]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/quic/quic_record_rx.c
722b957a437a6e791fd3c7d0b3d847c5db9bde31
[thirdparty/openssl.git] / ssl / quic / quic_record_rx.c
1 /*
2 * Copyright 2022-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <openssl/ssl.h>
11 #include "internal/quic_record_rx.h"
12 #include "quic_record_shared.h"
13 #include "internal/common.h"
14 #include "internal/list.h"
15 #include "../ssl_local.h"
16
17 /*
18 * Mark a packet in a bitfield.
19 *
20 * pkt_idx: index of packet within datagram.
21 */
22 static ossl_inline void pkt_mark(uint64_t *bitf, size_t pkt_idx)
23 {
24 assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
25 *bitf |= ((uint64_t)1) << pkt_idx;
26 }
27
28 /* Returns 1 if a packet is in the bitfield. */
29 static ossl_inline int pkt_is_marked(const uint64_t *bitf, size_t pkt_idx)
30 {
31 assert(pkt_idx < QUIC_MAX_PKT_PER_URXE);
32 return (*bitf & (((uint64_t)1) << pkt_idx)) != 0;
33 }
34
35 /*
36 * RXE
37 * ===
38 *
39 * RX Entries (RXEs) store processed (i.e., decrypted) data received from the
40 * network. One RXE is used per received QUIC packet.
41 */
42 typedef struct rxe_st RXE;
43
44 struct rxe_st {
45 OSSL_QRX_PKT pkt;
46 OSSL_LIST_MEMBER(rxe, RXE);
47 size_t data_len, alloc_len, refcount;
48
49 /* Extra fields for per-packet information. */
50 QUIC_PKT_HDR hdr; /* data/len are decrypted payload */
51
52 /* Decoded packet number. */
53 QUIC_PN pn;
54
55 /* Addresses copied from URXE. */
56 BIO_ADDR peer, local;
57
58 /* Time we received the packet (not when we processed it). */
59 OSSL_TIME time;
60
61 /* Total length of the datagram which contained this packet. */
62 size_t datagram_len;
63
64 /*
65 * The key epoch the packet was received with. Always 0 for non-1-RTT
66 * packets.
67 */
68 uint64_t key_epoch;
69
70 /*
71 * Monotonically increases with each datagram received.
72 * For diagnostic use only.
73 */
74 uint64_t datagram_id;
75
76 /*
77 * alloc_len allocated bytes (of which data_len bytes are valid) follow this
78 * structure.
79 */
80 };
81
82 DEFINE_LIST_OF(rxe, RXE);
83 typedef OSSL_LIST(rxe) RXE_LIST;
84
85 static ossl_inline unsigned char *rxe_data(const RXE *e)
86 {
87 return (unsigned char *)(e + 1);
88 }
89
90 /*
91 * QRL
92 * ===
93 */
94 struct ossl_qrx_st {
95 OSSL_LIB_CTX *libctx;
96 const char *propq;
97
98 /* Demux to receive datagrams from. */
99 QUIC_DEMUX *demux;
100
101 /* Length of connection IDs used in short-header packets in bytes. */
102 size_t short_conn_id_len;
103
104 /* Maximum number of deferred datagrams buffered at any one time. */
105 size_t max_deferred;
106
107 /* Current count of deferred datagrams. */
108 size_t num_deferred;
109
110 /*
111 * List of URXEs which are filled with received encrypted data.
112 * These are returned to the DEMUX's free list as they are processed.
113 */
114 QUIC_URXE_LIST urx_pending;
115
116 /*
117 * List of URXEs which we could not decrypt immediately and which are being
118 * kept in case they can be decrypted later.
119 */
120 QUIC_URXE_LIST urx_deferred;
121
122 /*
123 * List of RXEs which are not currently in use. These are moved
124 * to the pending list as they are filled.
125 */
126 RXE_LIST rx_free;
127
128 /*
129 * List of RXEs which are filled with decrypted packets ready to be passed
130 * to the user. A RXE is removed from all lists inside the QRL when passed
131 * to the user, then returned to the free list when the user returns it.
132 */
133 RXE_LIST rx_pending;
134
135 /* Largest PN we have received and processed in a given PN space. */
136 QUIC_PN largest_pn[QUIC_PN_SPACE_NUM];
137
138 /* Per encryption-level state. */
139 OSSL_QRL_ENC_LEVEL_SET el_set;
140
141 /* Bytes we have received since this counter was last cleared. */
142 uint64_t bytes_received;
143
144 /*
145 * Number of forged packets we have received since the QRX was instantiated.
146 * Note that as per RFC 9001, this is connection-level state; it is not per
147 * EL and is not reset by a key update.
148 */
149 uint64_t forged_pkt_count;
150
151 /*
152 * The PN the current key epoch started at, inclusive.
