]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/record/rec_layer_s3.c
various spelling fixes
[thirdparty/openssl.git] / ssl / record / rec_layer_s3.c
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com).
108 *
109 */
110
111 #include <stdio.h>
112 #include <limits.h>
113 #include <errno.h>
114 #define USE_SOCKETS
115 #include "../ssl_locl.h"
116 #include <openssl/evp.h>
117 #include <openssl/buffer.h>
118 #include <openssl/rand.h>
119 #include "record_locl.h"
120
121 #ifndef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
122 # define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
123 #endif
124
125 #if defined(OPENSSL_SMALL_FOOTPRINT) || \
126 !( defined(AES_ASM) && ( \
127 defined(__x86_64) || defined(__x86_64__) || \
128 defined(_M_AMD64) || defined(_M_X64) || \
129 defined(__INTEL__) ) \
130 )
131 # undef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
132 # define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
133 #endif
134
135 void RECORD_LAYER_init(RECORD_LAYER *rl, SSL *s)
136 {
137 rl->s = s;
138 SSL3_RECORD_clear(rl->rrec, SSL_MAX_PIPELINES);
139 }
140
141 void RECORD_LAYER_clear(RECORD_LAYER *rl)
142 {
143 unsigned int pipes;
144
145 rl->rstate = SSL_ST_READ_HEADER;
146
147 /* Do I need to clear read_ahead? As far as I can tell read_ahead did not
148 * previously get reset by SSL_clear...so I'll keep it that way..but is
149 * that right?
150 */
151
152 rl->packet = NULL;
153 rl->packet_length = 0;
154 rl->wnum = 0;
155 memset(rl->alert_fragment, 0, sizeof(rl->alert_fragment));
156 rl->alert_fragment_len = 0;
157 memset(rl->handshake_fragment, 0, sizeof(rl->handshake_fragment));
158 rl->handshake_fragment_len = 0;
159 rl->wpend_tot = 0;
160 rl->wpend_type = 0;
161 rl->wpend_ret = 0;
162 rl->wpend_buf = NULL;
163
164 SSL3_BUFFER_clear(&rl->rbuf);
165 for(pipes = 0; pipes < rl->numwpipes; pipes++)
166 SSL3_BUFFER_clear(&rl->wbuf[pipes]);
167 rl->numwpipes = 0;
168 SSL3_RECORD_clear(rl->rrec, SSL_MAX_PIPELINES);
169
170 RECORD_LAYER_reset_read_sequence(rl);
171 RECORD_LAYER_reset_write_sequence(rl);
172
173 if (rl->d)
174 DTLS_RECORD_LAYER_clear(rl);
175 }
176
177 void RECORD_LAYER_release(RECORD_LAYER *rl)
178 {
179 if (SSL3_BUFFER_is_initialised(&rl->rbuf))
180 ssl3_release_read_buffer(rl->s);
181 if (rl->numwpipes > 0)
182 ssl3_release_write_buffer(rl->s);
183 SSL3_RECORD_release(rl->rrec, SSL_MAX_PIPELINES);
184 }
185
186 int RECORD_LAYER_read_pending(const RECORD_LAYER *rl)
187 {
188 return SSL3_BUFFER_get_left(&rl->rbuf) != 0;
189 }
190
191 int RECORD_LAYER_write_pending(const RECORD_LAYER *rl)
192 {
193 return (rl->numwpipes > 0)
194 && SSL3_BUFFER_get_left(&rl->wbuf[rl->numwpipes-1]) != 0;
195 }
196
197 int RECORD_LAYER_set_data(RECORD_LAYER *rl, const unsigned char *buf, int len)
198 {
199 rl->packet_length = len;
200 if (len != 0) {
201 rl->rstate = SSL_ST_READ_HEADER;
202 if (!SSL3_BUFFER_is_initialised(&rl->rbuf))
203 if (!ssl3_setup_read_buffer(rl->s))
204 return 0;
205 }
206
207 rl->packet = SSL3_BUFFER_get_buf(&rl->rbuf);
208 SSL3_BUFFER_set_data(&rl->rbuf, buf, len);
209
210 return 1;
211 }
212
213 void RECORD_LAYER_reset_read_sequence(RECORD_LAYER *rl)
214 {
215 memset(rl->read_sequence, 0, sizeof(rl->read_sequence));
216 }
217
218 void RECORD_LAYER_reset_write_sequence(RECORD_LAYER *rl)
219 {
220 memset(rl->write_sequence, 0, sizeof(rl->write_sequence));
221 }
222
223 int ssl3_pending(const SSL *s)
224 {
225 unsigned int i;
226 int num = 0;
227
228 if (s->rlayer.rstate == SSL_ST_READ_BODY)
229 return 0;
230
231 for (i = 0; i < RECORD_LAYER_get_numrpipes(&s->rlayer); i++) {
232 if (SSL3_RECORD_get_type(&s->rlayer.rrec[i])
233 != SSL3_RT_APPLICATION_DATA)
234 return 0;
235 num += SSL3_RECORD_get_length(&s->rlayer.rrec[i]);
236 }
237
238 return num;
239 }
240
241 void SSL_CTX_set_default_read_buffer_len(SSL_CTX *ctx, size_t len)
242 {
243 ctx->default_read_buf_len = len;
244 }
245
246 void SSL_set_default_read_buffer_len(SSL *s, size_t len)
247 {
248 SSL3_BUFFER_set_default_len(RECORD_LAYER_get_rbuf(&s->rlayer), len);
249 }
250
251 const char *SSL_rstate_string_long(const SSL *s)
252 {
253 switch (s->rlayer.rstate) {
254 case SSL_ST_READ_HEADER:
255 return "read header";
256 case SSL_ST_READ_BODY:
257 return "read body";
258 case SSL_ST_READ_DONE:
259 return "read done";
260 default:
261 return "unknown";
262 }
263 }
264
265 const char *SSL_rstate_string(const SSL *s)
266 {
267 switch (s->rlayer.rstate) {
268 case SSL_ST_READ_HEADER:
269 return "RH";
270 case SSL_ST_READ_BODY:
271 return "RB";
272 case SSL_ST_READ_DONE:
273 return "RD";
274 default:
275 return "unknown";
276 }
277 }
278
279 int ssl3_read_n(SSL *s, int n, int max, int extend, int clearold)
280 {
281 /*
282 * If extend == 0, obtain new n-byte packet; if extend == 1, increase
283 * packet by another n bytes. The packet will be in the sub-array of
284 * s->s3->rbuf.buf specified by s->packet and s->packet_length. (If
285 * s->rlayer.read_ahead is set, 'max' bytes may be stored in rbuf [plus
286 * s->packet_length bytes if extend == 1].)
