]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/record/rec_layer_s3.c
Rename all "read" variables with "readbytes"
[thirdparty/openssl.git] / ssl / record / rec_layer_s3.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <limits.h>
12 #include <errno.h>
13 #define USE_SOCKETS
14 #include "../ssl_locl.h"
15 #include <openssl/evp.h>
16 #include <openssl/buffer.h>
17 #include <openssl/rand.h>
18 #include "record_locl.h"
19
20 #ifndef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
21 # define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
22 #endif
23
24 #if defined(OPENSSL_SMALL_FOOTPRINT) || \
25 !( defined(AES_ASM) && ( \
26 defined(__x86_64) || defined(__x86_64__) || \
27 defined(_M_AMD64) || defined(_M_X64) ) \
28 )
29 # undef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
30 # define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
31 #endif
32
33 void RECORD_LAYER_init(RECORD_LAYER *rl, SSL *s)
34 {
35 rl->s = s;
36 RECORD_LAYER_set_first_record(&s->rlayer);
37 SSL3_RECORD_clear(rl->rrec, SSL_MAX_PIPELINES);
38 }
39
40 void RECORD_LAYER_clear(RECORD_LAYER *rl)
41 {
42 unsigned int pipes;
43
44 rl->rstate = SSL_ST_READ_HEADER;
45
46 /*
47 * Do I need to clear read_ahead? As far as I can tell read_ahead did not
48 * previously get reset by SSL_clear...so I'll keep it that way..but is
49 * that right?
50 */
51
52 rl->packet = NULL;
53 rl->packet_length = 0;
54 rl->wnum = 0;
55 memset(rl->alert_fragment, 0, sizeof(rl->alert_fragment));
56 rl->alert_fragment_len = 0;
57 memset(rl->handshake_fragment, 0, sizeof(rl->handshake_fragment));
58 rl->handshake_fragment_len = 0;
59 rl->wpend_tot = 0;
60 rl->wpend_type = 0;
61 rl->wpend_ret = 0;
62 rl->wpend_buf = NULL;
63
64 SSL3_BUFFER_clear(&rl->rbuf);
65 for (pipes = 0; pipes < rl->numwpipes; pipes++)
66 SSL3_BUFFER_clear(&rl->wbuf[pipes]);
67 rl->numwpipes = 0;
68 rl->numrpipes = 0;
69 SSL3_RECORD_clear(rl->rrec, SSL_MAX_PIPELINES);
70
71 RECORD_LAYER_reset_read_sequence(rl);
72 RECORD_LAYER_reset_write_sequence(rl);
73
74 if (rl->d)
75 DTLS_RECORD_LAYER_clear(rl);
76 }
77
78 void RECORD_LAYER_release(RECORD_LAYER *rl)
79 {
80 if (SSL3_BUFFER_is_initialised(&rl->rbuf))
81 ssl3_release_read_buffer(rl->s);
82 if (rl->numwpipes > 0)
83 ssl3_release_write_buffer(rl->s);
84 SSL3_RECORD_release(rl->rrec, SSL_MAX_PIPELINES);
85 }
86
87 int RECORD_LAYER_read_pending(const RECORD_LAYER *rl)
88 {
89 return SSL3_BUFFER_get_left(&rl->rbuf) != 0;
90 }
91
92 int RECORD_LAYER_write_pending(const RECORD_LAYER *rl)
93 {
94 return (rl->numwpipes > 0)
95 && SSL3_BUFFER_get_left(&rl->wbuf[rl->numwpipes - 1]) != 0;
96 }
97
98 int RECORD_LAYER_set_data(RECORD_LAYER *rl, const unsigned char *buf,
99 size_t len)
100 {
101 rl->packet_length = len;
102 if (len != 0) {
103 rl->rstate = SSL_ST_READ_HEADER;
104 if (!SSL3_BUFFER_is_initialised(&rl->rbuf))
105 if (!ssl3_setup_read_buffer(rl->s))
106 return 0;
107 }
108
109 rl->packet = SSL3_BUFFER_get_buf(&rl->rbuf);
110 SSL3_BUFFER_set_data(&rl->rbuf, buf, len);
111
112 return 1;
113 }
114
115 void RECORD_LAYER_reset_read_sequence(RECORD_LAYER *rl)
116 {
117 memset(rl->read_sequence, 0, sizeof(rl->read_sequence));
118 }
119
120 void RECORD_LAYER_reset_write_sequence(RECORD_LAYER *rl)
121 {
122 memset(rl->write_sequence, 0, sizeof(rl->write_sequence));
123 }
124
125 size_t ssl3_pending(const SSL *s)
126 {
127 size_t i, num = 0;
128
129 if (s->rlayer.rstate == SSL_ST_READ_BODY)
130 return 0;
131
132 for (i = 0; i < RECORD_LAYER_get_numrpipes(&s->rlayer); i++) {
133 if (SSL3_RECORD_get_type(&s->rlayer.rrec[i])
134 != SSL3_RT_APPLICATION_DATA)
135 return 0;
136 num += SSL3_RECORD_get_length(&s->rlayer.rrec[i]);
137 }
138
139 return num;
140 }
141
142 void SSL_CTX_set_default_read_buffer_len(SSL_CTX *ctx, size_t len)
143 {
144 ctx->default_read_buf_len = len;
145 }
146
147 void SSL_set_default_read_buffer_len(SSL *s, size_t len)
148 {
149 SSL3_BUFFER_set_default_len(RECORD_LAYER_get_rbuf(&s->rlayer), len);
150 }
151
152 const char *SSL_rstate_string_long(const SSL *s)
153 {
154 switch (s->rlayer.rstate) {
155 case SSL_ST_READ_HEADER:
156 return "read header";
157 case SSL_ST_READ_BODY:
158 return "read body";
159 case SSL_ST_READ_DONE:
160 return "read done";
161 default:
162 return "unknown";
163 }
164 }
165
166 const char *SSL_rstate_string(const SSL *s)
167 {
168 switch (s->rlayer.rstate) {
169 case SSL_ST_READ_HEADER:
170 return "RH";
171 case SSL_ST_READ_BODY:
172 return "RB";
173 case SSL_ST_READ_DONE:
174 return "RD";
175 default:
176 return "unknown";
177 }
178 }
179
180 /*
181 * Return values are as per SSL_read(), i.e.
182 * 1 Success
183 * 0 Failure (not retryable)
184 * <0 Failure (may be retryable)
185 */
186 int ssl3_read_n(SSL *s, size_t n, size_t max, int extend, int clearold,
187 size_t *readbytes)
188 {
189 /*
190 * If extend == 0, obtain new n-byte packet; if extend == 1, increase
191 * packet by another n bytes. The packet will be in the sub-array of
192 * s->s3->rbuf.buf specified by s->packet and s->packet_length. (If
193 * s->rlayer.read_ahead is set, 'max' bytes may be stored in rbuf [plus
194 * s->packet_length bytes if extend == 1].)