153 */
154 uint64_t cur_epoch_start_pn;
155
156 /* Validation callback. */
157 ossl_qrx_late_validation_cb *validation_cb;
158 void *validation_cb_arg;
159
160 /* Key update callback. */
161 ossl_qrx_key_update_cb *key_update_cb;
162 void *key_update_cb_arg;
163
164 /* Initial key phase. For debugging use only; always 0 in real use. */
165 unsigned char init_key_phase_bit;
166
167 /* Are we allowed to process 1-RTT packets yet? */
168 unsigned char allow_1rtt;
169
170 /* Message callback related arguments */
171 ossl_msg_cb msg_callback;
172 void *msg_callback_arg;
173 SSL *msg_callback_ssl;
174 };
175
176 OSSL_QRX *ossl_qrx_new(const OSSL_QRX_ARGS *args)
177 {
178 OSSL_QRX *qrx;
179 size_t i;
180
181 if (args->demux == NULL || args->max_deferred == 0)
182 return NULL;
183
184 qrx = OPENSSL_zalloc(sizeof(OSSL_QRX));
185 if (qrx == NULL)
186 return NULL;
187
188 for (i = 0; i < OSSL_NELEM(qrx->largest_pn); ++i)
189 qrx->largest_pn[i] = args->init_largest_pn[i];
190
191 qrx->libctx = args->libctx;
192 qrx->propq = args->propq;
193 qrx->demux = args->demux;
194 qrx->short_conn_id_len = args->short_conn_id_len;
195 qrx->init_key_phase_bit = args->init_key_phase_bit;
196 qrx->max_deferred = args->max_deferred;
197 return qrx;
198 }
199
200 static void qrx_cleanup_rxl(RXE_LIST *l)
201 {
202 RXE *e, *enext;
203
204 for (e = ossl_list_rxe_head(l); e != NULL; e = enext) {
205 enext = ossl_list_rxe_next(e);
206 ossl_list_rxe_remove(l, e);
207 OPENSSL_free(e);
208 }
209 }
210
211 static void qrx_cleanup_urxl(OSSL_QRX *qrx, QUIC_URXE_LIST *l)
212 {
213 QUIC_URXE *e, *enext;
214
215 for (e = ossl_list_urxe_head(l); e != NULL; e = enext) {
216 enext = ossl_list_urxe_next(e);
217 ossl_list_urxe_remove(l, e);
218 ossl_quic_demux_release_urxe(qrx->demux, e);
219 }
220 }
221
222 void ossl_qrx_free(OSSL_QRX *qrx)
223 {
224 uint32_t i;
225
226 if (qrx == NULL)
227 return;
228
229 /* Free RXE queue data. */
230 qrx_cleanup_rxl(&qrx->rx_free);
231 qrx_cleanup_rxl(&qrx->rx_pending);
232 qrx_cleanup_urxl(qrx, &qrx->urx_pending);
233 qrx_cleanup_urxl(qrx, &qrx->urx_deferred);
234
235 /* Drop keying material and crypto resources. */
236 for (i = 0; i < QUIC_ENC_LEVEL_NUM; ++i)
237 ossl_qrl_enc_level_set_discard(&qrx->el_set, i);
238
239 OPENSSL_free(qrx);
240 }
241
242 void ossl_qrx_inject_urxe(OSSL_QRX *qrx, QUIC_URXE *urxe)
243 {
244 /* Initialize our own fields inside the URXE and add to the pending list. */
245 urxe->processed = 0;
246 urxe->hpr_removed = 0;
247 urxe->deferred = 0;
248 ossl_list_urxe_insert_tail(&qrx->urx_pending, urxe);
249
250 if (qrx->msg_callback != NULL)
251 qrx->msg_callback(0, OSSL_QUIC1_VERSION, SSL3_RT_QUIC_DATAGRAM, urxe + 1,
252 urxe->data_len, qrx->msg_callback_ssl,
253 qrx->msg_callback_arg);
254 }
255
256 static void qrx_requeue_deferred(OSSL_QRX *qrx)
257 {
258 QUIC_URXE *e;
259
260 while ((e = ossl_list_urxe_head(&qrx->urx_deferred)) != NULL) {
261 ossl_list_urxe_remove(&qrx->urx_deferred, e);
262 ossl_list_urxe_insert_tail(&qrx->urx_pending, e);
263 }
264 }
265
266 int ossl_qrx_provide_secret(OSSL_QRX *qrx, uint32_t enc_level,
267 uint32_t suite_id, EVP_MD *md,
268 const unsigned char *secret, size_t secret_len)
269 {
270 if (enc_level >= QUIC_ENC_LEVEL_NUM)
271 return 0;
272
273 if (!ossl_qrl_enc_level_set_provide_secret(&qrx->el_set,
274 qrx->libctx,
275 qrx->propq,
276 enc_level,
277 suite_id,
278 md,
279 secret,
280 secret_len,
281 qrx->init_key_phase_bit,
282 /*is_tx=*/0))
283 return 0;
284
285 /*
286 * Any packets we previously could not decrypt, we may now be able to
287 * decrypt, so move any datagrams containing deferred packets from the
288 * deferred to the pending queue.
289 */
290 qrx_requeue_deferred(qrx);
291 return 1;
292 }
293
294 int ossl_qrx_discard_enc_level(OSSL_QRX *qrx, uint32_t enc_level)
295 {
296 if (enc_level >= QUIC_ENC_LEVEL_NUM)
297 return 0;
298
299 ossl_qrl_enc_level_set_discard(&qrx->el_set, enc_level);
300 return 1;
301 }
302
303 /* Returns 1 if there are one or more pending RXEs. */
304 int ossl_qrx_processed_read_pending(OSSL_QRX *qrx)
305 {
306 return !ossl_list_rxe_is_empty(&qrx->rx_pending);
307 }
308
309 /* Returns 1 if there are yet-unprocessed packets. */
310 int ossl_qrx_unprocessed_read_pending(OSSL_QRX *qrx)
311 {
312 return !ossl_list_urxe_is_empty(&qrx->urx_pending)
313 || !ossl_list_urxe_is_empty(&qrx->urx_deferred);
314 }
315
316 /* Pop the next pending RXE. Returns NULL if no RXE is pending. */
317 static RXE *qrx_pop_pending_rxe(OSSL_QRX *qrx)
318 {
319 RXE *rxe = ossl_list_rxe_head(&qrx->rx_pending);
320
321 if (rxe == NULL)
322 return NULL;
323
324 ossl_list_rxe_remove(&qrx->rx_pending, rxe);
325 return rxe;
326 }
327
328 /* Allocate a new RXE. */
329 static RXE *qrx_alloc_rxe(size_t alloc_len)
330 {
331 RXE *rxe;
332
333 if (alloc_len >= SIZE_MAX - sizeof(RXE))
334 return NULL;
335
336 rxe = OPENSSL_malloc(sizeof(RXE) + alloc_len);
337 if (rxe == NULL)
338 return NULL;
339
340 ossl_list_rxe_init_elem(rxe);
341 rxe->alloc_len = alloc_len;
342 rxe->data_len = 0;
343 rxe->refcount = 0;
344 return rxe;
345 }
346
347 /*
348 * Ensures there is at least one RXE in the RX free list, allocating a new entry
349 * if necessary. The returned RXE is in the RX free list; it is not popped.
350 *
351 * alloc_len is a hint which may be used to determine the RXE size if allocation
352 * is necessary. Returns NULL on allocation failure.
353 */
354 static RXE *qrx_ensure_free_rxe(OSSL_QRX *qrx, size_t alloc_len)
355 {
356 RXE *rxe;
357
358 if (ossl_list_rxe_head(&qrx->rx_free) != NULL)
359 return ossl_list_rxe_head(&qrx->rx_free);
360
361 rxe = qrx_alloc_rxe(alloc_len);
362 if (rxe == NULL)
363 return NULL;
364
365 ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
366 return rxe;
367 }
368
369 /*
370 * Resize the data buffer attached to an RXE to be n bytes in size. The address
371 * of the RXE might change; the new address is returned, or NULL on failure, in
372 * which case the original RXE remains valid.