287 * if clearold == 1, move the packet to the start of the buffer; if
288 * clearold == 0 then leave any old packets where they were
289 */
290 int i, len, left;
291 size_t align = 0;
292 unsigned char *pkt;
293 SSL3_BUFFER *rb;
294
295 if (n <= 0)
296 return n;
297
298 rb = &s->rlayer.rbuf;
299 if (rb->buf == NULL)
300 if (!ssl3_setup_read_buffer(s))
301 return -1;
302
303 left = rb->left;
304 #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
305 align = (size_t)rb->buf + SSL3_RT_HEADER_LENGTH;
306 align = (0-align) & (SSL3_ALIGN_PAYLOAD - 1);
307 #endif
308
309 if (!extend) {
310 /* start with empty packet ... */
311 if (left == 0)
312 rb->offset = align;
313 else if (align != 0 && left >= SSL3_RT_HEADER_LENGTH) {
314 /*
315 * check if next packet length is large enough to justify payload
316 * alignment...
317 */
318 pkt = rb->buf + rb->offset;
319 if (pkt[0] == SSL3_RT_APPLICATION_DATA
320 && (pkt[3] << 8 | pkt[4]) >= 128) {
321 /*
322 * Note that even if packet is corrupted and its length field
323 * is insane, we can only be led to wrong decision about
324 * whether memmove will occur or not. Header values has no
325 * effect on memmove arguments and therefore no buffer
326 * overrun can be triggered.
327 */
328 memmove(rb->buf + align, pkt, left);
329 rb->offset = align;
330 }
331 }
332 s->rlayer.packet = rb->buf + rb->offset;
333 s->rlayer.packet_length = 0;
334 /* ... now we can act as if 'extend' was set */
335 }
336
337 /*
338 * For DTLS/UDP reads should not span multiple packets because the read
339 * operation returns the whole packet at once (as long as it fits into
340 * the buffer).
341 */
342 if (SSL_IS_DTLS(s)) {
343 if (left == 0 && extend)
344 return 0;
345 if (left > 0 && n > left)
346 n = left;
347 }
348
349 /* if there is enough in the buffer from a previous read, take some */
350 if (left >= n) {
351 s->rlayer.packet_length += n;
352 rb->left = left - n;
353 rb->offset += n;
354 return (n);
355 }
356
357 /* else we need to read more data */
358
359 len = s->rlayer.packet_length;
360 pkt = rb->buf + align;
361 /*
362 * Move any available bytes to front of buffer: 'len' bytes already
363 * pointed to by 'packet', 'left' extra ones at the end
364 */
365 if (s->rlayer.packet != pkt && clearold == 1) { /* len > 0 */
366 memmove(pkt, s->rlayer.packet, len + left);
367 s->rlayer.packet = pkt;
368 rb->offset = len + align;
369 }
370
371 if (n > (int)(rb->len - rb->offset)) { /* does not happen */
372 SSLerr(SSL_F_SSL3_READ_N, ERR_R_INTERNAL_ERROR);
373 return -1;
374 }
375
376 /* We always act like read_ahead is set for DTLS */
377 if (!s->rlayer.read_ahead && !SSL_IS_DTLS(s))
378 /* ignore max parameter */
379 max = n;
380 else {
381 if (max < n)
382 max = n;
383 if (max > (int)(rb->len - rb->offset))
384 max = rb->len - rb->offset;
385 }
386
387 while (left < n) {
388 /*
389 * Now we have len+left bytes at the front of s->s3->rbuf.buf and
390 * need to read in more until we have len+n (up to len+max if
391 * possible)
392 */
393
394 clear_sys_error();
395 if (s->rbio != NULL) {
396 s->rwstate = SSL_READING;
397 i = BIO_read(s->rbio, pkt + len + left, max - left);
398 } else {
399 SSLerr(SSL_F_SSL3_READ_N, SSL_R_READ_BIO_NOT_SET);
400 i = -1;
401 }
402
403 if (i <= 0) {
404 rb->left = left;
405 if (s->mode & SSL_MODE_RELEASE_BUFFERS && !SSL_IS_DTLS(s))
406 if (len + left == 0)
407 ssl3_release_read_buffer(s);
408 return (i);
409 }
410 left += i;
411 /*
412 * reads should *never* span multiple packets for DTLS because the
413 * underlying transport protocol is message oriented as opposed to
414 * byte oriented as in the TLS case.
415 */
416 if (SSL_IS_DTLS(s)) {
417 if (n > left)
418 n = left; /* makes the while condition false */
419 }
420 }
421
422 /* done reading, now the book-keeping */
423 rb->offset += n;
424 rb->left = left - n;
425 s->rlayer.packet_length += n;
426 s->rwstate = SSL_NOTHING;
427 return (n);
428 }
429
430
431 /*
432 * Call this to write data in records of type 'type' It will return <= 0 if
433 * not all data has been sent or non-blocking IO.
434 */
435 int ssl3_write_bytes(SSL *s, int type, const void *buf_, int len)
436 {
437 const unsigned char *buf = buf_;
438 int tot;
439 unsigned int n, split_send_fragment, maxpipes;
440 #if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
441 unsigned int max_send_fragment, nw;
442 unsigned int u_len = (unsigned int)len;
443 #endif
444 SSL3_BUFFER *wb = &s->rlayer.wbuf[0];
445 int i;
446
447 if (len < 0) {
448 SSLerr(SSL_F_SSL3_WRITE_BYTES, SSL_R_SSL_NEGATIVE_LENGTH);
449 return -1;
450 }
451
452 s->rwstate = SSL_NOTHING;
453 tot = s->rlayer.wnum;
454 /*
455 * ensure that if we end up with a smaller value of data to write out
456 * than the the original len from a write which didn't complete for
457 * non-blocking I/O and also somehow ended up avoiding the check for
458 * this in ssl3_write_pending/SSL_R_BAD_WRITE_RETRY as it must never be
459 * possible to end up with (len-tot) as a large number that will then
460 * promptly send beyond the end of the users buffer ... so we trap and
461 * report the error in a way the user will notice
462 */
463 if ((unsigned int)len < s->rlayer.wnum) {
464 SSLerr(SSL_F_SSL3_WRITE_BYTES, SSL_R_BAD_LENGTH);
465 return -1;
466 }
467
468
469 s->rlayer.wnum = 0;
470
471 if (SSL_in_init(s) && !ossl_statem_get_in_handshake(s)) {
472 i = s->handshake_func(s);
473 if (i < 0)
474 return (i);
475 if (i == 0) {
476 SSLerr(SSL_F_SSL3_WRITE_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
477 return -1;
478 }
479 }
480
481 /*
482 * first check if there is a SSL3_BUFFER still being written out. This
483 * will happen with non blocking IO
484 */
485 if (wb->left != 0) {
486 i = ssl3_write_pending(s, type, &buf[tot], s->rlayer.wpend_tot);
487 if (i <= 0) {
488 /* XXX should we ssl3_release_write_buffer if i<0? */
489 s->rlayer.wnum = tot;
490 return i;
491 }
492 tot += i; /* this might be last fragment */
493 }
494 #if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
495 /*
496 * Depending on platform multi-block can deliver several *times*
497 * better performance. Downside is that it has to allocate
498 * jumbo buffer to accommodate up to 8 records, but the
499 * compromise is considered worthy.