195 * if clearold == 1, move the packet to the start of the buffer; if
196 * clearold == 0 then leave any old packets where they were
197 */
198 size_t len, left, align = 0;
199 unsigned char *pkt;
200 SSL3_BUFFER *rb;
201
202 if (n == 0)
203 return 0;
204
205 rb = &s->rlayer.rbuf;
206 if (rb->buf == NULL)
207 if (!ssl3_setup_read_buffer(s))
208 return -1;
209
210 left = rb->left;
211 #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
212 align = (size_t)rb->buf + SSL3_RT_HEADER_LENGTH;
213 align = SSL3_ALIGN_PAYLOAD - 1 - ((align - 1) % SSL3_ALIGN_PAYLOAD);
214 #endif
215
216 if (!extend) {
217 /* start with empty packet ... */
218 if (left == 0)
219 rb->offset = align;
220 else if (align != 0 && left >= SSL3_RT_HEADER_LENGTH) {
221 /*
222 * check if next packet length is large enough to justify payload
223 * alignment...
224 */
225 pkt = rb->buf + rb->offset;
226 if (pkt[0] == SSL3_RT_APPLICATION_DATA
227 && (pkt[3] << 8 | pkt[4]) >= 128) {
228 /*
229 * Note that even if packet is corrupted and its length field
230 * is insane, we can only be led to wrong decision about
231 * whether memmove will occur or not. Header values has no
232 * effect on memmove arguments and therefore no buffer
233 * overrun can be triggered.
234 */
235 memmove(rb->buf + align, pkt, left);
236 rb->offset = align;
237 }
238 }
239 s->rlayer.packet = rb->buf + rb->offset;
240 s->rlayer.packet_length = 0;
241 /* ... now we can act as if 'extend' was set */
242 }
243
244 len = s->rlayer.packet_length;
245 pkt = rb->buf + align;
246 /*
247 * Move any available bytes to front of buffer: 'len' bytes already
248 * pointed to by 'packet', 'left' extra ones at the end
249 */
250 if (s->rlayer.packet != pkt && clearold == 1) {
251 memmove(pkt, s->rlayer.packet, len + left);
252 s->rlayer.packet = pkt;
253 rb->offset = len + align;
254 }
255
256 /*
257 * For DTLS/UDP reads should not span multiple packets because the read
258 * operation returns the whole packet at once (as long as it fits into
259 * the buffer).
260 */
261 if (SSL_IS_DTLS(s)) {
262 if (left == 0 && extend)
263 return 0;
264 if (left > 0 && n > left)
265 n = left;
266 }
267
268 /* if there is enough in the buffer from a previous read, take some */
269 if (left >= n) {
270 s->rlayer.packet_length += n;
271 rb->left = left - n;
272 rb->offset += n;
273 *readbytes = n;
274 return 1;
275 }
276
277 /* else we need to read more data */
278
279 if (n > (rb->len - rb->offset)) { /* does not happen */
280 SSLerr(SSL_F_SSL3_READ_N, ERR_R_INTERNAL_ERROR);
281 return -1;
282 }
283
284 /* We always act like read_ahead is set for DTLS */
285 if (!s->rlayer.read_ahead && !SSL_IS_DTLS(s))
286 /* ignore max parameter */
287 max = n;
288 else {
289 if (max < n)
290 max = n;
291 if (max > (rb->len - rb->offset))
292 max = rb->len - rb->offset;
293 }
294
295 while (left < n) {
296 size_t bioread = 0;
297 int ret;
298
299 /*
300 * Now we have len+left bytes at the front of s->s3->rbuf.buf and
301 * need to read in more until we have len+n (up to len+max if
302 * possible)
303 */
304
305 clear_sys_error();
306 if (s->rbio != NULL) {
307 s->rwstate = SSL_READING;
308 /* TODO(size_t): Convert this function */
309 ret = BIO_read(s->rbio, pkt + len + left, max - left);
310 if (ret >= 0)
311 bioread = ret;
312 } else {
313 SSLerr(SSL_F_SSL3_READ_N, SSL_R_READ_BIO_NOT_SET);
314 ret = -1;
315 }
316
317 if (ret <= 0) {
318 rb->left = left;
319 if (s->mode & SSL_MODE_RELEASE_BUFFERS && !SSL_IS_DTLS(s))
320 if (len + left == 0)
321 ssl3_release_read_buffer(s);
322 return -1;
323 }
324 left += bioread;
325 /*
326 * reads should *never* span multiple packets for DTLS because the
327 * underlying transport protocol is message oriented as opposed to
328 * byte oriented as in the TLS case.
329 */
330 if (SSL_IS_DTLS(s)) {
331 if (n > left)
332 n = left; /* makes the while condition false */
333 }
334 }
335
336 /* done reading, now the book-keeping */
337 rb->offset += n;
338 rb->left = left - n;
339 s->rlayer.packet_length += n;
340 s->rwstate = SSL_NOTHING;
341 *readbytes = n;
342 return 1;
343 }
344
345 /*
346 * Call this to write data in records of type 'type' It will return <= 0 if
347 * not all data has been sent or non-blocking IO.
348 */
349 int ssl3_write_bytes(SSL *s, int type, const void *buf_, size_t len,
350 size_t *written)
351 {
352 const unsigned char *buf = buf_;
353 size_t tot;
354 size_t n, split_send_fragment, maxpipes;
355 #if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
356 size_t max_send_fragment, nw;
357 #endif
358 SSL3_BUFFER *wb = &s->rlayer.wbuf[0];
359 int i;
360 size_t tmpwrit;
361
362 s->rwstate = SSL_NOTHING;
363 tot = s->rlayer.wnum;
364 /*
365 * ensure that if we end up with a smaller value of data to write out
366 * than the the original len from a write which didn't complete for
367 * non-blocking I/O and also somehow ended up avoiding the check for
368 * this in ssl3_write_pending/SSL_R_BAD_WRITE_RETRY as it must never be
369 * possible to end up with (len-tot) as a large number that will then
370 * promptly send beyond the end of the users buffer ... so we trap and
371 * report the error in a way the user will notice
372 */
373 if (len < s->rlayer.wnum) {
374 SSLerr(SSL_F_SSL3_WRITE_BYTES, SSL_R_BAD_LENGTH);
375 return -1;
376 }
377
378 s->rlayer.wnum = 0;
379
380 if (SSL_in_init(s) && !ossl_statem_get_in_handshake(s)) {
381 i = s->handshake_func(s);
382 if (i < 0)
383 return i;
384 if (i == 0) {
385 SSLerr(SSL_F_SSL3_WRITE_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
386 return -1;
387 }
388 }
389
390 /*
391 * first check if there is a SSL3_BUFFER still being written out. This
392 * will happen with non blocking IO
393 */
394 if (wb->left != 0) {
395 i = ssl3_write_pending(s, type, &buf[tot], s->rlayer.wpend_tot,
396 &tmpwrit);
397 if (i <= 0) {
398 /* XXX should we ssl3_release_write_buffer if i<0? */
399 s->rlayer.wnum = tot;
400 return i;
401 }
402 tot += tmpwrit; /* this might be last fragment */
403 }
404 #if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
405 /*
406 * Depending on platform multi-block can deliver several *times*
407 * better performance. Downside is that it has to allocate
408 * jumbo buffer to accommodate up to 8 records, but the
409 * compromise is considered worthy.
