]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/s3_cbc.c
Remove /* foo.c */ comments
[thirdparty/openssl.git] / ssl / s3_cbc.c
1 /* ====================================================================
2 * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ====================================================================
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */
54
55 #include "internal/constant_time_locl.h"
56 #include "ssl_locl.h"
57
58 #include <openssl/md5.h>
59 #include <openssl/sha.h>
60
61 /*
62 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
63 * length field. (SHA-384/512 have 128-bit length.)
64 */
65 #define MAX_HASH_BIT_COUNT_BYTES 16
66
67 /*
68 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
69 * Currently SHA-384/512 has a 128-byte block size and that's the largest
70 * supported by TLS.)
71 */
72 #define MAX_HASH_BLOCK_SIZE 128
73
74
75
76 /*
77 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
78 * little-endian order. The value of p is advanced by four.
79 */
80 #define u32toLE(n, p) \
81 (*((p)++)=(unsigned char)(n), \
82 *((p)++)=(unsigned char)(n>>8), \
83 *((p)++)=(unsigned char)(n>>16), \
84 *((p)++)=(unsigned char)(n>>24))
85
86 /*
87 * These functions serialize the state of a hash and thus perform the
88 * standard "final" operation without adding the padding and length that such
89 * a function typically does.
90 */
91 static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
92 {
93 MD5_CTX *md5 = ctx;
94 u32toLE(md5->A, md_out);
95 u32toLE(md5->B, md_out);
96 u32toLE(md5->C, md_out);
97 u32toLE(md5->D, md_out);
98 }
99
100 static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
101 {
102 SHA_CTX *sha1 = ctx;
103 l2n(sha1->h0, md_out);
104 l2n(sha1->h1, md_out);
105 l2n(sha1->h2, md_out);
106 l2n(sha1->h3, md_out);
107 l2n(sha1->h4, md_out);
108 }
109
110 static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
111 {
112 SHA256_CTX *sha256 = ctx;
113 unsigned i;
114
115 for (i = 0; i < 8; i++) {
116 l2n(sha256->h[i], md_out);
117 }
118 }
119
120 static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
121 {
122 SHA512_CTX *sha512 = ctx;
123 unsigned i;
124
125 for (i = 0; i < 8; i++) {
126 l2n8(sha512->h[i], md_out);
127 }
128 }
129
130 #undef LARGEST_DIGEST_CTX
131 #define LARGEST_DIGEST_CTX SHA512_CTX
132
133 /*
134 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
135 * which ssl3_cbc_digest_record supports.
136 */
137 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
138 {
139 if (FIPS_mode())
140 return 0;
141 switch (EVP_MD_CTX_type(ctx)) {
142 case NID_md5:
143 case NID_sha1:
144 case NID_sha224:
145 case NID_sha256:
146 case NID_sha384:
147 case NID_sha512:
148 return 1;
149 default:
150 return 0;
151 }
152 }
153
154 /*-
155 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
156 * record.
157 *
158 * ctx: the EVP_MD_CTX from which we take the hash function.
159 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
160 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
161 * md_out_size: if non-NULL, the number of output bytes is written here.
162 * header: the 13-byte, TLS record header.
163 * data: the record data itself, less any preceding explicit IV.
164 * data_plus_mac_size: the secret, reported length of the data and MAC
165 * once the padding has been removed.
166 * data_plus_mac_plus_padding_size: the public length of the whole
167 * record, including padding.
168 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
169 *
170 * On entry: by virtue of having been through one of the remove_padding
171 * functions, above, we know that data_plus_mac_size is large enough to contain
172 * a padding byte and MAC. (If the padding was invalid, it might contain the
173 * padding too. )
174 * Returns 1 on success or 0 on error
175 */
176 int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
177 unsigned char *md_out,
178 size_t *md_out_size,
179 const unsigned char header[13],
180 const unsigned char *data,
181 size_t data_plus_mac_size,
182 size_t data_plus_mac_plus_padding_size,
183 const unsigned char *mac_secret,
184 unsigned mac_secret_length, char is_sslv3)
185 {
186 union {
187 double align;
188 unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
189 } md_state;
190 void (*md_final_raw) (void *ctx, unsigned char *md_out);
191 void (*md_transform) (void *ctx, const unsigned char *block);
192 unsigned md_size, md_block_size = 64;
193 unsigned sslv3_pad_length = 40, header_length, variance_blocks,
194 len, max_mac_bytes, num_blocks,
195 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
196 unsigned int bits; /* at most 18 bits */
197 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
198 /* hmac_pad is the masked HMAC key. */
199 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
200 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
201 unsigned char mac_out[EVP_MAX_MD_SIZE];
202 unsigned i, j, md_out_size_u;
203 EVP_MD_CTX *md_ctx = NULL;
204 /*
205 * mdLengthSize is the number of bytes in the length field that
206 * terminates * the hash.
