_TR_NONE
,
3580 /* shandle2= */ ESYS_TR_NONE
,
3581 /* shandle3= */ ESYS_TR_NONE
,
3587 /* timeout= */ NULL
,
3588 /* policyTicket= */ NULL
);
3589 if (rc
!= TSS2_RC_SUCCESS
)
3590 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3591 "Failed to add PolicySigned policy to TPM: %s",
3592 sym_Tss2_RC_Decode(rc
));
3594 return tpm2_get_policy_digest(c
, session
, ret_policy_digest
);
3595 #else /* HAVE_OPENSSL */
3596 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "OpenSSL support is disabled.");
3600 int tpm2_calculate_policy_authorize_nv(
3601 const TPM2B_NV_PUBLIC
*public_info
,
3602 TPM2B_DIGEST
*digest
) {
3603 TPM2_CC command
= TPM2_CC_PolicyAuthorizeNV
;
3607 assert(public_info
);
3609 assert(digest
->size
== SHA256_DIGEST_SIZE
);
3613 return log_debug_errno(r
, "TPM2 support not installed: %m");
3615 uint8_t buf
[sizeof(command
)];
3618 rc
= sym_Tss2_MU_TPM2_CC_Marshal(command
, buf
, sizeof(buf
), &offset
);
3619 if (rc
!= TSS2_RC_SUCCESS
)
3620 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3621 "Failed to marshal PolicyAuthorizeNV command: %s", sym_Tss2_RC_Decode(rc
));
3623 if (offset
!= sizeof(command
))
3624 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3625 "Offset 0x%zx wrong after marshalling PolicyAuthorizeNV command", offset
);
3627 TPM2B_NV_PUBLIC public_info_copy
= *public_info
; /* Make a copy, since we must set TPMA_NV_WRITTEN for the calculation */
3628 public_info_copy
.nvPublic
.attributes
|= TPMA_NV_WRITTEN
;
3630 TPM2B_NAME name
= {};
3631 r
= tpm2_calculate_nv_index_name(&public_info_copy
.nvPublic
, &name
);
3635 struct iovec data
[] = {
3636 IOVEC_MAKE(buf
, offset
),
3637 IOVEC_MAKE(name
.name
, name
.size
),
3640 r
= tpm2_digest_many(TPM2_ALG_SHA256
, digest
, data
, ELEMENTSOF(data
), /* extend= */ true);
3644 tpm2_log_debug_digest(digest
, "PolicyAuthorizeNV calculated digest");
3649 int tpm2_policy_authorize_nv(
3651 const Tpm2Handle
*session
,
3652 const Tpm2Handle
*nv_handle
,
3653 TPM2B_DIGEST
**ret_policy_digest
) {
3660 log_debug("Submitting AuthorizeNV policy.");
3662 rc
= sym_Esys_PolicyAuthorizeNV(
3665 nv_handle
->esys_handle
,
3666 session
->esys_handle
,
3670 if ((rc
& ~(TPM2_RC_N_MASK
|TPM2_RC_P
)) == TPM2_RC_VALUE
) /* Return a recognizable error if the policy
3671 * in the NV index does not match what we
3672 * just put together */
3673 return log_debug_errno(SYNTHETIC_ERRNO(EREMCHG
),
3674 "Submitted policy does not match policy stored in PolicyAuthorizeNV.");
3675 if (rc
!= TSS2_RC_SUCCESS
)
3676 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3677 "Failed to add AuthorizeNV policy to TPM: %s",
3678 sym_Tss2_RC_Decode(rc
));
3680 return tpm2_get_policy_digest(c
, session
, ret_policy_digest
);
3685 const Tpm2Handle
*session
,
3686 const TPM2B_DIGEST
*branches
, size_t n_branches
,
3687 TPM2B_DIGEST
**ret_policy_digest
) {
3689 TPML_DIGEST hash_list
;
3695 if (n_branches
> ELEMENTSOF(hash_list
.digests
))
3698 log_debug("Submitting OR policy.");
3700 hash_list
= (TPML_DIGEST
) {
3701 .count
= n_branches
,
3704 memcpy(hash_list
.digests
, branches
, n_branches
* sizeof(TPM2B_DIGEST
));
3707 for (size_t i
= 0; i
< hash_list
.count
; i
++) {
3708 _cleanup_free_
char *h
= hexmem(hash_list
.digests
[i
].buffer
, hash_list
.digests
[i
].size
);
3709 log_debug("Submitting OR Branch #%zu: %s", i
, h
);
3712 rc
= sym_Esys_PolicyOR(
3714 session
->esys_handle
,
3719 if ((rc
& ~(TPM2_RC_N_MASK
|TPM2_RC_P
)) == TPM2_RC_VALUE
) /* Return a recognizable error if none of the OR branches matched */
3720 return log_debug_errno(SYNTHETIC_ERRNO(ENOANO
),
3721 "None of the PolicyOR branches matched the current policy state.");
3722 if (rc
!= TSS2_RC_SUCCESS
)
3723 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3724 "Failed to add OR policy to TPM: %s",
3725 sym_Tss2_RC_Decode(rc
));
3727 return tpm2_get_policy_digest(c
, session
, ret_policy_digest
);
3730 /* Extend 'digest' with the PolicyOR calculated hash. */
3731 int tpm2_calculate_policy_or(const TPM2B_DIGEST
*branches
, size_t n_branches
, TPM2B_DIGEST
*digest
) {
3732 TPM2_CC command
= TPM2_CC_PolicyOR
;
3737 assert(digest
->size
== SHA256_DIGEST_SIZE
);
3739 if (n_branches
== 0)
3741 if (n_branches
== 1)
3742 log_warning("PolicyOR with a single branch submitted, this is weird.");
3748 return log_error_errno(r
, "TPM2 support not installed: %m");
3750 uint8_t buf
[sizeof(command
)];
3753 rc
= sym_Tss2_MU_TPM2_CC_Marshal(command
, buf
, sizeof(buf
), &offset
);
3754 if (rc
!= TSS2_RC_SUCCESS
)
3755 return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3756 "Failed to marshal PolicyOR command: %s", sym_Tss2_RC_Decode(rc
));
3758 if (offset
!= sizeof(command
))
3759 return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3760 "Offset 0x%zx wrong after marshalling PolicyOR command", offset
);
3761 _cleanup_free_
struct iovec
*data
= new(struct iovec
, 1 + n_branches
);
3765 data
[0] = IOVEC_MAKE(buf
, offset
);
3766 for (size_t i
= 0; i
< n_branches
; i
++) {
3767 data
[1 + i
] = IOVEC_MAKE((void*) branches
[i
].buffer
, branches
[i
].size
);
3769 if (DEBUG_LOGGING
) {
3770 _cleanup_free_
char *h
= hexmem(branches
[i
].buffer
, branches
[i
].size
);
3771 log_debug("OR Branch #%zu: %s", i
, h
);
3775 /* PolicyOR does not use the previous hash value; we must zero and then extend it. */
3776 zero(digest
->buffer
);
3778 r
= tpm2_digest_many(TPM2_ALG_SHA256
, digest
, data
, 1 + n_branches
, /* extend= */ true);
3782 tpm2_log_debug_digest(digest
, "PolicyOR calculated digest");
3787 /* Extend 'digest' with the PolicyPCR calculated hash. */
3788 int tpm2_calculate_policy_pcr(
3789 const Tpm2PCRValue
*pcr_values
,
3790 size_t n_pcr_values
,
3791 TPM2B_DIGEST
*digest
) {
3793 TPM2_CC command
= TPM2_CC_PolicyPCR
;
3797 assert(pcr_values
|| n_pcr_values
== 0);
3799 assert(digest
->size
== SHA256_DIGEST_SIZE
);
3803 return log_debug_errno(r
, "TPM2 support not installed: %m");
3805 TPML_PCR_SELECTION pcr_selection
;
3806 _cleanup_free_ TPM2B_DIGEST
*values
= NULL
;
3808 r
= tpm2_tpml_pcr_selection_from_pcr_values(pcr_values
, n_pcr_values
, &pcr_selection
, &values
, &n_values
);
3810 return log_debug_errno(r
, "Could not convert PCR values to TPML_PCR_SELECTION: %m");
3812 TPM2B_DIGEST hash
= {};
3813 r
= tpm2_digest_many_digests(TPM2_ALG_SHA256
, &hash
, values
, n_values
, /* extend= */ false);
3817 _cleanup_free_
uint8_t *buf
= NULL
;
3818 size_t size
= 0, maxsize
= sizeof(command
) + sizeof(pcr_selection
);
3820 buf
= malloc(maxsize
);
3822 return log_oom_debug();
3824 rc
= sym_Tss2_MU_TPM2_CC_Marshal(command
, buf
, maxsize
, &size
);
3825 if (rc
!= TSS2_RC_SUCCESS
)
3826 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3827 "Failed to marshal PolicyPCR command: %s", sym_Tss2_RC_Decode(rc
));
3829 rc
= sym_Tss2_MU_TPML_PCR_SELECTION_Marshal(&pcr_selection
, buf
, maxsize
, &size
);
3830 if (rc
!= TSS2_RC_SUCCESS
)
3831 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3832 "Failed to marshal PCR selection: %s", sym_Tss2_RC_Decode(rc
));
3834 struct iovec data
[] = {
3835 IOVEC_MAKE(buf
, size
),
3836 IOVEC_MAKE(hash
.buffer
, hash
.size
),
3838 r
= tpm2_digest_many(TPM2_ALG_SHA256
, digest
, data
, ELEMENTSOF(data
), /* extend= */ true);
3842 tpm2_log_debug_digest(digest
, "PolicyPCR calculated digest");
3847 int tpm2_policy_pcr(
3849 const Tpm2Handle
*session
,
3850 const TPML_PCR_SELECTION
*pcr_selection
,
3851 TPM2B_DIGEST
**ret_policy_digest
) {
3857 assert(pcr_selection
);
3859 log_debug("Submitting PCR hash policy.");
3861 rc
= sym_Esys_PolicyPCR(
3863 session
->esys_handle
,
3869 if (rc
== TPM2_RC_PCR_CHANGED
)
3870 return log_debug_errno(SYNTHETIC_ERRNO(EUCLEAN
),
3871 "Failed to add PCR policy to TPM: %s", sym_Tss2_RC_Decode(rc
));
3872 if (rc
!= TSS2_RC_SUCCESS
)
3873 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3874 "Failed to add PCR policy to TPM: %s", sym_Tss2_RC_Decode(rc
));
3876 return tpm2_get_policy_digest(c
, session
, ret_policy_digest
);
3879 /* Extend 'digest' with the PolicyAuthorize calculated hash. */
3880 int tpm2_calculate_policy_authorize(
3881 const TPM2B_PUBLIC
*public,
3882 const TPM2B_DIGEST
*policy_ref
,
3883 TPM2B_DIGEST
*digest
) {
3885 TPM2_CC command
= TPM2_CC_PolicyAuthorize
;
3891 assert(digest
->size
== SHA256_DIGEST_SIZE
);
3895 return log_debug_errno(r
, "TPM2 support not installed: %m");
3897 uint8_t buf
[sizeof(command
)];
3900 rc
= sym_Tss2_MU_TPM2_CC_Marshal(command
, buf
, sizeof(buf
), &offset
);
3901 if (rc
!= TSS2_RC_SUCCESS
)
3902 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3903 "Failed to marshal PolicyAuthorize command: %s", sym_Tss2_RC_Decode(rc
));
3905 if (offset
!= sizeof(command
))
3906 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
3907 "Offset 0x%zx wrong after marshalling PolicyAuthorize command", offset
);
3909 TPM2B_NAME name
= {};
3910 r
= tpm2_calculate_pubkey_name(&public->publicArea
, &name
);
3914 /* PolicyAuthorize does not use the previous hash value; we must zero and then extend it. */
3915 zero(digest
->buffer
);
3917 struct iovec data
[] = {
3918 IOVEC_MAKE(buf
, offset
),
3919 IOVEC_MAKE(name
.name
, name
.size
),
3921 r
= tpm2_digest_many(TPM2_ALG_SHA256
, digest
, data
, ELEMENTSOF(data
), /* extend= */ true);
3925 /* PolicyAuthorize requires hashing twice; this is either an extension or rehashing. */
3927 r
= tpm2_digest_many_digests(TPM2_ALG_SHA256
, digest
, policy_ref
, 1, /* extend= */ true);
3929 r
= tpm2_digest_rehash(TPM2_ALG_SHA256
, digest
);
3933 tpm2_log_debug_digest(digest
, "PolicyAuthorize calculated digest");
3938 static int tpm2_policy_authorize(
3940 const Tpm2Handle
*session
,
3941 TPML_PCR_SELECTION
*pcr_selection
,
3942 const TPM2B_PUBLIC
*public,
3945 sd_json_variant
*signature_json
,
3946 TPM2B_DIGEST
**ret_policy_digest
) {
3953 assert(pcr_selection
);
3955 assert(fp
&& fp_size
> 0);
3957 log_debug("Adding PCR signature policy.");
3959 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*pubkey_handle
= NULL
;
3960 r
= tpm2_load_external(c
, NULL
, public, NULL
, &pubkey_handle
);
3964 /* Acquire the "name" of what we just loaded */
3965 _cleanup_(Esys_Freep
) TPM2B_NAME
*pubkey_name
= NULL
;
3966 r
= tpm2_get_name(c
, pubkey_handle
, &pubkey_name
);
3970 /* If we have a signature, proceed with verifying the PCR digest */
3971 const TPMT_TK_VERIFIED
*check_ticket
;
3972 _cleanup_(Esys_Freep
) TPMT_TK_VERIFIED
*check_ticket_buffer
= NULL
;
3973 _cleanup_(Esys_Freep
) TPM2B_DIGEST
*approved_policy
= NULL
;
3974 if (signature_json
) {
3975 r
= tpm2_policy_pcr(
3983 _cleanup_free_
void *signature_raw
= NULL
;
3984 size_t signature_size
;
3990 approved_policy
->buffer
,
3991 approved_policy
->size
,
3997 /* TPM2_VerifySignature() will only verify the RSA part of the RSA+SHA256 signature,
3998 * hence we need to do the SHA256 part ourselves, first */
3999 TPM2B_DIGEST signature_hash
= *approved_policy
;
4000 r
= tpm2_digest_rehash(TPM2_ALG_SHA256
, &signature_hash
);
4004 r
= TPM2B_PUBLIC_KEY_RSA_CHECK_SIZE(signature_size
);
4006 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
), "Signature larger than buffer.");
4008 TPMT_SIGNATURE policy_signature
= {
4009 .sigAlg
= TPM2_ALG_RSASSA
,
4010 .signature
.rsassa
= {
4011 .hash
= TPM2_ALG_SHA256
,
4012 .sig
= TPM2B_PUBLIC_KEY_RSA_MAKE(signature_raw
, signature_size
),
4016 rc
= sym_Esys_VerifySignature(
4018 pubkey_handle
->esys_handle
,
4024 &check_ticket_buffer
);
4025 if (rc
!= TSS2_RC_SUCCESS
)
4026 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4027 "Failed to validate signature in TPM: %s", sym_Tss2_RC_Decode(rc
));
4029 check_ticket
= check_ticket_buffer
;
4031 /* When enrolling, we pass a NULL ticket */
4032 static const TPMT_TK_VERIFIED check_ticket_null
= {
4033 .tag
= TPM2_ST_VERIFIED
,
4034 .hierarchy
= TPM2_RH_OWNER
,
4037 check_ticket
= &check_ticket_null
;
4040 rc
= sym_Esys_PolicyAuthorize(
4042 session
->esys_handle
,
4047 /* policyRef= */ &(const TPM2B_NONCE
) {},
4050 if (rc
!= TSS2_RC_SUCCESS
)
4051 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4052 "Failed to push Authorize policy into TPM: %s", sym_Tss2_RC_Decode(rc
));
4054 return tpm2_get_policy_digest(c
, session
, ret_policy_digest
);
4057 /* Extend 'digest' with the calculated policy hash. */
4058 int tpm2_calculate_sealing_policy(
4059 const Tpm2PCRValue
*pcr_values
,
4060 size_t n_pcr_values
,
4061 const TPM2B_PUBLIC
*public,
4063 const Tpm2PCRLockPolicy
*pcrlock_policy
,
4064 TPM2B_DIGEST
*digest
) {
4068 assert(pcr_values
|| n_pcr_values
== 0);
4071 /* The combination of signed PCR policies and pcrlock is not supported (because we cannot combine
4072 * PolicyAuthorize and PolicyAuthorizeNV in one policy). Callers need to use "sharding" of the
4073 * symmetric FDE unlock key to make policies like that work. */
4074 if (public && pcrlock_policy
)
4075 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "Policies that combined signed PCR and pcrlock are not supported.");
4078 r
= tpm2_calculate_policy_authorize(public, NULL
, digest
);
4083 if (pcrlock_policy
) {
4084 TPM2B_NV_PUBLIC nv_public
;
4086 r
= tpm2_unmarshal_nv_public(
4087 pcrlock_policy
->nv_public
.iov_base
,
4088 pcrlock_policy
->nv_public
.iov_len
,
4093 r
= tpm2_calculate_policy_authorize_nv(&nv_public
, digest
);
4098 if (n_pcr_values
> 0) {
4099 r
= tpm2_calculate_policy_pcr(pcr_values
, n_pcr_values
, digest
);
4105 r
= tpm2_calculate_policy_auth_value(digest
);
4113 static int tpm2_build_sealing_policy(
4115 const Tpm2Handle
*session
,
4116 uint32_t hash_pcr_mask
,
4118 const TPM2B_PUBLIC
*public,
4121 uint32_t pubkey_pcr_mask
,
4122 sd_json_variant
*signature_json
,
4124 const Tpm2PCRLockPolicy
*pcrlock_policy
,
4125 TPM2B_DIGEST
**ret_policy_digest
) {
4131 assert(pubkey_pcr_mask
== 0 || public);
4133 log_debug("Building sealing policy.");
4135 if ((hash_pcr_mask
| pubkey_pcr_mask
) != 0) {
4136 r
= tpm2_pcr_mask_good(c
, pcr_bank
, hash_pcr_mask
|pubkey_pcr_mask
);
4140 log_debug("Selected TPM2 PCRs are not initialized on this system.");
4143 if (pubkey_pcr_mask
!= 0 && pcrlock_policy
)
4144 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "Policies with both signed PCR and pcrlock are currently not supported.");
4146 if (pubkey_pcr_mask
!= 0) {
4147 TPML_PCR_SELECTION pcr_selection
;
4148 tpm2_tpml_pcr_selection_from_mask(pubkey_pcr_mask
, (TPMI_ALG_HASH
)pcr_bank
, &pcr_selection
);
4149 r
= tpm2_policy_authorize(c
, session
, &pcr_selection
, public, fp
, fp_size
, signature_json
, NULL
);
4154 if (pcrlock_policy
) {
4155 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*nv_handle
= NULL
;
4157 r
= tpm2_policy_super_pcr(
4160 &pcrlock_policy
->prediction
,
4161 pcrlock_policy
->algorithm
);
4165 r
= tpm2_deserialize(
4167 pcrlock_policy
->nv_handle
.iov_base
,
4168 pcrlock_policy
->nv_handle
.iov_len
,
4173 r
= tpm2_policy_authorize_nv(
4182 if (hash_pcr_mask
!= 0) {
4183 TPML_PCR_SELECTION pcr_selection
;
4184 tpm2_tpml_pcr_selection_from_mask(hash_pcr_mask
, (TPMI_ALG_HASH
)pcr_bank
, &pcr_selection
);
4185 r
= tpm2_policy_pcr(c
, session
, &pcr_selection
, NULL
);
4191 r
= tpm2_policy_auth_value(c
, session
, NULL
);
4196 r
= tpm2_get_policy_digest(c
, session
, ret_policy_digest
);
4204 static const struct {
4205 TPM2_ECC_CURVE tpm2_ecc_curve_id
;
4206 int openssl_ecc_curve_id
;
4207 } tpm2_openssl_ecc_curve_table
[] = {
4208 { TPM2_ECC_NIST_P192
, NID_X9_62_prime192v1
, },
4209 { TPM2_ECC_NIST_P224
, NID_secp224r1
, },
4210 { TPM2_ECC_NIST_P256
, NID_X9_62_prime256v1
, },
4211 { TPM2_ECC_NIST_P384
, NID_secp384r1
, },
4212 { TPM2_ECC_NIST_P521
, NID_secp521r1
, },
4213 { TPM2_ECC_SM2_P256
, NID_sm2
, },
4216 static int tpm2_ecc_curve_from_openssl_curve_id(int openssl_ecc_curve_id
, TPM2_ECC_CURVE
*ret
) {
4219 FOREACH_ELEMENT(t
, tpm2_openssl_ecc_curve_table
)
4220 if (t
->openssl_ecc_curve_id
== openssl_ecc_curve_id
) {
4221 *ret
= t
->tpm2_ecc_curve_id
;
4225 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
4226 "OpenSSL ECC curve id %d not supported.", openssl_ecc_curve_id
);
4229 static int tpm2_ecc_curve_to_openssl_curve_id(TPM2_ECC_CURVE tpm2_ecc_curve_id
, int *ret
) {
4232 FOREACH_ELEMENT(t
, tpm2_openssl_ecc_curve_table
)
4233 if (t
->tpm2_ecc_curve_id
== tpm2_ecc_curve_id
) {
4234 *ret
= t
->openssl_ecc_curve_id
;
4238 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
4239 "TPM2 ECC curve %u not supported.", tpm2_ecc_curve_id
);
4242 #define TPM2_RSA_DEFAULT_EXPONENT UINT32_C(0x10001)
4244 int tpm2_tpm2b_public_to_openssl_pkey(const TPM2B_PUBLIC
*public, EVP_PKEY
**ret
) {
4250 const TPMT_PUBLIC
*p
= &public->publicArea
;
4252 case TPM2_ALG_ECC
: {
4254 r
