]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_ciph.c
Added an explicit yield (OP_SLEEP) to QUIC testing for cooperative threading.
[thirdparty/openssl.git] / ssl / ssl_ciph.c
1 /*
2 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <openssl/objects.h>
15 #include <openssl/comp.h>
16 #include <openssl/engine.h>
17 #include <openssl/crypto.h>
18 #include <openssl/conf.h>
19 #include <openssl/trace.h>
20 #include "internal/nelem.h"
21 #include "ssl_local.h"
22 #include "internal/thread_once.h"
23 #include "internal/cryptlib.h"
24
25 /* NB: make sure indices in these tables match values above */
26
27 typedef struct {
28 uint32_t mask;
29 int nid;
30 } ssl_cipher_table;
31
32 /* Table of NIDs for each cipher */
33 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
34 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
35 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
36 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
37 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
38 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
39 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
40 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
41 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
42 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
43 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
44 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
45 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
46 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
47 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
48 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
49 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
50 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
51 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
52 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
53 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
54 {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
55 {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
56 {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
57 {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
58 };
59
60 #define SSL_COMP_NULL_IDX 0
61 #define SSL_COMP_ZLIB_IDX 1
62 #define SSL_COMP_NUM_IDX 2
63
64 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
65
66 #ifndef OPENSSL_NO_COMP
67 static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
68 #endif
69
70 /* NB: make sure indices in this table matches values above */
71 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
72 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
73 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
74 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
75 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
76 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
77 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
78 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
79 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
80 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
81 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
82 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
83 {0, NID_sha512}, /* SSL_MD_SHA512_IDX 11 */
84 {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
85 {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
86 };
87
88 /* *INDENT-OFF* */
89 static const ssl_cipher_table ssl_cipher_table_kx[] = {
90 {SSL_kRSA, NID_kx_rsa},
91 {SSL_kECDHE, NID_kx_ecdhe},
92 {SSL_kDHE, NID_kx_dhe},
93 {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
94 {SSL_kDHEPSK, NID_kx_dhe_psk},
95 {SSL_kRSAPSK, NID_kx_rsa_psk},
96 {SSL_kPSK, NID_kx_psk},
97 {SSL_kSRP, NID_kx_srp},
98 {SSL_kGOST, NID_kx_gost},
99 {SSL_kGOST18, NID_kx_gost18},
100 {SSL_kANY, NID_kx_any}
101 };
102
103 static const ssl_cipher_table ssl_cipher_table_auth[] = {
104 {SSL_aRSA, NID_auth_rsa},
105 {SSL_aECDSA, NID_auth_ecdsa},
106 {SSL_aPSK, NID_auth_psk},
107 {SSL_aDSS, NID_auth_dss},
108 {SSL_aGOST01, NID_auth_gost01},
109 {SSL_aGOST12, NID_auth_gost12},
110 {SSL_aSRP, NID_auth_srp},
111 {SSL_aNULL, NID_auth_null},
112 {SSL_aANY, NID_auth_any}
113 };
114 /* *INDENT-ON* */
115
116 /* Utility function for table lookup */
117 static int ssl_cipher_info_find(const ssl_cipher_table *table,
118 size_t table_cnt, uint32_t mask)
119 {
120 size_t i;
121 for (i = 0; i < table_cnt; i++, table++) {
122 if (table->mask == mask)
123 return (int)i;
124 }
125 return -1;
126 }
127
128 #define ssl_cipher_info_lookup(table, x) \
129 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
130
131 /*
132 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
133 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
134 * found
135 */
136 static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
137 /* MD5, SHA, GOST94, MAC89 */
138 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
139 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
140 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
141 /* GOST2012_512 */
142 EVP_PKEY_HMAC,
143 /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
144 NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
145 };
146
147 #define CIPHER_ADD 1
148 #define CIPHER_KILL 2
149 #define CIPHER_DEL 3
150 #define CIPHER_ORD 4
151 #define CIPHER_SPECIAL 5
152 /*
153 * Bump the ciphers to the top of the list.
154 * This rule isn't currently supported by the public cipherstring API.
155 */
156 #define CIPHER_BUMP 6
157
158 typedef struct cipher_order_st {
159 const SSL_CIPHER *cipher;
160 int active;
161 int dead;
162 struct cipher_order_st *next, *prev;
163 } CIPHER_ORDER;
164
165 static const SSL_CIPHER cipher_aliases[] = {
166 /* "ALL" doesn't include eNULL (must be specifically enabled) */
167 {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
168 /* "COMPLEMENTOFALL" */
169 {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
170
171 /*
172 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
173 * ALL!)