207 */
208 unsigned md_length_size = 8;
209 char length_is_big_endian = 1;
210 int ret;
211
212 /*
213 * This is a, hopefully redundant, check that allows us to forget about
214 * many possible overflows later in this function.
215 */
216 OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024);
217
218 switch (EVP_MD_CTX_type(ctx)) {
219 case NID_md5:
220 if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
221 return 0;
222 md_final_raw = tls1_md5_final_raw;
223 md_transform =
224 (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
225 md_size = 16;
226 sslv3_pad_length = 48;
227 length_is_big_endian = 0;
228 break;
229 case NID_sha1:
230 if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
231 return 0;
232 md_final_raw = tls1_sha1_final_raw;
233 md_transform =
234 (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
235 md_size = 20;
236 break;
237 case NID_sha224:
238 if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
239 return 0;
240 md_final_raw = tls1_sha256_final_raw;
241 md_transform =
242 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
243 md_size = 224 / 8;
244 break;
245 case NID_sha256:
246 if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
247 return 0;
248 md_final_raw = tls1_sha256_final_raw;
249 md_transform =
250 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
251 md_size = 32;
252 break;
253 case NID_sha384:
254 if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
255 return 0;
256 md_final_raw = tls1_sha512_final_raw;
257 md_transform =
258 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
259 md_size = 384 / 8;
260 md_block_size = 128;
261 md_length_size = 16;
262 break;
263 case NID_sha512:
264 if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
265 return 0;
266 md_final_raw = tls1_sha512_final_raw;
267 md_transform =
268 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
269 md_size = 64;
270 md_block_size = 128;
271 md_length_size = 16;
272 break;
273 default:
274 /*
275 * ssl3_cbc_record_digest_supported should have been called first to
276 * check that the hash function is supported.
277 */
278 OPENSSL_assert(0);
279 if (md_out_size)
280 *md_out_size = 0;
281 return 0;
282 }
283
284 OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
285 OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
286 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
287
288 header_length = 13;
289 if (is_sslv3) {
290 header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
291 * number */ +
292 1 /* record type */ +
293 2 /* record length */ ;
294 }
295
296 /*
297 * variance_blocks is the number of blocks of the hash that we have to
298 * calculate in constant time because they could be altered by the
299 * padding value. In SSLv3, the padding must be minimal so the end of
300 * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
301 * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
302 * of hash termination (0x80 + 64-bit length) don't fit in the final
303 * block, we say that the final two blocks can vary based on the padding.
304 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
305 * required to be minimal. Therefore we say that the final six blocks can
306 * vary based on the padding. Later in the function, if the message is
307 * short and there obviously cannot be this many blocks then
308 * variance_blocks can be reduced.
309 */
310 variance_blocks = is_sslv3 ? 2 : 6;
311 /*
312 * From now on we're dealing with the MAC, which conceptually has 13
313 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
314 * (SSLv3)
315 */
316 len = data_plus_mac_plus_padding_size + header_length;
317 /*
318 * max_mac_bytes contains the maximum bytes of bytes in the MAC,
319 * including * |header|, assuming that there's no padding.
320 */
321 max_mac_bytes = len - md_size - 1;
322 /* num_blocks is the maximum number of hash blocks. */
323 num_blocks =
324 (max_mac_bytes + 1 + md_length_size + md_block_size -
325 1) / md_block_size;
326 /*
327 * In order to calculate the MAC in constant time we have to handle the
328 * final blocks specially because the padding value could cause the end
329 * to appear somewhere in the final |variance_blocks| blocks and we can't
330 * leak where. However, |num_starting_blocks| worth of data can be hashed
331 * right away because no padding value can affect whether they are
332 * plaintext.