500 */
501 if (type == SSL3_RT_APPLICATION_DATA &&
502 u_len >= 4 * (max_send_fragment = s->max_send_fragment) &&
503 s->compress == NULL && s->msg_callback == NULL &&
504 !SSL_USE_ETM(s) && SSL_USE_EXPLICIT_IV(s) &&
505 EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_write_ctx)) &
506 EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK) {
507 unsigned char aad[13];
508 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
509 int packlen;
510
511 /* minimize address aliasing conflicts */
512 if ((max_send_fragment & 0xfff) == 0)
513 max_send_fragment -= 512;
514
515 if (tot == 0 || wb->buf == NULL) { /* allocate jumbo buffer */
516 ssl3_release_write_buffer(s);
517
518 packlen = EVP_CIPHER_CTX_ctrl(s->enc_write_ctx,
519 EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE,
520 max_send_fragment, NULL);
521
522 if (u_len >= 8 * max_send_fragment)
523 packlen *= 8;
524 else
525 packlen *= 4;
526
527 wb->buf = OPENSSL_malloc(packlen);
528 if (wb->buf == NULL) {
529 SSLerr(SSL_F_SSL3_WRITE_BYTES, ERR_R_MALLOC_FAILURE);
530 return -1;
531 }
532 wb->len = packlen;
533 } else if (tot == len) { /* done? */
534 OPENSSL_free(wb->buf); /* free jumbo buffer */
535 wb->buf = NULL;
536 return tot;
537 }
538
539 n = (len - tot);
540 for (;;) {
541 if (n < 4 * max_send_fragment) {
542 OPENSSL_free(wb->buf); /* free jumbo buffer */
543 wb->buf = NULL;
544 break;
545 }
546
547 if (s->s3->alert_dispatch) {
548 i = s->method->ssl_dispatch_alert(s);
549 if (i <= 0) {
550 s->rlayer.wnum = tot;
551 return i;
552 }
553 }
554
555 if (n >= 8 * max_send_fragment)
556 nw = max_send_fragment * (mb_param.interleave = 8);
557 else
558 nw = max_send_fragment * (mb_param.interleave = 4);
559
560 memcpy(aad, s->rlayer.write_sequence, 8);
561 aad[8] = type;
562 aad[9] = (unsigned char)(s->version >> 8);
563 aad[10] = (unsigned char)(s->version);
564 aad[11] = 0;
565 aad[12] = 0;
566 mb_param.out = NULL;
567 mb_param.inp = aad;
568 mb_param.len = nw;
569
570 packlen = EVP_CIPHER_CTX_ctrl(s->enc_write_ctx,
571 EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
572 sizeof(mb_param), &mb_param);
573
574 if (packlen <= 0 || packlen > (int)wb->len) { /* never happens */
575 OPENSSL_free(wb->buf); /* free jumbo buffer */
576 wb->buf = NULL;
577 break;
578 }
579
580 mb_param.out = wb->buf;
581 mb_param.inp = &buf[tot];
582 mb_param.len = nw;
583
584 if (EVP_CIPHER_CTX_ctrl(s->enc_write_ctx,
585 EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
586 sizeof(mb_param), &mb_param) <= 0)
587 return -1;
588
589 s->rlayer.write_sequence[7] += mb_param.interleave;
590 if (s->rlayer.write_sequence[7] < mb_param.interleave) {
591 int j = 6;
592 while (j >= 0 && (++s->rlayer.write_sequence[j--]) == 0) ;
593 }
594
595 wb->offset = 0;
596 wb->left = packlen;
597
598 s->rlayer.wpend_tot = nw;
599 s->rlayer.wpend_buf = &buf[tot];
600 s->rlayer.wpend_type = type;
601 s->rlayer.wpend_ret = nw;
602
603 i = ssl3_write_pending(s, type, &buf[tot], nw);
604 if (i <= 0) {
605 if (i < 0 && (!s->wbio || !BIO_should_retry(s->wbio))) {
606 OPENSSL_free(wb->buf);
607 wb->buf = NULL;
608 }
609 s->rlayer.wnum = tot;
610 return i;
611 }
612 if (i == (int)n) {
613 OPENSSL_free(wb->buf); /* free jumbo buffer */
614 wb->buf = NULL;
615 return tot + i;
616 }
617 n -= i;
618 tot += i;
619 }
620 } else
621 #endif
622 if (tot == len) { /* done? */
623 if (s->mode & SSL_MODE_RELEASE_BUFFERS && !SSL_IS_DTLS(s))
624 ssl3_release_write_buffer(s);
625
626 return tot;
627 }
628
629 n = (len - tot);
630
631 split_send_fragment = s->split_send_fragment;
632 /*
633 * If max_pipelines is 0 then this means "undefined" and we default to
634 * 1 pipeline. Similarly if the cipher does not support pipelined
635 * processing then we also only use 1 pipeline, or if we're not using
636 * explicit IVs
637 */
638 maxpipes = s->max_pipelines;
639 if (maxpipes > SSL_MAX_PIPELINES) {
640 /*
641 * We should have prevented this when we set max_pipelines so we
642 * shouldn't get here
643 */
644 SSLerr(SSL_F_SSL3_WRITE_BYTES, ERR_R_INTERNAL_ERROR);
645 return -1;
646 }
647 if (maxpipes == 0
648 || s->enc_write_ctx == NULL
649 || !(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_write_ctx))
650 & EVP_CIPH_FLAG_PIPELINE)
651 || !SSL_USE_EXPLICIT_IV(s))
652 maxpipes = 1;
653 if (s->max_send_fragment == 0 || split_send_fragment > s->max_send_fragment
654 || split_send_fragment == 0) {
655 /*
656 * We should have prevented this when we set the split and max send
657 * fragments so we shouldn't get here
658 */
659 SSLerr(SSL_F_SSL3_WRITE_BYTES, ERR_R_INTERNAL_ERROR);
660 return -1;
661 }
662
663 for (;;) {
664 unsigned int pipelens[SSL_MAX_PIPELINES], tmppipelen, remain;
665 unsigned int numpipes, j;
666
667 if (n == 0)
668 numpipes = 1;
669 else
670 numpipes = ((n - 1) / split_send_fragment) + 1;
671 if (numpipes > maxpipes)
672 numpipes = maxpipes;
673
674 if (n / numpipes >= s->max_send_fragment) {
675 /*
676 * We have enough data to completely fill all available
677 * pipelines
678 */
679 for (j = 0; j < numpipes; j++) {
680 pipelens[j] = s->max_send_fragment;
681 }
682 } else {
683 /* We can partially fill all available pipelines */
684 tmppipelen = n / numpipes;
685 remain = n % numpipes;
686 for (j = 0; j < numpipes; j++) {
687 pipelens[j] = tmppipelen;
688 if (j < remain)
689 pipelens[j]++;
690 }
691 }
692
693 i = do_ssl3_write(s, type, &(buf[tot]), pipelens, numpipes, 0);
694 if (i <= 0) {