174 */
175 {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
176
177 /*
178 * key exchange aliases (some of those using only a single bit here
179 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
180 * combines DHE_DSS and DHE_RSA)
181 */
182 {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
183
184 {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
185 {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
186 {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
187
188 {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
189 {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
190 {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
191
192 {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
193 {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
194 {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
195 {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
196 {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
197 {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
198 {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
199
200 /* server authentication aliases */
201 {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
202 {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
203 {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
204 {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
205 {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
206 {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
207 {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
208 {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
209 {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
210 {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
211 {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
212
213 /* aliases combining key exchange and server authentication */
214 {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
215 {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
216 {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
217 {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
218 {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
219 {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
220 {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
221 {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
222 {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
223 {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
224
225 /* symmetric encryption aliases */
226 {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
227 {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
228 {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
229 {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
230 {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
231 {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
232 {0, SSL_TXT_GOST, NULL, 0, 0, 0,
233 SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
234 {0, SSL_TXT_AES128, NULL, 0, 0, 0,
235 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
236 {0, SSL_TXT_AES256, NULL, 0, 0, 0,
237 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
238 {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
239 {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
240 {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
241 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
242 {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
243 {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
244 {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
245 {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
246 {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
247 {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
248
249 {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
250 {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
251 {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
252 {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
253 {0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
254
255 /* MAC aliases */
256 {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
257 {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
258 {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
259 {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
260 {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
261 {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
262 {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
263 {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
264
265 /* protocol version aliases */
266 {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
267 {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
268 {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
269 {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
270
271 /* strength classes */
272 {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
273 {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
274 {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
275 /* FIPS 140-2 approved ciphersuite */
276 {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
277
278 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
279 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
280 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
281 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
282 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
283
284 };
285
286 /*
287 * Search for public key algorithm with given name and return its pkey_id if
288 * it is available. Otherwise return 0
289 */
290 #ifdef OPENSSL_NO_ENGINE
291
292 static int get_optional_pkey_id(const char *pkey_name)
293 {
294 const EVP_PKEY_ASN1_METHOD *ameth;
295 int pkey_id = 0;
296 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
297 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
298 ameth) > 0)
299 return pkey_id;
300 return 0;
301 }
302
303 #else
304
305 static int get_optional_pkey_id(const char *pkey_name)
306 {
307 const EVP_PKEY_ASN1_METHOD *ameth;
308 ENGINE *tmpeng = NULL;
309 int pkey_id = 0;
310 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
311 if (ameth) {
312 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
313 ameth) <= 0)
314 pkey_id = 0;
315 }
316 tls_engine_finish(tmpeng);
317 return pkey_id;
318 }
319
320 #endif
321
322 int ssl_load_ciphers(SSL_CTX *ctx)
323 {
324 size_t i;
325 const ssl_cipher_table *t;
326 EVP_KEYEXCH *kex = NULL;
327 EVP_SIGNATURE *sig = NULL;
328
329 ctx->disabled_enc_mask = 0;
330 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
331 if (t->nid != NID_undef) {
332 const EVP_CIPHER *cipher
333 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
334
335 ctx->ssl_cipher_methods[i] = cipher;
336 if (cipher == NULL)
337 ctx->disabled_enc_mask |= t->mask;
338 }
339 }
340 ctx->disabled_mac_mask = 0;
341 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
342 const EVP_MD *md
343 = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
344
345 ctx->ssl_digest_methods[i] = md;
346 if (md == NULL) {
347 ctx->disabled_mac_mask |= t->mask;
348 } else {
349 int tmpsize = EVP_MD_get_size(md);
350 if (!ossl_assert(tmpsize >= 0))
351 return 0;
352 ctx->ssl_mac_secret_size[i] = tmpsize;
353 }
354 }
355
356 ctx->disabled_mkey_mask = 0;
357 ctx->disabled_auth_mask = 0;
358
359 /*
360 * We ignore any errors from the fetches below. They are expected to fail
361 * if these algorithms are not available.