410 */
411 if (type == SSL3_RT_APPLICATION_DATA &&
412 len >= 4 * (max_send_fragment = s->max_send_fragment) &&
413 s->compress == NULL && s->msg_callback == NULL &&
414 !SSL_USE_ETM(s) && SSL_USE_EXPLICIT_IV(s) &&
415 EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_write_ctx)) &
416 EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK) {
417 unsigned char aad[13];
418 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
419 size_t packlen;
420 int packleni;
421
422 /* minimize address aliasing conflicts */
423 if ((max_send_fragment & 0xfff) == 0)
424 max_send_fragment -= 512;
425
426 if (tot == 0 || wb->buf == NULL) { /* allocate jumbo buffer */
427 ssl3_release_write_buffer(s);
428
429 packlen = EVP_CIPHER_CTX_ctrl(s->enc_write_ctx,
430 EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE,
431 (int)max_send_fragment, NULL);
432
433 if (len >= 8 * max_send_fragment)
434 packlen *= 8;
435 else
436 packlen *= 4;
437
438 if (!ssl3_setup_write_buffer(s, 1, packlen)) {
439 SSLerr(SSL_F_SSL3_WRITE_BYTES, ERR_R_MALLOC_FAILURE);
440 return -1;
441 }
442 } else if (tot == len) { /* done? */
443 /* free jumbo buffer */
444 ssl3_release_write_buffer(s);
445 *written = tot;
446 return 1;
447 }
448
449 n = (len - tot);
450 for (;;) {
451 if (n < 4 * max_send_fragment) {
452 /* free jumbo buffer */
453 ssl3_release_write_buffer(s);
454 break;
455 }
456
457 if (s->s3->alert_dispatch) {
458 i = s->method->ssl_dispatch_alert(s);
459 if (i <= 0) {
460 s->rlayer.wnum = tot;
461 return i;
462 }
463 }
464
465 if (n >= 8 * max_send_fragment)
466 nw = max_send_fragment * (mb_param.interleave = 8);
467 else
468 nw = max_send_fragment * (mb_param.interleave = 4);
469
470 memcpy(aad, s->rlayer.write_sequence, 8);
471 aad[8] = type;
472 aad[9] = (unsigned char)(s->version >> 8);
473 aad[10] = (unsigned char)(s->version);
474 aad[11] = 0;
475 aad[12] = 0;
476 mb_param.out = NULL;
477 mb_param.inp = aad;
478 mb_param.len = nw;
479
480 packleni = EVP_CIPHER_CTX_ctrl(s->enc_write_ctx,
481 EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
482 sizeof(mb_param), &mb_param);
483 packlen = (size_t)packleni;
484 if (packleni <= 0 || packlen > wb->len) { /* never happens */
485 /* free jumbo buffer */
486 ssl3_release_write_buffer(s);
487 break;
488 }
489
490 mb_param.out = wb->buf;
491 mb_param.inp = &buf[tot];
492 mb_param.len = nw;
493
494 if (EVP_CIPHER_CTX_ctrl(s->enc_write_ctx,
495 EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
496 sizeof(mb_param), &mb_param) <= 0)
497 return -1;
498
499 s->rlayer.write_sequence[7] += mb_param.interleave;
500 if (s->rlayer.write_sequence[7] < mb_param.interleave) {
501 int j = 6;
502 while (j >= 0 && (++s->rlayer.write_sequence[j--]) == 0) ;
503 }
504
505 wb->offset = 0;
506 wb->left = packlen;
507
508 s->rlayer.wpend_tot = nw;
509 s->rlayer.wpend_buf = &buf[tot];
510 s->rlayer.wpend_type = type;
511 s->rlayer.wpend_ret = nw;
512
513 i = ssl3_write_pending(s, type, &buf[tot], nw, &tmpwrit);
514 if (i <= 0) {
515 if (i < 0 && (!s->wbio || !BIO_should_retry(s->wbio))) {
516 /* free jumbo buffer */
517 ssl3_release_write_buffer(s);
518 }
519 s->rlayer.wnum = tot;
520 return i;
521 }
522 if (tmpwrit == n) {
523 /* free jumbo buffer */
524 ssl3_release_write_buffer(s);
525 *written = tot + tmpwrit;
526 return 1;
527 }
528 n -= tmpwrit;
529 tot += tmpwrit;
530 }
531 } else
532 #endif
533 if (tot == len) { /* done? */
534 if (s->mode & SSL_MODE_RELEASE_BUFFERS && !SSL_IS_DTLS(s))
535 ssl3_release_write_buffer(s);
536
537 *written = tot;
538 return 1;
539 }
540
541 n = (len - tot);
542
543 split_send_fragment = s->split_send_fragment;
544 /*
545 * If max_pipelines is 0 then this means "undefined" and we default to
546 * 1 pipeline. Similarly if the cipher does not support pipelined
547 * processing then we also only use 1 pipeline, or if we're not using
548 * explicit IVs
549 */
550 maxpipes = s->max_pipelines;
551 if (maxpipes > SSL_MAX_PIPELINES) {
552 /*
553 * We should have prevented this when we set max_pipelines so we
554 * shouldn't get here
555 */
556 SSLerr(SSL_F_SSL3_WRITE_BYTES, ERR_R_INTERNAL_ERROR);
557 return -1;
558 }
559 if (maxpipes == 0
560 || s->enc_write_ctx == NULL
561 || !(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_write_ctx))
562 & EVP_CIPH_FLAG_PIPELINE)
563 || !SSL_USE_EXPLICIT_IV(s))
564 maxpipes = 1;
565 if (s->max_send_fragment == 0 || split_send_fragment > s->max_send_fragment
566 || split_send_fragment == 0) {
567 /*
568 * We should have prevented this when we set the split and max send
569 * fragments so we shouldn't get here
570 */
571 SSLerr(SSL_F_SSL3_WRITE_BYTES, ERR_R_INTERNAL_ERROR);
572 return -1;
573 }
574
575 for (;;) {
576 size_t pipelens[SSL_MAX_PIPELINES], tmppipelen, remain;
577 size_t numpipes, j;
578
579 if (n == 0)
580 numpipes = 1;
581 else
582 numpipes = ((n - 1) / split_send_fragment) + 1;
583 if (numpipes > maxpipes)
584 numpipes = maxpipes;
585
586 if (n / numpipes >= s->max_send_fragment) {
587 /*
588 * We have enough data to completely fill all available
589 * pipelines
590 */
591 for (j = 0; j < numpipes; j++) {
592 pipelens[j] = s->max_send_fragment;
593 }
594 } else {
595 /* We can partially fill all available pipelines */
596 tmppipelen = n / numpipes;
597 remain = n % numpipes;
598 for (j = 0; j < numpipes; j++) {
599 pipelens[j] = tmppipelen;
600 if (j < remain)
601 pipelens[j]++;
602 }
603 }
604
605 i = do_ssl3_write(s, type, &(buf[tot]), pipelens, numpipes, 0,
606 &tmpwrit);
607 if (i <= 0) {
608 /* XXX should we ssl3_release_write_buffer if i<0? */
609 s->rlayer.wnum = tot;