= tpm2_ecc_curve_to_openssl_curve_id(p
->parameters
.eccDetail
.curveID
, &curve_id
);
4258 const TPMS_ECC_POINT
*point
= &p
->unique
.ecc
;
4259 return ecc_pkey_from_curve_x_y(
4267 case TPM2_ALG_RSA
: {
4268 /* TPM specification Part 2 ("Structures") section for TPMS_RSA_PARAMS states "An exponent of
4269 * zero indicates that the exponent is the default of 2^16 + 1". */
4270 uint32_t exponent
= htobe32(p
->parameters
.rsaDetail
.exponent
?: TPM2_RSA_DEFAULT_EXPONENT
);
4271 return rsa_pkey_from_n_e(
4272 p
->unique
.rsa
.buffer
,
4279 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
4280 "TPM2 asymmetric algorithm 0x%" PRIx16
" not supported.", p
->type
);
4284 /* Be careful before changing anything in this function, as the TPM key "name" is calculated using the entire
4285 * TPMT_PUBLIC (after marshalling), and that "name" is used (for example) to calculate the policy hash for
4286 * the Authorize policy. So we must ensure this conversion of a PEM to TPM2B_PUBLIC does not change the
4287 * "name", because it would break unsealing of previously-sealed objects that used (for example)
4288 * tpm2_calculate_policy_authorize(). See bug #30546. */
4289 int tpm2_tpm2b_public_from_openssl_pkey(const EVP_PKEY
*pkey
, TPM2B_PUBLIC
*ret
) {
4295 TPMT_PUBLIC
public = {
4296 .nameAlg
= TPM2_ALG_SHA256
,
4297 .objectAttributes
= TPMA_OBJECT_DECRYPT
| TPMA_OBJECT_SIGN_ENCRYPT
| TPMA_OBJECT_USERWITHAUTH
,
4298 .parameters
.asymDetail
= {
4299 .symmetric
.algorithm
= TPM2_ALG_NULL
,
4300 .scheme
.scheme
= TPM2_ALG_NULL
,
4304 #if OPENSSL_VERSION_MAJOR >= 3
4305 key_id
= EVP_PKEY_get_id(pkey
);
4307 key_id
= EVP_PKEY_id(pkey
);
4312 public.type
= TPM2_ALG_ECC
;
4315 _cleanup_free_
void *x
= NULL
, *y
= NULL
;
4316 size_t x_size
, y_size
;
4317 r
= ecc_pkey_to_curve_x_y(pkey
, &curve_id
, &x
, &x_size
, &y
, &y_size
);
4319 return log_debug_errno(r
, "Could not get ECC key curve/x/y: %m");
4321 TPM2_ECC_CURVE curve
;
4322 r
= tpm2_ecc_curve_from_openssl_curve_id(curve_id
, &curve
);
4326 public.parameters
.eccDetail
.curveID
= curve
;
4328 public.parameters
.eccDetail
.kdf
.scheme
= TPM2_ALG_NULL
;
4330 r
= TPM2B_ECC_PARAMETER_CHECK_SIZE(x_size
);
4332 return log_debug_errno(r
, "ECC key x size %zu too large.", x_size
);
4334 public.unique
.ecc
.x
= TPM2B_ECC_PARAMETER_MAKE(x
, x_size
);
4336 r
= TPM2B_ECC_PARAMETER_CHECK_SIZE(y_size
);
4338 return log_debug_errno(r
, "ECC key y size %zu too large.", y_size
);
4340 public.unique
.ecc
.y
= TPM2B_ECC_PARAMETER_MAKE(y
, y_size
);
4344 case EVP_PKEY_RSA
: {
4345 public.type
= TPM2_ALG_RSA
;
4347 _cleanup_free_
void *n
= NULL
, *e
= NULL
;
4348 size_t n_size
, e_size
;
4349 r
= rsa_pkey_to_n_e(pkey
, &n
, &n_size
, &e
, &e_size
);
4351 return log_debug_errno(r
, "Could not get RSA key n/e: %m");
4353 r
= TPM2B_PUBLIC_KEY_RSA_CHECK_SIZE(n_size
);
4355 return log_debug_errno(r
, "RSA key n size %zu too large.", n_size
);
4357 public.unique
.rsa
= TPM2B_PUBLIC_KEY_RSA_MAKE(n
, n_size
);
4358 public.parameters
.rsaDetail
.keyBits
= n_size
* 8;
4360 if (sizeof(uint32_t) < e_size
)
4361 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
),
4362 "RSA key e size %zu too large.", e_size
);
4364 uint32_t exponent
= 0;
4365 memcpy(&exponent
, e
, e_size
);
4366 exponent
= be32toh(exponent
) >> (32 - e_size
* 8);
4368 /* TPM specification Part 2 ("Structures") section for TPMS_RSA_PARAMS states "An exponent of
4369 * zero indicates that the exponent is the default of 2^16 + 1". However, we have no reason
4370 * to special case it in our PEM->TPM2B_PUBLIC conversion, and doing so could break backwards
4371 * compatibility, so even if it is the "default" value of 0x10001, we do not set it to 0. */
4372 public.parameters
.rsaDetail
.exponent
= exponent
;
4377 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
4378 "EVP_PKEY type %d not supported.", key_id
);
4381 *ret
= (TPM2B_PUBLIC
) {
4382 .size
= sizeof(public),
4383 .publicArea
= public,
4390 int tpm2_tpm2b_public_to_fingerprint(
4391 const TPM2B_PUBLIC
*public,
4392 void **ret_fingerprint
,
4393 size_t *ret_fingerprint_size
) {
4399 assert(ret_fingerprint
);
4400 assert(ret_fingerprint_size
);
4402 _cleanup_(EVP_PKEY_freep
) EVP_PKEY
*pkey
= NULL
;
4403 r
= tpm2_tpm2b_public_to_openssl_pkey(public, &pkey
);
4407 /* Hardcode fingerprint to SHA256 */
4408 return pubkey_fingerprint(pkey
, EVP_sha256(), ret_fingerprint
, ret_fingerprint_size
);
4410 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "OpenSSL support is disabled.");
4414 int tpm2_tpm2b_public_from_pem(const void *pem
, size_t pem_size
, TPM2B_PUBLIC
*ret
) {
4421 _cleanup_(EVP_PKEY_freep
) EVP_PKEY
*pkey
= NULL
;
4422 r
= openssl_pubkey_from_pem(pem
, pem_size
, &pkey
);
4426 return tpm2_tpm2b_public_from_openssl_pkey(pkey
, ret
);
4428 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "OpenSSL support is disabled.");
4432 /* Marshal the public, private, and seed objects into a single nonstandard 'blob'. The public and private
4433 * objects are required, while the seed is optional. This is not a (publicly) standard format, this is
4434 * specific to how we currently store the sealed object. This 'blob' can be unmarshalled by
4435 * tpm2_unmarshal_blob(). */
4436 int tpm2_marshal_blob(
4437 const TPM2B_PUBLIC
*public,
4438 const TPM2B_PRIVATE
*private,
4439 const TPM2B_ENCRYPTED_SECRET
*seed
,
4441 size_t *ret_blob_size
) {
4448 assert(ret_blob_size
);
4450 size_t max_size
= sizeof(*private) + sizeof(*public);
4452 max_size
+= sizeof(*seed
);
4454 _cleanup_free_
void *blob
= malloc(max_size
);
4456 return log_oom_debug();
4458 size_t blob_size
= 0;
4459 rc
= sym_Tss2_MU_TPM2B_PRIVATE_Marshal(private, blob
, max_size
, &blob_size
);
4460 if (rc
!= TSS2_RC_SUCCESS
)
4461 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4462 "Failed to marshal private key: %s", sym_Tss2_RC_Decode(rc
));
4464 rc
= sym_Tss2_MU_TPM2B_PUBLIC_Marshal(public, blob
, max_size
, &blob_size
);
4465 if (rc
!= TSS2_RC_SUCCESS
)
4466 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4467 "Failed to marshal public key: %s", sym_Tss2_RC_Decode(rc
));
4470 rc
= sym_Tss2_MU_TPM2B_ENCRYPTED_SECRET_Marshal(seed
, blob
, max_size
, &blob_size
);
4471 if (rc
!= TSS2_RC_SUCCESS
)
4472 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4473 "Failed to marshal encrypted seed: %s", sym_Tss2_RC_Decode(rc
));
4476 *ret_blob
= TAKE_PTR(blob
);
4477 *ret_blob_size
= blob_size
;
4482 /* Unmarshal the 'blob' into public, private, and seed objects. The public and private objects are required
4483 * in the 'blob', while the seed is optional. This is not a (publicly) standard format, this is specific to
4484 * how we currently store the sealed object. This expects the 'blob' to have been created by
4485 * tpm2_marshal_blob(). */
4486 int tpm2_unmarshal_blob(
4489 TPM2B_PUBLIC
*ret_public
,
4490 TPM2B_PRIVATE
*ret_private
,
4491 TPM2B_ENCRYPTED_SECRET
*ret_seed
) {
4497 assert(ret_private
);
4500 TPM2B_PRIVATE
private = {};
4502 rc
= sym_Tss2_MU_TPM2B_PRIVATE_Unmarshal(blob
, blob_size
, &offset
, &private);
4503 if (rc
!= TSS2_RC_SUCCESS
)
4504 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4505 "Failed to unmarshal private key: %s", sym_Tss2_RC_Decode(rc
));
4507 TPM2B_PUBLIC
public = {};
4508 rc
= sym_Tss2_MU_TPM2B_PUBLIC_Unmarshal(blob
, blob_size
, &offset
, &public);
4509 if (rc
!= TSS2_RC_SUCCESS
)
4510 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4511 "Failed to unmarshal public key: %s", sym_Tss2_RC_Decode(rc
));
4513 TPM2B_ENCRYPTED_SECRET seed
= {};
4514 if (blob_size
> offset
) {
4515 rc
= sym_Tss2_MU_TPM2B_ENCRYPTED_SECRET_Unmarshal(blob
, blob_size
, &offset
, &seed
);
4516 if (rc
!= TSS2_RC_SUCCESS
)
4517 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4518 "Failed to unmarshal encrypted seed: %s", sym_Tss2_RC_Decode(rc
));
4521 *ret_public
= public;
4522 *ret_private
= private;
4528 /* Calculate a serialized handle. Once the upstream tpm2-tss library provides an api to do this, we can
4529 * remove this function. The addition of this functionality in tpm2-tss may be tracked here:
4530 * https://github.com/tpm2-software/tpm2-tss/issues/2575 */
4531 int tpm2_calculate_serialize(
4533 const TPM2B_NAME
*name
,
4534 const TPM2B_PUBLIC
*public,
4535 void **ret_serialized
,
4536 size_t *ret_serialized_size
) {
4542 assert(ret_serialized
);
4543 assert(ret_serialized_size
);
4545 size_t max_size
= sizeof(TPM2_HANDLE
) + sizeof(TPM2B_NAME
) + sizeof(uint32_t) + sizeof(TPM2B_PUBLIC
);
4546 _cleanup_free_
void *serialized
= malloc(max_size
);
4548 return log_oom_debug();
4550 size_t serialized_size
= 0;
4551 rc
= sym_Tss2_MU_TPM2_HANDLE_Marshal(handle
, serialized
, max_size
, &serialized_size
);
4552 if (rc
!= TSS2_RC_SUCCESS
)
4553 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4554 "Failed to marshal tpm handle: %s", sym_Tss2_RC_Decode(rc
));
4556 rc
= sym_Tss2_MU_TPM2B_NAME_Marshal(name
, serialized
, max_size
, &serialized_size
);
4557 if (rc
!= TSS2_RC_SUCCESS
)
4558 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4559 "Failed to marshal name: %s", sym_Tss2_RC_Decode(rc
));
4561 /* This is defined (non-publicly) in the tpm2-tss source as IESYSC_KEY_RSRC, to a value of "1". */
4562 rc
= sym_Tss2_MU_UINT32_Marshal(UINT32_C(1), serialized
, max_size
, &serialized_size
);
4563 if (rc
!= TSS2_RC_SUCCESS
)
4564 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4565 "Failed to marshal esys resource id: %s", sym_Tss2_RC_Decode(rc
));
4567 rc
= sym_Tss2_MU_TPM2B_PUBLIC_Marshal(public, serialized
, max_size
, &serialized_size
);
4568 if (rc
!= TSS2_RC_SUCCESS
)
4569 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4570 "Failed to marshal public: %s", sym_Tss2_RC_Decode(rc
));
4572 *ret_serialized
= TAKE_PTR(serialized
);
4573 *ret_serialized_size
= serialized_size
;
4578 /* Serialize a handle. This produces a binary object that can be later deserialized (by the same TPM), even
4579 * across restarts of the TPM or reboots (assuming the handle is persistent). */
4582 const Tpm2Handle
*handle
,
4583 void **ret_serialized
,
4584 size_t *ret_serialized_size
) {
4590 assert(ret_serialized
);
4591 assert(ret_serialized_size
);
4593 _cleanup_(Esys_Freep
) unsigned char *serialized
= NULL
;
4595 rc
= sym_Esys_TR_Serialize(c
->esys_context
, handle
->esys_handle
, &serialized
, &size
);
4596 if (rc
!= TSS2_RC_SUCCESS
)
4597 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4598 "Failed to serialize: %s", sym_Tss2_RC_Decode(rc
));
4600 *ret_serialized
= TAKE_PTR(serialized
);
4601 *ret_serialized_size
= size
;
4606 int tpm2_deserialize(
4608 const void *serialized
,
4609 size_t serialized_size
,
4610 Tpm2Handle
**ret_handle
) {
4619 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*handle
= NULL
;
4620 r
= tpm2_handle_new(c
, &handle
);
4624 /* Since this is an existing handle in the TPM we should not implicitly flush it. */
4625 handle
->flush
= false;
4627 rc
= sym_Esys_TR_Deserialize(c
->esys_context
, serialized
, serialized_size
, &handle
->esys_handle
);
4628 if (rc
!= TSS2_RC_SUCCESS
)
4629 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4630 "Failed to deserialize: %s", sym_Tss2_RC_Decode(rc
));
4632 *ret_handle
= TAKE_PTR(handle
);
4639 /* KDFa() as defined by the TPM spec. */
4640 static int tpm2_kdfa(
4641 TPMI_ALG_HASH hash_alg
,
4645 const void *context
,
4649 size_t *ret_key_len
) {
4655 assert(context
|| context_len
== 0);
4657 assert(bits
<= SIZE_MAX
- 7);
4659 assert(ret_key_len
);
4661 log_debug("Calculating KDFa().");
4663 size_t len
= DIV_ROUND_UP(bits
, 8);
4665 const char *hash_alg_name
= tpm2_hash_alg_to_string(hash_alg
);
4669 _cleanup_free_
void *buf
= NULL
;
4670 r
= kdf_kb_hmac_derive(
4686 /* If the number of bits results in a partial byte, the TPM spec requires we zero the unrequested
4687 * bits in the MSB (i.e. at index 0). From the spec Part 1 ("Architecture") section on Key
4688 * Derivation Function, specifically KDFa():
4690 * "The implied return from this function is a sequence of octets with a length equal to (bits + 7) /
4691 * 8. If bits is not an even multiple of 8, then the returned value occupies the least significant
4692 * bits of the returned octet array, and the additional, high-order bits in the 0th octet are
4693 * CLEAR. The unused bits of the most significant octet (MSO) are masked off and not shifted." */
4694 size_t partial
= bits
% 8;
4696 ((uint8_t*) buf
)[0] &= 0xffu
>> (8 - partial
);
4698 *ret_key
= TAKE_PTR(buf
);
4704 /* KDFe() as defined by the TPM spec. */
4705 static int tpm2_kdfe(
4706 TPMI_ALG_HASH hash_alg
,
4707 const void *shared_secret
,
4708 size_t shared_secret_len
,
4710 const void *context_u
,
4711 size_t context_u_size
,
4712 const void *context_v
,
4713 size_t context_v_size
,
4716 size_t *ret_key_len
) {
4720 assert(shared_secret
);
4725 assert(bits
<= SIZE_MAX
- 7);
4727 assert(ret_key_len
);
4729 log_debug("Calculating KDFe().");
4731 size_t len
= DIV_ROUND_UP(bits
, 8);
4733 const char *hash_alg_name
= tpm2_hash_alg_to_string(hash_alg
);
4737 size_t info_len
= strlen(label
) + 1 + context_u_size
+ context_v_size
;
4738 _cleanup_free_
void *info
= malloc(info_len
);
4740 return log_oom_debug();
4742 _unused_
void *end
= mempcpy(mempcpy(stpcpy(info
, label
) + 1, context_u
, context_u_size
),
4743 context_v
, context_v_size
);
4744 /* assert we copied exactly the right amount that we allocated */
4745 assert(end
> info
&& (uintptr_t) end
- (uintptr_t) info
== info_len
);
4747 _cleanup_free_
void *buf
= NULL
;
4761 *ret_key
= TAKE_PTR(buf
);
4767 static int tpm2_calculate_seal_public(
4768 const TPM2B_PUBLIC
*parent
,
4769 const TPMA_OBJECT
*attributes
,
4770 const TPM2B_DIGEST
*policy
,
4771 const TPM2B_DIGEST
*seed
,
4774 TPM2B_PUBLIC
*ret
) {
4783 log_debug("Calculating public part of sealed object.");
4785 struct iovec data
[] = {
4786 IOVEC_MAKE((void*) seed
->buffer
, seed
->size
),
4787 IOVEC_MAKE((void*) secret
, secret_size
),
4789 TPM2B_DIGEST unique
;
4790 r
= tpm2_digest_many(
4791 parent
->publicArea
.nameAlg
,
4795 /* extend= */ false);
4799 *ret
= (TPM2B_PUBLIC
) {
4800 .size
= sizeof(TPMT_PUBLIC
),
4802 .type
= TPM2_ALG_KEYEDHASH
,
4803 .nameAlg
= parent
->publicArea
.nameAlg
,
4804 .objectAttributes
= attributes
? *attributes
: 0,
4805 .authPolicy
= policy
? *policy
: TPM2B_DIGEST_MAKE(NULL
, unique
.size
),
4806 .parameters
.keyedHashDetail
.scheme
.scheme
= TPM2_ALG_NULL
,
4807 .unique
.keyedHash
= unique
,
4814 static int tpm2_calculate_seal_private(
4815 const TPM2B_PUBLIC
*parent
,
4816 const TPM2B_NAME
*name
,
4818 const TPM2B_DIGEST
*seed
,
4821 TPM2B_PRIVATE
*ret
) {
4832 log_debug("Calculating private part of sealed object.");
4834 _cleanup_free_
void *storage_key
= NULL
;
4835 size_t storage_key_size
;
4836 r
= tpm2_kdfa(parent
->publicArea
.nameAlg
,
4842 (size_t) parent
->publicArea
.parameters
.asymDetail
.symmetric
.keyBits
.sym
,
4846 return log_debug_errno(r
, "Could not calculate storage key KDFa: %m");
4848 r
= tpm2_hash_alg_to_size(parent
->publicArea
.nameAlg
);
4852 size_t bits
= (size_t) r
* 8;
4854 _cleanup_free_
void *integrity_key
= NULL
;
4855 size_t integrity_key_size
;
4856 r
= tpm2_kdfa(parent
->publicArea
.nameAlg
,
4860 /* context= */ NULL
,
4861 /* context_len= */ 0,
4864 &integrity_key_size
);
4866 return log_debug_errno(r
, "Could not calculate integrity key KDFa: %m");
4868 TPM2B_AUTH auth
= {};
4870 r
= tpm2_auth_value_from_pin(parent
->publicArea
.nameAlg
, pin
, &auth
);
4875 TPM2B_SENSITIVE sensitive
= {
4876 .size
= sizeof(TPMT_SENSITIVE
),
4878 .sensitiveType
= TPM2_ALG_KEYEDHASH
,
4881 .sensitive
.bits
= TPM2B_SENSITIVE_DATA_MAKE(secret
, secret_size
),
4885 _cleanup_free_
void *marshalled_sensitive
= malloc(sizeof(sensitive
));
4886 if (!marshalled_sensitive
)
4887 return log_oom_debug();
4889 size_t marshalled_sensitive_size
= 0;
4890 rc
= sym_Tss2_MU_TPM2B_SENSITIVE_Marshal(
4892 marshalled_sensitive
,
4894 &marshalled_sensitive_size
);
4895 if (rc
!= TSS2_RC_SUCCESS
)
4896 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4897 "Failed to marshal sensitive: %s", sym_Tss2_RC_Decode(rc
));
4899 const char *sym_alg
= tpm2_sym_alg_to_string(parent
->publicArea
.parameters
.asymDetail
.symmetric
.algorithm
);
4903 const char *sym_mode
= tpm2_sym_mode_to_string(parent
->publicArea
.parameters
.asymDetail
.symmetric
.mode
.sym
);
4907 _cleanup_free_
void *encrypted_sensitive
= NULL
;
4908 size_t encrypted_sensitive_size
;
4911 parent
->publicArea
.parameters
.asymDetail
.symmetric
.keyBits
.sym
,
4913 storage_key
, storage_key_size
,
4914 /* iv= */ NULL
, /* iv_size= */ 0,