362 */
363 ERR_set_mark();
364 sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
365 if (sig == NULL)
366 ctx->disabled_auth_mask |= SSL_aDSS;
367 else
368 EVP_SIGNATURE_free(sig);
369 kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
370 if (kex == NULL)
371 ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
372 else
373 EVP_KEYEXCH_free(kex);
374 kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
375 if (kex == NULL)
376 ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
377 else
378 EVP_KEYEXCH_free(kex);
379 sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
380 if (sig == NULL)
381 ctx->disabled_auth_mask |= SSL_aECDSA;
382 else
383 EVP_SIGNATURE_free(sig);
384 ERR_pop_to_mark();
385
386 #ifdef OPENSSL_NO_PSK
387 ctx->disabled_mkey_mask |= SSL_PSK;
388 ctx->disabled_auth_mask |= SSL_aPSK;
389 #endif
390 #ifdef OPENSSL_NO_SRP
391 ctx->disabled_mkey_mask |= SSL_kSRP;
392 #endif
393
394 /*
395 * Check for presence of GOST 34.10 algorithms, and if they are not
396 * present, disable appropriate auth and key exchange
397 */
398 memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
399 sizeof(ctx->ssl_mac_pkey_id));
400
401 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] =
402 get_optional_pkey_id(SN_id_Gost28147_89_MAC);
403 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
404 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
405 else
406 ctx->disabled_mac_mask |= SSL_GOST89MAC;
407
408 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
409 get_optional_pkey_id(SN_gost_mac_12);
410 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
411 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
412 else
413 ctx->disabled_mac_mask |= SSL_GOST89MAC12;
414
415 ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
416 get_optional_pkey_id(SN_magma_mac);
417 if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
418 ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
419 else
420 ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
421
422 ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
423 get_optional_pkey_id(SN_kuznyechik_mac);
424 if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
425 ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
426 else
427 ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
428
429 if (!get_optional_pkey_id(SN_id_GostR3410_2001))
430 ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
431 if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
432 ctx->disabled_auth_mask |= SSL_aGOST12;
433 if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
434 ctx->disabled_auth_mask |= SSL_aGOST12;
435 /*
436 * Disable GOST key exchange if no GOST signature algs are available *
437 */
438 if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
439 (SSL_aGOST01 | SSL_aGOST12))
440 ctx->disabled_mkey_mask |= SSL_kGOST;
441
442 if ((ctx->disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
443 ctx->disabled_mkey_mask |= SSL_kGOST18;
444
445 return 1;
446 }
447
448 #ifndef OPENSSL_NO_COMP
449
450 static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
451 {
452 return ((*a)->id - (*b)->id);
453 }
454
455 DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
456 {
457 SSL_COMP *comp = NULL;
458 COMP_METHOD *method = COMP_zlib();
459
460 ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
461
462 if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
463 comp = OPENSSL_malloc(sizeof(*comp));
464 if (comp != NULL) {
465 comp->method = method;
466 comp->id = SSL_COMP_ZLIB_IDX;
467 comp->name = COMP_get_name(method);
468 if (!sk_SSL_COMP_push(ssl_comp_methods, comp))
469 OPENSSL_free(comp);
470 sk_SSL_COMP_sort(ssl_comp_methods);
471 }
472 }
473 return 1;
474 }
475
476 static int load_builtin_compressions(void)
477 {
478 return RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
479 }
480 #endif
481
482 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
483 const EVP_CIPHER **enc)
484 {
485 int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher,
486 sslc->algorithm_enc);
487
488 if (i == -1) {
489 *enc = NULL;
490 } else {
491 if (i == SSL_ENC_NULL_IDX) {
492 /*
493 * We assume we don't care about this coming from an ENGINE so
494 * just do a normal EVP_CIPHER_fetch instead of
495 * ssl_evp_cipher_fetch()
496 */
497 *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
498 if (*enc == NULL)
499 return 0;
500 } else {
501 const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
502
503 if (cipher == NULL
504 || !ssl_evp_cipher_up_ref(cipher))
505 return 0;
506 *enc = ctx->ssl_cipher_methods[i];
507 }
508 }
509 return 1;
510 }
511
512 int ssl_cipher_get_evp_md_mac(SSL_CTX *ctx, const SSL_CIPHER *sslc,
513 const EVP_MD **md,
514 int *mac_pkey_type, size_t *mac_secret_size)
515 {
516 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, sslc->algorithm_mac);
517
518 if (i == -1) {
519 *md = NULL;
520 if (mac_pkey_type != NULL)
521 *mac_pkey_type = NID_undef;