695 /* XXX should we ssl3_release_write_buffer if i<0? */
696 s->rlayer.wnum = tot;
697 return i;
698 }
699
700 if ((i == (int)n) ||
701 (type == SSL3_RT_APPLICATION_DATA &&
702 (s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE))) {
703 /*
704 * next chunk of data should get another prepended empty fragment
705 * in ciphersuites with known-IV weakness:
706 */
707 s->s3->empty_fragment_done = 0;
708
709 if ((i == (int)n) && s->mode & SSL_MODE_RELEASE_BUFFERS &&
710 !SSL_IS_DTLS(s))
711 ssl3_release_write_buffer(s);
712
713 return tot + i;
714 }
715
716 n -= i;
717 tot += i;
718 }
719 }
720
721 int do_ssl3_write(SSL *s, int type, const unsigned char *buf,
722 unsigned int *pipelens, unsigned int numpipes,
723 int create_empty_fragment)
724 {
725 unsigned char *outbuf[SSL_MAX_PIPELINES], *plen[SSL_MAX_PIPELINES];
726 SSL3_RECORD wr[SSL_MAX_PIPELINES];
727 int i, mac_size, clear = 0;
728 int prefix_len = 0;
729 int eivlen;
730 size_t align = 0;
731 SSL3_BUFFER *wb;
732 SSL_SESSION *sess;
733 unsigned int totlen = 0;
734 unsigned int j;
735
736 for (j = 0; j < numpipes; j++)
737 totlen += pipelens[j];
738 /*
739 * first check if there is a SSL3_BUFFER still being written out. This
740 * will happen with non blocking IO
741 */
742 if (RECORD_LAYER_write_pending(&s->rlayer))
743 return (ssl3_write_pending(s, type, buf, totlen));
744
745 /* If we have an alert to send, lets send it */
746 if (s->s3->alert_dispatch) {
747 i = s->method->ssl_dispatch_alert(s);
748 if (i <= 0)
749 return (i);
750 /* if it went, fall through and send more stuff */
751 }
752
753 if (s->rlayer.numwpipes < numpipes)
754 if (!ssl3_setup_write_buffer(s, numpipes))
755 return -1;
756
757 if (totlen == 0 && !create_empty_fragment)
758 return 0;
759
760 sess = s->session;
761
762 if ((sess == NULL) ||
763 (s->enc_write_ctx == NULL) ||
764 (EVP_MD_CTX_md(s->write_hash) == NULL)) {
765 clear = s->enc_write_ctx ? 0 : 1; /* must be AEAD cipher */
766 mac_size = 0;
767 } else {
768 mac_size = EVP_MD_CTX_size(s->write_hash);
769 if (mac_size < 0)
770 goto err;
771 }
772
773 /*
774 * 'create_empty_fragment' is true only when this function calls itself
775 */
776 if (!clear && !create_empty_fragment && !s->s3->empty_fragment_done) {
777 /*
778 * countermeasure against known-IV weakness in CBC ciphersuites (see
779 * http://www.openssl.org/~bodo/tls-cbc.txt)
780 */
781
782 if (s->s3->need_empty_fragments && type == SSL3_RT_APPLICATION_DATA) {
783 /*
784 * recursive function call with 'create_empty_fragment' set; this
785 * prepares and buffers the data for an empty fragment (these
786 * 'prefix_len' bytes are sent out later together with the actual
787 * payload)
788 */
789 unsigned int tmppipelen = 0;
790
791 prefix_len = do_ssl3_write(s, type, buf, &tmppipelen, 1, 1);
792 if (prefix_len <= 0)
793 goto err;
794
795 if (prefix_len >
796 (SSL3_RT_HEADER_LENGTH + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD))
797 {
798 /* insufficient space */
799 SSLerr(SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR);
800 goto err;
801 }
802 }
803
804 s->s3->empty_fragment_done = 1;
805 }
806
807 if (create_empty_fragment) {
808 wb = &s->rlayer.wbuf[0];
809 #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
810 /*
811 * extra fragment would be couple of cipher blocks, which would be
812 * multiple of SSL3_ALIGN_PAYLOAD, so if we want to align the real
813 * payload, then we can just pretend we simply have two headers.
814 */
815 align = (size_t)SSL3_BUFFER_get_buf(wb) + 2 * SSL3_RT_HEADER_LENGTH;
816 align = (0-align) & (SSL3_ALIGN_PAYLOAD - 1);
817 #endif
818 outbuf[0] = SSL3_BUFFER_get_buf(wb) + align;
819 SSL3_BUFFER_set_offset(wb, align);
820 } else if (prefix_len) {
821 wb = &s->rlayer.wbuf[0];
822 outbuf[0] = SSL3_BUFFER_get_buf(wb) + SSL3_BUFFER_get_offset(wb)
823 + prefix_len;
824 } else {
825 for (j=0; j < numpipes; j++) {
826 wb = &s->rlayer.wbuf[j];
827 #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
828 align = (size_t)SSL3_BUFFER_get_buf(wb) + SSL3_RT_HEADER_LENGTH;
829 align = (-align) & (SSL3_ALIGN_PAYLOAD - 1);
830 #endif
831 outbuf[j] = SSL3_BUFFER_get_buf(wb) + align;
832 SSL3_BUFFER_set_offset(wb, align);
833 }
834 }
835
836 /* Explicit IV length, block ciphers appropriate version flag */
837 if (s->enc_write_ctx && SSL_USE_EXPLICIT_IV(s)) {
838 int mode = EVP_CIPHER_CTX_mode(s->enc_write_ctx);
839 if (mode == EVP_CIPH_CBC_MODE) {
840 eivlen = EVP_CIPHER_CTX_iv_length(s->enc_write_ctx);
841 if (eivlen <= 1)
842 eivlen = 0;
843 }
844 /* Need explicit part of IV for GCM mode */
845 else if (mode == EVP_CIPH_GCM_MODE)
846 eivlen = EVP_GCM_TLS_EXPLICIT_IV_LEN;
847 else if (mode == EVP_CIPH_CCM_MODE)
848 eivlen = EVP_CCM_TLS_EXPLICIT_IV_LEN;
849 else
850 eivlen = 0;
851 } else
852 eivlen = 0;
853
854
855 totlen = 0;
856 /* Clear our SSL3_RECORD structures */
857 memset(wr, 0, sizeof wr);
858 for (j=0; j < numpipes; j++) {
859 /* write the header */
860 *(outbuf[j]++) = type & 0xff;
861 SSL3_RECORD_set_type(&wr[j], type);
862
863 *(outbuf[j]++) = (s->version >> 8);
864 /*
865 * Some servers hang if initial client hello is larger than 256 bytes
866 * and record version number > TLS 1.0
867 */
868 if (SSL_get_state(s) == TLS_ST_CW_CLNT_HELLO
869 && !s->renegotiate && TLS1_get_version(s) > TLS1_VERSION)
870 *(outbuf[j]++) = 0x1;
871 else
872 *(outbuf[j]++) = s->version & 0xff;
873
874 /* field where we are to write out packet length */