373 */
374 static RXE *qrx_resize_rxe(RXE_LIST *rxl, RXE *rxe, size_t n)
375 {
376 RXE *rxe2, *p;
377
378 /* Should never happen. */
379 if (rxe == NULL)
380 return NULL;
381
382 if (n >= SIZE_MAX - sizeof(RXE))
383 return NULL;
384
385 /* Remove the item from the list to avoid accessing freed memory */
386 p = ossl_list_rxe_prev(rxe);
387 ossl_list_rxe_remove(rxl, rxe);
388
389 /* Should never resize an RXE which has been handed out. */
390 if (!ossl_assert(rxe->refcount == 0))
391 return NULL;
392
393 /*
394 * NOTE: We do not clear old memory, although it does contain decrypted
395 * data.
396 */
397 rxe2 = OPENSSL_realloc(rxe, sizeof(RXE) + n);
398 if (rxe2 == NULL) {
399 /* Resize failed, restore old allocation. */
400 if (p == NULL)
401 ossl_list_rxe_insert_head(rxl, rxe);
402 else
403 ossl_list_rxe_insert_after(rxl, p, rxe);
404 return NULL;
405 }
406
407 if (p == NULL)
408 ossl_list_rxe_insert_head(rxl, rxe2);
409 else
410 ossl_list_rxe_insert_after(rxl, p, rxe2);
411
412 rxe2->alloc_len = n;
413 return rxe2;
414 }
415
416 /*
417 * Ensure the data buffer attached to an RXE is at least n bytes in size.
418 * Returns NULL on failure.
419 */
420 static RXE *qrx_reserve_rxe(RXE_LIST *rxl,
421 RXE *rxe, size_t n)
422 {
423 if (rxe->alloc_len >= n)
424 return rxe;
425
426 return qrx_resize_rxe(rxl, rxe, n);
427 }
428
429 /* Return a RXE handed out to the user back to our freelist. */
430 static void qrx_recycle_rxe(OSSL_QRX *qrx, RXE *rxe)
431 {
432 /* RXE should not be in any list */
433 assert(ossl_list_rxe_prev(rxe) == NULL && ossl_list_rxe_next(rxe) == NULL);
434 rxe->pkt.hdr = NULL;
435 rxe->pkt.peer = NULL;
436 rxe->pkt.local = NULL;
437 ossl_list_rxe_insert_tail(&qrx->rx_free, rxe);
438 }
439
440 /*
441 * Given a pointer to a pointer pointing to a buffer and the size of that
442 * buffer, copy the buffer into *prxe, expanding the RXE if necessary (its
443 * pointer may change due to realloc). *pi is the offset in bytes to copy the
444 * buffer to, and on success is updated to be the offset pointing after the
445 * copied buffer. *pptr is updated to point to the new location of the buffer.
446 */
447 static int qrx_relocate_buffer(OSSL_QRX *qrx, RXE **prxe, size_t *pi,
448 const unsigned char **pptr, size_t buf_len)
449 {
450 RXE *rxe;
451 unsigned char *dst;
452
453 if (!buf_len)
454 return 1;
455
456 if ((rxe = qrx_reserve_rxe(&qrx->rx_free, *prxe, *pi + buf_len)) == NULL)
457 return 0;
458
459 *prxe = rxe;
460 dst = (unsigned char *)rxe_data(rxe) + *pi;
461
462 memcpy(dst, *pptr, buf_len);
463 *pi += buf_len;
464 *pptr = dst;
465 return 1;
466 }
467
468 static uint32_t qrx_determine_enc_level(const QUIC_PKT_HDR *hdr)
469 {
470 switch (hdr->type) {
471 case QUIC_PKT_TYPE_INITIAL:
472 return QUIC_ENC_LEVEL_INITIAL;
473 case QUIC_PKT_TYPE_HANDSHAKE:
474 return QUIC_ENC_LEVEL_HANDSHAKE;
475 case QUIC_PKT_TYPE_0RTT:
476 return QUIC_ENC_LEVEL_0RTT;
477 case QUIC_PKT_TYPE_1RTT:
478 return QUIC_ENC_LEVEL_1RTT;
479
480 default:
481 assert(0);
482 case QUIC_PKT_TYPE_RETRY:
483 case QUIC_PKT_TYPE_VERSION_NEG:
484 return QUIC_ENC_LEVEL_INITIAL; /* not used */
485 }
486 }
487
488 static uint32_t rxe_determine_pn_space(RXE *rxe)
489 {
490 uint32_t enc_level;
491
492 enc_level = qrx_determine_enc_level(&rxe->hdr);
493 return ossl_quic_enc_level_to_pn_space(enc_level);
494 }
495
496 static int qrx_validate_hdr_early(OSSL_QRX *qrx, RXE *rxe,
497 const QUIC_CONN_ID *first_dcid)
498 {
499 /* Ensure version is what we want. */
500 if (rxe->hdr.version != QUIC_VERSION_1
501 && rxe->hdr.version != QUIC_VERSION_NONE)
502 return 0;
503
504 /* Clients should never receive 0-RTT packets. */
505 if (rxe->hdr.type == QUIC_PKT_TYPE_0RTT)
506 return 0;
507
508 /* Version negotiation and retry packets must be the first packet. */
509 if (first_dcid != NULL && !ossl_quic_pkt_type_can_share_dgram(rxe->hdr.type))
510 return 0;
511
512 /*
513 * If this is not the first packet in a datagram, the destination connection
514 * ID must match the one in that packet.
515 */
516 if (first_dcid != NULL) {
517 if (!ossl_assert(first_dcid->id_len < QUIC_MAX_CONN_ID_LEN)
518 || !ossl_quic_conn_id_eq(first_dcid,
519 &rxe->hdr.dst_conn_id))
520 return 0;
521 }
522
523 return 1;
524 }
525
526 /* Validate header and decode PN. */
527 static int qrx_validate_hdr(OSSL_QRX *qrx, RXE *rxe)
528 {
529 int pn_space = rxe_determine_pn_space(rxe);
530
531 if (!ossl_quic_wire_decode_pkt_hdr_pn(rxe->hdr.pn, rxe->hdr.pn_len,
532 qrx->largest_pn[pn_space],
533 &rxe->pn))
534 return 0;
535
536 return 1;
537 }
538
539 /* Late packet header validation. */
540 static int qrx_validate_hdr_late(OSSL_QRX *qrx, RXE *rxe)
541 {
542 int pn_space = rxe_determine_pn_space(rxe);
543
544 /*
545 * Allow our user to decide whether to discard the packet before we try and
546 * decrypt it.