522 if (mac_secret_size != NULL)
523 *mac_secret_size = 0;
524 } else {
525 const EVP_MD *digest = ctx->ssl_digest_methods[i];
526
527 if (digest == NULL || !ssl_evp_md_up_ref(digest))
528 return 0;
529
530 *md = digest;
531 if (mac_pkey_type != NULL)
532 *mac_pkey_type = ctx->ssl_mac_pkey_id[i];
533 if (mac_secret_size != NULL)
534 *mac_secret_size = ctx->ssl_mac_secret_size[i];
535 }
536 return 1;
537 }
538
539 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
540 const EVP_CIPHER **enc, const EVP_MD **md,
541 int *mac_pkey_type, size_t *mac_secret_size,
542 SSL_COMP **comp, int use_etm)
543 {
544 int i;
545 const SSL_CIPHER *c;
546
547 c = s->cipher;
548 if (c == NULL)
549 return 0;
550 if (comp != NULL) {
551 SSL_COMP ctmp;
552 #ifndef OPENSSL_NO_COMP
553 if (!load_builtin_compressions()) {
554 /*
555 * Currently don't care, since a failure only means that
556 * ssl_comp_methods is NULL, which is perfectly OK
557 */
558 }
559 #endif
560 *comp = NULL;
561 ctmp.id = s->compress_meth;
562 if (ssl_comp_methods != NULL) {
563 i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
564 if (i >= 0)
565 *comp = sk_SSL_COMP_value(ssl_comp_methods, i);
566 }
567 /* If were only interested in comp then return success */
568 if ((enc == NULL) && (md == NULL))
569 return 1;
570 }
571
572 if ((enc == NULL) || (md == NULL))
573 return 0;
574
575 if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
576 return 0;
577
578 if (!ssl_cipher_get_evp_md_mac(ctx, c, md, mac_pkey_type,
579 mac_secret_size)) {
580 ssl_evp_cipher_free(*enc);
581 return 0;
582 }
583
584 if ((*enc != NULL)
585 && (*md != NULL
586 || (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
587 && (c->algorithm_mac == SSL_AEAD
588 || mac_pkey_type == NULL || *mac_pkey_type != NID_undef)) {
589 const EVP_CIPHER *evp = NULL;
590
591 if (use_etm
592 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
593 || s->ssl_version < TLS1_VERSION)
594 return 1;
595
596 if (c->algorithm_enc == SSL_RC4
597 && c->algorithm_mac == SSL_MD5)
598 evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
599 ctx->propq);
600 else if (c->algorithm_enc == SSL_AES128
601 && c->algorithm_mac == SSL_SHA1)
602 evp = ssl_evp_cipher_fetch(ctx->libctx,
603 NID_aes_128_cbc_hmac_sha1,
604 ctx->propq);
605 else if (c->algorithm_enc == SSL_AES256
606 && c->algorithm_mac == SSL_SHA1)
607 evp = ssl_evp_cipher_fetch(ctx->libctx,
608 NID_aes_256_cbc_hmac_sha1,
609 ctx->propq);
610 else if (c->algorithm_enc == SSL_AES128
611 && c->algorithm_mac == SSL_SHA256)
612 evp = ssl_evp_cipher_fetch(ctx->libctx,
613 NID_aes_128_cbc_hmac_sha256,
614 ctx->propq);
615 else if (c->algorithm_enc == SSL_AES256
616 && c->algorithm_mac == SSL_SHA256)
617 evp = ssl_evp_cipher_fetch(ctx->libctx,
618 NID_aes_256_cbc_hmac_sha256,
619 ctx->propq);
620
621 if (evp != NULL) {
622 ssl_evp_cipher_free(*enc);
623 ssl_evp_md_free(*md);
624 *enc = evp;
625 *md = NULL;
626 }
627 return 1;
628 }
629
630 return 0;
631 }
632
633 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
634 {
635 idx &= SSL_HANDSHAKE_MAC_MASK;
636 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
637 return NULL;
638 return ctx->ssl_digest_methods[idx];
639 }
640
641 const EVP_MD *ssl_handshake_md(SSL_CONNECTION *s)
642 {
643 return ssl_md(SSL_CONNECTION_GET_CTX(s), ssl_get_algorithm2(s));
644 }
645
646 const EVP_MD *ssl_prf_md(SSL_CONNECTION *s)
647 {
648 return ssl_md(SSL_CONNECTION_GET_CTX(s),
649 ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
650 }
651
652 #define ITEM_SEP(a) \
653 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
654
655 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
656 CIPHER_ORDER **tail)
657 {
658 if (curr == *tail)
659 return;
660 if (curr == *head)
661 *head = curr->next;
662 if (curr->prev != NULL)
663 curr->prev->next = curr->next;
664 if (curr->next != NULL)
665 curr->next->prev = curr->prev;
666 (*tail)->next = curr;
667 curr->prev = *tail;
668 curr->next = NULL;
669 *tail = curr;
670 }
671
672 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
673 CIPHER_ORDER **tail)
674 {
675 if (curr == *head)
676 return;
677 if (curr == *tail)
678 *tail = curr->prev;
679 if (curr->next != NULL)
680 curr->next->prev = curr->prev;
681 if (curr->prev != NULL)
682 curr->prev->next = curr->next;
683 (*head)->prev = curr;
684 curr->next = *head;
685 curr->prev = NULL;
686 *head = curr;
687 }
688
689 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
690 int num_of_ciphers,
691 uint32_t disabled_mkey,
692 uint32_t disabled_auth,
693 uint32_t disabled_enc,
694 uint32_t disabled_mac,
695 CIPHER_ORDER *co_list,
696 CIPHER_ORDER **head_p,
697 CIPHER_ORDER **tail_p)
698 {
699 int i, co_list_num;
700 const SSL_CIPHER *c;
701
702 /*
703 * We have num_of_ciphers descriptions compiled in, depending on the
704 * method selected (SSLv3, TLSv1 etc).
705 * These will later be sorted in a linked list with at most num
706 * entries.