875 plen[j] = outbuf[j];
876 outbuf[j] += 2;
877
878 /* lets setup the record stuff. */
879 SSL3_RECORD_set_data(&wr[j], outbuf[j] + eivlen);
880 SSL3_RECORD_set_length(&wr[j], (int)pipelens[j]);
881 SSL3_RECORD_set_input(&wr[j], (unsigned char *)&buf[totlen]);
882 totlen += pipelens[j];
883
884 /*
885 * we now 'read' from wr->input, wr->length bytes into wr->data
886 */
887
888 /* first we compress */
889 if (s->compress != NULL) {
890 if (!ssl3_do_compress(s, &wr[j])) {
891 SSLerr(SSL_F_DO_SSL3_WRITE, SSL_R_COMPRESSION_FAILURE);
892 goto err;
893 }
894 } else {
895 memcpy(wr[j].data, wr[j].input, wr[j].length);
896 SSL3_RECORD_reset_input(&wr[j]);
897 }
898
899 /*
900 * we should still have the output to wr->data and the input from
901 * wr->input. Length should be wr->length. wr->data still points in the
902 * wb->buf
903 */
904
905 if (!SSL_USE_ETM(s) && mac_size != 0) {
906 if (s->method->ssl3_enc->mac(s, &wr[j],
907 &(outbuf[j][wr[j].length + eivlen]), 1) < 0)
908 goto err;
909 SSL3_RECORD_add_length(&wr[j], mac_size);
910 }
911
912
913 SSL3_RECORD_set_data(&wr[j], outbuf[j]);
914 SSL3_RECORD_reset_input(&wr[j]);
915
916 if (eivlen) {
917 /*
918 * if (RAND_pseudo_bytes(p, eivlen) <= 0) goto err;
919 */
920 SSL3_RECORD_add_length(&wr[j], eivlen);
921 }
922 }
923
924 if (s->method->ssl3_enc->enc(s, wr, numpipes, 1) < 1)
925 goto err;
926
927 for (j=0; j < numpipes; j++) {
928 if (SSL_USE_ETM(s) && mac_size != 0) {
929 if (s->method->ssl3_enc->mac(s, &wr[j],
930 outbuf[j] + wr[j].length, 1) < 0)
931 goto err;
932 SSL3_RECORD_add_length(&wr[j], mac_size);
933 }
934
935 /* record length after mac and block padding */
936 s2n(SSL3_RECORD_get_length(&wr[j]), plen[j]);
937
938 if (s->msg_callback)
939 s->msg_callback(1, 0, SSL3_RT_HEADER, plen[j] - 5, 5, s,
940 s->msg_callback_arg);
941
942 /*
943 * we should now have wr->data pointing to the encrypted data, which is
944 * wr->length long
945 */
946 SSL3_RECORD_set_type(&wr[j], type); /* not needed but helps for debugging */
947 SSL3_RECORD_add_length(&wr[j], SSL3_RT_HEADER_LENGTH);
948
949 if (create_empty_fragment) {
950 /*
951 * we are in a recursive call; just return the length, don't write
952 * out anything here
953 */
954 if (j > 0) {
955 /* We should never be pipelining an empty fragment!! */
956 SSLerr(SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR);
957 goto err;
958 }
959 return SSL3_RECORD_get_length(wr);
960 }
961
962 /* now let's set up wb */
963 SSL3_BUFFER_set_left(&s->rlayer.wbuf[j],
964 prefix_len + SSL3_RECORD_get_length(&wr[j]));
965 }
966
967
968
969 /*
970 * memorize arguments so that ssl3_write_pending can detect bad write
971 * retries later
972 */
973 s->rlayer.wpend_tot = totlen;
974 s->rlayer.wpend_buf = buf;
975 s->rlayer.wpend_type = type;
976 s->rlayer.wpend_ret = totlen;
977
978 /* we now just need to write the buffer */
979 return ssl3_write_pending(s, type, buf, totlen);
980 err:
981 return -1;
982 }
983
984 /* if s->s3->wbuf.left != 0, we need to call this */
985 int ssl3_write_pending(SSL *s, int type, const unsigned char *buf,
986 unsigned int len)
987 {
988 int i;
989 SSL3_BUFFER *wb = s->rlayer.wbuf;
990 unsigned int currbuf = 0;
991
992 /* XXXX */
993 if ((s->rlayer.wpend_tot > (int)len)
994 || ((s->rlayer.wpend_buf != buf) &&
995 !(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER))
996 || (s->rlayer.wpend_type != type)) {
997 SSLerr(SSL_F_SSL3_WRITE_PENDING, SSL_R_BAD_WRITE_RETRY);
998 return (-1);
999 }
1000
1001 for (;;) {
1002 /* Loop until we find a buffer we haven't written out yet */
1003 if (SSL3_BUFFER_get_left(&wb[currbuf]) == 0
1004 && currbuf < s->rlayer.numwpipes - 1) {
1005 currbuf++;
1006 continue;
1007 }
1008 clear_sys_error();
1009 if (s->wbio != NULL) {
1010 s->rwstate = SSL_WRITING;
1011 i = BIO_write(s->wbio,
1012 (char *)&(SSL3_BUFFER_get_buf(&wb[currbuf])[
1013 SSL3_BUFFER_get_offset(&wb[currbuf])]),
1014 (unsigned int)SSL3_BUFFER_get_left(&wb[currbuf]));
1015 } else {
1016 SSLerr(SSL_F_SSL3_WRITE_PENDING, SSL_R_BIO_NOT_SET);
1017 i = -1;
1018 }
1019 if (i == SSL3_BUFFER_get_left(&wb[currbuf])) {
1020 SSL3_BUFFER_set_left(&wb[currbuf], 0);
1021 SSL3_BUFFER_add_offset(&wb[currbuf], i);
1022 if (currbuf + 1 < s->rlayer.numwpipes)
1023 continue;
1024 s->rwstate = SSL_NOTHING;
1025 return (s->rlayer.wpend_ret);
1026 } else if (i <= 0) {
1027 if (SSL_IS_DTLS(s)) {
1028 /*
1029 * For DTLS, just drop it. That's kind of the whole point in
1030 * using a datagram service
1031 */
1032 SSL3_BUFFER_set_left(&wb[currbuf], 0);
1033 }
1034 return (i);
1035 }
1036 SSL3_BUFFER_add_offset(&wb[currbuf], i);
1037 SSL3_BUFFER_add_left(&wb[currbuf], -i);
1038 }
1039 }
1040
1041 /*-
1042 * Return up to 'len' payload bytes received in 'type' records.
1043 * 'type' is one of the following:
1044 *
1045 * - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us)
1046 * - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us)
1047 * - 0 (during a shutdown, no data has to be returned)
1048 *
1049 * If we don't have stored data to work from, read a SSL/TLS record first
1050 * (possibly multiple records if we still don't have anything to return).
1051 *
1052 * This function must handle any surprises the peer may have for us, such as
1053 * Alert records (e.g. close_notify) or renegotiation requests. ChangeCipherSpec
1054 * messages are treated as if they were handshake messages *if* the |recd_type|
1055 * argument is non NULL.