610 return i;
611 }
612
613 if ((tmpwrit == n) ||
614 (type == SSL3_RT_APPLICATION_DATA &&
615 (s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE))) {
616 /*
617 * next chunk of data should get another prepended empty fragment
618 * in ciphersuites with known-IV weakness:
619 */
620 s->s3->empty_fragment_done = 0;
621
622 if ((i == (int)n) && s->mode & SSL_MODE_RELEASE_BUFFERS &&
623 !SSL_IS_DTLS(s))
624 ssl3_release_write_buffer(s);
625
626 *written = tot + tmpwrit;
627 return 1;
628 }
629
630 n -= tmpwrit;
631 tot += tmpwrit;
632 }
633 }
634
635 int do_ssl3_write(SSL *s, int type, const unsigned char *buf,
636 size_t *pipelens, size_t numpipes,
637 int create_empty_fragment, size_t *written)
638 {
639 unsigned char *outbuf[SSL_MAX_PIPELINES], *plen[SSL_MAX_PIPELINES];
640 SSL3_RECORD wr[SSL_MAX_PIPELINES];
641 int i, mac_size, clear = 0;
642 size_t prefix_len = 0;
643 int eivlen;
644 size_t align = 0;
645 SSL3_BUFFER *wb;
646 SSL_SESSION *sess;
647 size_t totlen = 0;
648 size_t j;
649
650 for (j = 0; j < numpipes; j++)
651 totlen += pipelens[j];
652 /*
653 * first check if there is a SSL3_BUFFER still being written out. This
654 * will happen with non blocking IO
655 */
656 if (RECORD_LAYER_write_pending(&s->rlayer))
657 return ssl3_write_pending(s, type, buf, totlen, written);
658
659 /* If we have an alert to send, lets send it */
660 if (s->s3->alert_dispatch) {
661 i = s->method->ssl_dispatch_alert(s);
662 if (i <= 0)
663 return (i);
664 /* if it went, fall through and send more stuff */
665 }
666
667 if (s->rlayer.numwpipes < numpipes)
668 if (!ssl3_setup_write_buffer(s, numpipes, 0))
669 return -1;
670
671 if (totlen == 0 && !create_empty_fragment)
672 return 0;
673
674 sess = s->session;
675
676 if ((sess == NULL) ||
677 (s->enc_write_ctx == NULL) || (EVP_MD_CTX_md(s->write_hash) == NULL)) {
678 clear = s->enc_write_ctx ? 0 : 1; /* must be AEAD cipher */
679 mac_size = 0;
680 } else {
681 /* TODO(siz_t): Convert me */
682 mac_size = EVP_MD_CTX_size(s->write_hash);
683 if (mac_size < 0)
684 goto err;
685 }
686
687 /*
688 * 'create_empty_fragment' is true only when this function calls itself
689 */
690 if (!clear && !create_empty_fragment && !s->s3->empty_fragment_done) {
691 /*
692 * countermeasure against known-IV weakness in CBC ciphersuites (see
693 * http://www.openssl.org/~bodo/tls-cbc.txt)
694 */
695
696 if (s->s3->need_empty_fragments && type == SSL3_RT_APPLICATION_DATA) {
697 /*
698 * recursive function call with 'create_empty_fragment' set; this
699 * prepares and buffers the data for an empty fragment (these
700 * 'prefix_len' bytes are sent out later together with the actual
701 * payload)
702 */
703 size_t tmppipelen = 0;
704 int ret;
705
706 ret = do_ssl3_write(s, type, buf, &tmppipelen, 1, 1, &prefix_len);
707 if (ret <= 0)
708 goto err;
709
710 if (prefix_len >
711 (SSL3_RT_HEADER_LENGTH + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD)) {
712 /* insufficient space */
713 SSLerr(SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR);
714 goto err;
715 }
716 }
717
718 s->s3->empty_fragment_done = 1;
719 }
720
721 if (create_empty_fragment) {
722 wb = &s->rlayer.wbuf[0];
723 #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
724 /*
725 * extra fragment would be couple of cipher blocks, which would be
726 * multiple of SSL3_ALIGN_PAYLOAD, so if we want to align the real
727 * payload, then we can just pretend we simply have two headers.
728 */
729 align = (size_t)SSL3_BUFFER_get_buf(wb) + 2 * SSL3_RT_HEADER_LENGTH;
730 align = SSL3_ALIGN_PAYLOAD - 1 - ((align - 1) % SSL3_ALIGN_PAYLOAD);
731 #endif
732 outbuf[0] = SSL3_BUFFER_get_buf(wb) + align;
733 SSL3_BUFFER_set_offset(wb, align);
734 } else if (prefix_len) {
735 wb = &s->rlayer.wbuf[0];
736 outbuf[0] = SSL3_BUFFER_get_buf(wb) + SSL3_BUFFER_get_offset(wb)
737 + prefix_len;
738 } else {
739 for (j = 0; j < numpipes; j++) {
740 wb = &s->rlayer.wbuf[j];
741 #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
742 align = (size_t)SSL3_BUFFER_get_buf(wb) + SSL3_RT_HEADER_LENGTH;
743 align = SSL3_ALIGN_PAYLOAD - 1 - ((align - 1) % SSL3_ALIGN_PAYLOAD);
744 #endif
745 outbuf[j] = SSL3_BUFFER_get_buf(wb) + align;
746 SSL3_BUFFER_set_offset(wb, align);
747 }
748 }
749
750 /* Explicit IV length, block ciphers appropriate version flag */
751 if (s->enc_write_ctx && SSL_USE_EXPLICIT_IV(s)) {
752 int mode = EVP_CIPHER_CTX_mode(s->enc_write_ctx);
753 if (mode == EVP_CIPH_CBC_MODE) {
754 /* TODO(size_t): Convert me */
755 eivlen = EVP_CIPHER_CTX_iv_length(s->enc_write_ctx);
756 if (eivlen <= 1)
757 eivlen = 0;
758 }
759 /* Need explicit part of IV for GCM mode */
760 else if (mode == EVP_CIPH_GCM_MODE)
761 eivlen = EVP_GCM_TLS_EXPLICIT_IV_LEN;
762 else if (mode == EVP_CIPH_CCM_MODE)
763 eivlen = EVP_CCM_TLS_EXPLICIT_IV_LEN;
764 else
765 eivlen = 0;
766 } else
767 eivlen = 0;
768
769 totlen = 0;
770 /* Clear our SSL3_RECORD structures */
771 memset(wr, 0, sizeof wr);
772 for (j = 0; j < numpipes; j++) {
773 /* write the header */
774 *(outbuf[j]++) = type & 0xff;
775 SSL3_RECORD_set_type(&wr[j], type);
776
777 *(outbuf[j]++) = (s->version >> 8);
778 /*
779 * Some servers hang if initial client hello is larger than 256 bytes
780 * and record version number > TLS 1.0
781 */
782 if (SSL_get_state(s) == TLS_ST_CW_CLNT_HELLO
783 && !s->renegotiate && TLS1_get_version(s) > TLS1_VERSION)
784 *(outbuf[j]++) = 0x1;
785 else
786 *(outbuf[j]++) = s->version & 0xff;
787
788 /* field where we are to write out packet length */
789 plen[j] = outbuf[j];
790 outbuf[j] += 2;
791
792 /* lets setup the record stuff. */