707 */
708
709 /* Get the initial list of ciphers */
710 co_list_num = 0; /* actual count of ciphers */
711 for (i = 0; i < num_of_ciphers; i++) {
712 c = ssl_method->get_cipher(i);
713 /* drop those that use any of that is not available */
714 if (c == NULL || !c->valid)
715 continue;
716 if ((c->algorithm_mkey & disabled_mkey) ||
717 (c->algorithm_auth & disabled_auth) ||
718 (c->algorithm_enc & disabled_enc) ||
719 (c->algorithm_mac & disabled_mac))
720 continue;
721 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
722 c->min_tls == 0)
723 continue;
724 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
725 c->min_dtls == 0)
726 continue;
727
728 co_list[co_list_num].cipher = c;
729 co_list[co_list_num].next = NULL;
730 co_list[co_list_num].prev = NULL;
731 co_list[co_list_num].active = 0;
732 co_list_num++;
733 }
734
735 /*
736 * Prepare linked list from list entries
737 */
738 if (co_list_num > 0) {
739 co_list[0].prev = NULL;
740
741 if (co_list_num > 1) {
742 co_list[0].next = &co_list[1];
743
744 for (i = 1; i < co_list_num - 1; i++) {
745 co_list[i].prev = &co_list[i - 1];
746 co_list[i].next = &co_list[i + 1];
747 }
748
749 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
750 }
751
752 co_list[co_list_num - 1].next = NULL;
753
754 *head_p = &co_list[0];
755 *tail_p = &co_list[co_list_num - 1];
756 }
757 }
758
759 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
760 int num_of_group_aliases,
761 uint32_t disabled_mkey,
762 uint32_t disabled_auth,
763 uint32_t disabled_enc,
764 uint32_t disabled_mac,
765 CIPHER_ORDER *head)
766 {
767 CIPHER_ORDER *ciph_curr;
768 const SSL_CIPHER **ca_curr;
769 int i;
770 uint32_t mask_mkey = ~disabled_mkey;
771 uint32_t mask_auth = ~disabled_auth;
772 uint32_t mask_enc = ~disabled_enc;
773 uint32_t mask_mac = ~disabled_mac;
774
775 /*
776 * First, add the real ciphers as already collected
777 */
778 ciph_curr = head;
779 ca_curr = ca_list;
780 while (ciph_curr != NULL) {
781 *ca_curr = ciph_curr->cipher;
782 ca_curr++;
783 ciph_curr = ciph_curr->next;
784 }
785
786 /*
787 * Now we add the available ones from the cipher_aliases[] table.
788 * They represent either one or more algorithms, some of which
789 * in any affected category must be supported (set in enabled_mask),
790 * or represent a cipher strength value (will be added in any case because algorithms=0).
791 */
792 for (i = 0; i < num_of_group_aliases; i++) {
793 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
794 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
795 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
796 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
797
798 if (algorithm_mkey)
799 if ((algorithm_mkey & mask_mkey) == 0)
800 continue;
801
802 if (algorithm_auth)
803 if ((algorithm_auth & mask_auth) == 0)
804 continue;
805
806 if (algorithm_enc)
807 if ((algorithm_enc & mask_enc) == 0)
808 continue;
809
810 if (algorithm_mac)
811 if ((algorithm_mac & mask_mac) == 0)
812 continue;
813
814 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
815 ca_curr++;
816 }
817
818 *ca_curr = NULL; /* end of list */
819 }
820
821 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
822 uint32_t alg_auth, uint32_t alg_enc,
823 uint32_t alg_mac, int min_tls,
824 uint32_t algo_strength, int rule,
825 int32_t strength_bits, CIPHER_ORDER **head_p,
826 CIPHER_ORDER **tail_p)
827 {
828 CIPHER_ORDER *head, *tail, *curr, *next, *last;
829 const SSL_CIPHER *cp;
830 int reverse = 0;
831
832 OSSL_TRACE_BEGIN(TLS_CIPHER) {
833 BIO_printf(trc_out,
834 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
835 rule, (unsigned int)alg_mkey, (unsigned int)alg_auth,
836 (unsigned int)alg_enc, (unsigned int)alg_mac, min_tls,
837 (unsigned int)algo_strength, (int)strength_bits);
838 }
839
840 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
841 reverse = 1; /* needed to maintain sorting between currently
842 * deleted ciphers */
843
844 head = *head_p;
845 tail = *tail_p;
846
847 if (reverse) {
848 next = tail;
849 last = head;
850 } else {
851 next = head;
852 last = tail;
853 }
854
855 curr = NULL;
856 for (;;) {
857 if (curr == last)
858 break;
859
860 curr = next;
861
862 if (curr == NULL)
863 break;
864
865 next = reverse ? curr->prev : curr->next;
866
867 cp = curr->cipher;
868
869 /*
870 * Selection criteria is either the value of strength_bits
871 * or the algorithms used.