1056 * Also if record payloads contain fragments too small to process, we store
1057 * them until there is enough for the respective protocol (the record protocol
1058 * may use arbitrary fragmentation and even interleaving):
1059 * Change cipher spec protocol
1060 * just 1 byte needed, no need for keeping anything stored
1061 * Alert protocol
1062 * 2 bytes needed (AlertLevel, AlertDescription)
1063 * Handshake protocol
1064 * 4 bytes needed (HandshakeType, uint24 length) -- we just have
1065 * to detect unexpected Client Hello and Hello Request messages
1066 * here, anything else is handled by higher layers
1067 * Application data protocol
1068 * none of our business
1069 */
1070 int ssl3_read_bytes(SSL *s, int type, int *recvd_type, unsigned char *buf,
1071 int len, int peek)
1072 {
1073 int al, i, j, ret;
1074 unsigned int n, curr_rec, num_recs, read_bytes;
1075 SSL3_RECORD *rr;
1076 SSL3_BUFFER *rbuf;
1077 void (*cb) (const SSL *ssl, int type2, int val) = NULL;
1078
1079 rbuf = &s->rlayer.rbuf;
1080
1081 if (!SSL3_BUFFER_is_initialised(rbuf)) {
1082 /* Not initialized yet */
1083 if (!ssl3_setup_read_buffer(s))
1084 return (-1);
1085 }
1086
1087 if ((type && (type != SSL3_RT_APPLICATION_DATA)
1088 && (type != SSL3_RT_HANDSHAKE)) || (peek
1089 && (type !=
1090 SSL3_RT_APPLICATION_DATA))) {
1091 SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR);
1092 return -1;
1093 }
1094
1095 if ((type == SSL3_RT_HANDSHAKE) && (s->rlayer.handshake_fragment_len > 0))
1096 /* (partially) satisfy request from storage */
1097 {
1098 unsigned char *src = s->rlayer.handshake_fragment;
1099 unsigned char *dst = buf;
1100 unsigned int k;
1101
1102 /* peek == 0 */
1103 n = 0;
1104 while ((len > 0) && (s->rlayer.handshake_fragment_len > 0)) {
1105 *dst++ = *src++;
1106 len--;
1107 s->rlayer.handshake_fragment_len--;
1108 n++;
1109 }
1110 /* move any remaining fragment bytes: */
1111 for (k = 0; k < s->rlayer.handshake_fragment_len; k++)
1112 s->rlayer.handshake_fragment[k] = *src++;
1113
1114 if (recvd_type != NULL)
1115 *recvd_type = SSL3_RT_HANDSHAKE;
1116
1117 return n;
1118 }
1119
1120 /*
1121 * Now s->rlayer.handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE.
1122 */
1123
1124 if (!ossl_statem_get_in_handshake(s) && SSL_in_init(s)) {
1125 /* type == SSL3_RT_APPLICATION_DATA */
1126 i = s->handshake_func(s);
1127 if (i < 0)
1128 return (i);
1129 if (i == 0) {
1130 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
1131 return (-1);
1132 }
1133 }
1134 start:
1135 s->rwstate = SSL_NOTHING;
1136
1137 /*-
1138 * For each record 'i' up to |num_recs]
1139 * rr[i].type - is the type of record
1140 * rr[i].data, - data
1141 * rr[i].off, - offset into 'data' for next read
1142 * rr[i].length, - number of bytes.
1143 */
1144 rr = s->rlayer.rrec;
1145 num_recs = RECORD_LAYER_get_numrpipes(&s->rlayer);
1146
1147 do {
1148 /* get new records if necessary */
1149 if (num_recs == 0) {
1150 ret = ssl3_get_record(s);
1151 if (ret <= 0)
1152 return (ret);
1153 num_recs = RECORD_LAYER_get_numrpipes(&s->rlayer);
1154 if (num_recs == 0) {
1155 /* Shouldn't happen */
1156 al = SSL_AD_INTERNAL_ERROR;
1157 SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR);
1158 goto f_err;
1159 }
1160 }
1161 /* Skip over any records we have already used or are zero in length */
1162 for (curr_rec = 0;
1163 curr_rec < num_recs && SSL3_RECORD_get_length(&rr[curr_rec]) == 0;
1164 curr_rec++);
1165 if (curr_rec == num_recs) {
1166 RECORD_LAYER_set_numrpipes(&s->rlayer, 0);
1167 num_recs = 0;
1168 curr_rec = 0;
1169 }
1170 } while (num_recs == 0);
1171 rr = &rr[curr_rec];
1172
1173 /* we now have a packet which can be read and processed */
1174
1175 if (s->s3->change_cipher_spec /* set when we receive ChangeCipherSpec,
1176 * reset by ssl3_get_finished */
1177 && (SSL3_RECORD_get_type(rr) != SSL3_RT_HANDSHAKE)) {
1178 al = SSL_AD_UNEXPECTED_MESSAGE;
1179 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_DATA_BETWEEN_CCS_AND_FINISHED);
1180 goto f_err;
1181 }
1182
1183 /*
1184 * If the other end has shut down, throw anything we read away (even in
1185 * 'peek' mode)
1186 */
1187 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1188 SSL3_RECORD_set_length(rr, 0);
1189 s->rwstate = SSL_NOTHING;
1190 return (0);
1191 }
1192
1193 if (type == SSL3_RECORD_get_type(rr)
1194 || (SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC
1195 && type == SSL3_RT_HANDSHAKE && recvd_type != NULL)) {
1196 /*
1197 * SSL3_RT_APPLICATION_DATA or
1198 * SSL3_RT_HANDSHAKE or
1199 * SSL3_RT_CHANGE_CIPHER_SPEC
1200 */
1201 /*
1202 * make sure that we are not getting application data when we are
1203 * doing a handshake for the first time
1204 */
1205 if (SSL_in_init(s) && (type == SSL3_RT_APPLICATION_DATA) &&
1206 (s->enc_read_ctx == NULL)) {
1207 al = SSL_AD_UNEXPECTED_MESSAGE;
1208 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_APP_DATA_IN_HANDSHAKE);
1209 goto f_err;
1210 }
1211
1212 if (type == SSL3_RT_HANDSHAKE
1213 && SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC
1214 && s->rlayer.handshake_fragment_len > 0) {
1215 al = SSL_AD_UNEXPECTED_MESSAGE;
1216 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_CCS_RECEIVED_EARLY);
1217 goto f_err;
1218 }
1219
1220 if (recvd_type != NULL)
1221 *recvd_type = SSL3_RECORD_get_type(rr);
1222
1223 if (len <= 0)
1224 return (len);
1225
1226 read_bytes = 0;
1227 do {
1228 if ((unsigned int)len - read_bytes > SSL3_RECORD_get_length(rr))
1229 n = SSL3_RECORD_get_length(rr);
1230 else
1231 n = (unsigned int)len - read_bytes;
1232
1233 memcpy(buf, &(rr->data[rr->off]), n);
1234 buf += n;
1235 if (!peek) {
1236 SSL3_RECORD_add_length(rr, -n);
1237 SSL3_RECORD_add_off(rr, n);
1238 if (SSL3_RECORD_get_length(rr) == 0) {
1239 s->rlayer.rstate = SSL_ST_READ_HEADER;
1240 SSL3_RECORD_set_off(rr, 0);
1241 }
1242 }
1243 if (SSL3_RECORD_get_length(rr) == 0
1244 || (peek && n == SSL3_RECORD_get_length(rr))) {
1245 curr_rec++;
1246 rr++;
1247 }
1248 read_bytes += n;
1249 } while (type == SSL3_RT_APPLICATION_DATA && curr_rec < num_recs
1250 && read_bytes < (unsigned int)len);
1251 if (!peek && curr_rec == num_recs
1252 && (s->mode & SSL_MODE_RELEASE_BUFFERS)
1253 && SSL3_BUFFER_get_left(rbuf) == 0)
1254 ssl3_release_read_buffer(s);
1255 return read_bytes;
1256 }
1257
1258 /*
1259 * If we get here, then type != rr->type; if we have a handshake message,
1260 * then it was unexpected (Hello Request or Client Hello) or invalid (we
1261 * were actually expecting a CCS).