793 SSL3_RECORD_set_data(&wr[j], outbuf[j] + eivlen);
794 SSL3_RECORD_set_length(&wr[j], pipelens[j]);
795 SSL3_RECORD_set_input(&wr[j], (unsigned char *)&buf[totlen]);
796 totlen += pipelens[j];
797
798 /*
799 * we now 'read' from wr->input, wr->length bytes into wr->data
800 */
801
802 /* first we compress */
803 if (s->compress != NULL) {
804 if (!ssl3_do_compress(s, &wr[j])) {
805 SSLerr(SSL_F_DO_SSL3_WRITE, SSL_R_COMPRESSION_FAILURE);
806 goto err;
807 }
808 } else {
809 memcpy(wr[j].data, wr[j].input, wr[j].length);
810 SSL3_RECORD_reset_input(&wr[j]);
811 }
812
813 /*
814 * we should still have the output to wr->data and the input from
815 * wr->input. Length should be wr->length. wr->data still points in the
816 * wb->buf
817 */
818
819 if (!SSL_USE_ETM(s) && mac_size != 0) {
820 if (!s->method->ssl3_enc->mac(s, &wr[j],
821 &(outbuf[j][wr[j].length + eivlen]),
822 1))
823 goto err;
824 SSL3_RECORD_add_length(&wr[j], mac_size);
825 }
826
827 SSL3_RECORD_set_data(&wr[j], outbuf[j]);
828 SSL3_RECORD_reset_input(&wr[j]);
829
830 if (eivlen) {
831 /*
832 * if (RAND_pseudo_bytes(p, eivlen) <= 0) goto err;
833 */
834 SSL3_RECORD_add_length(&wr[j], eivlen);
835 }
836 }
837
838 if (s->method->ssl3_enc->enc(s, wr, numpipes, 1) < 1)
839 goto err;
840
841 for (j = 0; j < numpipes; j++) {
842 if (SSL_USE_ETM(s) && mac_size != 0) {
843 if (!s->method->ssl3_enc->mac(s, &wr[j],
844 outbuf[j] + wr[j].length, 1))
845 goto err;
846 SSL3_RECORD_add_length(&wr[j], mac_size);
847 }
848
849 /* record length after mac and block padding */
850 s2n(SSL3_RECORD_get_length(&wr[j]), plen[j]);
851
852 if (s->msg_callback)
853 s->msg_callback(1, 0, SSL3_RT_HEADER, plen[j] - 5, 5, s,
854 s->msg_callback_arg);
855
856 /*
857 * we should now have wr->data pointing to the encrypted data, which is
858 * wr->length long
859 */
860 SSL3_RECORD_set_type(&wr[j], type); /* not needed but helps for
861 * debugging */
862 SSL3_RECORD_add_length(&wr[j], SSL3_RT_HEADER_LENGTH);
863
864 if (create_empty_fragment) {
865 /*
866 * we are in a recursive call; just return the length, don't write
867 * out anything here
868 */
869 if (j > 0) {
870 /* We should never be pipelining an empty fragment!! */
871 SSLerr(SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR);
872 goto err;
873 }
874 *written = SSL3_RECORD_get_length(wr);
875 return 1;
876 }
877
878 /* now let's set up wb */
879 SSL3_BUFFER_set_left(&s->rlayer.wbuf[j],
880 prefix_len + SSL3_RECORD_get_length(&wr[j]));
881 }
882
883 /*
884 * memorize arguments so that ssl3_write_pending can detect bad write
885 * retries later
886 */
887 s->rlayer.wpend_tot = totlen;
888 s->rlayer.wpend_buf = buf;
889 s->rlayer.wpend_type = type;
890 s->rlayer.wpend_ret = totlen;
891
892 /* we now just need to write the buffer */
893 return ssl3_write_pending(s, type, buf, totlen, written);
894 err:
895 return -1;
896 }
897
898 /* if s->s3->wbuf.left != 0, we need to call this
899 *
900 * Return values are as per SSL_read(), i.e.
901 * 1 Success
902 * 0 Failure (not retryable)
903 * <0 Failure (may be retryable)
904 */
905 int ssl3_write_pending(SSL *s, int type, const unsigned char *buf, size_t len,
906 size_t *written)
907 {
908 int i;
909 SSL3_BUFFER *wb = s->rlayer.wbuf;
910 size_t currbuf = 0;
911 size_t tmpwrit = 0;
912
913 if ((s->rlayer.wpend_tot > len)
914 || ((s->rlayer.wpend_buf != buf) &&
915 !(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER))
916 || (s->rlayer.wpend_type != type)) {
917 SSLerr(SSL_F_SSL3_WRITE_PENDING, SSL_R_BAD_WRITE_RETRY);
918 return -1;
919 }
920
921 for (;;) {
922 /* Loop until we find a buffer we haven't written out yet */
923 if (SSL3_BUFFER_get_left(&wb[currbuf]) == 0
924 && currbuf < s->rlayer.numwpipes - 1) {
925 currbuf++;
926 continue;
927 }
928 clear_sys_error();
929 if (s->wbio != NULL) {
930 s->rwstate = SSL_WRITING;
931 /* TODO(size_t): Convert this call */
932 i = BIO_write(s->wbio, (char *)
933 &(SSL3_BUFFER_get_buf(&wb[currbuf])
934 [SSL3_BUFFER_get_offset(&wb[currbuf])]),
935 (unsigned int)SSL3_BUFFER_get_left(&wb[currbuf]));
936 if (i >= 0)
937 tmpwrit = i;
938 } else {
939 SSLerr(SSL_F_SSL3_WRITE_PENDING, SSL_R_BIO_NOT_SET);
940 i = -1;
941 }
942 if (i > 0 && tmpwrit == SSL3_BUFFER_get_left(&wb[currbuf])) {
943 SSL3_BUFFER_set_left(&wb[currbuf], 0);
944 SSL3_BUFFER_add_offset(&wb[currbuf], tmpwrit);
945 if (currbuf + 1 < s->rlayer.numwpipes)
946 continue;
947 s->rwstate = SSL_NOTHING;
948 *written = s->rlayer.wpend_ret;
949 return 1;
950 } else if (i <= 0) {
951 if (SSL_IS_DTLS(s)) {
952 /*
953 * For DTLS, just drop it. That's kind of the whole point in
954 * using a datagram service
955 */
956 SSL3_BUFFER_set_left(&wb[currbuf], 0);
957 }
958 return -1;
959 }
960 SSL3_BUFFER_add_offset(&wb[currbuf], tmpwrit);
961 SSL3_BUFFER_sub_left(&wb[currbuf], tmpwrit);
962 }
963 }
964
965 /*-
966 * Return up to 'len' payload bytes received in 'type' records.
967 * 'type' is one of the following:
968 *
969 * - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us)
970 * - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us)
971 * - 0 (during a shutdown, no data has to be returned)
972 *
973 * If we don't have stored data to work from, read a SSL/TLS record first
974 * (possibly multiple records if we still don't have anything to return).
975 *
976 * This function must handle any surprises the peer may have for us, such as
977 * Alert records (e.g. close_notify) or renegotiation requests. ChangeCipherSpec
978 * messages are treated as if they were handshake messages *if* the |recd_type|
979 * argument is non NULL.