872 */
873 if (strength_bits >= 0) {
874 if (strength_bits != cp->strength_bits)
875 continue;
876 } else {
877 if (trc_out != NULL) {
878 BIO_printf(trc_out,
879 "\nName: %s:"
880 "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
881 cp->name,
882 (unsigned int)cp->algorithm_mkey,
883 (unsigned int)cp->algorithm_auth,
884 (unsigned int)cp->algorithm_enc,
885 (unsigned int)cp->algorithm_mac,
886 cp->min_tls,
887 (unsigned int)cp->algo_strength);
888 }
889 if (cipher_id != 0 && (cipher_id != cp->id))
890 continue;
891 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
892 continue;
893 if (alg_auth && !(alg_auth & cp->algorithm_auth))
894 continue;
895 if (alg_enc && !(alg_enc & cp->algorithm_enc))
896 continue;
897 if (alg_mac && !(alg_mac & cp->algorithm_mac))
898 continue;
899 if (min_tls && (min_tls != cp->min_tls))
900 continue;
901 if ((algo_strength & SSL_STRONG_MASK)
902 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
903 continue;
904 if ((algo_strength & SSL_DEFAULT_MASK)
905 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
906 continue;
907 }
908
909 if (trc_out != NULL)
910 BIO_printf(trc_out, "Action = %d\n", rule);
911
912 /* add the cipher if it has not been added yet. */
913 if (rule == CIPHER_ADD) {
914 /* reverse == 0 */
915 if (!curr->active) {
916 ll_append_tail(&head, curr, &tail);
917 curr->active = 1;
918 }
919 }
920 /* Move the added cipher to this location */
921 else if (rule == CIPHER_ORD) {
922 /* reverse == 0 */
923 if (curr->active) {
924 ll_append_tail(&head, curr, &tail);
925 }
926 } else if (rule == CIPHER_DEL) {
927 /* reverse == 1 */
928 if (curr->active) {
929 /*
930 * most recently deleted ciphersuites get best positions for
931 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
932 * in reverse to maintain the order)
933 */
934 ll_append_head(&head, curr, &tail);
935 curr->active = 0;
936 }
937 } else if (rule == CIPHER_BUMP) {
938 if (curr->active)
939 ll_append_head(&head, curr, &tail);
940 } else if (rule == CIPHER_KILL) {
941 /* reverse == 0 */
942 if (head == curr)
943 head = curr->next;
944 else
945 curr->prev->next = curr->next;
946 if (tail == curr)
947 tail = curr->prev;
948 curr->active = 0;
949 if (curr->next != NULL)
950 curr->next->prev = curr->prev;
951 if (curr->prev != NULL)
952 curr->prev->next = curr->next;
953 curr->next = NULL;
954 curr->prev = NULL;
955 }
956 }
957
958 *head_p = head;
959 *tail_p = tail;
960
961 OSSL_TRACE_END(TLS_CIPHER);
962 }
963
964 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
965 CIPHER_ORDER **tail_p)
966 {
967 int32_t max_strength_bits;
968 int i, *number_uses;
969 CIPHER_ORDER *curr;
970
971 /*
972 * This routine sorts the ciphers with descending strength. The sorting
973 * must keep the pre-sorted sequence, so we apply the normal sorting
974 * routine as '+' movement to the end of the list.
975 */
976 max_strength_bits = 0;
977 curr = *head_p;
978 while (curr != NULL) {
979 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
980 max_strength_bits = curr->cipher->strength_bits;
981 curr = curr->next;
982 }
983
984 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
985 if (number_uses == NULL)
986 return 0;
987
988 /*
989 * Now find the strength_bits values actually used
990 */
991 curr = *head_p;
992 while (curr != NULL) {
993 if (curr->active)
994 number_uses[curr->cipher->strength_bits]++;
995 curr = curr->next;
996 }
997 /*
998 * Go through the list of used strength_bits values in descending
999 * order.
1000 */
1001 for (i = max_strength_bits; i >= 0; i--)
1002 if (number_uses[i] > 0)
1003 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
1004 tail_p);
1005
1006 OPENSSL_free(number_uses);
1007 return 1;
1008 }
1009
1010 static int ssl_cipher_process_rulestr(const char *rule_str,
1011 CIPHER_ORDER **head_p,
1012 CIPHER_ORDER **tail_p,
1013 const SSL_CIPHER **ca_list, CERT *c)
1014 {
1015 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
1016 int min_tls;
1017 const char *l, *buf;
1018 int j, multi, found, rule, retval, ok, buflen;
1019 uint32_t cipher_id = 0;
1020 char ch;
1021
1022 retval = 1;
1023 l = rule_str;
1024 for (;;) {
1025 ch = *l;
1026
1027 if (ch == '\0')
1028 break; /* done */
1029 if (ch == '-') {
1030 rule = CIPHER_DEL;
1031 l++;
1032 } else if (ch == '+') {
1033 rule = CIPHER_ORD;
1034 l++;
1035 } else if (ch == '!') {
1036 rule = CIPHER_KILL;
1037 l++;
1038 } else if (ch == '@') {
1039 rule = CIPHER_SPECIAL;
1040 l++;
1041 } else {
1042 rule = CIPHER_ADD;
1043 }
1044
1045 if (ITEM_SEP(ch)) {
1046 l++;
1047 continue;
1048 }
1049
1050 alg_mkey = 0;
1051 alg_auth = 0;
1052 alg_enc = 0;
1053 alg_mac = 0;
1054 min_tls = 0;
1055 algo_strength = 0;
1056
1057 for (;;) {
1058 ch = *l;
1059 buf = l;
1060 buflen = 0;
1061 #ifndef CHARSET_EBCDIC
1062 while (((ch >= 'A') && (ch <= 'Z')) ||
1063 ((ch >= '0') && (ch <= '9')) ||
1064 ((ch >= 'a') && (ch <= 'z')) ||
1065 (ch == '-') || (ch == '_') || (ch == '.') || (ch == '='))
1066 #else
1067 while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '_') || (ch == '.')