4915 marshalled_sensitive
, marshalled_sensitive_size
,
4916 &encrypted_sensitive
, &encrypted_sensitive_size
);
4920 const char *hash_alg_name
= tpm2_hash_alg_to_string(parent
->publicArea
.nameAlg
);
4924 _cleanup_free_
void *hmac_buffer
= NULL
;
4925 size_t hmac_size
= 0;
4926 struct iovec hmac_data
[] = {
4927 IOVEC_MAKE((void*) encrypted_sensitive
, encrypted_sensitive_size
),
4928 IOVEC_MAKE((void*) name
->name
, name
->size
),
4930 r
= openssl_hmac_many(
4935 ELEMENTSOF(hmac_data
),
4941 TPM2B_DIGEST outer_hmac
= TPM2B_DIGEST_MAKE(hmac_buffer
, hmac_size
);
4943 TPM2B_PRIVATE
private = {};
4944 size_t private_size
= 0;
4945 rc
= sym_Tss2_MU_TPM2B_DIGEST_Marshal(
4948 sizeof(private.buffer
),
4950 if (rc
!= TSS2_RC_SUCCESS
)
4951 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
4952 "Failed to marshal digest: %s", sym_Tss2_RC_Decode(rc
));
4953 private.size
= private_size
;
4955 assert(sizeof(private.buffer
) - private.size
>= encrypted_sensitive_size
);
4956 memcpy_safe(&private.buffer
[private.size
], encrypted_sensitive
, encrypted_sensitive_size
);
4957 private.size
+= encrypted_sensitive_size
;
4964 static int tpm2_calculate_seal_rsa_seed(
4965 const TPM2B_PUBLIC
*parent
,
4967 size_t *ret_seed_size
,
4968 void **ret_encrypted_seed
,
4969 size_t *ret_encrypted_seed_size
) {
4975 assert(ret_seed_size
);
4976 assert(ret_encrypted_seed
);
4977 assert(ret_encrypted_seed_size
);
4979 log_debug("Calculating encrypted seed for RSA sealed object.");
4981 _cleanup_(EVP_PKEY_freep
) EVP_PKEY
*parent_pkey
= NULL
;
4982 r
= tpm2_tpm2b_public_to_openssl_pkey(parent
, &parent_pkey
);
4984 return log_debug_errno(r
, "Could not convert TPM2B_PUBLIC to OpenSSL PKEY: %m");
4986 r
= tpm2_hash_alg_to_size(parent
->publicArea
.nameAlg
);
4990 size_t seed_size
= (size_t) r
;
4992 _cleanup_free_
void *seed
= malloc(seed_size
);
4994 return log_oom_debug();
4996 r
= crypto_random_bytes(seed
, seed_size
);
4998 return log_debug_errno(r
, "Failed to generate random seed: %m");
5000 const char *hash_alg_name
= tpm2_hash_alg_to_string(parent
->publicArea
.nameAlg
);
5004 _cleanup_free_
void *encrypted_seed
= NULL
;
5005 size_t encrypted_seed_size
;
5006 r
= rsa_oaep_encrypt_bytes(
5013 &encrypted_seed_size
);
5015 return log_debug_errno(r
, "Could not RSA-OAEP encrypt random seed: %m");
5017 *ret_seed
= TAKE_PTR(seed
);
5018 *ret_seed_size
= seed_size
;
5019 *ret_encrypted_seed
= TAKE_PTR(encrypted_seed
);
5020 *ret_encrypted_seed_size
= encrypted_seed_size
;
5025 static int tpm2_calculate_seal_ecc_seed(
5026 const TPM2B_PUBLIC
*parent
,
5028 size_t *ret_seed_size
,
5029 void **ret_encrypted_seed
,
5030 size_t *ret_encrypted_seed_size
) {
5037 assert(ret_seed_size
);
5038 assert(ret_encrypted_seed
);
5039 assert(ret_encrypted_seed_size
);
5041 log_debug("Calculating encrypted seed for ECC sealed object.");
5043 _cleanup_(EVP_PKEY_freep
) EVP_PKEY
*parent_pkey
= NULL
;
5044 r
= tpm2_tpm2b_public_to_openssl_pkey(parent
, &parent_pkey
);
5046 return log_debug_errno(r
, "Could not convert TPM2B_PUBLIC to OpenSSL PKEY: %m");
5049 r
= ecc_pkey_to_curve_x_y(
5052 /* ret_x= */ NULL
, /* ret_x_size= */ NULL
,
5053 /* ret_y= */ NULL
, /* ret_y_size= */ NULL
);
5057 _cleanup_(EVP_PKEY_freep
) EVP_PKEY
*pkey
= NULL
;
5058 r
= ecc_pkey_new(curve_id
, &pkey
);
5062 _cleanup_free_
void *shared_secret
= NULL
;
5063 size_t shared_secret_size
;
5064 r
= ecc_ecdh(pkey
, parent_pkey
, &shared_secret
, &shared_secret_size
);
5066 return log_debug_errno(r
, "Could not generate ECC shared secret: %m");
5068 _cleanup_free_
void *x
= NULL
, *y
= NULL
;
5069 size_t x_size
, y_size
;
5070 r
= ecc_pkey_to_curve_x_y(pkey
, /* ret_curve_id= */ NULL
, &x
, &x_size
, &y
, &y_size
);
5072 return log_debug_errno(r
, "Could not get ECC get x/y: %m");
5074 r
= TPM2B_ECC_PARAMETER_CHECK_SIZE(x_size
);
5076 return log_debug_errno(r
, "ECC point x size %zu is too large: %m", x_size
);
5078 r
= TPM2B_ECC_PARAMETER_CHECK_SIZE(y_size
);
5080 return log_debug_errno(r
, "ECC point y size %zu is too large: %m", y_size
);
5082 TPMS_ECC_POINT point
= {
5083 .x
= TPM2B_ECC_PARAMETER_MAKE(x
, x_size
),
5084 .y
= TPM2B_ECC_PARAMETER_MAKE(y
, y_size
),
5087 _cleanup_free_
void *encrypted_seed
= malloc(sizeof(point
));
5088 if (!encrypted_seed
)
5089 return log_oom_debug();
5091 size_t encrypted_seed_size
= 0;
5092 rc
= sym_Tss2_MU_TPMS_ECC_POINT_Marshal(&point
, encrypted_seed
, sizeof(point
), &encrypted_seed_size
);
5093 if (rc
!= TPM2_RC_SUCCESS
)
5094 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
5095 "Failed to marshal ECC point: %s", sym_Tss2_RC_Decode(rc
));
5097 r
= tpm2_hash_alg_to_size(parent
->publicArea
.nameAlg
);
5101 size_t bits
= (size_t) r
* 8;
5103 _cleanup_free_
void *seed
= NULL
;
5104 size_t seed_size
= 0; /* Explicit initialization to appease gcc */
5105 r
= tpm2_kdfe(parent
->publicArea
.nameAlg
,
5111 parent
->publicArea
.unique
.ecc
.x
.buffer
,
5112 parent
->publicArea
.unique
.ecc
.x
.size
,
5117 return log_debug_errno(r
, "Could not calculate KDFe: %m");
5119 *ret_seed
= TAKE_PTR(seed
);
5120 *ret_seed_size
= seed_size
;
5121 *ret_encrypted_seed
= TAKE_PTR(encrypted_seed
);
5122 *ret_encrypted_seed_size
= encrypted_seed_size
;
5127 static int tpm2_calculate_seal_seed(
5128 const TPM2B_PUBLIC
*parent
,
5129 TPM2B_DIGEST
*ret_seed
,
5130 TPM2B_ENCRYPTED_SECRET
*ret_encrypted_seed
) {
5136 assert(ret_encrypted_seed
);
5138 log_debug("Calculating encrypted seed for sealed object.");
5140 _cleanup_free_
void *seed
= NULL
, *encrypted_seed
= NULL
;
5141 size_t seed_size
= 0, encrypted_seed_size
= 0; /* Explicit initialization to appease gcc */
5142 if (parent
->publicArea
.type
== TPM2_ALG_RSA
)
5143 r
= tpm2_calculate_seal_rsa_seed(parent
, &seed
, &seed_size
, &encrypted_seed
, &encrypted_seed_size
);
5144 else if (parent
->publicArea
.type
== TPM2_ALG_ECC
)
5145 r
= tpm2_calculate_seal_ecc_seed(parent
, &seed
, &seed_size
, &encrypted_seed
, &encrypted_seed_size
);
5147 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
5148 "Unsupported parent key type 0x%" PRIx16
, parent
->publicArea
.type
);
5150 return log_debug_errno(r
, "Could not calculate encrypted seed: %m");
5152 *ret_seed
= TPM2B_DIGEST_MAKE(seed
, seed_size
);
5153 *ret_encrypted_seed
= TPM2B_ENCRYPTED_SECRET_MAKE(encrypted_seed
, encrypted_seed_size
);
5158 #endif /* HAVE_OPENSSL */
5160 int tpm2_calculate_seal(
5161 TPM2_HANDLE parent_handle
,
5162 const TPM2B_PUBLIC
*parent_public
,
5163 const TPMA_OBJECT
*attributes
,
5164 const struct iovec
*secret
,
5165 const TPM2B_DIGEST
*policy
,
5167 struct iovec
*ret_secret
,
5168 struct iovec
*ret_blob
,
5169 struct iovec
*ret_serialized_parent
) {
5174 assert(parent_public
);
5175 assert(iovec_is_valid(secret
));
5176 assert(secret
|| ret_secret
);
5177 assert(!(secret
&& ret_secret
)); /* Either provide a secret, or we create one, but not both */
5179 assert(ret_serialized_parent
);
5181 log_debug("Calculating sealed object.");
5183 /* Default to the SRK. */
5184 if (parent_handle
== 0)
5185 parent_handle
= TPM2_SRK_HANDLE
;
5187 switch (TPM2_HANDLE_TYPE(parent_handle
)) {
5188 case TPM2_HT_PERSISTENT
:
5189 case TPM2_HT_NV_INDEX
:
5191 case TPM2_HT_TRANSIENT
:
5192 log_warning("Handle is transient, sealed secret may not be recoverable.");
5195 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
),
5196 "Handle 0x%" PRIx32
" not persistent, transient, or NV.",
5200 _cleanup_(iovec_done_erase
) struct iovec generated_secret
= {};
5202 /* No secret provided, generate a random secret. We use SHA256 digest length, though it can
5203 * be up to TPM2_MAX_SEALED_DATA. The secret length is not limited to the nameAlg hash
5205 r
= crypto_random_bytes_allocate_iovec(TPM2_SHA256_DIGEST_SIZE
, &generated_secret
);
5207 return log_debug_errno(r
, "Failed to generate secret key: %m");
5209 secret
= &generated_secret
;
5212 if (secret
->iov_len
> TPM2_MAX_SEALED_DATA
)
5213 return log_debug_errno(SYNTHETIC_ERRNO(EOVERFLOW
),
5214 "Secret size %zu too large, limit is %d bytes.",
5215 secret
->iov_len
, TPM2_MAX_SEALED_DATA
);
5217 TPM2B_DIGEST random_seed
;
5218 TPM2B_ENCRYPTED_SECRET seed
;
5219 r
= tpm2_calculate_seal_seed(parent_public
, &random_seed
, &seed
);
5223 TPM2B_PUBLIC
public;
5224 r
= tpm2_calculate_seal_public(parent_public
, attributes
, policy
, &random_seed
, secret
->iov_base
, secret
->iov_len
, &public);
5229 r
= tpm2_calculate_pubkey_name(&public.publicArea
, &name
);
5233 TPM2B_PRIVATE
private;
5234 r
= tpm2_calculate_seal_private(parent_public
, &name
, pin
, &random_seed
, secret
->iov_base
, secret
->iov_len
, &private);
5238 _cleanup_(iovec_done
) struct iovec blob
= {};
5239 r
= tpm2_marshal_blob(&public, &private, &seed
, &blob
.iov_base
, &blob
.iov_len
);
5241 return log_debug_errno(r
, "Could not create sealed blob: %m");
5243 TPM2B_NAME parent_name
;
5244 r
= tpm2_calculate_pubkey_name(&parent_public
->publicArea
, &parent_name
);
5248 _cleanup_(iovec_done
) struct iovec serialized_parent
= {};
5249 r
= tpm2_calculate_serialize(
5253 &serialized_parent
.iov_base
,
5254 &serialized_parent
.iov_len
);
5259 *ret_secret
= TAKE_STRUCT(generated_secret
);
5260 *ret_blob
= TAKE_STRUCT(blob
);
5261 *ret_serialized_parent
= TAKE_STRUCT(serialized_parent
);
5264 #else /* HAVE_OPENSSL */
5265 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "OpenSSL support is disabled.");
5269 int tpm2_seal(Tpm2Context
*c
,
5270 uint32_t seal_key_handle
,
5271 const TPM2B_DIGEST policy
[],
5274 struct iovec
*ret_secret
,
5275 struct iovec
**ret_blobs
,
5276 size_t *ret_n_blobs
,
5277 uint16_t *ret_primary_alg
,
5278 struct iovec
*ret_srk
) {
5280 uint16_t primary_alg
= 0;
5285 assert(ret_n_blobs
);
5287 /* So here's what we do here: we connect to the TPM2 chip. It persistently contains a "seed" key that
5288 * is randomized when the TPM2 is first initialized or reset and remains stable across boots. We
5289 * generate a "primary" key pair derived from that (ECC if possible, RSA as fallback). Given the seed
5290 * remains fixed this will result in the same key pair whenever we specify the exact same parameters
5291 * for it. We then create a PCR-bound policy session, which calculates a hash on the current PCR
5292 * values of the indexes we specify. We then generate a randomized key on the host (which is the key
5293 * we actually enroll in the LUKS2 keyslots), which we upload into the TPM2, where it is encrypted
5294 * with the "primary" key, taking the PCR policy session into account. We then download the encrypted
5295 * key from the TPM2 ("sealing") and marshall it into binary form, which is ultimately placed in the
5296 * LUKS2 JSON header.
5298 * The TPM2 "seed" key and "primary" keys never leave the TPM2 chip (and cannot be extracted at
5299 * all). The random key we enroll in LUKS2 we generate on the host using the Linux random device. It
5300 * is stored in the LUKS2 JSON only in encrypted form with the "primary" key of the TPM2 chip, thus
5301 * binding the unlocking to the TPM2 chip. */
5303 usec_t start
= now(CLOCK_MONOTONIC
);
5305 TPMA_OBJECT hmac_attributes
=
5306 TPMA_OBJECT_FIXEDTPM
|
5307 TPMA_OBJECT_FIXEDPARENT
;
5309 /* If protected by PIN, a user-selected low-entropy password, enable DA protection.
5310 Without a PIN, the key's left protected only by a PCR policy, which does not benefit
5311 from DA protection. */
5312 hmac_attributes
|= pin
? 0 : TPMA_OBJECT_NODA
;
5314 /* We use a keyed hash object (i.e. HMAC) to store the secret key we want to use for unlocking the
5315 * LUKS2 volume with. We don't ever use for HMAC/keyed hash operations however, we just use it
5316 * because it's a key type that is universally supported and suitable for symmetric binary blobs. */
5317 TPMT_PUBLIC hmac_template
= {
5318 .type
= TPM2_ALG_KEYEDHASH
,
5319 .nameAlg
= TPM2_ALG_SHA256
,
5320 .objectAttributes
= hmac_attributes
,
5321 .parameters
.keyedHashDetail
.scheme
.scheme
= TPM2_ALG_NULL
,
5322 .unique
.keyedHash
.size
= SHA256_DIGEST_SIZE
,
5325 TPMS_SENSITIVE_CREATE hmac_sensitive
= {
5326 .data
.size
= hmac_template
.unique
.keyedHash
.size
,
5329 CLEANUP_ERASE(hmac_sensitive
);
5332 r
= tpm2_auth_value_from_pin(TPM2_ALG_SHA256
, pin
, &hmac_sensitive
.userAuth
);
5337 assert(sizeof(hmac_sensitive
.data
.buffer
) >= hmac_sensitive
.data
.size
);
5339 (void) tpm2_credit_random(c
);
5341 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*primary_handle
= NULL
;
5343 _cleanup_(Esys_Freep
) TPM2B_PUBLIC
*primary_public
= NULL
;
5345 if (IN_SET(seal_key_handle
, 0, TPM2_SRK_HANDLE
)) {
5346 r
= tpm2_get_or_create_srk(
5348 /* session= */ NULL
,
5350 /* ret_name= */ NULL
,
5351 /* ret_qname= */ NULL
,
5355 } else if (IN_SET(TPM2_HANDLE_TYPE(seal_key_handle
), TPM2_HT_TRANSIENT
, TPM2_HT_PERSISTENT
)) {
5356 r
= tpm2_index_to_handle(
5359 /* session= */ NULL
,
5361 /* ret_name= */ NULL
,
5362 /* ret_qname= */ NULL
,
5367 /* We do NOT automatically create anything other than the SRK */
5368 return log_debug_errno(SYNTHETIC_ERRNO(ENOENT
),
5369 "No handle found at index 0x%" PRIx32
, seal_key_handle
);
5371 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
),
5372 "Seal key handle 0x%" PRIx32
" is neither transient nor persistent.",
5375 primary_alg
= primary_public
->publicArea
.type
;
5377 if (seal_key_handle
!= 0)
5378 log_debug("Using primary alg sealing, but seal key handle also provided; ignoring seal key handle.");
5380 /* TODO: force all callers to provide ret_srk, so we can stop sealing with the legacy templates. */
5381 primary_alg
= TPM2_ALG_ECC
;
5383 TPM2B_PUBLIC
template = {
5384 .size
= sizeof(TPMT_PUBLIC
),
5386 r
= tpm2_get_legacy_template(primary_alg
, &template.publicArea
);
5388 return log_debug_errno(r
, "Could not get legacy ECC template: %m");
5390 if (!tpm2_supports_tpmt_public(c
, &template.publicArea
)) {
5391 primary_alg
= TPM2_ALG_RSA
;
5393 r
= tpm2_get_legacy_template(primary_alg
, &template.publicArea
);
5395 return log_debug_errno(r
, "Could not get legacy RSA template: %m");
5397 if (!tpm2_supports_tpmt_public(c
, &template.publicArea
))
5398 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
5399 "TPM does not support either ECC or RSA legacy template.");
5402 r
= tpm2_create_primary(
5404 /* session= */ NULL
,
5406 /* sensitive= */ NULL
,
5407 /* ret_public= */ NULL
,
5413 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*encryption_session
= NULL
;
5414 r
= tpm2_make_encryption_session(c
, primary_handle
, /* bind_key= */ NULL
, &encryption_session
);
5418 log_debug("Generating secret key data.");
5420 /* At least one shard, and if we have multiple policies, then we need one shard for each */
5421 size_t n_shards
= MAX(n_policy
, 1U);
5423 /* Create a large secret which covers all shards we need */
5424 _cleanup_(iovec_done_erase
) struct iovec secret
= {};
5425 r
= crypto_random_bytes_allocate_iovec(hmac_sensitive
.data
.size
* n_shards
, &secret
);
5427 return log_debug_errno(r
, "Failed to generate secret key: %m");
5429 struct iovec
*blobs
= new0(struct iovec
, n_shards
);
5432 CLEANUP_ARRAY(blobs
, n_blobs
, iovec_array_free
);
5434 for (size_t shard
= 0; shard
< n_shards
; shard
++) {
5436 /* Patch this shard's policy into the template */
5437 if (shard
< n_policy
)
5438 hmac_template
.authPolicy
= policy
[shard
];
5440 hmac_template
.authPolicy
= TPM2B_DIGEST_MAKE(NULL
, TPM2_SHA256_DIGEST_SIZE
);
5442 /* Copy in this shard's secret key */
5443 memcpy(hmac_sensitive
.data
.buffer
,
5444 (const uint8_t*) secret
.iov_base
+ (hmac_sensitive
.data
.size
* shard
),
5445 hmac_sensitive
.data
.size
);
5447 log_debug("Creating HMAC key on TPM for shard %zu.", shard
);
5449 _cleanup_(Esys_Freep
) TPM2B_PUBLIC
*public = NULL
;
5450 _cleanup_(Esys_Freep
) TPM2B_PRIVATE
*private = NULL
;
5451 r
= tpm2_create(c
, primary_handle
, encryption_session
, &hmac_template
, &hmac_sensitive
, &public, &private);
5455 log_debug("Marshalling private and public part of HMAC key for shard %zu.", shard
);
5457 r
= tpm2_marshal_blob(public, private, /* seed= */ NULL
, &blobs
[n_blobs
].iov_base
, &blobs
[n_blobs
].iov_len
);
5459 return log_debug_errno(r
, "Could not create sealed blob: %m");
5465 log_debug("Completed TPM2 key sealing in %s.", FORMAT_TIMESPAN(now(CLOCK_MONOTONIC
) - start
, 1));
5468 _cleanup_(iovec_done
) struct iovec srk
= {};
5469 _cleanup_(Esys_Freep
) void *tmp
= NULL
;
5472 r
= tpm2_serialize(c
, primary_handle
, &tmp
, &tmp_size
);
5477 * make a copy since we don't want the caller to understand that
5478 * ESYS allocated the pointer. It would make tracking what deallocator
5479 * to use for srk in which context a PITA.