333 */
334 num_starting_blocks = 0;
335 /*
336 * k is the starting byte offset into the conceptual header||data where
337 * we start processing.
338 */
339 k = 0;
340 /*
341 * mac_end_offset is the index just past the end of the data to be MACed.
342 */
343 mac_end_offset = data_plus_mac_size + header_length - md_size;
344 /*
345 * c is the index of the 0x80 byte in the final hash block that contains
346 * application data.
347 */
348 c = mac_end_offset % md_block_size;
349 /*
350 * index_a is the hash block number that contains the 0x80 terminating
351 * value.
352 */
353 index_a = mac_end_offset / md_block_size;
354 /*
355 * index_b is the hash block number that contains the 64-bit hash length,
356 * in bits.
357 */
358 index_b = (mac_end_offset + md_length_size) / md_block_size;
359 /*
360 * bits is the hash-length in bits. It includes the additional hash block
361 * for the masked HMAC key, or whole of |header| in the case of SSLv3.
362 */
363
364 /*
365 * For SSLv3, if we're going to have any starting blocks then we need at
366 * least two because the header is larger than a single block.
367 */
368 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
369 num_starting_blocks = num_blocks - variance_blocks;
370 k = md_block_size * num_starting_blocks;
371 }
372
373 bits = 8 * mac_end_offset;
374 if (!is_sslv3) {
375 /*
376 * Compute the initial HMAC block. For SSLv3, the padding and secret
377 * bytes are included in |header| because they take more than a
378 * single block.
379 */
380 bits += 8 * md_block_size;
381 memset(hmac_pad, 0, md_block_size);
382 OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
383 memcpy(hmac_pad, mac_secret, mac_secret_length);
384 for (i = 0; i < md_block_size; i++)
385 hmac_pad[i] ^= 0x36;
386
387 md_transform(md_state.c, hmac_pad);
388 }
389
390 if (length_is_big_endian) {
391 memset(length_bytes, 0, md_length_size - 4);
392 length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
393 length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
394 length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
395 length_bytes[md_length_size - 1] = (unsigned char)bits;
396 } else {
397 memset(length_bytes, 0, md_length_size);
398 length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
399 length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
400 length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
401 length_bytes[md_length_size - 8] = (unsigned char)bits;
402 }
403
404 if (k > 0) {
405 if (is_sslv3) {
406 unsigned overhang;
407
408 /*
409 * The SSLv3 header is larger than a single block. overhang is
410 * the number of bytes beyond a single block that the header
411 * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
412 * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
413 * therefore we can be confident that the header_length will be
414 * greater than |md_block_size|. However we add a sanity check just
415 * in case
416 */
417 if (header_length <= md_block_size) {
418 /* Should never happen */
419 return 0;
420 }
421 overhang = header_length - md_block_size;
422 md_transform(md_state.c, header);
423 memcpy(first_block, header + md_block_size, overhang);
424 memcpy(first_block + overhang, data, md_block_size - overhang);
425 md_transform(md_state.c, first_block);
426 for (i = 1; i < k / md_block_size - 1; i++)
427 md_transform(md_state.c, data + md_block_size * i - overhang);
428 } else {
429 /* k is a multiple of md_block_size. */
430 memcpy(first_block, header, 13);
431 memcpy(first_block + 13, data, md_block_size - 13);
432 md_transform(md_state.c, first_block);
433 for (i = 1; i < k / md_block_size; i++)
434 md_transform(md_state.c, data + md_block_size * i - 13);
435 }
436 }
437
438 memset(mac_out, 0, sizeof(mac_out));
439
440 /*
441 * We now process the final hash blocks. For each block, we construct it
442 * in constant time. If the |i==index_a| then we'll include the 0x80
443 * bytes and zero pad etc. For each block we selectively copy it, in
444 * constant time, to |mac_out|.
445 */
446 for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
447 i++) {
448 unsigned char block[MAX_HASH_BLOCK_SIZE];
449 unsigned char is_block_a = constant_time_eq_8(i, index_a);
450 unsigned char is_block_b = constant_time_eq_8(i, index_b);
451 for (j = 0; j < md_block_size; j++) {
452 unsigned char b = 0, is_past_c, is_past_cp1;
453 if (k < header_length)
454 b = header[k];
455 else if (k < data_plus_mac_plus_padding_size + header_length)
456 b = data[k - header_length];
457 k++;
458
459 is_past_c = is_block_a & constant_time_ge_8(j, c);
460 is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
461 /*
462 * If this is the block containing the end of the application
463 * data, and we are at the offset for the 0x80 value, then
464 * overwrite b with 0x80.