1068 || (ch == '='))
1069 #endif
1070 {
1071 ch = *(++l);
1072 buflen++;
1073 }
1074
1075 if (buflen == 0) {
1076 /*
1077 * We hit something we cannot deal with,
1078 * it is no command or separator nor
1079 * alphanumeric, so we call this an error.
1080 */
1081 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1082 return 0;
1083 }
1084
1085 if (rule == CIPHER_SPECIAL) {
1086 found = 0; /* unused -- avoid compiler warning */
1087 break; /* special treatment */
1088 }
1089
1090 /* check for multi-part specification */
1091 if (ch == '+') {
1092 multi = 1;
1093 l++;
1094 } else {
1095 multi = 0;
1096 }
1097
1098 /*
1099 * Now search for the cipher alias in the ca_list. Be careful
1100 * with the strncmp, because the "buflen" limitation
1101 * will make the rule "ADH:SOME" and the cipher
1102 * "ADH-MY-CIPHER" look like a match for buflen=3.
1103 * So additionally check whether the cipher name found
1104 * has the correct length. We can save a strlen() call:
1105 * just checking for the '\0' at the right place is
1106 * sufficient, we have to strncmp() anyway. (We cannot
1107 * use strcmp(), because buf is not '\0' terminated.)
1108 */
1109 j = found = 0;
1110 cipher_id = 0;
1111 while (ca_list[j]) {
1112 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1113 && (ca_list[j]->name[buflen] == '\0')) {
1114 found = 1;
1115 break;
1116 } else if (ca_list[j]->stdname != NULL
1117 && strncmp(buf, ca_list[j]->stdname, buflen) == 0
1118 && ca_list[j]->stdname[buflen] == '\0') {
1119 found = 1;
1120 break;
1121 } else
1122 j++;
1123 }
1124
1125 if (!found)
1126 break; /* ignore this entry */
1127
1128 if (ca_list[j]->algorithm_mkey) {
1129 if (alg_mkey) {
1130 alg_mkey &= ca_list[j]->algorithm_mkey;
1131 if (!alg_mkey) {
1132 found = 0;
1133 break;
1134 }
1135 } else {
1136 alg_mkey = ca_list[j]->algorithm_mkey;
1137 }
1138 }
1139
1140 if (ca_list[j]->algorithm_auth) {
1141 if (alg_auth) {
1142 alg_auth &= ca_list[j]->algorithm_auth;
1143 if (!alg_auth) {
1144 found = 0;
1145 break;
1146 }
1147 } else {
1148 alg_auth = ca_list[j]->algorithm_auth;
1149 }
1150 }
1151
1152 if (ca_list[j]->algorithm_enc) {
1153 if (alg_enc) {
1154 alg_enc &= ca_list[j]->algorithm_enc;
1155 if (!alg_enc) {
1156 found = 0;
1157 break;
1158 }
1159 } else {
1160 alg_enc = ca_list[j]->algorithm_enc;
1161 }
1162 }
1163
1164 if (ca_list[j]->algorithm_mac) {
1165 if (alg_mac) {
1166 alg_mac &= ca_list[j]->algorithm_mac;
1167 if (!alg_mac) {
1168 found = 0;
1169 break;
1170 }
1171 } else {
1172 alg_mac = ca_list[j]->algorithm_mac;
1173 }
1174 }
1175
1176 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1177 if (algo_strength & SSL_STRONG_MASK) {
1178 algo_strength &=
1179 (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1180 ~SSL_STRONG_MASK;
1181 if (!(algo_strength & SSL_STRONG_MASK)) {
1182 found = 0;
1183 break;
1184 }
1185 } else {
1186 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1187 }
1188 }
1189
1190 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1191 if (algo_strength & SSL_DEFAULT_MASK) {
1192 algo_strength &=
1193 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1194 ~SSL_DEFAULT_MASK;
1195 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1196 found = 0;
1197 break;
1198 }
1199 } else {
1200 algo_strength |=
1201 ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1202 }
1203 }
1204
1205 if (ca_list[j]->valid) {
1206 /*
1207 * explicit ciphersuite found; its protocol version does not
1208 * become part of the search pattern!