5481 srk
.iov_base
= memdup(tmp
, tmp_size
);
5483 return log_oom_debug();
5484 srk
.iov_len
= tmp_size
;
5486 *ret_srk
= TAKE_STRUCT(srk
);
5489 *ret_secret
= TAKE_STRUCT(secret
);
5490 *ret_blobs
= TAKE_PTR(blobs
);
5491 *ret_n_blobs
= n_blobs
;
5493 if (ret_primary_alg
)
5494 *ret_primary_alg
= primary_alg
;
5499 #define RETRY_UNSEAL_MAX 30u
5501 int tpm2_unseal(Tpm2Context
*c
,
5502 uint32_t hash_pcr_mask
,
5504 const struct iovec
*pubkey
,
5505 uint32_t pubkey_pcr_mask
,
5506 sd_json_variant
*signature
,
5508 const Tpm2PCRLockPolicy
*pcrlock_policy
,
5509 uint16_t primary_alg
,
5510 const struct iovec blobs
[],
5512 const struct iovec known_policy_hash
[],
5513 size_t n_known_policy_hash
,
5514 const struct iovec
*srk
,
5515 struct iovec
*ret_secret
) {
5517 /* Returns the following errors:
5519 * -EREMOTE → blob is from a different TPM
5520 * -EDEADLK → couldn't create primary key because authorization failure
5521 * -ENOLCK → TPM is in dictionary lockout mode
5522 * -EREMCHG → submitted policy doesn't match NV index stored policy (in case of PolicyAuthorizeNV)
5523 * -ENOANO → none of the PolicyOR branches of a policy matched current state
5524 * -EUCLEAN → PCR state doesn't match expectations
5525 * -EPERM → stored policy does not match TPM state
5526 * -ENOTRECOVERABLE → all other kinds of TPM errors
5527 * -EILSEQ → bad PIN
5529 * Of these all four of EREMCHG, ENOANO, EUCLEAN, EPERM can all mean that PCR state is not matching
5535 assert(n_blobs
> 0);
5536 assert(iovec_is_valid(pubkey
));
5539 assert(TPM2_PCR_MASK_VALID(hash_pcr_mask
));
5540 assert(TPM2_PCR_MASK_VALID(pubkey_pcr_mask
));
5542 /* So here's what we do here: We connect to the TPM2 chip. As we do when sealing we generate a
5543 * "primary" key on the TPM2 chip, with the same parameters as well as a PCR-bound policy session.
5544 * Given we pass the same parameters, this will result in the same "primary" key, and same policy
5545 * hash (the latter of course, only if the PCR values didn't change in between). We unmarshal the
5546 * encrypted key we stored in the LUKS2 JSON token header and upload it into the TPM2, where it is
5547 * decrypted if the seed and the PCR policy were right ("unsealing"). We then download the result,
5548 * and use it to unlock the LUKS2 volume. */
5550 usec_t start
= now(CLOCK_MONOTONIC
);
5552 size_t n_shards
= pcrlock_policy
&& iovec_is_set(pubkey
) ? 2 : 1;
5553 if (n_blobs
!= n_shards
)
5554 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "Number of provided key blobs (%zu) does not match policy requirements (%zu).", n_blobs
, n_shards
);
5555 if (n_known_policy_hash
> 0 && n_known_policy_hash
!= n_shards
)
5556 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "Number of provided known policy hashes (%zu) does not match policy requirements (%zu or 0).", n_known_policy_hash
, n_shards
);
5558 /* Older code did not save the pcr_bank, and unsealing needed to detect the best pcr bank to use,
5559 * so we need to handle that legacy situation. */
5560 if (pcr_bank
== UINT16_MAX
) {
5561 r
= tpm2_get_best_pcr_bank(c
, hash_pcr_mask
|pubkey_pcr_mask
, &pcr_bank
);
5566 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*primary_handle
= NULL
;
5567 if (iovec_is_set(srk
)) {
5568 r
= tpm2_deserialize(c
, srk
->iov_base
, srk
->iov_len
, &primary_handle
);
5571 } else if (primary_alg
!= 0) {
5572 TPM2B_PUBLIC
template = {
5573 .size
= sizeof(TPMT_PUBLIC
),
5575 r
= tpm2_get_legacy_template(primary_alg
, &template.publicArea
);
5577 return log_debug_errno(r
, "Could not get legacy template: %m");
5579 r
= tpm2_create_primary(
5581 /* session= */ NULL
,
5583 /* sensitive= */ NULL
,
5584 /* ret_public= */ NULL
,
5589 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
),
5590 "No SRK or primary alg provided.");
5592 TPM2B_PUBLIC pubkey_tpm2b
;
5593 _cleanup_(iovec_done
) struct iovec fp
= {};
5594 if (iovec_is_set(pubkey
)) {
5595 r
= tpm2_tpm2b_public_from_pem(pubkey
->iov_base
, pubkey
->iov_len
, &pubkey_tpm2b
);
5597 return log_debug_errno(r
, "Could not create TPMT_PUBLIC: %m");
5599 r
= tpm2_tpm2b_public_to_fingerprint(&pubkey_tpm2b
, &fp
.iov_base
, &fp
.iov_len
);
5601 return log_debug_errno(r
, "Could not get key fingerprint: %m");
5604 _cleanup_(iovec_done_erase
) struct iovec secret
= {};
5605 for (unsigned i
= RETRY_UNSEAL_MAX
;; i
--) {
5607 iovec_done_erase(&secret
); /* clear data from previous unseal attempt */
5609 for (size_t shard
= 0; shard
< n_blobs
; shard
++) {
5610 TPM2B_PUBLIC
public;
5611 TPM2B_PRIVATE
private;
5612 TPM2B_ENCRYPTED_SECRET seed
= {};
5613 r
= tpm2_unmarshal_blob(blobs
[shard
].iov_base
, blobs
[shard
].iov_len
, &public, &private, &seed
);
5615 return log_debug_errno(r
, "Could not extract parts from blob: %m");
5617 if (seed
.size
> 0) {
5618 /* This is a calculated (or duplicated) sealed object, and must be imported. */
5619 _cleanup_free_ TPM2B_PRIVATE
*imported_private
= NULL
;
5622 /* session= */ NULL
,
5626 /* encryption_key= */ NULL
,
5627 /* symmetric= */ NULL
,
5632 private = *imported_private
;
5635 log_debug("Loading HMAC key into TPM for shard %zu.", shard
);
5637 /* Nothing sensitive on the bus, no need for encryption. Even if an attacker gives
5638 * you back a different key, the session initiation will fail. In the SRK model, the
5639 * tpmKey is verified. In the non-srk model, with pin, the bindKey provides
5641 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*hmac_key
= NULL
;
5642 r
= tpm2_load(c
, primary_handle
, NULL
, &public, &private, &hmac_key
);
5646 /* If a PIN is set for the seal object, use it to bind the session key to that
5647 * object. This prevents active bus interposers from faking a TPM and seeing the
5648 * unsealed value. An active interposer could fake a TPM, satisfying the encrypted
5649 * session, and just forward everything to the *real* TPM. */
5650 r
= tpm2_set_auth(c
, hmac_key
, pin
);
5654 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*encryption_session
= NULL
;
5655 r
= tpm2_make_encryption_session(c
, primary_handle
, hmac_key
, &encryption_session
);
5659 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*policy_session
= NULL
;
5660 _cleanup_(Esys_Freep
) TPM2B_DIGEST
*policy_digest
= NULL
;
5661 r
= tpm2_make_policy_session(
5667 return r
; /* Will return EILSEQ on auth failure (i.e. bad PIN) */
5669 /* If both public PCR key and pcrlock policies are requested, then generate the
5670 * public PCR policy for the first shared, and the pcrlock policy for the 2nd */
5671 r
= tpm2_build_sealing_policy(
5676 shard
== 0 && iovec_is_set(pubkey
) ? &pubkey_tpm2b
: NULL
,
5677 fp
.iov_base
, fp
.iov_len
,
5678 shard
== 0 ? pubkey_pcr_mask
: 0,
5681 (shard
== 1 || !iovec_is_set(pubkey
)) ? pcrlock_policy
: NULL
,
5683 if (r
== -EUCLEAN
&& i
> 0) {
5684 log_debug("A PCR value changed during the TPM2 policy session, restarting HMAC key unsealing (%u tries left).", i
);
5691 /* If we know the policy hash to expect, and it doesn't match, we can shortcut things here, and not
5692 * wait until the TPM2 tells us to go away. */
5693 if (n_known_policy_hash
> 0 && memcmp_nn(policy_digest
->buffer
,
5694 policy_digest
->size
,
5695 known_policy_hash
[shard
].iov_base
,
5696 known_policy_hash
[shard
].iov_len
) != 0) {
5699 iovec_is_set(pubkey
) &&
5700 pubkey_tpm2b
.publicArea
.type
== TPM2_ALG_RSA
&&
5701 pubkey_tpm2b
.publicArea
.parameters
.rsaDetail
.exponent
== TPM2_RSA_DEFAULT_EXPONENT
) {
5702 /* Due to bug #30546, if using RSA pubkey with the default exponent, we may
5703 * need to set the exponent to the TPM special-case value of 0 and retry. */
5704 log_debug("Policy hash mismatch, retrying with RSA pubkey exponent set to 0.");
5705 pubkey_tpm2b
.publicArea
.parameters
.rsaDetail
.exponent
= 0;
5710 return log_debug_errno(SYNTHETIC_ERRNO(EPERM
),
5711 "Current policy digest does not match stored policy digest, cancelling "
5712 "TPM2 authentication attempt.");
5715 log_debug("Unsealing HMAC key for shard %zu.", shard
);
5717 _cleanup_(tpm2b_sensitive_data_erase_and_esys_freep
) TPM2B_SENSITIVE_DATA
* unsealed
= NULL
;
5718 rc
= sym_Esys_Unseal(
5720 hmac_key
->esys_handle
,
5721 policy_session
->esys_handle
,
5722 encryption_session
->esys_handle
, /* use HMAC session to enable parameter encryption */
5725 if (rc
== TPM2_RC_PCR_CHANGED
&& i
> 0) {
5726 log_debug("A PCR value changed during the TPM2 policy session, restarting HMAC key unsealing (%u tries left).", i
);
5730 if (rc
!= TPM2_RC_SUCCESS
)
5731 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
5732 "Failed to unseal HMAC key in TPM: %s", sym_Tss2_RC_Decode(rc
));
5734 if (!iovec_append(&secret
, &IOVEC_MAKE(unsealed
->buffer
, unsealed
->size
)))
5735 return log_oom_debug();
5743 log_debug("Completed TPM2 key unsealing in %s.", FORMAT_TIMESPAN(now(CLOCK_MONOTONIC
) - start
, 1));
5745 *ret_secret
= TAKE_STRUCT(secret
);
5749 static TPM2_HANDLE
generate_random_nv_index(void) {
5750 return TPM2_NV_INDEX_UNASSIGNED_FIRST
+
5751 (TPM2_HANDLE
) random_u64_range(TPM2_NV_INDEX_UNASSIGNED_LAST
- TPM2_NV_INDEX_UNASSIGNED_FIRST
+ 1);
5754 int tpm2_define_policy_nv_index(
5756 const Tpm2Handle
*session
,
5757 TPM2_HANDLE requested_nv_index
,
5758 const TPM2B_DIGEST
*write_policy
,
5759 TPM2_HANDLE
*ret_nv_index
,
5760 Tpm2Handle
**ret_nv_handle
,
5761 TPM2B_NV_PUBLIC
*ret_nv_public
) {
5763 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*new_handle
= NULL
;
5769 /* Allocates an nvindex to store a policy for use in PolicyAuthorizeNV in. This is where pcrlock then
5770 * stores its predicted PCR policies in. If 'requested_nv_index' will try to allocate the specified
5771 * nvindex, otherwise will find a free one, and use that. */
5773 r
= tpm2_handle_new(c
, &new_handle
);
5777 new_handle
->flush
= false; /* This is a persistent NV index, don't flush hence */
5779 for (unsigned try = 0; try < 25U; try++) {
5780 TPM2_HANDLE nv_index
;
5782 if (requested_nv_index
!= 0)
5783 nv_index
= requested_nv_index
;
5785 nv_index
= generate_random_nv_index();
5787 TPM2B_NV_PUBLIC public_info
= {
5788 .size
= sizeof_field(TPM2B_NV_PUBLIC
, nvPublic
),
5790 .nvIndex
= nv_index
,
5791 .nameAlg
= TPM2_ALG_SHA256
,
5792 .attributes
= TPM2_NT_ORDINARY
| TPMA_NV_WRITEALL
| TPMA_NV_POLICYWRITE
| TPMA_NV_OWNERREAD
,
5793 .dataSize
= offsetof(TPMT_HA
, digest
) + tpm2_hash_alg_to_size(TPM2_ALG_SHA256
),
5798 public_info
.nvPublic
.authPolicy
= *write_policy
;
5800 rc
= sym_Esys_NV_DefineSpace(
5802 /* authHandle= */ ESYS_TR_RH_OWNER
,
5803 /* shandle1= */ session
? session
->esys_handle
: ESYS_TR_PASSWORD
,
5804 /* shandle2= */ ESYS_TR_NONE
,
5805 /* shandle3= */ ESYS_TR_NONE
,
5808 &new_handle
->esys_handle
);
5810 if (rc
== TSS2_RC_SUCCESS
) {
5811 log_debug("NV Index 0x%" PRIx32
" successfully allocated.", nv_index
);
5814 *ret_nv_index
= nv_index
;
5817 *ret_nv_handle
= TAKE_PTR(new_handle
);
5820 *ret_nv_public
= public_info
;
5824 if (rc
!= TPM2_RC_NV_DEFINED
)
5825 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
5826 "Failed to allocate NV index: %s", sym_Tss2_RC_Decode(rc
));
5828 if (requested_nv_index
!= 0) {
5829 assert(nv_index
== requested_nv_index
);
5830 return log_debug_errno(SYNTHETIC_ERRNO(EEXIST
),
5831 "Requested NV index 0x%" PRIx32
" already taken.", requested_nv_index
);
5834 log_debug("NV index 0x%" PRIu32
" already taken, trying another one (%u tries left)", nv_index
, try);
5837 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
5838 "Too many attempts trying to allocate NV index: %s", sym_Tss2_RC_Decode(rc
));
5841 int tpm2_write_policy_nv_index(
5843 const Tpm2Handle
*policy_session
,
5844 TPM2_HANDLE nv_index
,
5845 const Tpm2Handle
*nv_handle
,
5846 const TPM2B_DIGEST
*policy_digest
) {
5851 assert(policy_session
);
5853 assert(policy_digest
);
5855 if (policy_digest
->size
!= tpm2_hash_alg_to_size(TPM2_ALG_SHA256
))
5856 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "Policy to store in NV index has wrong size.");
5859 .hashAlg
= TPM2_ALG_SHA256
,
5861 assert(policy_digest
->size
<= sizeof_field(TPMT_HA
, digest
));
5862 memcpy_safe(&ha
.digest
, policy_digest
->buffer
, policy_digest
->size
);
5864 TPM2B_MAX_NV_BUFFER buffer
= {};
5866 rc
= sym_Tss2_MU_TPMT_HA_Marshal(&ha
, buffer
.buffer
, sizeof(buffer
.buffer
), &written
);
5867 if (rc
!= TSS2_RC_SUCCESS
)
5868 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
5869 "Failed to marshal policy digest.");
5871 buffer
.size
= written
;
5873 rc
= sym_Esys_NV_Write(
5875 /* authHandle= */ nv_handle
->esys_handle
,
5876 /* nvIndex= */ nv_handle
->esys_handle
,
5877 /* shandle1= */ policy_session
->esys_handle
,
5878 /* shandle2= */ ESYS_TR_NONE
,
5879 /* shandle3= */ ESYS_TR_NONE
,
5882 if (rc
!= TSS2_RC_SUCCESS
)
5883 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
5884 "Failed to write NV index: %s", sym_Tss2_RC_Decode(rc
));
5886 if (DEBUG_LOGGING
) {
5887 _cleanup_free_
char *h
= NULL
;
5888 h
= hexmem(policy_digest
->buffer
, policy_digest
->size
);
5889 log_debug("Written policy digest %s to NV index 0x%x", strnull(h
), nv_index
);
5895 int tpm2_undefine_policy_nv_index(
5897 const Tpm2Handle
*session
,
5898 TPM2_HANDLE nv_index
,
5899 const Tpm2Handle
*nv_handle
) {
5906 rc
= sym_Esys_NV_UndefineSpace(
5908 /* authHandle= */ ESYS_TR_RH_OWNER
,
5909 /* nvIndex= */ nv_handle
->esys_handle
,
5910 /* shandle1= */ session
? session
->esys_handle
: ESYS_TR_NONE
,
5911 /* shandle2= */ ESYS_TR_NONE
,
5912 /* shandle3= */ ESYS_TR_NONE
);
5913 if (rc
!= TSS2_RC_SUCCESS
)
5914 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
5915 "Failed to undefine NV index: %s", sym_Tss2_RC_Decode(rc
));
5917 log_debug("Undefined NV index 0x%x", nv_index
);
5923 const struct iovec
*data
,
5924 const Tpm2Handle
*primary_handle
,
5925 const Tpm2Handle
*encryption_session
,
5926 const TPM2B_DIGEST
*policy
,
5927 struct iovec
*ret_public
,
5928 struct iovec
*ret_private
) {
5934 assert(primary_handle
);
5936 /* This is a generic version of tpm2_seal(), that doesn't imply any policy or any specific
5937 * combination of the two keypairs in their marshalling. tpm2_seal() is somewhat specific to the FDE
5938 * usecase. We probably should migrate tpm2_seal() to use tpm2_seal_data() eventually. */
5940 if (data
->iov_len
>= sizeof_field(TPMS_SENSITIVE_CREATE
, data
.buffer
))
5943 TPMT_PUBLIC hmac_template
= {
5944 .type
= TPM2_ALG_KEYEDHASH
,
5945 .nameAlg
= TPM2_ALG_SHA256
,
5946 .objectAttributes
= TPMA_OBJECT_FIXEDTPM
| TPMA_OBJECT_FIXEDPARENT
,
5947 .parameters
.keyedHashDetail
.scheme
.scheme
= TPM2_ALG_NULL
,
5948 .unique
.keyedHash
.size
= data
->iov_len
,
5949 .authPolicy
= policy
? *policy
: TPM2B_DIGEST_MAKE(NULL
, TPM2_SHA256_DIGEST_SIZE
),
5952 TPMS_SENSITIVE_CREATE hmac_sensitive
= {
5953 .data
.size
= hmac_template
.unique
.keyedHash
.size
,
5956 CLEANUP_ERASE(hmac_sensitive
);
5958 memcpy_safe(hmac_sensitive
.data
.buffer
, data
->iov_base
, data
->iov_len
);
5960 _cleanup_(Esys_Freep
) TPM2B_PUBLIC
*public = NULL
;
5961 _cleanup_(Esys_Freep
) TPM2B_PRIVATE
*private = NULL
;
5962 r
= tpm2_create(c
, primary_handle
, encryption_session
, &hmac_template
, &hmac_sensitive
, &public, &private);
5966 _cleanup_(iovec_done
) struct iovec public_blob
= {}, private_blob
= {};
5968 r
= tpm2_marshal_private(private, &private_blob
.iov_base
, &private_blob
.iov_len
);
5972 r
= tpm2_marshal_public(public, &public_blob
.iov_base
, &public_blob
.iov_len
);
5977 *ret_public
= TAKE_STRUCT(public_blob
);
5979 *ret_private
= TAKE_STRUCT(private_blob
);
5984 int tpm2_unseal_data(
5986 const struct iovec
*public_blob
,
5987 const struct iovec
*private_blob
,
5988 const Tpm2Handle
*primary_handle
,
5989 const Tpm2Handle
*policy_session
,
5990 const Tpm2Handle
*encryption_session
,
5991 struct iovec