547 */
548 if (qrx->validation_cb != NULL
549 && !qrx->validation_cb(rxe->pn, pn_space, qrx->validation_cb_arg))
550 return 0;
551
552 return 1;
553 }
554
555 /*
556 * Retrieves the correct cipher context for an EL and key phase. Writes the key
557 * epoch number actually used for packet decryption to *rx_key_epoch.
558 */
559 static size_t qrx_get_cipher_ctx_idx(OSSL_QRX *qrx, OSSL_QRL_ENC_LEVEL *el,
560 uint32_t enc_level,
561 unsigned char key_phase_bit,
562 uint64_t *rx_key_epoch,
563 int *is_old_key)
564 {
565 size_t idx;
566
567 *is_old_key = 0;
568
569 if (enc_level != QUIC_ENC_LEVEL_1RTT) {
570 *rx_key_epoch = 0;
571 return 0;
572 }
573
574 if (!ossl_assert(key_phase_bit <= 1))
575 return SIZE_MAX;
576
577 /*
578 * RFC 9001 requires that we not create timing channels which could reveal
579 * the decrypted value of the Key Phase bit. We usually handle this by
580 * keeping the cipher contexts for both the current and next key epochs
581 * around, so that we just select a cipher context blindly using the key
582 * phase bit, which is time-invariant.
583 *
584 * In the COOLDOWN state, we only have one keyslot/cipher context. RFC 9001
585 * suggests an implementation strategy to avoid creating a timing channel in
586 * this case:
587 *
588 * Endpoints can use randomized packet protection keys in place of
589 * discarded keys when key updates are not yet permitted.
590 *
591 * Rather than use a randomised key, we simply use our existing key as it
592 * will fail AEAD verification anyway. This avoids the need to keep around a
593 * dedicated garbage key.
594 *
595 * Note: Accessing different cipher contexts is technically not
596 * timing-channel safe due to microarchitectural side channels, but this is
597 * the best we can reasonably do and appears to be directly suggested by the
598 * RFC.
599 */
600 idx = (el->state == QRL_EL_STATE_PROV_COOLDOWN ? el->key_epoch & 1
601 : key_phase_bit);
602
603 /*
604 * We also need to determine the key epoch number which this index
605 * corresponds to. This is so we can report the key epoch number in the
606 * OSSL_QRX_PKT structure, which callers need to validate whether it was OK
607 * for a packet to be sent using a given key epoch's keys.
608 */
609 switch (el->state) {
610 case QRL_EL_STATE_PROV_NORMAL:
611 /*
612 * If we are in the NORMAL state, usually the KP bit will match the LSB
613 * of our key epoch, meaning no new key update is being signalled. If it
614 * does not match, this means the packet (purports to) belong to
615 * the next key epoch.
616 *
617 * IMPORTANT: The AEAD tag has not been verified yet when this function
618 * is called, so this code must be timing-channel safe, hence use of
619 * XOR. Moreover, the value output below is not yet authenticated.
620 */
621 *rx_key_epoch
622 = el->key_epoch + ((el->key_epoch & 1) ^ (uint64_t)key_phase_bit);
623 break;
624
625 case QRL_EL_STATE_PROV_UPDATING:
626 /*
627 * If we are in the UPDATING state, usually the KP bit will match the
628 * LSB of our key epoch. If it does not match, this means that the
629 * packet (purports to) belong to the previous key epoch.
630 *
631 * As above, must be timing-channel safe.
632 */
633 *is_old_key = (el->key_epoch & 1) ^ (uint64_t)key_phase_bit;
634 *rx_key_epoch = el->key_epoch - (uint64_t)*is_old_key;
635 break;
636
637 case QRL_EL_STATE_PROV_COOLDOWN:
638 /*
639 * If we are in COOLDOWN, there is only one key epoch we can possibly
640 * decrypt with, so just try that. If AEAD decryption fails, the
641 * value we output here isn't used anyway.
642 */
643 *rx_key_epoch = el->key_epoch;
644 break;
645 }
646
647 return idx;
648 }
649
650 /*
651 * Tries to decrypt a packet payload.
652 *
653 * Returns 1 on success or 0 on failure (which is permanent). The payload is
654 * decrypted from src and written to dst. The buffer dst must be of at least
655 * src_len bytes in length. The actual length of the output in bytes is written
656 * to *dec_len on success, which will always be equal to or less than (usually
657 * less than) src_len.
658 */
659 static int qrx_decrypt_pkt_body(OSSL_QRX *qrx, unsigned char *dst,
660 const unsigned char *src,
661 size_t src_len, size_t *dec_len,
662 const unsigned char *aad, size_t aad_len,
663 QUIC_PN pn, uint32_t enc_level,
664 unsigned char key_phase_bit,
665 uint64_t *rx_key_epoch)
666 {
667 int l = 0, l2 = 0, is_old_key, nonce_len;
668 unsigned char nonce[EVP_MAX_IV_LENGTH];
669 size_t i, cctx_idx;
670 OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
671 enc_level, 1);
672 EVP_CIPHER_CTX *cctx;
673
674 if (src_len > INT_MAX || aad_len > INT_MAX)
675 return 0;
676
677 /* We should not have been called if we do not have key material. */
678 if (!ossl_assert(el != NULL))
679 return 0;
680
681 if (el->tag_len >= src_len)
682 return 0;
683
684 /*
685 * If we have failed to authenticate a certain number of ciphertexts, refuse
686 * to decrypt any more ciphertexts.
687 */
688 if (qrx->forged_pkt_count >= ossl_qrl_get_suite_max_forged_pkt(el->suite_id))
689 return 0;
690
691 cctx_idx = qrx_get_cipher_ctx_idx(qrx, el, enc_level, key_phase_bit,
692 rx_key_epoch, &is_old_key);
693 if (!ossl_assert(cctx_idx < OSSL_NELEM(el->cctx)))
694 return 0;
695
696 if (is_old_key && pn >= qrx->cur_epoch_start_pn)
697 /*
698 * RFC 9001 s. 5.5: Once an endpoint successfully receives a packet with
699 * a given PN, it MUST discard all packets in the same PN space with
700 * higher PNs if they cannot be successfully unprotected with the same
701 * key, or -- if there is a key update -- a subsequent packet protection
702 * key.