1262 */
1263
1264 if (rr->type == SSL3_RT_HANDSHAKE && type == SSL3_RT_CHANGE_CIPHER_SPEC) {
1265 al = SSL_AD_UNEXPECTED_MESSAGE;
1266 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_MESSAGE);
1267 goto f_err;
1268 }
1269
1270 /*
1271 * Lets just double check that we've not got an SSLv2 record
1272 */
1273 if (rr->rec_version == SSL2_VERSION) {
1274 /*
1275 * Should never happen. ssl3_get_record() should only give us an SSLv2
1276 * record back if this is the first packet and we are looking for an
1277 * initial ClientHello. Therefore |type| should always be equal to
1278 * |rr->type|. If not then something has gone horribly wrong
1279 */
1280 al = SSL_AD_INTERNAL_ERROR;
1281 SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR);
1282 goto f_err;
1283 }
1284
1285 if(s->method->version == TLS_ANY_VERSION
1286 && (s->server || rr->type != SSL3_RT_ALERT)) {
1287 /*
1288 * If we've got this far and still haven't decided on what version
1289 * we're using then this must be a client side alert we're dealing with
1290 * (we don't allow heartbeats yet). We shouldn't be receiving anything
1291 * other than a ClientHello if we are a server.
1292 */
1293 s->version = rr->rec_version;
1294 al = SSL_AD_UNEXPECTED_MESSAGE;
1295 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_MESSAGE);
1296 goto f_err;
1297 }
1298
1299 /*
1300 * In case of record types for which we have 'fragment' storage, fill
1301 * that so that we can process the data at a fixed place.
1302 */
1303 {
1304 unsigned int dest_maxlen = 0;
1305 unsigned char *dest = NULL;
1306 unsigned int *dest_len = NULL;
1307
1308 if (SSL3_RECORD_get_type(rr) == SSL3_RT_HANDSHAKE) {
1309 dest_maxlen = sizeof s->rlayer.handshake_fragment;
1310 dest = s->rlayer.handshake_fragment;
1311 dest_len = &s->rlayer.handshake_fragment_len;
1312 } else if (SSL3_RECORD_get_type(rr) == SSL3_RT_ALERT) {
1313 dest_maxlen = sizeof s->rlayer.alert_fragment;
1314 dest = s->rlayer.alert_fragment;
1315 dest_len = &s->rlayer.alert_fragment_len;
1316 }
1317
1318 if (dest_maxlen > 0) {
1319 n = dest_maxlen - *dest_len; /* available space in 'dest' */
1320 if (SSL3_RECORD_get_length(rr) < n)
1321 n = SSL3_RECORD_get_length(rr); /* available bytes */
1322
1323 /* now move 'n' bytes: */
1324 while (n-- > 0) {
1325 dest[(*dest_len)++] =
1326 SSL3_RECORD_get_data(rr)[SSL3_RECORD_get_off(rr)];
1327 SSL3_RECORD_add_off(rr, 1);
1328 SSL3_RECORD_add_length(rr, -1);
1329 }
1330
1331 if (*dest_len < dest_maxlen)
1332 goto start; /* fragment was too small */
1333 }
1334 }
1335
1336 /*-
1337 * s->rlayer.handshake_fragment_len == 4 iff rr->type == SSL3_RT_HANDSHAKE;
1338 * s->rlayer.alert_fragment_len == 2 iff rr->type == SSL3_RT_ALERT.
1339 * (Possibly rr is 'empty' now, i.e. rr->length may be 0.)
1340 */
1341
1342 /* If we are a client, check for an incoming 'Hello Request': */
1343 if ((!s->server) &&
1344 (s->rlayer.handshake_fragment_len >= 4) &&
1345 (s->rlayer.handshake_fragment[0] == SSL3_MT_HELLO_REQUEST) &&
1346 (s->session != NULL) && (s->session->cipher != NULL)) {
1347 s->rlayer.handshake_fragment_len = 0;
1348
1349 if ((s->rlayer.handshake_fragment[1] != 0) ||
1350 (s->rlayer.handshake_fragment[2] != 0) ||
1351 (s->rlayer.handshake_fragment[3] != 0)) {
1352 al = SSL_AD_DECODE_ERROR;
1353 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_BAD_HELLO_REQUEST);
1354 goto f_err;
1355 }
1356
1357 if (s->msg_callback)
1358 s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE,
1359 s->rlayer.handshake_fragment, 4, s,
1360 s->msg_callback_arg);
1361
1362 if (SSL_is_init_finished(s) &&
1363 !(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS) &&
1364 !s->s3->renegotiate) {
1365 ssl3_renegotiate(s);
1366 if (ssl3_renegotiate_check(s)) {
1367 i = s->handshake_func(s);
1368 if (i < 0)
1369 return (i);
1370 if (i == 0) {
1371 SSLerr(SSL_F_SSL3_READ_BYTES,
1372 SSL_R_SSL_HANDSHAKE_FAILURE);
1373 return (-1);
1374 }
1375
1376 if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
1377 if (SSL3_BUFFER_get_left(rbuf) == 0) {
1378 /* no read-ahead left? */
1379 BIO *bio;
1380 /*
1381 * In the case where we try to read application data,
1382 * but we trigger an SSL handshake, we return -1 with
1383 * the retry option set. Otherwise renegotiation may
1384 * cause nasty problems in the blocking world
1385 */
1386 s->rwstate = SSL_READING;
1387 bio = SSL_get_rbio(s);
1388 BIO_clear_retry_flags(bio);
1389 BIO_set_retry_read(bio);
1390 return (-1);
1391 }
1392 }
1393 }
1394 }
1395 /*
1396 * we either finished a handshake or ignored the request, now try
1397 * again to obtain the (application) data we were asked for
1398 */
1399 goto start;
1400 }
1401 /*
1402 * If we are a server and get a client hello when renegotiation isn't
1403 * allowed send back a no renegotiation alert and carry on. WARNING:
1404 * experimental code, needs reviewing (steve)
1405 */
1406 if (s->server &&
1407 SSL_is_init_finished(s) &&
1408 !s->s3->send_connection_binding &&
1409 (s->version > SSL3_VERSION) &&
1410 (s->rlayer.handshake_fragment_len >= 4) &&
1411 (s->rlayer.handshake_fragment[0] == SSL3_MT_CLIENT_HELLO) &&
1412 (s->session != NULL) && (s->session->cipher != NULL) &&
1413 !(s->ctx->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
1414 SSL3_RECORD_set_length(rr, 0);
1415 ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_NO_RENEGOTIATION);
1416 goto start;
1417 }
1418 if (s->rlayer.alert_fragment_len >= 2) {
1419 int alert_level = s->rlayer.alert_fragment[0];
1420 int alert_descr = s->rlayer.alert_fragment[1];
1421
1422 s->rlayer.alert_fragment_len = 0;
1423
1424 if (s->msg_callback)
1425 s->msg_callback(0, s->version, SSL3_RT_ALERT,
1426 s->rlayer.alert_fragment, 2, s,
1427 s->msg_callback_arg);
1428
1429 if (s->info_callback != NULL)
1430 cb = s->info_callback;
1431 else if (s->ctx->info_callback != NULL)
1432 cb = s->ctx->info_callback;
1433
1434 if (cb != NULL) {
1435 j = (alert_level << 8) | alert_descr;
1436 cb(s, SSL_CB_READ_ALERT, j);
1437 }
1438
1439 if (alert_level == SSL3_AL_WARNING) {
1440 s->s3->warn_alert = alert_descr;
1441 if (alert_descr == SSL_AD_CLOSE_NOTIFY) {
1442 s->shutdown |= SSL_RECEIVED_SHUTDOWN;
1443 return (0);
1444 }
1445 /*
1446 * This is a warning but we receive it if we requested
1447 * renegotiation and the peer denied it. Terminate with a fatal
1448 * alert because if application tried to renegotiate it
1449 * presumably had a good reason and expects it to succeed. In
1450 * future we might have a renegotiation where we don't care if
1451 * the peer refused it where we carry on.