*ret_data
) {
5997 assert(public_blob
);
5998 assert(private_blob
);
5999 assert(primary_handle
);
6001 TPM2B_PUBLIC
public;
6002 r
= tpm2_unmarshal_public(public_blob
->iov_base
, public_blob
->iov_len
, &public);
6006 TPM2B_PRIVATE
private;
6007 r
= tpm2_unmarshal_private(private_blob
->iov_base
, private_blob
->iov_len
, &private);
6011 _cleanup_(tpm2_handle_freep
) Tpm2Handle
*what
= NULL
;
6012 r
= tpm2_load(c
, primary_handle
, NULL
, &public, &private, &what
);
6016 _cleanup_(tpm2b_sensitive_data_erase_and_esys_freep
) TPM2B_SENSITIVE_DATA
* unsealed
= NULL
;
6017 rc
= sym_Esys_Unseal(
6020 policy_session
? policy_session
->esys_handle
: ESYS_TR_NONE
,
6021 encryption_session
? encryption_session
->esys_handle
: ESYS_TR_NONE
,
6024 if (rc
== TPM2_RC_PCR_CHANGED
)
6025 return log_debug_errno(SYNTHETIC_ERRNO(ESTALE
),
6026 "PCR changed while unsealing.");
6027 if (rc
!= TSS2_RC_SUCCESS
)
6028 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
6029 "Failed to unseal data: %s", sym_Tss2_RC_Decode(rc
));
6031 _cleanup_(iovec_done
) struct iovec d
= {
6032 .iov_base
= memdup(unsealed
->buffer
, unsealed
->size
),
6033 .iov_len
= unsealed
->size
,
6036 return log_oom_debug();
6038 *ret_data
= TAKE_STRUCT(d
);
6041 #endif /* HAVE_TPM2 */
6043 int tpm2_list_devices(bool legend
, bool quiet
) {
6045 _cleanup_(table_unrefp
) Table
*t
= NULL
;
6046 _cleanup_closedir_
DIR *d
= NULL
;
6051 return log_error_errno(r
, "TPM2 support is not installed.");
6053 t
= table_new("path", "device", "driver");
6057 (void) table_set_header(t
, legend
);
6059 d
= opendir("/sys/class/tpmrm");
6061 log_full_errno(errno
== ENOENT
? LOG_DEBUG
: LOG_ERR
, errno
, "Failed to open %s: %m", "/sys/class/tpmrm");
6062 if (errno
!= ENOENT
)
6066 _cleanup_free_
char *device_path
= NULL
, *device
= NULL
, *driver_path
= NULL
, *driver
= NULL
, *node
= NULL
;
6069 de
= readdir_no_dot(d
);
6073 device_path
= path_join("/sys/class/tpmrm", de
->d_name
, "device");
6077 r
= readlink_malloc(device_path
, &device
);
6079 log_debug_errno(r
, "Failed to read device symlink %s, ignoring: %m", device_path
);
6081 driver_path
= path_join(device_path
, "driver");
6085 r
= readlink_malloc(driver_path
, &driver
);
6087 log_debug_errno(r
, "Failed to read driver symlink %s, ignoring: %m", driver_path
);
6090 node
= path_join("/dev", de
->d_name
);
6097 TABLE_STRING
, device
? last_path_component(device
) : NULL
,
6098 TABLE_STRING
, driver
? last_path_component(driver
) : NULL
);
6100 return table_log_add_error(r
);
6104 if (table_isempty(t
) && !quiet
) {
6105 log_info("No suitable TPM2 devices found.");
6109 r
= table_print(t
, stdout
);
6111 return log_error_errno(r
, "Failed to show device table: %m");
6115 return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
6116 "TPM2 not supported on this build.");
6120 int tpm2_find_device_auto(char **ret
) {
6122 _cleanup_closedir_
DIR *d
= NULL
;
6127 return log_debug_errno(r
, "TPM2 support is not installed.");
6129 d
= opendir("/sys/class/tpmrm");
6131 log_debug_errno(errno
, "Failed to open %s: %m", "/sys/class/tpmrm");
6132 if (errno
!= ENOENT
)
6135 _cleanup_free_
char *node
= NULL
;
6140 de
= readdir_no_dot(d
);
6145 return log_debug_errno(SYNTHETIC_ERRNO(ENOTUNIQ
),
6146 "More than one TPM2 (tpmrm) device found.");
6148 node
= path_join("/dev", de
->d_name
);
6150 return log_oom_debug();
6154 *ret
= TAKE_PTR(node
);
6159 return log_debug_errno(SYNTHETIC_ERRNO(ENODEV
), "No TPM2 (tpmrm) device found.");
6161 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
),
6162 "TPM2 not supported on this build.");
6167 static const char* tpm2_userspace_event_type_table
[_TPM2_USERSPACE_EVENT_TYPE_MAX
] = {
6168 [TPM2_EVENT_PHASE
] = "phase",
6169 [TPM2_EVENT_FILESYSTEM
] = "filesystem",
6170 [TPM2_EVENT_VOLUME_KEY
] = "volume-key",
6171 [TPM2_EVENT_MACHINE_ID
] = "machine-id",
6174 DEFINE_STRING_TABLE_LOOKUP(tpm2_userspace_event_type
, Tpm2UserspaceEventType
);
6176 const char* tpm2_userspace_log_path(void) {
6177 return secure_getenv("SYSTEMD_MEASURE_LOG_USERSPACE") ?: "/run/log/systemd/tpm2-measure.log";
6180 const char* tpm2_firmware_log_path(void) {
6181 return secure_getenv("SYSTEMD_MEASURE_LOG_FIRMWARE") ?: "/sys/kernel/security/tpm0/binary_bios_measurements";
6185 static int tpm2_userspace_log_open(void) {
6186 _cleanup_close_
int fd
= -EBADF
;
6191 e
= tpm2_userspace_log_path();
6192 (void) mkdir_parents(e
, 0755);
6194 /* We use access mode 0600 here (even though the measurements should not strictly be confidential),
6195 * because we use BSD file locking on it, and if anyone but root can access the file they can also
6196 * lock it, which we want to avoid. */
6197 fd
= open(e
, O_CREAT
|O_WRONLY
|O_CLOEXEC
|O_NOCTTY
|O_NOFOLLOW
, 0600);
6199 return log_debug_errno(errno
, "Failed to open TPM log file '%s' for writing, ignoring: %m", e
);
6201 if (flock(fd
, LOCK_EX
) < 0)
6202 return log_debug_errno(errno
, "Failed to lock TPM log file '%s', ignoring: %m", e
);
6204 if (fstat(fd
, &st
) < 0)
6205 return log_debug_errno(errno
, "Failed to fstat TPM log file '%s', ignoring: %m", e
);
6207 r
= stat_verify_regular(&st
);
6209 return log_debug_errno(r
, "TPM log file '%s' is not regular, ignoring: %m", e
);
6211 /* We set the sticky bit when we are about to append to the log file. We'll unset it afterwards
6212 * again. If we manage to take a lock on a file that has it set we know we didn't write it fully and
6213 * it is corrupted. Ideally we'd like to use user xattrs for this, but unfortunately tmpfs (which is
6214 * our assumed backend fs) doesn't know user xattrs. */
6215 if (st
.st_mode
& S_ISVTX
)
6216 return log_debug_errno(SYNTHETIC_ERRNO(ESTALE
), "TPM log file '%s' aborted, ignoring.", e
);
6218 if (fchmod(fd
, 0600 | S_ISVTX
) < 0)
6219 return log_debug_errno(errno
, "Failed to chmod() TPM log file '%s', ignoring: %m", e
);
6224 static int tpm2_userspace_log(
6227 const TPML_DIGEST_VALUES
*values
,
6228 Tpm2UserspaceEventType event_type
,
6229 const char *description
) {
6231 _cleanup_(sd_json_variant_unrefp
) sd_json_variant
*v
= NULL
, *array
= NULL
;
6232 _cleanup_free_
char *f
= NULL
;
6237 assert(values
->count
> 0);
6239 /* We maintain a local PCR measurement log. This implements a subset of the TCG Canonical Event Log
6240 * Format – the JSON flavour –
6241 * (https://trustedcomputinggroup.org/resource/canonical-event-log-format/), but departs in certain
6242 * ways from it, specifically:
6244 * - We don't write out a recnum. It's a bit too vaguely defined which means we'd have to read
6245 * through the whole logs (include firmware logs) before knowing what the next value is we should
6246 * use. Hence we simply don't write this out as append-time, and instead expect a consumer to add
6247 * it in when it uses the data.
6249 * - We write this out in RFC 7464 application/json-seq rather than as a JSON array. Writing this as
6250 * JSON array would mean that for each appending we'd have to read the whole log file fully into
6251 * memory before writing it out again. We prefer a strictly append-only write pattern however. (RFC
6252 * 7464 is what jq --seq eats.) Conversion into a proper JSON array is trivial.
6254 * It should be possible to convert this format in a relatively straight-forward way into the
6255 * official TCG Canonical Event Log Format on read, by simply adding in a few more fields that can be
6256 * determined from the full dataset.
6258 * We set the 'content_type' field to "systemd" to make clear this data is generated by us, and
6259 * include various interesting fields in the 'content' subobject, including a CLOCK_BOOTTIME
6260 * timestamp which can be used to order this measurement against possibly other measurements
6261 * independently done by other subsystems on the system.
6264 if (fd
< 0) /* Apparently tpm2_local_log_open() failed earlier, let's not complain again */
6267 for (size_t i
= 0; i
< values
->count
; i
++) {
6268 const EVP_MD
*implementation
;
6271 assert_se(a
= tpm2_hash_alg_to_string(values
->digests
[i
].hashAlg
));
6272 assert_se(implementation
= EVP_get_digestbyname(a
));
6274 r
= sd_json_variant_append_arraybo(
6276 SD_JSON_BUILD_PAIR_STRING("hashAlg", a
),
6277 SD_JSON_BUILD_PAIR("digest", SD_JSON_BUILD_HEX(&values
->digests
[i
].digest
, EVP_MD_size(implementation
))));
6279 return log_debug_errno(r
, "Failed to append digest object to JSON array: %m");
6284 r
= sd_id128_get_boot(&boot_id
);
6286 return log_debug_errno(r
, "Failed to acquire boot ID: %m");
6290 SD_JSON_BUILD_PAIR("pcr", SD_JSON_BUILD_UNSIGNED(pcr_index
)),
6291 SD_JSON_BUILD_PAIR("digests", SD_JSON_BUILD_VARIANT(array
)),
6292 SD_JSON_BUILD_PAIR("content_type", SD_JSON_BUILD_STRING("systemd")),
6293 SD_JSON_BUILD_PAIR("content", SD_JSON_BUILD_OBJECT(
6294 SD_JSON_BUILD_PAIR_CONDITION(!!description
, "string", SD_JSON_BUILD_STRING(description
)),
6295 SD_JSON_BUILD_PAIR("bootId", SD_JSON_BUILD_ID128(boot_id
)),
6296 SD_JSON_BUILD_PAIR("timestamp", SD_JSON_BUILD_UNSIGNED(now(CLOCK_BOOTTIME
))),
6297 SD_JSON_BUILD_PAIR_CONDITION(event_type
>= 0, "eventType", SD_JSON_BUILD_STRING(tpm2_userspace_event_type_to_string(event_type
))))));
6299 return log_debug_errno(r
, "Failed to build log record JSON: %m");
6301 r
= sd_json_variant_format(v
, SD_JSON_FORMAT_SEQ
, &f
);
6303 return log_debug_errno(r
, "Failed to format JSON: %m");
6305 if (lseek(fd
, 0, SEEK_END
) < 0)
6306 return log_debug_errno(errno
, "Failed to seek to end of JSON log: %m");
6308 r
= loop_write(fd
, f
, SIZE_MAX
);
6310 return log_debug_errno(r
, "Failed to write JSON data to log: %m");
6313 return log_debug_errno(errno
, "Failed to sync JSON data: %m");
6315 /* Unset S_ISVTX again */
6316 if (fchmod(fd
, 0600) < 0)
6317 return log_debug_errno(errno
, "Failed to chmod() TPM log file, ignoring: %m");
6321 return log_debug_errno(r
, "Failed to sync JSON log: %m");
6327 int tpm2_extend_bytes(
6335 Tpm2UserspaceEventType event_type
,
6336 const char *description
) {
6339 _cleanup_close_
int log_fd
= -EBADF
;
6340 TPML_DIGEST_VALUES values
= {};
6344 assert(data
|| data_size
== 0);
6345 assert(secret
|| secret_size
== 0);
6347 if (data_size
== SIZE_MAX
)
6348 data_size
= strlen(data
);
6349 if (secret_size
== SIZE_MAX
)
6350 secret_size
= strlen(secret
);
6352 if (pcr_index
>= TPM2_PCRS_MAX
)
6353 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "Can't measure into unsupported PCR %u, refusing.", pcr_index
);
6355 if (strv_isempty(banks
))
6358 STRV_FOREACH(bank
, banks
) {
6359 const EVP_MD
*implementation
;
6362 assert_se(implementation
= EVP_get_digestbyname(*bank
));
6364 if (values
.count
>= ELEMENTSOF(values
.digests
))
6365 return log_debug_errno(SYNTHETIC_ERRNO(E2BIG
), "Too many banks selected.");
6367 if ((size_t) EVP_MD_size(implementation
) > sizeof(values
.digests
[values
.count
].digest
))
6368 return log_debug_errno(SYNTHETIC_ERRNO(E2BIG
), "Hash result too large for TPM2.");
6370 id
= tpm2_hash_alg_from_string(EVP_MD_name(implementation
));
6372 return log_debug_errno(id
, "Can't map hash name to TPM2.");
6374 values
.digests
[values
.count
].hashAlg
= id
;
6376 /* So here's a twist: sometimes we want to measure secrets (e.g. root file system volume
6377 * key), but we'd rather not leak a literal hash of the secret to the TPM (given that the
6378 * wire is unprotected, and some other subsystem might use the simple, literal hash of the
6379 * secret for other purposes, maybe because it needs a shorter secret derived from it for
6380 * some unrelated purpose, who knows). Hence we instead measure an HMAC signature of a
6381 * private non-secret string instead. */
6382 if (secret_size
> 0) {
6383 if (!HMAC(implementation
, secret
, secret_size
, data
, data_size
, (unsigned char*) &values
.digests
[values
.count
].digest
, NULL
))
6384 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
), "Failed to calculate HMAC of data to measure.");
6385 } else if (EVP_Digest(data
, data_size
, (unsigned char*) &values
.digests
[values
.count
].digest
, NULL
, implementation
, NULL
) != 1)
6386 return log_debug_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE
), "Failed to hash data to measure.");
6391 /* Open + lock the log file *before* we start measuring, so that no one else can come between our log
6392 * and our measurement and change either */
6393 log_fd
= tpm2_userspace_log_open();
6395 rc
= sym_Esys_PCR_Extend(
6397 ESYS_TR_PCR0
+ pcr_index
,
6402 if (rc
!= TSS2_RC_SUCCESS
)
6403 return log_debug_errno(
6404 SYNTHETIC_ERRNO(ENOTRECOVERABLE
),
6405 "Failed to measure into PCR %u: %s",
6407 sym_Tss2_RC_Decode(rc
));
6409 /* Now, write what we just extended to the log, too. */
6410 (void) tpm2_userspace_log(log_fd
, pcr_index
, &values
, event_type
, description
);
6413 #else /* HAVE_OPENSSL */
6414 return log_debug_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "OpenSSL support is disabled.");
6418 const uint16_t tpm2_hash_algorithms
[] = {
6426 assert_cc(ELEMENTSOF(tpm2_hash_algorithms
) == TPM2_N_HASH_ALGORITHMS
+ 1);
6428 static size_t tpm2_hash_algorithm_index(uint16_t algorithm
) {
6429 for (size_t i
= 0; i
< TPM2_N_HASH_ALGORITHMS
; i
++)
6430 if (tpm2_hash_algorithms
[i
] == algorithm
)
6436 TPM2B_DIGEST
*tpm2_pcr_prediction_result_get_hash(Tpm2PCRPredictionResult
*result
, uint16_t alg
) {
6441 alg_idx
= tpm2_hash_algorithm_index(alg
);
6442 if (alg_idx
== SIZE_MAX
) /* Algorithm not known? */
6445 if (result
->hash
[alg_idx
].size
<= 0) /* No hash value for this algorithm? */
6448 return result
->hash
+ alg_idx
;
6451 void tpm2_pcr_prediction_done(Tpm2PCRPrediction
*p
) {
6454 for (uint32_t pcr
= 0; pcr
< TPM2_PCRS_MAX
; pcr
++)
6455 ordered_set_free(p
->results
[pcr
]);
6458 static void tpm2_pcr_prediction_result_hash_func(const Tpm2PCRPredictionResult
*banks
, struct siphash
*state
) {
6461 for (size_t i
= 0; i
< TPM2_N_HASH_ALGORITHMS
; i
++)
6462 siphash24_compress_safe(banks
->hash
[i
].buffer
, banks
->hash
[i
].size
, state
);
6465 static int tpm2_pcr_prediction_result_compare_func(const Tpm2PCRPredictionResult
*a
, const Tpm2PCRPredictionResult
*b
) {
6471 for (size_t i
= 0; i
< TPM2_N_HASH_ALGORITHMS
; i
++) {
6472 r
= memcmp_nn(a
->hash
[i
].buffer
, a
->hash
[i
].size
,
6473 b
->hash
[i
].buffer
, b
->hash
[i
].size
);
6481 DEFINE_HASH_OPS_WITH_VALUE_DESTRUCTOR(
6482 tpm2_pcr_prediction_result_hash_ops
,
6483 Tpm2PCRPredictionResult
,
6484 tpm2_pcr_prediction_result_hash_func
,
6485 tpm2_pcr_prediction_result_compare_func
,
6486 Tpm2PCRPredictionResult
,
6489 static Tpm2PCRPredictionResult
*find_prediction_result_by_algorithm(OrderedSet
*set
, Tpm2PCRPredictionResult
*result
, size_t alg_idx
) {
6490 Tpm2PCRPredictionResult
*f
;
6493 assert(alg_idx
!= SIZE_MAX
);
6495 f
= ordered_set_get(set
, result
); /* Full match? */
6499 /* If this doesn't match full, then see if there an entry that at least matches by the relevant
6500 * algorithm (we are fine if predictions are "incomplete" in some algorithms) */
6502 ORDERED_SET_FOREACH(f
, set
)
6503 if (memcmp_nn(result
->hash
[alg_idx
].buffer
, result
->hash
[alg_idx
].size
,
6504 f
->hash
[alg_idx
].buffer
, f
->hash
[alg_idx
].size
) == 0)
6510 bool tpm2_pcr_prediction_equal(
6511 Tpm2PCRPrediction
*a
,
6512 Tpm2PCRPrediction
*b
,
6513 uint16_t algorithm
) {
6520 if (a
->pcrs
!= b
->pcrs
)
6523 size_t alg_idx
= tpm2_hash_algorithm_index(algorithm
);
6524 if (alg_idx
== SIZE_MAX
)
6527 for (uint32_t pcr
= 0; pcr
< TPM2_PCRS_MAX
; pcr
++) {
6528 Tpm2PCRPredictionResult
*banks
;
6530 ORDERED_SET_FOREACH(banks
, a
->results
[pcr
])
6531 if (!find_prediction_result_by_algorithm(b
->results
[pcr
], banks
, alg_idx
))
6534 ORDERED_SET_FOREACH(banks
, b
->results
[pcr
])
6535 if (!find_prediction_result_by_algorithm(a