703 *
704 * In other words, once a PN x triggers a KU, it is invalid for us to
705 * receive a packet with a newer PN y (y > x) using the old keys.
706 */
707 return 0;
708
709 cctx = el->cctx[cctx_idx];
710
711 /* Construct nonce (nonce=IV ^ PN). */
712 nonce_len = EVP_CIPHER_CTX_get_iv_length(cctx);
713 if (!ossl_assert(nonce_len >= (int)sizeof(QUIC_PN)))
714 return 0;
715
716 memcpy(nonce, el->iv[cctx_idx], nonce_len);
717 for (i = 0; i < sizeof(QUIC_PN); ++i)
718 nonce[nonce_len - i - 1] ^= (unsigned char)(pn >> (i * 8));
719
720 /* type and key will already have been setup; feed the IV. */
721 if (EVP_CipherInit_ex(cctx, NULL,
722 NULL, NULL, nonce, /*enc=*/0) != 1)
723 return 0;
724
725 /* Feed the AEAD tag we got so the cipher can validate it. */
726 if (EVP_CIPHER_CTX_ctrl(cctx, EVP_CTRL_AEAD_SET_TAG,
727 el->tag_len,
728 (unsigned char *)src + src_len - el->tag_len) != 1)
729 return 0;
730
731 /* Feed AAD data. */
732 if (EVP_CipherUpdate(cctx, NULL, &l, aad, aad_len) != 1)
733 return 0;
734
735 /* Feed encrypted packet body. */
736 if (EVP_CipherUpdate(cctx, dst, &l, src, src_len - el->tag_len) != 1)
737 return 0;
738
739 #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
740 /*
741 * Throw away what we just decrypted and just use the ciphertext instead
742 * (which should be unencrypted)
743 */
744 memcpy(dst, src, l);
745
746 /* Pretend to authenticate the tag but ignore it */
747 if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1) {
748 /* We don't care */
749 }
750 #else
751 /* Ensure authentication succeeded. */
752 if (EVP_CipherFinal_ex(cctx, NULL, &l2) != 1) {
753 /* Authentication failed, increment failed auth counter. */
754 ++qrx->forged_pkt_count;
755 return 0;
756 }
757 #endif
758
759 *dec_len = l;
760 return 1;
761 }
762
763 static ossl_inline void ignore_res(int x)
764 {
765 /* No-op. */
766 }
767
768 static void qrx_key_update_initiated(OSSL_QRX *qrx, QUIC_PN pn)
769 {
770 if (!ossl_qrl_enc_level_set_key_update(&qrx->el_set, QUIC_ENC_LEVEL_1RTT))
771 /* We are already in RXKU, so we don't call the callback again. */
772 return;
773
774 qrx->cur_epoch_start_pn = pn;
775
776 if (qrx->key_update_cb != NULL)
777 qrx->key_update_cb(pn, qrx->key_update_cb_arg);
778 }
779
780 /* Process a single packet in a datagram. */
781 static int qrx_process_pkt(OSSL_QRX *qrx, QUIC_URXE *urxe,
782 PACKET *pkt, size_t pkt_idx,
783 QUIC_CONN_ID *first_dcid,
784 size_t datagram_len)
785 {
786 RXE *rxe;
787 const unsigned char *eop = NULL;
788 size_t i, aad_len = 0, dec_len = 0;
789 PACKET orig_pkt = *pkt;
790 const unsigned char *sop = PACKET_data(pkt);
791 unsigned char *dst;
792 char need_second_decode = 0, already_processed = 0;
793 QUIC_PKT_HDR_PTRS ptrs;
794 uint32_t pn_space, enc_level;
795 OSSL_QRL_ENC_LEVEL *el = NULL;
796 uint64_t rx_key_epoch = UINT64_MAX;
797
798 /*
799 * Get a free RXE. If we need to allocate a new one, use the packet length
800 * as a good ballpark figure.
801 */
802 rxe = qrx_ensure_free_rxe(qrx, PACKET_remaining(pkt));
803 if (rxe == NULL)
804 return 0;
805
806 /* Have we already processed this packet? */
807 if (pkt_is_marked(&urxe->processed, pkt_idx))
808 already_processed = 1;
809
810 /*
811 * Decode the header into the RXE structure. We first decrypt and read the
812 * unprotected part of the packet header (unless we already removed header
813 * protection, in which case we decode all of it).
814 */
815 need_second_decode = !pkt_is_marked(&urxe->hpr_removed, pkt_idx);
816 if (!ossl_quic_wire_decode_pkt_hdr(pkt,
817 qrx->short_conn_id_len,
818 need_second_decode, 0, &rxe->hdr, &ptrs))
819 goto malformed;
820
821 /*
822 * Our successful decode above included an intelligible length and the
823 * PACKET is now pointing to the end of the QUIC packet.
824 */
825 eop = PACKET_data(pkt);
826
827 /*
828 * Make a note of the first packet's DCID so we can later ensure the
829 * destination connection IDs of all packets in a datagram match.
830 */
831 if (pkt_idx == 0)
832 *first_dcid = rxe->hdr.dst_conn_id;
833
834 /*
835 * Early header validation. Since we now know the packet length, we can also
836 * now skip over it if we already processed it.
837 */
838 if (already_processed
839 || !qrx_validate_hdr_early(qrx, rxe, pkt_idx == 0 ? NULL : first_dcid))
840 /*
841 * Already processed packets are handled identically to malformed
842 * packets; i.e., they are ignored.
843 */
844 goto malformed;
845
846 if (!ossl_quic_pkt_type_is_encrypted(rxe->hdr.type)) {
847 /*
848 * Version negotiation and retry packets are a special case. They do not
849 * contain a payload which needs decrypting and have no header
850 * protection.
851 */
852
853 /* Just copy the payload from the URXE to the RXE. */
854 if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len)) == NULL)
855 /*
856 * Allocation failure. EOP will be pointing to the end of the
857 * datagram so processing of this datagram will end here.