465 */
466 b = constant_time_select_8(is_past_c, 0x80, b);
467 /*
468 * If this the the block containing the end of the application
469 * data and we're past the 0x80 value then just write zero.
470 */
471 b = b & ~is_past_cp1;
472 /*
473 * If this is index_b (the final block), but not index_a (the end
474 * of the data), then the 64-bit length didn't fit into index_a
475 * and we're having to add an extra block of zeros.
476 */
477 b &= ~is_block_b | is_block_a;
478
479 /*
480 * The final bytes of one of the blocks contains the length.
481 */
482 if (j >= md_block_size - md_length_size) {
483 /* If this is index_b, write a length byte. */
484 b = constant_time_select_8(is_block_b,
485 length_bytes[j -
486 (md_block_size -
487 md_length_size)], b);
488 }
489 block[j] = b;
490 }
491
492 md_transform(md_state.c, block);
493 md_final_raw(md_state.c, block);
494 /* If this is index_b, copy the hash value to |mac_out|. */
495 for (j = 0; j < md_size; j++)
496 mac_out[j] |= block[j] & is_block_b;
497 }
498
499 md_ctx = EVP_MD_CTX_new();
500 if (md_ctx == NULL)
501 goto err;
502 if (EVP_DigestInit_ex(md_ctx, EVP_MD_CTX_md(ctx), NULL /* engine */ ) <= 0)
503 goto err;
504 if (is_sslv3) {
505 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
506 memset(hmac_pad, 0x5c, sslv3_pad_length);
507
508 if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
509 || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
510 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
511 goto err;
512 } else {
513 /* Complete the HMAC in the standard manner. */
514 for (i = 0; i < md_block_size; i++)
515 hmac_pad[i] ^= 0x6a;
516
517 if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
518 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
519 goto err;
520 }
521 ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
522 if (ret && md_out_size)
523 *md_out_size = md_out_size_u;
524 EVP_MD_CTX_free(md_ctx);
525
526 return 1;
527 err:
528 EVP_MD_CTX_free(md_ctx);
529 return 0;
530 }
531
532 /*
533 * Due to the need to use EVP in FIPS mode we can't reimplement digests but
534 * we can ensure the number of blocks processed is equal for all cases by
535 * digesting additional data.
536 */
537
538 void tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx,
539 EVP_MD_CTX *mac_ctx, const unsigned char *data,
540 size_t data_len, size_t orig_len)
541 {
542 size_t block_size, digest_pad, blocks_data, blocks_orig;
543 if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
544 return;
545 block_size = EVP_MD_CTX_block_size(mac_ctx);
546 /*-
547 * We are in FIPS mode if we get this far so we know we have only SHA*
548 * digests and TLS to deal with.
549 * Minimum digest padding length is 17 for SHA384/SHA512 and 9
550 * otherwise.
551 * Additional header is 13 bytes. To get the number of digest blocks
552 * processed round up the amount of data plus padding to the nearest
553 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
554 * So we have:
555 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
556 * equivalently:
557 * blocks = (payload_len + digest_pad + 12)/block_size + 1
558 * HMAC adds a constant overhead.
559 * We're ultimately only interested in differences so this becomes
560 * blocks = (payload_len + 29)/128
561 * for SHA384/SHA512 and
562 * blocks = (payload_len + 21)/64
563 * otherwise.
564 */
565 digest_pad = block_size == 64 ? 21 : 29;
566 blocks_orig = (orig_len + digest_pad) / block_size;
567 blocks_data = (data_len + digest_pad) / block_size;
568 /*
569 * MAC enough blocks to make up the difference between the original and
570 * actual lengths plus one extra block to ensure this is never a no op.
571 * The "data" pointer should always have enough space to perform this
572 * operation as it is large enough for a maximum length TLS buffer.
573 */
574 EVP_DigestSignUpdate(mac_ctx, data,
575 (blocks_orig - blocks_data + 1) * block_size);
576 }