->results
[pcr
], banks
, alg_idx
))
6542 int tpm2_pcr_prediction_to_json(
6543 const Tpm2PCRPrediction
*prediction
,
6545 sd_json_variant
**ret
) {
6547 _cleanup_(sd_json_variant_unrefp
) sd_json_variant
*aj
= NULL
;
6553 for (uint32_t pcr
= 0; pcr
< TPM2_PCRS_MAX
; pcr
++) {
6554 _cleanup_(sd_json_variant_unrefp
) sd_json_variant
*vj
= NULL
;
6555 Tpm2PCRPredictionResult
*banks
;
6557 if (!BIT_SET(prediction
->pcrs
, pcr
))
6560 ORDERED_SET_FOREACH(banks
, prediction
->results
[pcr
]) {
6562 TPM2B_DIGEST
*hash
= tpm2_pcr_prediction_result_get_hash(banks
, algorithm
);
6566 r
= sd_json_variant_append_arrayb(
6568 SD_JSON_BUILD_HEX(hash
->buffer
, hash
->size
));
6570 return log_error_errno(r
, "Failed to append hash variant to JSON array: %m");
6576 r
= sd_json_variant_append_arraybo(
6578 SD_JSON_BUILD_PAIR_INTEGER("pcr", pcr
),
6579 SD_JSON_BUILD_PAIR_VARIANT("values", vj
));
6581 return log_error_errno(r
, "Failed to append PCR variants to JSON array: %m");
6585 r
= sd_json_variant_new_array(&aj
, NULL
, 0);
6590 *ret
= TAKE_PTR(aj
);
6594 int tpm2_pcr_prediction_from_json(
6595 Tpm2PCRPrediction
*prediction
,
6597 sd_json_variant
*aj
) {
6603 size_t alg_index
= tpm2_hash_algorithm_index(algorithm
);
6604 assert(alg_index
< TPM2_N_HASH_ALGORITHMS
);
6606 if (!sd_json_variant_is_array(aj
))
6607 return log_error_errno(SYNTHETIC_ERRNO(EBADMSG
), "PCR variant array is not an array.");
6609 sd_json_variant
*pcr
;
6610 JSON_VARIANT_ARRAY_FOREACH(pcr
, aj
) {
6611 sd_json_variant
*nr
, *values
;
6613 nr
= sd_json_variant_by_key(pcr
, "pcr");
6615 return log_error_errno(SYNTHETIC_ERRNO(EBADMSG
), "PCR array entry lacks PCR index field");
6617 if (!sd_json_variant_is_unsigned(nr
) ||
6618 sd_json_variant_unsigned(nr
) >= TPM2_PCRS_MAX
)
6619 return log_error_errno(SYNTHETIC_ERRNO(EBADMSG
), "PCR array entry PCR index is not an integer in the range 0…23");
6621 values
= sd_json_variant_by_key(pcr
, "values");
6623 return log_error_errno(SYNTHETIC_ERRNO(EBADMSG
), "PCR array entry lacks values field");
6625 if (!sd_json_variant_is_array(values
))
6626 return log_error_errno(SYNTHETIC_ERRNO(EBADMSG
), "PCR array entry values field is not an array");
6628 prediction
->pcrs
|= UINT32_C(1) << sd_json_variant_unsigned(nr
);
6631 JSON_VARIANT_ARRAY_FOREACH(v
, values
) {
6632 _cleanup_free_
void *buffer
= NULL
;
6635 r
= sd_json_variant_unhex(v
, &buffer
, &size
);
6637 return log_error_errno(r
, "Failed to decode PCR policy array hash value");
6640 return log_error_errno(SYNTHETIC_ERRNO(EINVAL
), "PCR policy array hash value is zero.");
6642 if (size
> sizeof_field(TPM2B_DIGEST
, buffer
))
6643 return log_error_errno(SYNTHETIC_ERRNO(EINVAL
), "PCR policy array hash value is too large.");
6645 _cleanup_free_ Tpm2PCRPredictionResult
*banks
= new0(Tpm2PCRPredictionResult
, 1);
6649 memcpy(banks
->hash
[alg_index
].buffer
, buffer
, size
);
6650 banks
->hash
[alg_index
].size
= size
;
6652 r
= ordered_set_ensure_put(prediction
->results
+ sd_json_variant_unsigned(nr
), &tpm2_pcr_prediction_result_hash_ops
, banks
);
6653 if (r
== -EEXIST
) /* Let's allow duplicates */
6656 return log_error_errno(r
, "Failed to insert result into set: %m");
6665 int tpm2_calculate_policy_super_pcr(
6666 Tpm2PCRPrediction
*prediction
,
6668 TPM2B_DIGEST
*pcr_policy
) {
6672 assert_se(prediction
);
6673 assert_se(pcr_policy
);
6675 /* Start with a zero policy if not specified otherwise. */
6676 TPM2B_DIGEST super_pcr_policy_digest
= *pcr_policy
;
6678 /* First we look for all PCRs that have exactly one allowed hash value, and generate a single PolicyPCR policy from them */
6679 _cleanup_free_ Tpm2PCRValue
*single_values
= NULL
;
6680 size_t n_single_values
= 0;
6681 BIT_FOREACH(pcr
, prediction
->pcrs
) {
6682 if (ordered_set_size(prediction
->results
[pcr
]) != 1)
6685 log_debug("Including PCR %i in single value PolicyPCR expression", pcr
);
6687 Tpm2PCRPredictionResult
*banks
= ASSERT_PTR(ordered_set_first(prediction
->results
[pcr
]));
6689 TPM2B_DIGEST
*hash
= tpm2_pcr_prediction_result_get_hash(banks
, algorithm
);
6693 if (!GREEDY_REALLOC(single_values
, n_single_values
+ 1))
6696 single_values
[n_single_values
++] = TPM2_PCR_VALUE_MAKE(pcr
, algorithm
, *hash
);
6699 if (n_single_values
> 0) {
6700 /* Evolve policy based on the expected PCR value for what we found. */
6701 r
= tpm2_calculate_policy_pcr(
6704 &super_pcr_policy_digest
);
6709 /* Now deal with the PCRs for which we have variants, i.e. more than one allowed values */
6710 for (uint32_t pcr
= 0; pcr
< TPM2_PCRS_MAX
; pcr
++) {
6711 _cleanup_free_ TPM2B_DIGEST
*pcr_policy_digest_variants
= NULL
;
6712 size_t n_pcr_policy_digest_variants
= 0;
6713 Tpm2PCRPredictionResult
*banks
;
6715 if (!BIT_SET(prediction
->pcrs
, pcr
))
6718 if (ordered_set_size(prediction
->results
[pcr
]) <= 1) /* We only care for PCRs with 2 or more variants in this loop */
6721 if (ordered_set_size(prediction
->results
[pcr
]) > 8)
6722 return log_error_errno(SYNTHETIC_ERRNO(E2BIG
), "PCR policies with more than 8 alternatives per PCR are currently not supported.");
6724 ORDERED_SET_FOREACH(banks
, prediction
->results
[pcr
]) {
6725 /* Start from the super PCR policy from the previous PCR we looked at so far. */
6726 TPM2B_DIGEST pcr_policy_digest
= super_pcr_policy_digest
;
6728 TPM2B_DIGEST
*hash
= tpm2_pcr_prediction_result_get_hash(banks
, algorithm
);
6732 /* Evolve it based on the expected PCR value for this PCR */
6733 r
= tpm2_calculate_policy_pcr(
6734 &TPM2_PCR_VALUE_MAKE(
6738 /* n_pcr_values= */ 1,
6739 &pcr_policy_digest
);
6743 /* Store away this new variant */
6744 if (!GREEDY_REALLOC(pcr_policy_digest_variants
, n_pcr_policy_digest_variants
+ 1))
6747 pcr_policy_digest_variants
[n_pcr_policy_digest_variants
++] = pcr_policy_digest
;
6749 log_debug("Calculated PCR policy variant %zu for PCR %" PRIu32
, n_pcr_policy_digest_variants
, pcr
);
6752 assert_se(n_pcr_policy_digest_variants
>= 2);
6753 assert_se(n_pcr_policy_digest_variants
<= 8);
6755 /* Now combine all our variant into one OR policy */
6756 r
= tpm2_calculate_policy_or(
6757 pcr_policy_digest_variants
,
6758 n_pcr_policy_digest_variants
,
6759 &super_pcr_policy_digest
);
6763 log_debug("Combined %zu variants in OR policy.", n_pcr_policy_digest_variants
);
6766 *pcr_policy
= super_pcr_policy_digest
;
6770 int tpm2_policy_super_pcr(
6772 const Tpm2Handle
*session
,
6773 const Tpm2PCRPrediction
*prediction
,
6774 uint16_t algorithm
) {
6780 assert_se(prediction
);
6782 TPM2B_DIGEST previous_policy_digest
= TPM2B_DIGEST_MAKE(NULL
, TPM2_SHA256_DIGEST_SIZE
);
6784 uint32_t single_value_pcrs
= 0;
6786 /* Look for all PCRs that have only a singled allowed hash value, and synthesize a single PolicyPCR policy item for them */
6787 for (uint32_t pcr
= 0; pcr
< TPM2_PCRS_MAX
; pcr
++) {
6788 if (!BIT_SET(prediction
->pcrs
, pcr
))
6791 if (ordered_set_size(prediction
->results
[pcr
]) != 1)
6794 log_debug("Including PCR %" PRIu32
" in single value PolicyPCR expression", pcr
);
6796 single_value_pcrs
|= UINT32_C(1) << pcr
;
6799 if (single_value_pcrs
!= 0) {
6800 TPML_PCR_SELECTION pcr_selection
;
6801 tpm2_tpml_pcr_selection_from_mask(single_value_pcrs
, algorithm
, &pcr_selection
);
6803 _cleanup_free_ TPM2B_DIGEST
*current_policy_digest
= NULL
;
6804 r
= tpm2_policy_pcr(
6808 ¤t_policy_digest
);
6809 if (r
== -EUCLEAN
) {
6810 _cleanup_free_
char *j
= NULL
;
6812 for (uint32_t pcr
= 0; pcr
< TPM2_PCRS_MAX
; pcr
++)
6813 if (single_value_pcrs
& (UINT32_C(1) << pcr
))
6814 (void) strextendf_with_separator(&j
, ", ", "%" PRIu32
, pcr
);
6816 return log_error_errno(r
, "Combined value for PCR(s) %s encoded in policy does not match the current TPM state. Either the system has been tempered with or the provided policy is incorrect.", strna(j
));
6819 return log_error_errno(r
, "Failed to submit PCR policy to TPM: %m");
6821 previous_policy_digest
= *current_policy_digest
;
6824 for (uint32_t pcr
= 0; pcr
< TPM2_PCRS_MAX
; pcr
++) {
6827 if (!BIT_SET(prediction
->pcrs
, pcr
))
6830 n_branches
= ordered_set_size(prediction
->results
[pcr
]);
6831 if (n_branches
< 1 || n_branches
> 8)
6832 return log_error_errno(SYNTHETIC_ERRNO(EBADMSG
), "Number of variants per PCR not in range 1…8");
6834 if (n_branches
== 1) /* Single choice PCRs are already covered by the loop above */
6837 log_debug("Submitting PCR/OR policy for PCR %" PRIu32
, pcr
);
6839 TPML_PCR_SELECTION pcr_selection
;
6840 tpm2_tpml_pcr_selection_from_mask(UINT32_C(1) << pcr
, algorithm
, &pcr_selection
);
6842 _cleanup_free_ TPM2B_DIGEST
*current_policy_digest
= NULL
;
6843 r
= tpm2_policy_pcr(
6847 ¤t_policy_digest
);
6849 return log_error_errno(r
, "Value for PCR %" PRIu32
" encoded in policy does not match the current TPM state. Either the system has been tempered with or the provided policy is incorrect.", pcr
);
6851 return log_error_errno(r
, "Failed to submit PCR policy to TPM: %m");
6853 _cleanup_free_ TPM2B_DIGEST
*branches
= NULL
;
6854 branches
= new0(TPM2B_DIGEST
, n_branches
);
6858 Tpm2PCRPredictionResult
*banks
;
6860 ORDERED_SET_FOREACH(banks
, prediction
->results
[pcr
]) {
6861 TPM2B_DIGEST pcr_policy_digest
= previous_policy_digest
;
6863 TPM2B_DIGEST
*hash
= tpm2_pcr_prediction_result_get_hash(banks
, algorithm
);
6867 /* Evolve it based on the expected PCR value for this PCR */
6868 r
= tpm2_calculate_policy_pcr(
6869 &TPM2_PCR_VALUE_MAKE(
6873 /* n_pcr_values= */ 1,
6874 &pcr_policy_digest
);
6876 return log_error_errno(r
, "Failed to calculate PolicyPCR: %m");
6878 branches
[i
++] = pcr_policy_digest
;
6881 assert_se(i
== n_branches
);
6883 current_policy_digest
= mfree(current_policy_digest
);
6889 ¤t_policy_digest
);
6891 return log_error_errno(r
, "None of the alternative values for PCR %" PRIu32
" encoded in policy match the current TPM state. Either the system has been tempered with or the provided policy is incorrect.", pcr
);
6893 return log_error_errno(r
, "Failed to submit OR policy to TPM: %m");
6895 previous_policy_digest
= *current_policy_digest
;
6901 void tpm2_pcrlock_policy_done(Tpm2PCRLockPolicy
*data
) {
6904 data
->prediction_json
= sd_json_variant_unref(data
->prediction_json
);
6905 tpm2_pcr_prediction_done(&data
->prediction
);
6906 iovec_done(&data
->nv_handle
);
6907 iovec_done(&data
->nv_public
);
6908 iovec_done(&data
->srk_handle
);
6909 iovec_done(&data
->pin_public
);
6910 iovec_done(&data
->pin_private
);
6913 static int json_dispatch_tpm2_algorithm(const char *name
, sd_json_variant
*variant
, sd_json_dispatch_flags_t flags
, void *userdata
) {
6914 uint16_t *algorithm
= ASSERT_PTR(userdata
);
6917 r
= tpm2_hash_alg_from_string(sd_json_variant_string(variant
));
6918 if (r
< 0 || tpm2_hash_algorithm_index(r
) == SIZE_MAX
)
6919 return log_error_errno(SYNTHETIC_ERRNO(EINVAL
), "Invalid hash algorithm: %s", sd_json_variant_string(variant
));
6925 int tpm2_pcrlock_search_file(const char *path
, FILE **ret_file
, char **ret_path
) {
6926 static const char search
[] =
6928 "/var/lib/systemd\0";
6933 path
= "pcrlock.json";
6935 r
= search_and_fopen_nulstr(path
, ret_file
? "re" : NULL
, NULL
, search
, ret_file
, ret_path
);
6937 return log_debug_errno(r
, "Failed to find TPM2 pcrlock policy file '%s': %m", path
);
6942 int tpm2_pcrlock_policy_from_json(
6944 Tpm2PCRLockPolicy
*ret_policy
) {
6946 /* We use a type check of _JSON_VARIANT_TYPE_INVALID for the integer fields to allow
6947 * json_dispatch_uint32() to parse strings as integers to work around the integer type weakness of
6949 static const sd_json_dispatch_field policy_dispatch
[] = {
6950 { "pcrBank", SD_JSON_VARIANT_STRING
, json_dispatch_tpm2_algorithm
, offsetof(Tpm2PCRLockPolicy
, algorithm
), SD_JSON_MANDATORY
},
6951 { "pcrValues", SD_JSON_VARIANT_ARRAY
, sd_json_dispatch_variant
, offsetof(Tpm2PCRLockPolicy
, prediction_json
), SD_JSON_MANDATORY
},
6952 { "nvIndex", _SD_JSON_VARIANT_TYPE_INVALID
, sd_json_dispatch_uint32
, offsetof(Tpm2PCRLockPolicy
, nv_index
), SD_JSON_MANDATORY
},
6953 { "nvHandle", SD_JSON_VARIANT_STRING
, json_dispatch_unbase64_iovec
, offsetof(Tpm2PCRLockPolicy
, nv_handle
), SD_JSON_MANDATORY
},
6954 { "nvPublic", SD_JSON_VARIANT_STRING
, json_dispatch_unbase64_iovec
, offsetof(Tpm2PCRLockPolicy
, nv_public
), SD_JSON_MANDATORY
},
6955 { "srkHandle", SD_JSON_VARIANT_STRING
, json_dispatch_unbase64_iovec
, offsetof(Tpm2PCRLockPolicy
, srk_handle
), SD_JSON_MANDATORY
},
6956 { "pinPublic", SD_JSON_VARIANT_STRING
, json_dispatch_unbase64_iovec
, offsetof(Tpm2PCRLockPolicy
, pin_public
), SD_JSON_MANDATORY
},
6957 { "pinPrivate", SD_JSON_VARIANT_STRING
, json_dispatch_unbase64_iovec
, offsetof(Tpm2PCRLockPolicy
, pin_private
), SD_JSON_MANDATORY
},
6961 _cleanup_(tpm2_pcrlock_policy_done
) Tpm2PCRLockPolicy policy
= {};
6967 r
= sd_json_dispatch(v
, policy_dispatch
, SD_JSON_LOG
, &policy
);
6971 r
= tpm2_pcr_prediction_from_json(&policy
.prediction
, policy
.algorithm
, policy
.prediction_json
);
6975 *ret_policy
= TAKE_STRUCT(policy
);
6979 int tpm2_pcrlock_policy_load(
6981 Tpm2PCRLockPolicy
*ret_policy
) {
6983 _cleanup_free_
char *discovered_path
= NULL
;
6984 _cleanup_fclose_
FILE *f
= NULL
;
6987 r
= tpm2_pcrlock_search_file(path
, &f
, &discovered_path
);
6989 *ret_policy
= (Tpm2PCRLockPolicy
) {};
6993 return log_error_errno(r
, "Failed to load TPM2 pcrlock policy file: %m");
6995 _cleanup_(sd_json_variant_unrefp
) sd_json_variant
*v
= NULL
;
6996 r
= sd_json_parse_file(
7001 /* reterr_line= */ NULL
,
7002 /* ret_column= */ NULL
);
7004 return log_error_errno(r
, "Failed to parse existing pcrlock policy file '%s': %m", discovered_path
);
7006 return tpm2_pcrlock_policy_from_json(v
, ret_policy
);
7009 static int pcrlock_policy_load_credential(
7011 const struct iovec
*data
,
7012 Tpm2PCRLockPolicy
*ret
) {
7014 _cleanup_free_
char *c
= NULL
;
7023 ascii_strlower(c
); /* Lowercase, to match what we did at encryption time */
7025 _cleanup_(iovec_done
) struct iovec decoded
= {};
7026 r
= decrypt_credential_and_warn(
7028 now(CLOCK_REALTIME
),
7029 /* tpm2_device= */ NULL
,
7030 /* tpm2_signature_path= */ NULL
,
7033 CREDENTIAL_ALLOW_NULL
,
7038 if (memchr(decoded
.iov_base
, 0, decoded
.iov_len
))
7039 return log_error_errno(r
, "Credential '%s' contains embedded NUL byte, refusing.", name
);
7041 _cleanup_(sd_json_variant_unrefp
) sd_json_variant
*v
= NULL
;
7042 r
= sd_json_parse(decoded
.iov_base
,
7045 /* reterr_line= */ NULL
,
7046 /* ret_column= */ NULL
);
7048 return log_error_errno(r
, "Failed to parse pcrlock policy: %m");
7050 r
= tpm2_pcrlock_policy_from_json(v
, ret
);
7057 int tpm2_pcrlock_policy_from_credentials(
7058 const struct iovec
*srk
,
7059 const struct iovec
*nv
,
7060 Tpm2PCRLockPolicy
*ret
) {
7062 _cleanup_close_
int dfd
= -EBADF
;
7065 /* During boot we'll not have access to the pcrlock.json file in /var/. In order to support
7066 * pcrlock-bound root file systems we'll store a copy of the JSON data, wrapped in an (plaintext)
7067 * credential in the ESP or XBOOTLDR partition. There might be multiple of those however (because of
7068 * multi-boot), hence we use the SRK and NV data from the LUKS2 header as search key, and parse all
7069 * such JSON policies until we find a matching one. */
7071 const char *cp
= secure_getenv("SYSTEMD_ENCRYPTED_SYSTEM_CREDENTIALS_DIRECTORY") ?: ENCRYPTED_SYSTEM_CREDENTIALS_DIRECTORY
;
7073 dfd
= open(cp
, O_CLOEXEC
|O_DIRECTORY
);
7075 if (errno
== ENOENT
) {
7076 log_debug("No encrypted system credentials passed.");
7080 return log_error_errno(errno
, "Failed to open system credentials directory.");
7083 _cleanup_free_ DirectoryEntries
*de
= NULL
;
7084 r
= readdir_all(dfd
, RECURSE_DIR_IGNORE_DOT
, &de
);
7086 return log_error_errno(r
, "Failed to enumerate system credentials: %m");