858 */
859 goto malformed;
860
861 /* We are now committed to returning the packet. */
862 memcpy(rxe_data(rxe), rxe->hdr.data, rxe->hdr.len);
863 pkt_mark(&urxe->processed, pkt_idx);
864
865 rxe->hdr.data = rxe_data(rxe);
866 rxe->pn = QUIC_PN_INVALID;
867
868 rxe->data_len = rxe->hdr.len;
869 rxe->datagram_len = datagram_len;
870 rxe->key_epoch = 0;
871 rxe->peer = urxe->peer;
872 rxe->local = urxe->local;
873 rxe->time = urxe->time;
874 rxe->datagram_id = urxe->datagram_id;
875
876 /* Move RXE to pending. */
877 ossl_list_rxe_remove(&qrx->rx_free, rxe);
878 ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
879 return 0; /* success, did not defer */
880 }
881
882 /* Determine encryption level of packet. */
883 enc_level = qrx_determine_enc_level(&rxe->hdr);
884
885 /* If we do not have keying material for this encryption level yet, defer. */
886 switch (ossl_qrl_enc_level_set_have_el(&qrx->el_set, enc_level)) {
887 case 1:
888 /* We have keys. */
889 if (enc_level == QUIC_ENC_LEVEL_1RTT && !qrx->allow_1rtt)
890 /*
891 * But we cannot process 1-RTT packets until the handshake is
892 * completed (RFC 9000 s. 5.7).
893 */
894 goto cannot_decrypt;
895
896 break;
897 case 0:
898 /* No keys yet. */
899 goto cannot_decrypt;
900 default:
901 /* We already discarded keys for this EL, we will never process this.*/
902 goto malformed;
903 }
904
905 /*
906 * We will copy any token included in the packet to the start of our RXE
907 * data buffer (so that we don't reference the URXE buffer any more and can
908 * recycle it). Track our position in the RXE buffer by index instead of
909 * pointer as the pointer may change as reallocs occur.
910 */
911 i = 0;
912
913 /*
914 * rxe->hdr.data is now pointing at the (encrypted) packet payload. rxe->hdr
915 * also has fields pointing into the PACKET buffer which will be going away
916 * soon (the URXE will be reused for another incoming packet).
917 *
918 * Firstly, relocate some of these fields into the RXE as needed.
919 *
920 * Relocate token buffer and fix pointer.
921 */
922 if (rxe->hdr.type == QUIC_PKT_TYPE_INITIAL) {
923 const unsigned char *token = rxe->hdr.token;
924
925 /*
926 * This may change the value of rxe and change the value of the token
927 * pointer as well. So we must make a temporary copy of the pointer to
928 * the token, and then copy it back into the new location of the rxe
929 */
930 if (!qrx_relocate_buffer(qrx, &rxe, &i, &token, rxe->hdr.token_len))
931 goto malformed;
932
933 rxe->hdr.token = token;
934 }
935
936 /* Now remove header protection. */
937 *pkt = orig_pkt;
938
939 el = ossl_qrl_enc_level_set_get(&qrx->el_set, enc_level, 1);
940 assert(el != NULL); /* Already checked above */
941
942 if (need_second_decode) {
943 if (!ossl_quic_hdr_protector_decrypt(&el->hpr, &ptrs))
944 goto malformed;
945
946 /*
947 * We have removed header protection, so don't attempt to do it again if
948 * the packet gets deferred and processed again.
949 */
950 pkt_mark(&urxe->hpr_removed, pkt_idx);
951
952 /* Decode the now unprotected header. */
953 if (ossl_quic_wire_decode_pkt_hdr(pkt, qrx->short_conn_id_len,
954 0, 0, &rxe->hdr, NULL) != 1)
955 goto malformed;
956 }
957
958 /* Validate header and decode PN. */
959 if (!qrx_validate_hdr(qrx, rxe))
960 goto malformed;
961
962 if (qrx->msg_callback != NULL)
963 qrx->msg_callback(0, OSSL_QUIC1_VERSION, SSL3_RT_QUIC_PACKET, sop,
964 eop - sop - rxe->hdr.len, qrx->msg_callback_ssl,
965 qrx->msg_callback_arg);
966
967 /*
968 * The AAD data is the entire (unprotected) packet header including the PN.
969 * The packet header has been unprotected in place, so we can just reuse the
970 * PACKET buffer. The header ends where the payload begins.
971 */
972 aad_len = rxe->hdr.data - sop;
973
974 /* Ensure the RXE buffer size is adequate for our payload. */
975 if ((rxe = qrx_reserve_rxe(&qrx->rx_free, rxe, rxe->hdr.len + i)) == NULL) {
976 /*
977 * Allocation failure, treat as malformed and do not bother processing
978 * any further packets in the datagram as they are likely to also
979 * encounter allocation failures.
980 */
981 eop = NULL;
982 goto malformed;
983 }
984
985 /*
986 * We decrypt the packet body to immediately after the token at the start of
987 * the RXE buffer (where present).
988 *
989 * Do the decryption from the PACKET (which points into URXE memory) to our
990 * RXE payload (single-copy decryption), then fixup the pointers in the
991 * header to point to our new buffer.
992 *
993 * If decryption fails this is considered a permanent error; we defer
994 * packets we don't yet have decryption keys for above, so if this fails,
995 * something has gone wrong with the handshake process or a packet has been
996 * corrupted.
997 */
998 dst = (unsigned char *)rxe_data(rxe) + i;
999 if (!qrx_decrypt_pkt_body(qrx, dst, rxe->hdr.data, rxe->hdr.len,
1000 &dec_len, sop, aad_len, rxe->pn, enc_level,
1001 rxe->hdr.key_phase, &rx_key_epoch))
1002 goto malformed;
1003
1004 /*
1005 * -----------------------------------------------------
1006 * IMPORTANT: ANYTHING ABOVE THIS LINE IS UNVERIFIED
1007 * AND MUST BE TIMING-CHANNEL SAFE.
1008 * -----------------------------------------------------
1009 *
1010 * At this point, we have successfully authenticated the AEAD tag and no
1011 * longer need to worry about exposing the PN, PN length or Key Phase bit in
1012 * timing channels. Invoke any configured validation callback to allow for
1013 * rejection of duplicate PNs.
1014 */
1015 if (!qrx_validate_hdr_late(qrx, rxe))
1016 goto malformed;
1017
1018 /* Check for a Key Phase bit differing from our expectation. */
1019 if (rxe->hdr.type == QUIC_PKT_TYPE_1RTT
1020 && rxe->hdr.key_phase != (el->key_epoch & 1))
1021 qrx_key_update_initiated(qrx, rxe->pn);
1022
1023 /*
1024 * We have now successfully decrypted the packet payload. If there are
1025 * additional packets in the datagram, it is possible we will fail to
1026 * decrypt them and need to defer them until we have some key material we
1027 * don't currently possess. If this happens, the URXE will be moved to the
1028 * deferred queue. Since a URXE corresponds to one datagram, which may
1029 * contain multiple packets, we must ensure any packets we have already
1030 * processed in the URXE are not processed again (this is an RFC
1031 * requirement). We do this by marking the nth packet in the datagram as
1032 * processed.