980 * Also if record payloads contain fragments too small to process, we store
981 * them until there is enough for the respective protocol (the record protocol
982 * may use arbitrary fragmentation and even interleaving):
983 * Change cipher spec protocol
984 * just 1 byte needed, no need for keeping anything stored
985 * Alert protocol
986 * 2 bytes needed (AlertLevel, AlertDescription)
987 * Handshake protocol
988 * 4 bytes needed (HandshakeType, uint24 length) -- we just have
989 * to detect unexpected Client Hello and Hello Request messages
990 * here, anything else is handled by higher layers
991 * Application data protocol
992 * none of our business
993 */
994 int ssl3_read_bytes(SSL *s, int type, int *recvd_type, unsigned char *buf,
995 size_t len, int peek, size_t *readbytes)
996 {
997 int al, i, j, ret;
998 size_t n, curr_rec, num_recs, totalbytes;
999 SSL3_RECORD *rr;
1000 SSL3_BUFFER *rbuf;
1001 void (*cb) (const SSL *ssl, int type2, int val) = NULL;
1002
1003 rbuf = &s->rlayer.rbuf;
1004
1005 if (!SSL3_BUFFER_is_initialised(rbuf)) {
1006 /* Not initialized yet */
1007 if (!ssl3_setup_read_buffer(s))
1008 return -1;
1009 }
1010
1011 if ((type && (type != SSL3_RT_APPLICATION_DATA)
1012 && (type != SSL3_RT_HANDSHAKE)) || (peek
1013 && (type !=
1014 SSL3_RT_APPLICATION_DATA))) {
1015 SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR);
1016 return -1;
1017 }
1018
1019 if ((type == SSL3_RT_HANDSHAKE) && (s->rlayer.handshake_fragment_len > 0))
1020 /* (partially) satisfy request from storage */
1021 {
1022 unsigned char *src = s->rlayer.handshake_fragment;
1023 unsigned char *dst = buf;
1024 unsigned int k;
1025
1026 /* peek == 0 */
1027 n = 0;
1028 while ((len > 0) && (s->rlayer.handshake_fragment_len > 0)) {
1029 *dst++ = *src++;
1030 len--;
1031 s->rlayer.handshake_fragment_len--;
1032 n++;
1033 }
1034 /* move any remaining fragment bytes: */
1035 for (k = 0; k < s->rlayer.handshake_fragment_len; k++)
1036 s->rlayer.handshake_fragment[k] = *src++;
1037
1038 if (recvd_type != NULL)
1039 *recvd_type = SSL3_RT_HANDSHAKE;
1040
1041 *readbytes = n;
1042 return 1;
1043 }
1044
1045 /*
1046 * Now s->rlayer.handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE.
1047 */
1048
1049 if (!ossl_statem_get_in_handshake(s) && SSL_in_init(s)) {
1050 /* type == SSL3_RT_APPLICATION_DATA */
1051 i = s->handshake_func(s);
1052 if (i < 0)
1053 return i;
1054 if (i == 0) {
1055 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
1056 return -1;
1057 }
1058 }
1059 start:
1060 s->rwstate = SSL_NOTHING;
1061
1062 /*-
1063 * For each record 'i' up to |num_recs]
1064 * rr[i].type - is the type of record
1065 * rr[i].data, - data
1066 * rr[i].off, - offset into 'data' for next read
1067 * rr[i].length, - number of bytes.
1068 */
1069 rr = s->rlayer.rrec;
1070 num_recs = RECORD_LAYER_get_numrpipes(&s->rlayer);
1071
1072 do {
1073 /* get new records if necessary */
1074 if (num_recs == 0) {
1075 ret = ssl3_get_record(s);
1076 if (ret <= 0)
1077 return ret;
1078 num_recs = RECORD_LAYER_get_numrpipes(&s->rlayer);
1079 if (num_recs == 0) {
1080 /* Shouldn't happen */
1081 al = SSL_AD_INTERNAL_ERROR;
1082 SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR);
1083 goto f_err;
1084 }
1085 }
1086 /* Skip over any records we have already read */
1087 for (curr_rec = 0;
1088 curr_rec < num_recs && SSL3_RECORD_is_read(&rr[curr_rec]);
1089 curr_rec++) ;
1090 if (curr_rec == num_recs) {
1091 RECORD_LAYER_set_numrpipes(&s->rlayer, 0);
1092 num_recs = 0;
1093 curr_rec = 0;
1094 }
1095 } while (num_recs == 0);
1096 rr = &rr[curr_rec];
1097
1098 /*
1099 * Reset the count of consecutive warning alerts if we've got a non-empty
1100 * record that isn't an alert.
1101 */
1102 if (SSL3_RECORD_get_type(rr) != SSL3_RT_ALERT
1103 && SSL3_RECORD_get_length(rr) != 0)
1104 s->rlayer.alert_count = 0;
1105
1106 /* we now have a packet which can be read and processed */
1107
1108 if (s->s3->change_cipher_spec /* set when we receive ChangeCipherSpec,
1109 * reset by ssl3_get_finished */
1110 && (SSL3_RECORD_get_type(rr) != SSL3_RT_HANDSHAKE)) {
1111 al = SSL_AD_UNEXPECTED_MESSAGE;
1112 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_DATA_BETWEEN_CCS_AND_FINISHED);
1113 goto f_err;
1114 }
1115
1116 /*
1117 * If the other end has shut down, throw anything we read away (even in
1118 * 'peek' mode)
1119 */
1120 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1121 SSL3_RECORD_set_length(rr, 0);
1122 s->rwstate = SSL_NOTHING;
1123 return 0;
1124 }
1125
1126 if (type == SSL3_RECORD_get_type(rr)
1127 || (SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC
1128 && type == SSL3_RT_HANDSHAKE && recvd_type != NULL)) {
1129 /*
1130 * SSL3_RT_APPLICATION_DATA or
1131 * SSL3_RT_HANDSHAKE or
1132 * SSL3_RT_CHANGE_CIPHER_SPEC
1133 */
1134 /*
1135 * make sure that we are not getting application data when we are
1136 * doing a handshake for the first time
1137 */
1138 if (SSL_in_init(s) && (type == SSL3_RT_APPLICATION_DATA) &&
1139 (s->enc_read_ctx == NULL)) {
1140 al = SSL_AD_UNEXPECTED_MESSAGE;
1141 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_APP_DATA_IN_HANDSHAKE);
1142 goto f_err;
1143 }
1144
1145 if (type == SSL3_RT_HANDSHAKE
1146 && SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC
1147 && s->rlayer.handshake_fragment_len > 0) {
1148 al = SSL_AD_UNEXPECTED_MESSAGE;
1149 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_CCS_RECEIVED_EARLY);
1150 goto f_err;
1151 }
1152
1153 if (recvd_type != NULL)
1154 *recvd_type = SSL3_RECORD_get_type(rr);
1155
1156 if (len == 0)
1157 return 0;
1158
1159 totalbytes = 0;
1160 do {
1161 if (len - totalbytes > SSL3_RECORD_get_length(rr))
1162 n = SSL3_RECORD_get_length(rr);
1163 else
1164 n = len - totalbytes;
1165
1166 memcpy(buf, &(rr->data[rr->off]), n);
1167 buf += n;
1168 if (peek) {
1169 /* Mark any zero length record as consumed CVE-2016-6305 */
1170 if (SSL3_RECORD_get_length(rr) == 0)
1171 SSL3_RECORD_set_read(rr);
1172 } else {
1173 SSL3_RECORD_sub_length(rr, n);
1174 SSL3_RECORD_add_off(rr, n);
1175 if (SSL3_RECORD_get_length(rr) == 0) {
1176 s->rlayer.rstate = SSL_ST_READ_HEADER;
1177 SSL3_RECORD_set_off(rr, 0);
1178 SSL3_RECORD_set_read(rr);
1179 }
1180 }
1181 if (SSL3_RECORD_get_length(rr) == 0
1182 || (peek && n == SSL3_RECORD_get_length(rr))) {
1183 curr_rec++;
1184 rr++;
1185 }
1186 totalbytes += n;
1187 } while (type == SSL3_RT_APPLICATION_DATA && curr_rec < num_recs
1188 && totalbytes < len);
1189 if (totalbytes == 0) {
1190 /* We must have read empty records. Get more data */
1191 goto start;
1192 }
1193 if (!peek && curr_rec == num_recs
1194 && (s->mode & SSL_MODE_RELEASE_BUFFERS)
1195 && SSL3_BUFFER_get_left(rbuf) == 0)
1196 ssl3_release_read_buffer(s);
1197 *readbytes = totalbytes;
1198 return 1;
1199 }
1200
1201 /*
1202 * If we get here, then type != rr->type; if we have a handshake message,
1203 * then it was unexpected (Hello Request or Client Hello) or invalid (we
1204 * were actually expecting a CCS).