7088 FOREACH_ARRAY(i
, de
->entries
, de
->n_entries
) {
7089 _cleanup_(iovec_done
) struct iovec data
= {};
7090 struct dirent
*d
= *i
;
7092 if (!startswith_no_case(d
->d_name
, "pcrlock.")) /* VFAT is case-insensitive, hence don't be too strict here */
7095 r
= read_full_file_full(
7097 /* offset= */ UINT64_MAX
,
7098 /* size= */ CREDENTIAL_ENCRYPTED_SIZE_MAX
,
7099 READ_FULL_FILE_UNBASE64
|READ_FULL_FILE_FAIL_WHEN_LARGER
,
7100 /* bind_name= */ NULL
,
7101 (char**) &data
.iov_base
,
7106 log_warning_errno(r
, "Failed to read credentials file %s/%s, skipping: %m", ENCRYPTED_SYSTEM_CREDENTIALS_DIRECTORY
, d
->d_name
);
7110 _cleanup_(tpm2_pcrlock_policy_done
) Tpm2PCRLockPolicy loaded_policy
= {};
7111 r
= pcrlock_policy_load_credential(
7116 log_warning_errno(r
, "Loading of pcrlock policy from credential '%s/%s' failed, skipping.", ENCRYPTED_SYSTEM_CREDENTIALS_DIRECTORY
, d
->d_name
);
7120 if ((!srk
|| iovec_memcmp(srk
, &loaded_policy
.srk_handle
) == 0) &&
7121 (!nv
|| iovec_memcmp(nv
, &loaded_policy
.nv_handle
) == 0)) {
7122 *ret
= TAKE_STRUCT(loaded_policy
);
7127 log_info("No pcrlock policy found among system credentials.");
7128 *ret
= (Tpm2PCRLockPolicy
) {};
7132 int tpm2_load_public_key_file(const char *path
, TPM2B_PUBLIC
*ret
) {
7133 _cleanup_free_
char *device_key_buffer
= NULL
;
7134 TPM2B_PUBLIC device_key_public
= {};
7135 size_t device_key_buffer_size
;
7144 return log_debug_errno(r
, "TPM2 support not installed: %m");
7146 r
= read_full_file(path
, &device_key_buffer
, &device_key_buffer_size
);
7148 return log_error_errno(r
, "Failed to read device key from file '%s': %m", path
);
7151 rc
= sym_Tss2_MU_TPM2B_PUBLIC_Unmarshal(
7152 (uint8_t*) device_key_buffer
,
7153 device_key_buffer_size
,
7155 &device_key_public
);
7156 if (rc
!= TSS2_RC_SUCCESS
)
7157 return log_error_errno(SYNTHETIC_ERRNO(EINVAL
),
7158 "Could not unmarshal public key from file.");
7160 assert(offset
<= device_key_buffer_size
);
7161 if (offset
!= device_key_buffer_size
)
7162 return log_error_errno(SYNTHETIC_ERRNO(EINVAL
),
7163 "Found %zu bytes of trailing garbage in public key file.",
7164 device_key_buffer_size
- offset
);
7166 *ret
= device_key_public
;
7170 int tpm2_hmac_key_from_pin(Tpm2Context
*c
, const Tpm2Handle
*session
, const TPM2B_AUTH
*pin
, Tpm2Handle
**ret
) {
7177 log_debug("Converting PIN into TPM2 HMAC-SHA256 object.");
7179 /* Load the PIN (which we have stored in the "auth" TPM2B_AUTH) into the TPM as an HMAC key so that
7180 * we can use it in a TPM2_PolicySigned() to write to the nvindex. For that we'll prep a pair of
7181 * TPM2B_PUBLIC and TPM2B_SENSITIVE that defines an HMAC-SHA256 keyed hash function, and initialize
7182 * it based on the provided PIN data. */
7184 TPM2B_PUBLIC auth_hmac_public
= {
7186 .type
= TPM2_ALG_KEYEDHASH
,
7187 .nameAlg
= TPM2_ALG_SHA256
,
7188 .objectAttributes
= TPMA_OBJECT_SIGN_ENCRYPT
,
7189 .parameters
.keyedHashDetail
.scheme
= {
7190 .scheme
= TPM2_ALG_HMAC
,
7191 .details
.hmac
.hashAlg
= TPM2_ALG_SHA256
,
7193 .unique
.keyedHash
.size
= SHA256_DIGEST_SIZE
,
7197 TPM2B_SENSITIVE auth_hmac_private
= {
7199 .sensitiveType
= TPM2_ALG_KEYEDHASH
,
7200 .sensitive
.bits
.size
= pin
->size
,
7201 .seedValue
.size
= SHA256_DIGEST_SIZE
,
7205 /* Copy in the key data */
7206 memcpy_safe(auth_hmac_private
.sensitiveArea
.sensitive
.bits
.buffer
, pin
->buffer
, pin
->size
);
7208 /* NB: We initialize the seed of the TPMT_SENSITIVE structure to all zeroes, since we want a stable
7209 * "name" of the PIN object */
7211 /* Now calculate the "unique" field for the public area, based on the sensitive data, according to
7212 * the algorithm in the TPM2 spec, part 1, Section 27.5.3.2 */
7213 struct iovec sensitive_data
[] = {
7214 IOVEC_MAKE(auth_hmac_private
.sensitiveArea
.seedValue
.buffer
, auth_hmac_private
.sensitiveArea
.seedValue
.size
),
7215 IOVEC_MAKE(auth_hmac_private
.sensitiveArea
.sensitive
.bits
.buffer
, auth_hmac_private
.sensitiveArea
.sensitive
.bits
.size
),
7217 r
= tpm2_digest_many(
7218 auth_hmac_public
.publicArea
.nameAlg
,
7219 &auth_hmac_public
.publicArea
.unique
.keyedHash
,
7221 ELEMENTSOF(sensitive_data
),
7222 /* extend= */ false);
7226 /* And now load the public/private parts into the TPM and get a handle back */
7227 r
= tpm2_load_external(
7234 return log_error_errno(r
, "Failed to load PIN into TPM2: %m");
7240 char* tpm2_pcr_mask_to_string(uint32_t mask
) {
7241 _cleanup_free_
char *s
= NULL
;
7243 FOREACH_PCR_IN_MASK(n
, mask
)
7244 if (strextendf_with_separator(&s
, "+", "%d", n
) < 0)
7253 int tpm2_make_pcr_json_array(uint32_t pcr_mask
, sd_json_variant
**ret
) {
7254 _cleanup_(sd_json_variant_unrefp
) sd_json_variant
*a
= NULL
;
7259 for (size_t i
= 0; i
< TPM2_PCRS_MAX
; i
++) {
7260 _cleanup_(sd_json_variant_unrefp
) sd_json_variant
*e
= NULL
;
7262 if ((pcr_mask
& (UINT32_C(1) << i
)) == 0)
7265 r
= sd_json_variant_new_integer(&e
, i
);
7269 r
= sd_json_variant_append_array(&a
, e
);
7275 return sd_json_variant_new_array(ret
, NULL
, 0);
7281 int tpm2_parse_pcr_json_array(sd_json_variant
*v
, uint32_t *ret
) {
7285 if (!sd_json_variant_is_array(v
))
7286 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "TPM2 PCR array is not a JSON array.");
7288 JSON_VARIANT_ARRAY_FOREACH(e
, v
) {
7291 if (!sd_json_variant_is_unsigned(e
))
7292 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "TPM2 PCR is not an unsigned integer.");
7294 u
= sd_json_variant_unsigned(e
);
7295 if (u
>= TPM2_PCRS_MAX
)
7296 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "TPM2 PCR number out of range: %" PRIu64
, u
);
7298 mask
|= UINT32_C(1) << u
;
7307 static int tpm2_make_shard_array(
7308 const struct iovec data
[],
7310 int (*encode_iovec
)(sd_json_variant
**, const void*, size_t n
), /* pass sd_json_variant_new_base64() or sd_json_variant_new_hex() */
7311 sd_json_variant
**ret
) {
7315 /* Turns a series of struct iovec into either an array of base64/hex strings, or a single string
7316 * thereof. Used for generated "tpm2-blob" or "tpm2-policy-hash" fields. */
7320 assert(encode_iovec
);
7323 /* Only one item? Then create only one encoded string, for compatibility with older versions which
7324 * didn't support the "sharding" scheme */
7326 return encode_iovec(ret
, data
[0].iov_base
, data
[0].iov_len
);
7328 /* Multiple items? Then generate an array of encoded strings */
7329 _cleanup_(sd_json_variant_unrefp
) sd_json_variant
*j
= NULL
;
7331 FOREACH_ARRAY(d
, data
, n_data
) {
7332 _cleanup_(sd_json_variant_unrefp
) sd_json_variant
*item
= NULL
;
7334 r
= encode_iovec(&item
, d
->iov_base
, d
->iov_len
);
7338 r
= sd_json_variant_append_array(&j
, item
);
7347 int tpm2_make_luks2_json(
7349 uint32_t hash_pcr_mask
,
7351 const struct iovec
*pubkey
,
7352 uint32_t pubkey_pcr_mask
,
7353 uint16_t primary_alg
,
7354 const struct iovec blobs
[],
7356 const struct iovec policy_hash
[],
7357 size_t n_policy_hash
,
7358 const struct iovec
*salt
,
7359 const struct iovec
*srk
,
7360 const struct iovec
*pcrlock_nv
,
7362 sd_json_variant
**ret
) {
7364 _cleanup_(sd_json_variant_unrefp
) sd_json_variant
*v
= NULL
, *hmj
= NULL
, *pkmj
= NULL
;
7365 _cleanup_free_
char *keyslot_as_string
= NULL
;
7368 assert(iovec_is_valid(pubkey
));
7369 assert(n_blobs
>= 1);
7370 assert(n_policy_hash
>= 1);
7372 if (asprintf(&keyslot_as_string
, "%i", keyslot
) < 0)
7375 r
= tpm2_make_pcr_json_array(hash_pcr_mask
, &hmj
);
7379 if (pubkey_pcr_mask
!= 0) {
7380 r
= tpm2_make_pcr_json_array(pubkey_pcr_mask
, &pkmj
);
7385 _cleanup_(sd_json_variant_unrefp
) sd_json_variant
*phj
= NULL
;
7386 r
= tpm2_make_shard_array(policy_hash
, n_policy_hash
, sd_json_variant_new_hex
, &phj
);
7390 _cleanup_(sd_json_variant_unrefp
) sd_json_variant
*bj
= NULL
;
7391 r
= tpm2_make_shard_array(blobs
, n_blobs
, sd_json_variant_new_base64
, &bj
);
7395 /* Note: We made the mistake of using "-" in the field names, which isn't particular compatible with
7396 * other programming languages. Let's not make things worse though, i.e. future additions to the JSON
7397 * object should use "_" rather than "-" in field names. */
7401 SD_JSON_BUILD_PAIR("type", JSON_BUILD_CONST_STRING("systemd-tpm2")),
7402 SD_JSON_BUILD_PAIR("keyslots", SD_JSON_BUILD_ARRAY(SD_JSON_BUILD_STRING(keyslot_as_string
))),
7403 SD_JSON_BUILD_PAIR("tpm2-blob", SD_JSON_BUILD_VARIANT(bj
)),
7404 SD_JSON_BUILD_PAIR("tpm2-pcrs", SD_JSON_BUILD_VARIANT(hmj
)),
7405 SD_JSON_BUILD_PAIR_CONDITION(pcr_bank
!= 0 && tpm2_hash_alg_to_string(pcr_bank
), "tpm2-pcr-bank", SD_JSON_BUILD_STRING(tpm2_hash_alg_to_string(pcr_bank
))),
7406 SD_JSON_BUILD_PAIR_CONDITION(primary_alg
!= 0 && tpm2_asym_alg_to_string(primary_alg
), "tpm2-primary-alg", SD_JSON_BUILD_STRING(tpm2_asym_alg_to_string(primary_alg
))),
7407 SD_JSON_BUILD_PAIR("tpm2-policy-hash", SD_JSON_BUILD_VARIANT(phj
)),
7408 SD_JSON_BUILD_PAIR_CONDITION(FLAGS_SET(flags
, TPM2_FLAGS_USE_PIN
), "tpm2-pin", SD_JSON_BUILD_BOOLEAN(true)),
7409 SD_JSON_BUILD_PAIR_CONDITION(FLAGS_SET(flags
, TPM2_FLAGS_USE_PCRLOCK
), "tpm2_pcrlock", SD_JSON_BUILD_BOOLEAN(true)),
7410 SD_JSON_BUILD_PAIR_CONDITION(pubkey_pcr_mask
!= 0, "tpm2_pubkey_pcrs", SD_JSON_BUILD_VARIANT(pkmj
)),
7411 SD_JSON_BUILD_PAIR_CONDITION(iovec_is_set(pubkey
), "tpm2_pubkey", JSON_BUILD_IOVEC_BASE64(pubkey
)),
7412 SD_JSON_BUILD_PAIR_CONDITION(iovec_is_set(salt
), "tpm2_salt", JSON_BUILD_IOVEC_BASE64(salt
)),
7413 SD_JSON_BUILD_PAIR_CONDITION(iovec_is_set(srk
), "tpm2_srk", JSON_BUILD_IOVEC_BASE64(srk
)),
7414 SD_JSON_BUILD_PAIR_CONDITION(iovec_is_set(pcrlock_nv
), "tpm2_pcrlock_nv", JSON_BUILD_IOVEC_BASE64(pcrlock_nv
)));
7424 static int tpm2_parse_shard_array(
7427 int (*decode_iovec
)(sd_json_variant
*, struct iovec
*ret
), /* pass json_variant_unbase64_iovec() or json_variant_unhex_iovec() */
7428 struct iovec
**ret_data
,
7429 size_t *ret_n_data
) {
7435 assert(decode_iovec
);
7439 /* Parses the "tpm2-blob" or "tpm2-policy-hash" fields of our LUKS JSON serialization. This can
7440 * either be an array of base64/hex strings, or a single such string. The former to allow for sharded
7441 * keys. The latter mostly for compatibility with older versions where we didn't support sharded
7444 struct iovec
*data
= NULL
;
7446 CLEANUP_ARRAY(data
, n_data
, iovec_array_free
);
7448 if (sd_json_variant_is_array(v
)) {
7449 if (sd_json_variant_elements(v
) == 0)
7450 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "TPM2 token data contains empty '%s' array.", name
);
7452 data
= new0(struct iovec
, sd_json_variant_elements(v
));
7454 return log_oom_debug();
7457 JSON_VARIANT_ARRAY_FOREACH(i
, v
) {
7458 r
= decode_iovec(i
, data
+ n_data
);
7460 return log_debug_errno(r
, "Invalid data in '%s' field.", name
);
7465 data
= new0(struct iovec
, 1);
7467 return log_oom_debug();
7469 r
= decode_iovec(v
, data
+ 0);
7471 return log_debug_errno(r
, "Invalid data in '%s' field.", name
);
7476 *ret_data
= TAKE_PTR(data
);
7477 *ret_n_data
= n_data
;
7481 int tpm2_parse_luks2_json(
7484 uint32_t *ret_hash_pcr_mask
,
7485 uint16_t *ret_pcr_bank
,
7486 struct iovec
*ret_pubkey
,
7487 uint32_t *ret_pubkey_pcr_mask
,
7488 uint16_t *ret_primary_alg
,
7489 struct iovec
**ret_blobs
,
7490 size_t *ret_n_blobs
,
7491 struct iovec
**ret_policy_hash
,
7492 size_t *ret_n_policy_hash
,
7493 struct iovec
*ret_salt
,
7494 struct iovec
*ret_srk
,
7495 struct iovec
*ret_pcrlock_nv
,
7496 TPM2Flags
*ret_flags
) {
7498 _cleanup_(iovec_done
) struct iovec pubkey
= {}, salt
= {}, srk
= {}, pcrlock_nv
= {};
7499 uint32_t hash_pcr_mask
= 0, pubkey_pcr_mask
= 0;
7500 uint16_t primary_alg
= TPM2_ALG_ECC
; /* ECC was the only supported algorithm in systemd < 250, use that as implied default, for compatibility */
7501 uint16_t pcr_bank
= UINT16_MAX
; /* default: pick automatically */
7502 int r
, keyslot
= -1;
7503 TPM2Flags flags
= 0;
7509 keyslot
= cryptsetup_get_keyslot_from_token(v
);
7511 /* Return a recognizable error when parsing this field, so that callers can handle parsing
7512 * errors of the keyslots field gracefully, since it's not 'owned' by us, but by the LUKS2
7514 log_debug_errno(keyslot
, "Failed to extract keyslot index from TPM2 JSON data token, skipping: %m");
7519 w
= sd_json_variant_by_key(v
, "tpm2-pcrs");
7521 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "TPM2 token data lacks 'tpm2-pcrs' field.");
7523 r
= tpm2_parse_pcr_json_array(w
, &hash_pcr_mask
);
7525 return log_debug_errno(r
, "Failed to parse TPM2 PCR mask: %m");
7527 /* The bank field is optional, since it was added in systemd 250 only. Before the bank was hardcoded
7529 w
= sd_json_variant_by_key(v
, "tpm2-pcr-bank");
7531 /* The PCR bank field is optional */
7533 if (!sd_json_variant_is_string(w
))
7534 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "TPM2 PCR bank is not a string.");
7536 r
= tpm2_hash_alg_from_string(sd_json_variant_string(w
));
7538 return log_debug_errno(r
, "TPM2 PCR bank invalid or not supported: %s", sd_json_variant_string(w
));
7543 /* The primary key algorithm field is optional, since it was also added in systemd 250 only. Before
7544 * the algorithm was hardcoded to ECC. */
7545 w
= sd_json_variant_by_key(v
, "tpm2-primary-alg");
7547 /* The primary key algorithm is optional */
7549 if (!sd_json_variant_is_string(w
))
7550 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "TPM2 primary key algorithm is not a string.");
7552 r
= tpm2_asym_alg_from_string(sd_json_variant_string(w
));
7554 return log_debug_errno(r
, "TPM2 asymmetric algorithm invalid or not supported: %s", sd_json_variant_string(w
));
7559 w
= sd_json_variant_by_key(v
, "tpm2-blob");
7561 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "TPM2 token data lacks 'tpm2-blob' field.");
7563 struct iovec
*blobs
= NULL
;
7565 CLEANUP_ARRAY(blobs
, n_blobs
, iovec_array_free
);
7567 r
= tpm2_parse_shard_array(w
, "tpm2-blob", json_variant_unbase64_iovec
, &blobs
, &n_blobs
);
7571 w
= sd_json_variant_by_key(v
, "tpm2-policy-hash");
7573 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "TPM2 token data lacks 'tpm2-policy-hash' field.");
7575 struct iovec
*policy_hash
= NULL
;
7576 size_t n_policy_hash
= 0;
7577 CLEANUP_ARRAY(policy_hash
, n_policy_hash
, iovec_array_free
);
7579 r
= tpm2_parse_shard_array(w
, "tpm2-policy-hash", json_variant_unhex_iovec
, &policy_hash
, &n_policy_hash
);
7583 w
= sd_json_variant_by_key(v
, "tpm2-pin");
7585 if (!sd_json_variant_is_boolean(w
))
7586 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "TPM2 PIN policy is not a boolean.");
7588 SET_FLAG(flags
, TPM2_FLAGS_USE_PIN
, sd_json_variant_boolean(w
));
7591 w
= sd_json_variant_by_key(v
, "tpm2_pcrlock");
7593 if (!sd_json_variant_is_boolean(w
))
7594 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "TPM2 pclock policy is not a boolean.");
7596 SET_FLAG(flags
, TPM2_FLAGS_USE_PCRLOCK
, sd_json_variant_boolean(w
));
7599 w
= sd_json_variant_by_key(v
, "tpm2_salt");
7601 r
= json_variant_unbase64_iovec(w
, &salt
);
7603 return log_debug_errno(r
, "Invalid base64 data in 'tpm2_salt' field.");
7606 w
= sd_json_variant_by_key(v
, "tpm2_pubkey_pcrs");
7608 r
= tpm2_parse_pcr_json_array(w
, &pubkey_pcr_mask
);
7613 w
= sd_json_variant_by_key(v
, "tpm2_pubkey");
7615 r
= json_variant_unbase64_iovec(w
, &pubkey
);
7617 return log_debug_errno(r
, "Failed to decode PCR public key.");
7618 } else if (pubkey_pcr_mask
!= 0)
7619 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "Public key PCR mask set, but not public key included in JSON data, refusing.");
7621 w
= sd_json_variant_by_key(v
, "tpm2_srk");
7623 r
= json_variant_unbase64_iovec(w
, &srk
);
7625 return log_debug_errno(r
, "Invalid base64 data in 'tpm2_srk' field.");
7628 w
= sd_json_variant_by_key(v