1033 *
1034 * We are now committed to returning this decrypted packet to the user,
1035 * meaning we now consider the packet processed and must mark it
1036 * accordingly.
1037 */
1038 pkt_mark(&urxe->processed, pkt_idx);
1039
1040 /*
1041 * Update header to point to the decrypted buffer, which may be shorter
1042 * due to AEAD tags, block padding, etc.
1043 */
1044 rxe->hdr.data = dst;
1045 rxe->hdr.len = dec_len;
1046 rxe->data_len = dec_len;
1047 rxe->datagram_len = datagram_len;
1048 rxe->key_epoch = rx_key_epoch;
1049
1050 /* We processed the PN successfully, so update largest processed PN. */
1051 pn_space = rxe_determine_pn_space(rxe);
1052 if (rxe->pn > qrx->largest_pn[pn_space])
1053 qrx->largest_pn[pn_space] = rxe->pn;
1054
1055 /* Copy across network addresses and RX time from URXE to RXE. */
1056 rxe->peer = urxe->peer;
1057 rxe->local = urxe->local;
1058 rxe->time = urxe->time;
1059 rxe->datagram_id = urxe->datagram_id;
1060
1061 /* Move RXE to pending. */
1062 ossl_list_rxe_remove(&qrx->rx_free, rxe);
1063 ossl_list_rxe_insert_tail(&qrx->rx_pending, rxe);
1064 return 0; /* success, did not defer; not distinguished from failure */
1065
1066 cannot_decrypt:
1067 /*
1068 * We cannot process this packet right now (but might be able to later). We
1069 * MUST attempt to process any other packets in the datagram, so defer it
1070 * and skip over it.
1071 */
1072 assert(eop != NULL && eop >= PACKET_data(pkt));
1073 /*
1074 * We don't care if this fails as it will just result in the packet being at
1075 * the end of the datagram buffer.
1076 */
1077 ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
1078 return 1; /* deferred */
1079
1080 malformed:
1081 if (eop != NULL) {
1082 /*
1083 * This packet cannot be processed and will never be processable. We
1084 * were at least able to decode its header and determine its length, so
1085 * we can skip over it and try to process any subsequent packets in the
1086 * datagram.
1087 *
1088 * Mark as processed as an optimization.
1089 */
1090 assert(eop >= PACKET_data(pkt));
1091 pkt_mark(&urxe->processed, pkt_idx);
1092 /* We don't care if this fails (see above) */
1093 ignore_res(PACKET_forward(pkt, eop - PACKET_data(pkt)));
1094 } else {
1095 /*
1096 * This packet cannot be processed and will never be processable.
1097 * Because even its header is not intelligible, we cannot examine any
1098 * further packets in the datagram because its length cannot be
1099 * discerned.
1100 *
1101 * Advance over the entire remainder of the datagram, and mark it as
1102 * processed as an optimization.
1103 */
1104 pkt_mark(&urxe->processed, pkt_idx);
1105 /* We don't care if this fails (see above) */
1106 ignore_res(PACKET_forward(pkt, PACKET_remaining(pkt)));
1107 }
1108 return 0; /* failure, did not defer; not distinguished from success */
1109 }
1110
1111 /* Process a datagram which was received. */
1112 static int qrx_process_datagram(OSSL_QRX *qrx, QUIC_URXE *e,
1113 const unsigned char *data,
1114 size_t data_len)
1115 {
1116 int have_deferred = 0;
1117 PACKET pkt;
1118 size_t pkt_idx = 0;
1119 QUIC_CONN_ID first_dcid = { 255 };
1120
1121 qrx->bytes_received += data_len;
1122
1123 if (!PACKET_buf_init(&pkt, data, data_len))
1124 return 0;
1125
1126 for (; PACKET_remaining(&pkt) > 0; ++pkt_idx) {
1127 /*
1128 * A packet smaller than the minimum possible QUIC packet size is not
1129 * considered valid. We also ignore more than a certain number of
1130 * packets within the same datagram.
1131 */
1132 if (PACKET_remaining(&pkt) < QUIC_MIN_VALID_PKT_LEN
1133 || pkt_idx >= QUIC_MAX_PKT_PER_URXE)
1134 break;
1135
1136 /*
1137 * We note whether packet processing resulted in a deferral since
1138 * this means we need to move the URXE to the deferred list rather
1139 * than the free list after we're finished dealing with it for now.
1140 *
1141 * However, we don't otherwise care here whether processing succeeded or
1142 * failed, as the RFC says even if a packet in a datagram is malformed,
1143 * we should still try to process any packets following it.
1144 *
1145 * In the case where the packet is so malformed we can't determine its
1146 * length, qrx_process_pkt will take care of advancing to the end of
1147 * the packet, so we will exit the loop automatically in this case.
1148 */
1149 if (qrx_process_pkt(qrx, e, &pkt, pkt_idx, &first_dcid, data_len))
1150 have_deferred = 1;
1151 }
1152
1153 /* Only report whether there were any deferrals. */
1154 return have_deferred;
1155 }
1156
1157 /* Process a single pending URXE. */
1158 static int qrx_process_one_urxe(OSSL_QRX *qrx, QUIC_URXE *e)
1159 {
1160 int was_deferred;
1161
1162 /* The next URXE we process should be at the head of the pending list. */
1163 if (!ossl_assert(e == ossl_list_urxe_head(&qrx->urx_pending)))
1164 return 0;
1165
1166 /*
1167 * Attempt to process the datagram. The return value indicates only if
1168 * processing of the datagram was deferred. If we failed to process the
1169 * datagram, we do not attempt to process it again and silently eat the
1170 * error.
1171 */
1172 was_deferred = qrx_process_datagram(qrx, e, ossl_quic_urxe_data(e),
1173 e->data_len);
1174
1175 /*
1176 * Remove the URXE from the pending list and return it to
1177 * either the free or deferred list.