1205 */
1206
1207 /*
1208 * Lets just double check that we've not got an SSLv2 record
1209 */
1210 if (rr->rec_version == SSL2_VERSION) {
1211 /*
1212 * Should never happen. ssl3_get_record() should only give us an SSLv2
1213 * record back if this is the first packet and we are looking for an
1214 * initial ClientHello. Therefore |type| should always be equal to
1215 * |rr->type|. If not then something has gone horribly wrong
1216 */
1217 al = SSL_AD_INTERNAL_ERROR;
1218 SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR);
1219 goto f_err;
1220 }
1221
1222 if (s->method->version == TLS_ANY_VERSION
1223 && (s->server || rr->type != SSL3_RT_ALERT)) {
1224 /*
1225 * If we've got this far and still haven't decided on what version
1226 * we're using then this must be a client side alert we're dealing with
1227 * (we don't allow heartbeats yet). We shouldn't be receiving anything
1228 * other than a ClientHello if we are a server.
1229 */
1230 s->version = rr->rec_version;
1231 al = SSL_AD_UNEXPECTED_MESSAGE;
1232 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_MESSAGE);
1233 goto f_err;
1234 }
1235
1236 /*
1237 * In case of record types for which we have 'fragment' storage, fill
1238 * that so that we can process the data at a fixed place.
1239 */
1240 {
1241 size_t dest_maxlen = 0;
1242 unsigned char *dest = NULL;
1243 size_t *dest_len = NULL;
1244
1245 if (SSL3_RECORD_get_type(rr) == SSL3_RT_HANDSHAKE) {
1246 dest_maxlen = sizeof s->rlayer.handshake_fragment;
1247 dest = s->rlayer.handshake_fragment;
1248 dest_len = &s->rlayer.handshake_fragment_len;
1249 } else if (SSL3_RECORD_get_type(rr) == SSL3_RT_ALERT) {
1250 dest_maxlen = sizeof s->rlayer.alert_fragment;
1251 dest = s->rlayer.alert_fragment;
1252 dest_len = &s->rlayer.alert_fragment_len;
1253 }
1254
1255 if (dest_maxlen > 0) {
1256 n = dest_maxlen - *dest_len; /* available space in 'dest' */
1257 if (SSL3_RECORD_get_length(rr) < n)
1258 n = SSL3_RECORD_get_length(rr); /* available bytes */
1259
1260 /* now move 'n' bytes: */
1261 while (n-- > 0) {
1262 dest[(*dest_len)++] =
1263 SSL3_RECORD_get_data(rr)[SSL3_RECORD_get_off(rr)];
1264 SSL3_RECORD_add_off(rr, 1);
1265 SSL3_RECORD_add_length(rr, -1);
1266 }
1267
1268 if (*dest_len < dest_maxlen) {
1269 SSL3_RECORD_set_read(rr);
1270 goto start; /* fragment was too small */
1271 }
1272 }
1273 }
1274
1275 /*-
1276 * s->rlayer.handshake_fragment_len == 4 iff rr->type == SSL3_RT_HANDSHAKE;
1277 * s->rlayer.alert_fragment_len == 2 iff rr->type == SSL3_RT_ALERT.
1278 * (Possibly rr is 'empty' now, i.e. rr->length may be 0.)
1279 */
1280
1281 /* If we are a client, check for an incoming 'Hello Request': */
1282 if ((!s->server) &&
1283 (s->rlayer.handshake_fragment_len >= 4) &&
1284 (s->rlayer.handshake_fragment[0] == SSL3_MT_HELLO_REQUEST) &&
1285 (s->session != NULL) && (s->session->cipher != NULL)) {
1286 s->rlayer.handshake_fragment_len = 0;
1287
1288 if ((s->rlayer.handshake_fragment[1] != 0) ||
1289 (s->rlayer.handshake_fragment[2] != 0) ||
1290 (s->rlayer.handshake_fragment[3] != 0)) {
1291 al = SSL_AD_DECODE_ERROR;
1292 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_BAD_HELLO_REQUEST);
1293 goto f_err;
1294 }
1295
1296 if (s->msg_callback)
1297 s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE,
1298 s->rlayer.handshake_fragment, 4, s,
1299 s->msg_callback_arg);
1300
1301 if (SSL_is_init_finished(s) &&
1302 !(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS) &&
1303 !s->s3->renegotiate) {
1304 ssl3_renegotiate(s);
1305 if (ssl3_renegotiate_check(s)) {
1306 i = s->handshake_func(s);
1307 if (i < 0)
1308 return i;
1309 if (i == 0) {
1310 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
1311 return -1;
1312 }
1313
1314 if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
1315 if (SSL3_BUFFER_get_left(rbuf) == 0) {
1316 /* no read-ahead left? */
1317 BIO *bio;
1318 /*
1319 * In the case where we try to read application data,
1320 * but we trigger an SSL handshake, we return -1 with
1321 * the retry option set. Otherwise renegotiation may
1322 * cause nasty problems in the blocking world
1323 */
1324 s->rwstate = SSL_READING;
1325 bio = SSL_get_rbio(s);
1326 BIO_clear_retry_flags(bio);
1327 BIO_set_retry_read(bio);
1328 return -1;
1329 }
1330 }
1331 }
1332 }
1333 /*
1334 * we either finished a handshake or ignored the request, now try
1335 * again to obtain the (application) data we were asked for
1336 */
1337 goto start;
1338 }
1339 /*
1340 * If we are a server and get a client hello when renegotiation isn't
1341 * allowed send back a no renegotiation alert and carry on. WARNING:
1342 * experimental code, needs reviewing (steve)
1343 */
1344 if (s->server &&
1345 SSL_is_init_finished(s) &&
1346 !s->s3->send_connection_binding &&
1347 (s->version > SSL3_VERSION) &&
1348 (s->rlayer.handshake_fragment_len >= 4) &&
1349 (s->rlayer.handshake_fragment[0] == SSL3_MT_CLIENT_HELLO) &&
1350 (s->session != NULL) && (s->session->cipher != NULL) &&
1351 !(s->ctx->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
1352 SSL3_RECORD_set_length(rr, 0);
1353 SSL3_RECORD_set_read(rr);
1354 ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_NO_RENEGOTIATION);
1355 goto start;
1356 }
1357 if (s->rlayer.alert_fragment_len >= 2) {
1358 int alert_level = s->rlayer.alert_fragment[0];
1359 int alert_descr = s->rlayer.alert_fragment[1];
1360
1361 s->rlayer.alert_fragment_len = 0;
1362
1363 if (s->msg_callback)
1364 s->msg_callback(0, s->version, SSL3_RT_ALERT,
1365 s->rlayer.alert_fragment, 2, s,
1366 s->msg_callback_arg);
1367
1368 if (s->info_callback != NULL)
1369 cb = s->info_callback;
1370 else if (s->ctx->info_callback != NULL)
1371 cb = s->ctx->info_callback;
1372
1373 if (cb != NULL) {
1374 j = (alert_level << 8) | alert_descr;
1375 cb(s, SSL_CB_READ_ALERT, j);
1376 }
1377
1378 if (alert_level == SSL3_AL_WARNING) {
1379 s->s3->warn_alert = alert_descr;
1380 SSL3_RECORD_set_read(rr);
1381
1382 s->rlayer.alert_count++;
1383 if (s->rlayer.alert_count == MAX_WARN_ALERT_COUNT) {
1384 al = SSL_AD_UNEXPECTED_MESSAGE;
1385 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_TOO_MANY_WARN_ALERTS);
1386 goto f_err;
1387 }
1388
1389 if (alert_descr == SSL_AD_CLOSE_NOTIFY) {
1390 s->shutdown |= SSL_RECEIVED_SHUTDOWN;
1391 return 0;
1392 }
1393 /*
1394 * This is a warning but we receive it if we requested
1395 * renegotiation and the peer denied it. Terminate with a fatal
1396 * alert because if application tried to renegotiate it
1397 * presumably had a good reason and expects it to succeed. In
1398 * future we might have a renegotiation where we don't care if
1399 * the peer refused it where we carry on.