1452 */
1453 else if (alert_descr == SSL_AD_NO_RENEGOTIATION) {
1454 al = SSL_AD_HANDSHAKE_FAILURE;
1455 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_NO_RENEGOTIATION);
1456 goto f_err;
1457 }
1458 #ifdef SSL_AD_MISSING_SRP_USERNAME
1459 else if (alert_descr == SSL_AD_MISSING_SRP_USERNAME)
1460 return (0);
1461 #endif
1462 } else if (alert_level == SSL3_AL_FATAL) {
1463 char tmp[16];
1464
1465 s->rwstate = SSL_NOTHING;
1466 s->s3->fatal_alert = alert_descr;
1467 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_AD_REASON_OFFSET + alert_descr);
1468 BIO_snprintf(tmp, sizeof tmp, "%d", alert_descr);
1469 ERR_add_error_data(2, "SSL alert number ", tmp);
1470 s->shutdown |= SSL_RECEIVED_SHUTDOWN;
1471 SSL_CTX_remove_session(s->ctx, s->session);
1472 return (0);
1473 } else {
1474 al = SSL_AD_ILLEGAL_PARAMETER;
1475 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNKNOWN_ALERT_TYPE);
1476 goto f_err;
1477 }
1478
1479 goto start;
1480 }
1481
1482 if (s->shutdown & SSL_SENT_SHUTDOWN) { /* but we have not received a
1483 * shutdown */
1484 s->rwstate = SSL_NOTHING;
1485 SSL3_RECORD_set_length(rr, 0);
1486 return (0);
1487 }
1488
1489 if (SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC) {
1490 al = SSL_AD_UNEXPECTED_MESSAGE;
1491 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_CCS_RECEIVED_EARLY);
1492 goto f_err;
1493 }
1494
1495 /*
1496 * Unexpected handshake message (Client Hello, or protocol violation)
1497 */
1498 if ((s->rlayer.handshake_fragment_len >= 4)
1499 && !ossl_statem_get_in_handshake(s)) {
1500 if (SSL_is_init_finished(s) &&
1501 !(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS)) {
1502 ossl_statem_set_in_init(s, 1);
1503 s->renegotiate = 1;
1504 s->new_session = 1;
1505 }
1506 i = s->handshake_func(s);
1507 if (i < 0)
1508 return (i);
1509 if (i == 0) {
1510 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
1511 return (-1);
1512 }
1513
1514 if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
1515 if (SSL3_BUFFER_get_left(rbuf) == 0) {
1516 /* no read-ahead left? */
1517 BIO *bio;
1518 /*
1519 * In the case where we try to read application data, but we
1520 * trigger an SSL handshake, we return -1 with the retry
1521 * option set. Otherwise renegotiation may cause nasty
1522 * problems in the blocking world
1523 */
1524 s->rwstate = SSL_READING;
1525 bio = SSL_get_rbio(s);
1526 BIO_clear_retry_flags(bio);
1527 BIO_set_retry_read(bio);
1528 return (-1);
1529 }
1530 }
1531 goto start;
1532 }
1533
1534 switch (SSL3_RECORD_get_type(rr)) {
1535 default:
1536 /*
1537 * TLS up to v1.1 just ignores unknown message types: TLS v1.2 give
1538 * an unexpected message alert.
1539 */
1540 if (s->version >= TLS1_VERSION && s->version <= TLS1_1_VERSION) {
1541 SSL3_RECORD_set_length(rr, 0);
1542 goto start;
1543 }
1544 al = SSL_AD_UNEXPECTED_MESSAGE;
1545 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_RECORD);
1546 goto f_err;
1547 case SSL3_RT_CHANGE_CIPHER_SPEC:
1548 case SSL3_RT_ALERT:
1549 case SSL3_RT_HANDSHAKE:
1550 /*
1551 * we already handled all of these, with the possible exception of
1552 * SSL3_RT_HANDSHAKE when ossl_statem_get_in_handshake(s) is true, but
1553 * that should not happen when type != rr->type
1554 */
1555 al = SSL_AD_UNEXPECTED_MESSAGE;
1556 SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR);
1557 goto f_err;
1558 case SSL3_RT_APPLICATION_DATA:
1559 /*
1560 * At this point, we were expecting handshake data, but have
1561 * application data. If the library was running inside ssl3_read()
1562 * (i.e. in_read_app_data is set) and it makes sense to read
1563 * application data at this point (session renegotiation not yet
1564 * started), we will indulge it.
1565 */
1566 if (ossl_statem_app_data_allowed(s)) {
1567 s->s3->in_read_app_data = 2;
1568 return (-1);
1569 } else {
1570 al = SSL_AD_UNEXPECTED_MESSAGE;
1571 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_RECORD);
1572 goto f_err;
1573 }
1574 }
1575 /* not reached */
1576
1577 f_err:
1578 ssl3_send_alert(s, SSL3_AL_FATAL, al);
1579 return (-1);
1580 }
1581
1582 void ssl3_record_sequence_update(unsigned char *seq)
1583 {
1584 int i;
1585
1586 for (i = 7; i >= 0; i--) {
1587 ++seq[i];
1588 if (seq[i] != 0)
1589 break;
1590 }
1591 }
1592
1593 /*
1594 * Returns true if the current rrec was sent in SSLv2 backwards compatible
1595 * format and false otherwise.
1596 */
1597 int RECORD_LAYER_is_sslv2_record(RECORD_LAYER *rl)
1598 {
1599 return SSL3_RECORD_is_sslv2_record(&rl->rrec[0]);
1600 }
1601
1602 /*
1603 * Returns the length in bytes of the current rrec
1604 */
1605 unsigned int RECORD_LAYER_get_rrec_length(RECORD_LAYER *rl)
1606 {
1607 return SSL3_RECORD_get_length(&rl->rrec[0]);
1608 }