1178 */
1179 ossl_list_urxe_remove(&qrx->urx_pending, e);
1180 if (was_deferred > 0 &&
1181 (e->deferred || qrx->num_deferred < qrx->max_deferred)) {
1182 ossl_list_urxe_insert_tail(&qrx->urx_deferred, e);
1183 if (!e->deferred) {
1184 e->deferred = 1;
1185 ++qrx->num_deferred;
1186 }
1187 } else {
1188 if (e->deferred) {
1189 e->deferred = 0;
1190 --qrx->num_deferred;
1191 }
1192 ossl_quic_demux_release_urxe(qrx->demux, e);
1193 }
1194
1195 return 1;
1196 }
1197
1198 /* Process any pending URXEs to generate pending RXEs. */
1199 static int qrx_process_pending_urxl(OSSL_QRX *qrx)
1200 {
1201 QUIC_URXE *e;
1202
1203 while ((e = ossl_list_urxe_head(&qrx->urx_pending)) != NULL)
1204 if (!qrx_process_one_urxe(qrx, e))
1205 return 0;
1206
1207 return 1;
1208 }
1209
1210 int ossl_qrx_read_pkt(OSSL_QRX *qrx, OSSL_QRX_PKT **ppkt)
1211 {
1212 RXE *rxe;
1213
1214 if (!ossl_qrx_processed_read_pending(qrx)) {
1215 if (!qrx_process_pending_urxl(qrx))
1216 return 0;
1217
1218 if (!ossl_qrx_processed_read_pending(qrx))
1219 return 0;
1220 }
1221
1222 rxe = qrx_pop_pending_rxe(qrx);
1223 if (!ossl_assert(rxe != NULL))
1224 return 0;
1225
1226 assert(rxe->refcount == 0);
1227 rxe->refcount = 1;
1228
1229 rxe->pkt.hdr = &rxe->hdr;
1230 rxe->pkt.pn = rxe->pn;
1231 rxe->pkt.time = rxe->time;
1232 rxe->pkt.datagram_len = rxe->datagram_len;
1233 rxe->pkt.peer
1234 = BIO_ADDR_family(&rxe->peer) != AF_UNSPEC ? &rxe->peer : NULL;
1235 rxe->pkt.local
1236 = BIO_ADDR_family(&rxe->local) != AF_UNSPEC ? &rxe->local : NULL;
1237 rxe->pkt.key_epoch = rxe->key_epoch;
1238 rxe->pkt.datagram_id = rxe->datagram_id;
1239 rxe->pkt.qrx = qrx;
1240 *ppkt = &rxe->pkt;
1241
1242 return 1;
1243 }
1244
1245 void ossl_qrx_pkt_release(OSSL_QRX_PKT *pkt)
1246 {
1247 RXE *rxe;
1248
1249 if (pkt == NULL)
1250 return;
1251
1252 rxe = (RXE *)pkt;
1253 assert(rxe->refcount > 0);
1254 if (--rxe->refcount == 0)
1255 qrx_recycle_rxe(pkt->qrx, rxe);
1256 }
1257
1258 void ossl_qrx_pkt_up_ref(OSSL_QRX_PKT *pkt)
1259 {
1260 RXE *rxe = (RXE *)pkt;
1261
1262 assert(rxe->refcount > 0);
1263 ++rxe->refcount;
1264 }
1265
1266 uint64_t ossl_qrx_get_bytes_received(OSSL_QRX *qrx, int clear)
1267 {
1268 uint64_t v = qrx->bytes_received;
1269
1270 if (clear)
1271 qrx->bytes_received = 0;
1272
1273 return v;
1274 }
1275
1276 int ossl_qrx_set_late_validation_cb(OSSL_QRX *qrx,
1277 ossl_qrx_late_validation_cb *cb,
1278 void *cb_arg)
1279 {
1280 qrx->validation_cb = cb;
1281 qrx->validation_cb_arg = cb_arg;
1282 return 1;
1283 }
1284
1285 int ossl_qrx_set_key_update_cb(OSSL_QRX *qrx,
1286 ossl_qrx_key_update_cb *cb,
1287 void *cb_arg)
1288 {
1289 qrx->key_update_cb = cb;
1290 qrx->key_update_cb_arg = cb_arg;
1291 return 1;
1292 }
1293
1294 uint64_t ossl_qrx_get_key_epoch(OSSL_QRX *qrx)
1295 {
1296 OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
1297 QUIC_ENC_LEVEL_1RTT, 1);
1298
1299 return el == NULL ? UINT64_MAX : el->key_epoch;
1300 }
1301
1302 int ossl_qrx_key_update_timeout(OSSL_QRX *qrx, int normal)
1303 {
1304 OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
1305 QUIC_ENC_LEVEL_1RTT, 1);
1306
1307 if (el == NULL)
1308 return 0;
1309
1310 if (el->state == QRL_EL_STATE_PROV_UPDATING
1311 && !ossl_qrl_enc_level_set_key_update_done(&qrx->el_set,
1312 QUIC_ENC_LEVEL_1RTT))
1313 return 0;
1314
1315 if (normal && el->state == QRL_EL_STATE_PROV_COOLDOWN
1316 && !ossl_qrl_enc_level_set_key_cooldown_done(&qrx->el_set,
1317 QUIC_ENC_LEVEL_1RTT))
1318 return 0;
1319
1320 return 1;
1321 }
1322
1323 uint64_t ossl_qrx_get_cur_forged_pkt_count(OSSL_QRX *qrx)
1324 {
1325 return qrx->forged_pkt_count;
1326 }
1327
1328 uint64_t ossl_qrx_get_max_forged_pkt_count(OSSL_QRX *qrx,
1329 uint32_t enc_level)
1330 {
1331 OSSL_QRL_ENC_LEVEL *el = ossl_qrl_enc_level_set_get(&qrx->el_set,
1332 enc_level, 1);
1333
1334 return el == NULL ? UINT64_MAX
1335 : ossl_qrl_get_suite_max_forged_pkt(el->suite_id);
1336 }
1337
1338 void ossl_qrx_allow_1rtt_processing(OSSL_QRX *qrx)
1339 {
1340 if (qrx->allow_1rtt)
1341 return;
1342
1343 qrx->allow_1rtt = 1;
1344 qrx_requeue_deferred(qrx);
1345 }
1346
1347 void ossl_qrx_set_msg_callback(OSSL_QRX *qrx, ossl_msg_cb msg_callback,
1348 SSL *msg_callback_ssl)
1349 {
1350 qrx->msg_callback = msg_callback;
1351 qrx->msg_callback_ssl = msg_callback_ssl;
1352 }
1353
1354 void ossl_qrx_set_msg_callback_arg(OSSL_QRX *qrx, void *msg_callback_arg)
1355 {
1356 qrx->msg_callback_arg = msg_callback_arg;
1357 }