1400 */
1401 else if (alert_descr == SSL_AD_NO_RENEGOTIATION) {
1402 al = SSL_AD_HANDSHAKE_FAILURE;
1403 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_NO_RENEGOTIATION);
1404 goto f_err;
1405 }
1406 #ifdef SSL_AD_MISSING_SRP_USERNAME
1407 else if (alert_descr == SSL_AD_MISSING_SRP_USERNAME)
1408 return (0);
1409 #endif
1410 } else if (alert_level == SSL3_AL_FATAL) {
1411 char tmp[16];
1412
1413 s->rwstate = SSL_NOTHING;
1414 s->s3->fatal_alert = alert_descr;
1415 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_AD_REASON_OFFSET + alert_descr);
1416 BIO_snprintf(tmp, sizeof tmp, "%d", alert_descr);
1417 ERR_add_error_data(2, "SSL alert number ", tmp);
1418 s->shutdown |= SSL_RECEIVED_SHUTDOWN;
1419 SSL3_RECORD_set_read(rr);
1420 SSL_CTX_remove_session(s->session_ctx, s->session);
1421 return 0;
1422 } else {
1423 al = SSL_AD_ILLEGAL_PARAMETER;
1424 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNKNOWN_ALERT_TYPE);
1425 goto f_err;
1426 }
1427
1428 goto start;
1429 }
1430
1431 if (s->shutdown & SSL_SENT_SHUTDOWN) { /* but we have not received a
1432 * shutdown */
1433 s->rwstate = SSL_NOTHING;
1434 SSL3_RECORD_set_length(rr, 0);
1435 SSL3_RECORD_set_read(rr);
1436 return 0;
1437 }
1438
1439 if (SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC) {
1440 al = SSL_AD_UNEXPECTED_MESSAGE;
1441 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_CCS_RECEIVED_EARLY);
1442 goto f_err;
1443 }
1444
1445 /*
1446 * Unexpected handshake message (Client Hello, or protocol violation)
1447 */
1448 if ((s->rlayer.handshake_fragment_len >= 4)
1449 && !ossl_statem_get_in_handshake(s)) {
1450 if (SSL_is_init_finished(s) &&
1451 !(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS)) {
1452 ossl_statem_set_in_init(s, 1);
1453 s->renegotiate = 1;
1454 s->new_session = 1;
1455 }
1456 i = s->handshake_func(s);
1457 if (i < 0)
1458 return i;
1459 if (i == 0) {
1460 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
1461 return -1;
1462 }
1463
1464 if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
1465 if (SSL3_BUFFER_get_left(rbuf) == 0) {
1466 /* no read-ahead left? */
1467 BIO *bio;
1468 /*
1469 * In the case where we try to read application data, but we
1470 * trigger an SSL handshake, we return -1 with the retry
1471 * option set. Otherwise renegotiation may cause nasty
1472 * problems in the blocking world
1473 */
1474 s->rwstate = SSL_READING;
1475 bio = SSL_get_rbio(s);
1476 BIO_clear_retry_flags(bio);
1477 BIO_set_retry_read(bio);
1478 return -1;
1479 }
1480 }
1481 goto start;
1482 }
1483
1484 switch (SSL3_RECORD_get_type(rr)) {
1485 default:
1486 /*
1487 * TLS 1.0 and 1.1 say you SHOULD ignore unrecognised record types, but
1488 * TLS 1.2 says you MUST send an unexpected message alert. We use the
1489 * TLS 1.2 behaviour for all protocol versions to prevent issues where
1490 * no progress is being made and the peer continually sends unrecognised
1491 * record types, using up resources processing them.
1492 */
1493 al = SSL_AD_UNEXPECTED_MESSAGE;
1494 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_RECORD);
1495 goto f_err;
1496 case SSL3_RT_CHANGE_CIPHER_SPEC:
1497 case SSL3_RT_ALERT:
1498 case SSL3_RT_HANDSHAKE:
1499 /*
1500 * we already handled all of these, with the possible exception of
1501 * SSL3_RT_HANDSHAKE when ossl_statem_get_in_handshake(s) is true, but
1502 * that should not happen when type != rr->type
1503 */
1504 al = SSL_AD_UNEXPECTED_MESSAGE;
1505 SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR);
1506 goto f_err;
1507 case SSL3_RT_APPLICATION_DATA:
1508 /*
1509 * At this point, we were expecting handshake data, but have
1510 * application data. If the library was running inside ssl3_read()
1511 * (i.e. in_read_app_data is set) and it makes sense to read
1512 * application data at this point (session renegotiation not yet
1513 * started), we will indulge it.
1514 */
1515 if (ossl_statem_app_data_allowed(s)) {
1516 s->s3->in_read_app_data = 2;
1517 return -1;
1518 } else {
1519 al = SSL_AD_UNEXPECTED_MESSAGE;
1520 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_RECORD);
1521 goto f_err;
1522 }
1523 }
1524 /* not reached */
1525
1526 f_err:
1527 ssl3_send_alert(s, SSL3_AL_FATAL, al);
1528 return -1;
1529 }
1530
1531 void ssl3_record_sequence_update(unsigned char *seq)
1532 {
1533 int i;
1534
1535 for (i = 7; i >= 0; i--) {
1536 ++seq[i];
1537 if (seq[i] != 0)
1538 break;
1539 }
1540 }
1541
1542 /*
1543 * Returns true if the current rrec was sent in SSLv2 backwards compatible
1544 * format and false otherwise.
1545 */
1546 int RECORD_LAYER_is_sslv2_record(RECORD_LAYER *rl)
1547 {
1548 return SSL3_RECORD_is_sslv2_record(&rl->rrec[0]);
1549 }
1550
1551 /*
1552 * Returns the length in bytes of the current rrec
1553 */
1554 size_t RECORD_LAYER_get_rrec_length(RECORD_LAYER *rl)
1555 {
1556 return SSL3_RECORD_get_length(&rl->rrec[0]);
1557 }