, "tpm2_pcrlock_nv");
7630 r
= json_variant_unbase64_iovec(w
, &pcrlock_nv
);
7632 return log_debug_errno(r
, "Invalid base64 data in 'tpm2_pcrlock_nv' field.");
7636 *ret_keyslot
= keyslot
;
7637 if (ret_hash_pcr_mask
)
7638 *ret_hash_pcr_mask
= hash_pcr_mask
;
7640 *ret_pcr_bank
= pcr_bank
;
7642 *ret_pubkey
= TAKE_STRUCT(pubkey
);
7643 if (ret_pubkey_pcr_mask
)
7644 *ret_pubkey_pcr_mask
= pubkey_pcr_mask
;
7645 if (ret_primary_alg
)
7646 *ret_primary_alg
= primary_alg
;
7648 *ret_blobs
= TAKE_PTR(blobs
);
7650 *ret_n_blobs
= n_blobs
;
7651 if (ret_policy_hash
)
7652 *ret_policy_hash
= TAKE_PTR(policy_hash
);
7653 if (ret_n_policy_hash
)
7654 *ret_n_policy_hash
= n_policy_hash
;
7656 *ret_salt
= TAKE_STRUCT(salt
);
7658 *ret_srk
= TAKE_STRUCT(srk
);
7660 *ret_pcrlock_nv
= TAKE_STRUCT(pcrlock_nv
);
7666 int tpm2_hash_alg_to_size(uint16_t alg
) {
7670 case TPM2_ALG_SHA256
:
7672 case TPM2_ALG_SHA384
:
7674 case TPM2_ALG_SHA512
:
7677 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "Unknown hash algorithm id 0x%" PRIx16
, alg
);
7681 const char* tpm2_hash_alg_to_string(uint16_t alg
) {
7685 case TPM2_ALG_SHA256
:
7687 case TPM2_ALG_SHA384
:
7689 case TPM2_ALG_SHA512
:
7692 log_debug("Unknown hash algorithm id 0x%" PRIx16
, alg
);
7697 int tpm2_hash_alg_from_string(const char *alg
) {
7698 if (strcaseeq_ptr(alg
, "sha1"))
7699 return TPM2_ALG_SHA1
;
7700 if (strcaseeq_ptr(alg
, "sha256"))
7701 return TPM2_ALG_SHA256
;
7702 if (strcaseeq_ptr(alg
, "sha384"))
7703 return TPM2_ALG_SHA384
;
7704 if (strcaseeq_ptr(alg
, "sha512"))
7705 return TPM2_ALG_SHA512
;
7706 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "Unknown hash algorithm name '%s'", alg
);
7709 const char* tpm2_asym_alg_to_string(uint16_t alg
) {
7716 log_debug("Unknown asymmetric algorithm id 0x%" PRIx16
, alg
);
7721 int tpm2_asym_alg_from_string(const char *alg
) {
7722 if (strcaseeq_ptr(alg
, "ecc"))
7723 return TPM2_ALG_ECC
;
7724 if (strcaseeq_ptr(alg
, "rsa"))
7725 return TPM2_ALG_RSA
;
7726 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "Unknown asymmetric algorithm name '%s'", alg
);
7729 const char* tpm2_sym_alg_to_string(uint16_t alg
) {
7736 log_debug("Unknown symmetric algorithm id 0x%" PRIx16
, alg
);
7741 const char* tpm2_sym_mode_to_string(uint16_t mode
) {
7756 log_debug("Unknown symmetric mode id 0x%" PRIx16
, mode
);
7761 int tpm2_sym_mode_from_string(const char *mode
) {
7763 if (strcaseeq_ptr(mode
, "ctr"))
7764 return TPM2_ALG_CTR
;
7765 if (strcaseeq_ptr(mode
, "ofb"))
7766 return TPM2_ALG_OFB
;
7767 if (strcaseeq_ptr(mode
, "cbc"))
7768 return TPM2_ALG_CBC
;
7769 if (strcaseeq_ptr(mode
, "cfb"))
7770 return TPM2_ALG_CFB
;
7771 if (strcaseeq_ptr(mode
, "ecb"))
7772 return TPM2_ALG_ECB
;
7774 return log_debug_errno(SYNTHETIC_ERRNO(EINVAL
), "Unknown symmetric mode name '%s'", mode
);
7777 Tpm2Support
tpm2_support_full(Tpm2Support mask
) {
7778 Tpm2Support support
= TPM2_SUPPORT_NONE
;
7781 if (((mask
& (TPM2_SUPPORT_SUBSYSTEM
|TPM2_SUPPORT_DRIVER
)) != 0) && detect_container() <= 0) {
7782 /* Check if there's a /dev/tpmrm* device via sysfs. If we run in a container we likely just
7783 * got the host sysfs mounted. Since devices are generally not virtualized for containers,
7784 * let's assume containers never have a TPM, at least for now. */
7786 r
= dir_is_empty("/sys/class/tpmrm", /* ignore_hidden_or_backup= */ false);
7789 log_debug_errno(r
, "Unable to test whether /sys/class/tpmrm/ exists and is populated, assuming it is not: %m");
7790 } else if (r
== 0) /* populated! */
7791 support
|= TPM2_SUPPORT_SUBSYSTEM
|TPM2_SUPPORT_DRIVER
;
7793 /* If the directory exists but is empty, we know the subsystem is enabled but no
7794 * driver has been loaded yet. */
7795 support
|= TPM2_SUPPORT_SUBSYSTEM
;
7798 if (FLAGS_SET(mask
, TPM2_SUPPORT_FIRMWARE
) && efi_has_tpm2())
7799 support
|= TPM2_SUPPORT_FIRMWARE
;
7802 support
|= TPM2_SUPPORT_SYSTEM
;
7804 if ((mask
& (TPM2_SUPPORT_LIBRARIES
|TPM2_SUPPORT_LIBTSS2_ALL
)) != 0) {
7805 r
= dlopen_tpm2_esys();
7807 support
|= TPM2_SUPPORT_LIBTSS2_ESYS
;
7809 r
= dlopen_tpm2_rc();
7811 support
|= TPM2_SUPPORT_LIBTSS2_RC
;
7813 r
= dlopen_tpm2_mu();
7815 support
|= TPM2_SUPPORT_LIBTSS2_MU
;
7817 if (FLAGS_SET(support
, TPM2_SUPPORT_LIBTSS2_ALL
))
7818 support
|= TPM2_SUPPORT_LIBRARIES
;
7822 return support
& mask
;
7825 static void print_field(const char *prefix
, const char *s
, bool supported
) {
7826 printf("%s%s%s%s%s\n", strempty(prefix
), supported
? ansi_green() : ansi_red(), plus_minus(supported
), s
, ansi_normal());
7829 int verb_has_tpm2_generic(bool quiet
) {
7835 if (s
== TPM2_SUPPORT_FULL
)
7836 printf("%syes%s\n", ansi_green(), ansi_normal());
7837 else if (s
== TPM2_SUPPORT_NONE
)
7838 printf("%sno%s\n", ansi_red(), ansi_normal());
7840 printf("%spartial%s\n", ansi_yellow(), ansi_normal());
7842 print_field(NULL
, "firmware", FLAGS_SET(s
, TPM2_SUPPORT_FIRMWARE
));
7843 print_field(NULL
, "driver", FLAGS_SET(s
, TPM2_SUPPORT_DRIVER
));
7844 print_field(NULL
, "system", FLAGS_SET(s
, TPM2_SUPPORT_SYSTEM
));
7845 print_field(NULL
, "subsystem", FLAGS_SET(s
, TPM2_SUPPORT_SUBSYSTEM
));
7846 print_field(NULL
, "libraries", FLAGS_SET(s
, TPM2_SUPPORT_LIBRARIES
));
7847 print_field(" ", "libtss2-esys.so.0", FLAGS_SET(s
, TPM2_SUPPORT_LIBTSS2_ESYS
));
7848 print_field(" ", "libtss2-rc.so.0", FLAGS_SET(s
, TPM2_SUPPORT_LIBTSS2_RC
));
7849 print_field(" ", "libtss2-mu.so.0", FLAGS_SET(s
, TPM2_SUPPORT_LIBTSS2_MU
));
7852 assert_cc(TPM2_SUPPORT_API
<= 255); /* make sure this is safe to use as process exit status */
7854 /* Return inverted bit flags. So that TPM2_SUPPORT_FULL becomes EXIT_SUCCESS and the other values
7855 * become some reasonable values 1…7. i.e. the flags we return here tell what is missing rather than
7856 * what is there, acknowledging the fact that for process exit statuses it is customary to return
7857 * zero (EXIT_FAILURE) when all is good, instead of all being bad. */
7858 return ~s
& TPM2_SUPPORT_API
;
7862 static void tpm2_pcr_values_apply_default_hash_alg(Tpm2PCRValue
*pcr_values
, size_t n_pcr_values
) {
7863 TPMI_ALG_HASH default_hash
= 0;
7864 FOREACH_ARRAY(v
, pcr_values
, n_pcr_values
)
7866 default_hash
= v
->hash
;
7870 if (default_hash
!= 0)
7871 FOREACH_ARRAY(v
, pcr_values
, n_pcr_values
)
7873 v
->hash
= default_hash
;
7877 /* The following tpm2_parse_pcr_argument*() functions all log errors, to match the behavior of system-wide
7878 * parse_*_argument() functions. */
7880 /* Parse the PCR selection/value arg(s) and return a corresponding array of Tpm2PCRValue objects.
7882 * The format is the same as tpm2_pcr_values_from_string(). The first provided entry with a hash algorithm
7883 * set will be used as the 'default' hash algorithm. All entries with an unset hash algorithm will be updated
7884 * with the 'default' hash algorithm. The resulting array will be sorted and checked for validity.
7886 * This will replace *ret_pcr_values with the new array of pcr values; to append to an existing array, use
7887 * tpm2_parse_pcr_argument_append(). */
7888 int tpm2_parse_pcr_argument(const char *arg
, Tpm2PCRValue
**ret_pcr_values
, size_t *ret_n_pcr_values
) {
7893 assert(ret_pcr_values
);
7894 assert(ret_n_pcr_values
);
7896 _cleanup_free_ Tpm2PCRValue
*pcr_values
= NULL
;
7897 size_t n_pcr_values
= 0;
7898 r
= tpm2_pcr_values_from_string(arg
, &pcr_values
, &n_pcr_values
);
7900 return log_error_errno(r
, "Could not parse PCR values from '%s': %m", arg
);
7902 tpm2_pcr_values_apply_default_hash_alg(pcr_values
, n_pcr_values
);
7904 tpm2_sort_pcr_values(pcr_values
, n_pcr_values
);
7906 if (!tpm2_pcr_values_valid(pcr_values
, n_pcr_values
))
7907 return log_error_errno(SYNTHETIC_ERRNO(EINVAL
), "Parsed PCR values are not valid.");
7909 *ret_pcr_values
= TAKE_PTR(pcr_values
);
7910 *ret_n_pcr_values
= n_pcr_values
;
7914 return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "TPM2 support is disabled.");
7918 /* Same as tpm2_parse_pcr_argument(), but the pcr values array is appended to. If the provided pcr values
7919 * array is not NULL, it must point to an allocated pcr values array and the provided number of pcr values
7922 * Note that 'arg' is parsed into a new array of pcr values independently of any previous pcr values,
7923 * including application of the default hash algorithm. Then the two arrays are combined, the default hash
7924 * algorithm check applied again (in case either the previous or current array had no default hash
7925 * algorithm), and then the resulting array is sorted and rechecked for validity. */
7926 int tpm2_parse_pcr_argument_append(const char *arg
, Tpm2PCRValue
**pcr_values
, size_t *n_pcr_values
) {
7932 assert(n_pcr_values
);
7934 _cleanup_free_ Tpm2PCRValue
*more_pcr_values
= NULL
;
7935 size_t n_more_pcr_values
;
7936 r
= tpm2_parse_pcr_argument(arg
, &more_pcr_values
, &n_more_pcr_values
);
7940 /* If we got previous values, append them. */
7941 if (*pcr_values
&& !GREEDY_REALLOC_APPEND(more_pcr_values
, n_more_pcr_values
, *pcr_values
, *n_pcr_values
))
7944 tpm2_pcr_values_apply_default_hash_alg(more_pcr_values
, n_more_pcr_values
);
7946 tpm2_sort_pcr_values(more_pcr_values
, n_more_pcr_values
);
7948 if (!tpm2_pcr_values_valid(more_pcr_values
, n_more_pcr_values
))
7949 return log_error_errno(SYNTHETIC_ERRNO(EINVAL
), "Parsed PCR values are not valid.");
7951 SWAP_TWO(*pcr_values
, more_pcr_values
);
7952 *n_pcr_values
= n_more_pcr_values
;
7956 return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "TPM2 support is disabled.");
7960 int tpm2_parse_pcr_argument_to_mask(const char *arg
, uint32_t *mask
) {
7964 /* Same as tpm2_parse_pcr_argument() but converts the pcr values to a pcr mask. If a hash algorithm or
7965 * hash value is specified an error is generated (after all we only return the mask here, nothing
7966 * else). This retains the previous behavior of tpm2_parse_pcr_argument() of clearing the mask if
7967 * 'arg' is empty, replacing the mask if it is set to UINT32_MAX, and or-ing the mask otherwise. */
7972 _cleanup_free_ Tpm2PCRValue
*pcr_values
= NULL
;
7973 size_t n_pcr_values
;
7974 r
= tpm2_parse_pcr_argument(arg
, &pcr_values
, &n_pcr_values
);
7978 if (n_pcr_values
== 0) {
7979 /* This retains the previous behavior of clearing the mask if the arg is empty */
7984 FOREACH_ARRAY(v
, pcr_values
, n_pcr_values
) {
7986 return log_error_errno(SYNTHETIC_ERRNO(EINVAL
),
7987 "Not expecting hash algorithm specification in PCR mask value, refusing: %s", arg
);
7988 if (v
->value
.size
!= 0)
7989 return log_error_errno(SYNTHETIC_ERRNO(EINVAL
),
7990 "Not expecting hash value specification in PCR mask value, refusing: %s", arg
);
7994 r
= tpm2_pcr_values_to_mask(pcr_values
, n_pcr_values
, /* hash= */ 0, &new_mask
);
7996 return log_error_errno(r
, "Could not get pcr values mask: %m");
7998 if (*mask
== UINT32_MAX
)
8005 return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP
), "TPM2 support is disabled.");
8009 int tpm2_load_pcr_signature(const char *path
, sd_json_variant
**ret
) {
8010 _cleanup_strv_free_
char **search
= NULL
;
8011 _cleanup_free_
char *discovered_path
= NULL
;
8012 _cleanup_fclose_
FILE *f
= NULL
;
8015 /* Tries to load a JSON PCR signature file. Takes an absolute path, a simple file name or NULL. In
8016 * the latter two cases searches in /etc/, /usr/lib/, /run/, as usual. */
8018 search
= strv_new(CONF_PATHS("systemd"));
8020 return log_oom_debug();
8023 /* If no path is specified, then look for "tpm2-pcr-signature.json" automatically. Also, in
8024 * this case include /.extra/ in the search path, but only in this case, and if we run in the
8025 * initrd. We don't want to be too eager here, after all /.extra/ is untrusted territory. */
8027 path
= "tpm2-pcr-signature.json";
8030 if (strv_extend(&search
, "/.extra") < 0)
8031 return log_oom_debug();
8034 r
= search_and_fopen(path
, "re", NULL
, (const char**) search
, &f
, &discovered_path
);
8036 return log_debug_errno(r
, "Failed to find TPM PCR signature file '%s': %m", path
);
8038 r
= sd_json_parse_file(f
, discovered_path
, 0, ret
, NULL
, NULL
);
8040 return log_debug_errno(r
, "Failed to parse TPM PCR signature JSON object '%s': %m", discovered_path
);
8045 int tpm2_load_pcr_public_key(const char *path
, void **ret_pubkey
, size_t *ret_pubkey_size
) {
8046 _cleanup_free_
char *discovered_path
= NULL
;
8047 _cleanup_fclose_
FILE *f
= NULL
;
8050 /* Tries to load a PCR public key file. Takes an absolute path, a simple file name or NULL. In the
8051 * latter two cases searches in /etc/, /usr/lib/, /run/, as usual. */
8054 path
= "tpm2-pcr-public-key.pem";
8056 r
= search_and_fopen(path
, "re", NULL
, (const char**) CONF_PATHS_STRV("systemd"), &f
, &discovered_path
);
8058 return log_debug_errno(r
, "Failed to find TPM PCR public key file '%s': %m", path
);
8060 r
= read_full_stream(f
, (char**) ret_pubkey
, ret_pubkey_size
);
8062 return log_debug_errno(r
, "Failed to load TPM PCR public key PEM file '%s': %m", discovered_path
);
8067 #define PBKDF2_HMAC_SHA256_ITERATIONS 10000
8070 * Implements PBKDF2 HMAC SHA256 for a derived keylen of 32
8071 * bytes and for PBKDF2_HMAC_SHA256_ITERATIONS count.
8072 * I found the wikipedia entry relevant and it contains links to
8074 * - https://en.wikipedia.org/wiki/PBKDF2
8075 * - https://www.rfc-editor.org/rfc/rfc2898#section-5.2
8077 int tpm2_util_pbkdf2_hmac_sha256(const void *pass
,
8081 uint8_t ret_key
[static SHA256_DIGEST_SIZE
]) {
8083 _cleanup_(erase_and_freep
) uint8_t *buffer
= NULL
;
8084 uint8_t u
[SHA256_DIGEST_SIZE
];
8086 /* To keep this simple, since derived KeyLen (dkLen in docs)
8087 * Is the same as the hash output, we don't need multiple
8088 * blocks. Part of the algorithm is to add the block count
8089 * in, but this can be hardcoded to 1.
8091 static const uint8_t block_cnt
[] = { 0, 0, 0, 1 };
8094 assert(saltlen
> 0);
8095 assert(saltlen
<= (SIZE_MAX
- sizeof(block_cnt
)));
8096 assert(passlen
> 0);
8099 * Build a buffer of salt + block_cnt and hmac_sha256 it we
8100 * do this as we don't have a context builder for HMAC_SHA256.
8102 buffer
= malloc(saltlen
+ sizeof(block_cnt
));
8106 memcpy(buffer
, salt
, saltlen
);
8107 memcpy(&buffer
[saltlen
], block_cnt
, sizeof(block_cnt
));
8109 hmac_sha256(pass
, passlen
, buffer
, saltlen
+ sizeof(block_cnt
), u
);
8111 /* dk needs to be an unmodified u as u gets modified in the loop */
8112 memcpy(ret_key
, u
, SHA256_DIGEST_SIZE
);
8113 uint8_t *dk
= ret_key
;
8115 for (size_t i
= 1; i
< PBKDF2_HMAC_SHA256_ITERATIONS
; i
++) {
8116 hmac_sha256(pass
, passlen
, u
, sizeof(u
), u
);
8118 for (size_t j
=0; j
< sizeof(u
); j
++)
8125 static const char* const tpm2_pcr_index_table
[_TPM2_PCR_INDEX_MAX_DEFINED
] = {
8126 [TPM2_PCR_PLATFORM_CODE
] = "platform-code",
8127 [TPM2_PCR_PLATFORM_CONFIG
] = "platform-config",
8128 [TPM2_PCR_EXTERNAL_CODE
] = "external-code",
8129 [TPM2_PCR_EXTERNAL_CONFIG
] = "external-config",
8130 [TPM2_PCR_BOOT_LOADER_CODE
] = "boot-loader-code",
8131 [TPM2_PCR_BOOT_LOADER_CONFIG
] = "boot-loader-config",
8132 [TPM2_PCR_HOST_PLATFORM
] = "host-platform",
8133 [TPM2_PCR_SECURE_BOOT_POLICY
] = "secure-boot-policy",
8134 [TPM2_PCR_KERNEL_INITRD
] = "kernel-initrd",
8135 [TPM2_PCR_IMA
] = "ima",
8136 [TPM2_PCR_KERNEL_BOOT
] = "kernel-boot",
8137 [TPM2_PCR_KERNEL_CONFIG
] = "kernel-config",
8138 [TPM2_PCR_SYSEXTS
] = "sysexts",
8139 [TPM2_PCR_SHIM_POLICY
] = "shim-policy",
8140 [TPM2_PCR_SYSTEM_IDENTITY
] = "system-identity",
8141 [TPM2_PCR_DEBUG
] = "debug",
8142 [TPM2_PCR_APPLICATION_SUPPORT
] = "application-support",
8145 DEFINE_STRING_TABLE_LOOKUP_FROM_STRING_WITH_FALLBACK(tpm2_pcr_index
, int, TPM2_PCRS_MAX
- 1);
8146 DEFINE_STRING_TABLE_LOOKUP_TO_STRING(tpm2_pcr_index
, int);