1209 */
1210
1211 cipher_id = ca_list[j]->id;
1212 } else {
1213 /*
1214 * not an explicit ciphersuite; only in this case, the
1215 * protocol version is considered part of the search pattern
1216 */
1217
1218 if (ca_list[j]->min_tls) {
1219 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1220 found = 0;
1221 break;
1222 } else {
1223 min_tls = ca_list[j]->min_tls;
1224 }
1225 }
1226 }
1227
1228 if (!multi)
1229 break;
1230 }
1231
1232 /*
1233 * Ok, we have the rule, now apply it
1234 */
1235 if (rule == CIPHER_SPECIAL) { /* special command */
1236 ok = 0;
1237 if ((buflen == 8) && HAS_PREFIX(buf, "STRENGTH")) {
1238 ok = ssl_cipher_strength_sort(head_p, tail_p);
1239 } else if (buflen == 10 && CHECK_AND_SKIP_PREFIX(buf, "SECLEVEL=")) {
1240 int level = *buf - '0';
1241 if (level < 0 || level > 5) {
1242 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1243 } else {
1244 c->sec_level = level;
1245 ok = 1;
1246 }
1247 } else {
1248 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1249 }
1250 if (ok == 0)
1251 retval = 0;
1252 /*
1253 * We do not support any "multi" options
1254 * together with "@", so throw away the
1255 * rest of the command, if any left, until
1256 * end or ':' is found.
1257 */
1258 while ((*l != '\0') && !ITEM_SEP(*l))
1259 l++;
1260 } else if (found) {
1261 ssl_cipher_apply_rule(cipher_id,
1262 alg_mkey, alg_auth, alg_enc, alg_mac,
1263 min_tls, algo_strength, rule, -1, head_p,
1264 tail_p);
1265 } else {
1266 while ((*l != '\0') && !ITEM_SEP(*l))
1267 l++;
1268 }
1269 if (*l == '\0')
1270 break; /* done */
1271 }
1272
1273 return retval;
1274 }
1275
1276 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1277 const char **prule_str)
1278 {
1279 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1280 if (HAS_PREFIX(*prule_str, "SUITEB128ONLY")) {
1281 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1282 } else if (HAS_PREFIX(*prule_str, "SUITEB128C2")) {
1283 suiteb_comb2 = 1;
1284 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1285 } else if (HAS_PREFIX(*prule_str, "SUITEB128")) {
1286 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1287 } else if (HAS_PREFIX(*prule_str, "SUITEB192")) {
1288 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1289 }
1290
1291 if (suiteb_flags) {
1292 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1293 c->cert_flags |= suiteb_flags;
1294 } else {
1295 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1296 }
1297
1298 if (!suiteb_flags)
1299 return 1;
1300 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1301
1302 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1303 ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1304 return 0;
1305 }
1306
1307 switch (suiteb_flags) {
1308 case SSL_CERT_FLAG_SUITEB_128_LOS:
1309 if (suiteb_comb2)
1310 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1311 else
1312 *prule_str =
1313 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1314 break;
1315 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1316 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1317 break;
1318 case SSL_CERT_FLAG_SUITEB_192_LOS:
1319 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1320 break;
1321 }
1322 return 1;
1323 }
1324
1325 static int ciphersuite_cb(const char *elem, int len, void *arg)
1326 {
1327 STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1328 const SSL_CIPHER *cipher;
1329 /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1330 char name[80];
1331
1332 if (len > (int)(sizeof(name) - 1))
1333 /* Anyway return 1 so we can parse rest of the list */
1334 return 1;
1335
1336 memcpy(name, elem, len);
1337 name[len] = '\0';
1338
1339 cipher = ssl3_get_cipher_by_std_name(name);
1340 if (cipher == NULL)
1341 /* Ciphersuite not found but return 1 to parse rest of the list */
1342 return 1;
1343
1344 if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1345 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1346 return 0;
1347 }
1348
1349 return 1;
1350 }
1351
1352 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1353 {
1354 STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1355
1356 if (newciphers == NULL)
1357 return 0;
1358
1359 /* Parse the list. We explicitly allow an empty list */
1360 if (*str != '\0'
1361 && (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1362 || sk_SSL_CIPHER_num(newciphers) == 0)) {
1363 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1364 sk_SSL_CIPHER_free(newciphers);
1365 return 0;
1366 }
1367 sk_SSL_CIPHER_free(*currciphers);
1368 *currciphers = newciphers;
1369
1370 return 1;
1371 }
1372
1373 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1374 STACK_OF(SSL_CIPHER) *cipherstack)
1375 {
1376 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1377
1378 if (tmp_cipher_list == NULL) {
1379 return 0;
1380 }
1381
1382 sk_SSL_CIPHER_free(*cipher_list_by_id);
1383 *cipher_list_by_id = tmp_cipher_list;
1384
1385 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1386 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1387
1388 return 1;
1389 }
1390
1391 static int update_cipher_list(SSL_CTX *ctx,
1392 STACK_OF(SSL_CIPHER) **cipher_list,
1393 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1394 STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1395 {
1396 int i;
1397 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1398
1399 if (tmp_cipher_list == NULL)
1400 return 0;
1401
1402 /*
1403 * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1404 * list.
1405 */
1406 while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1407 && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1408 == TLS1_3_VERSION)
1409 (void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1410
1411 /* Insert the new TLSv1.3 ciphersuites */
1412 for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1413 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1414
1415 /* Don't include any TLSv1.3 ciphersuites that are disabled */
1416 if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1417 && (ssl_cipher_table_mac[sslc->algorithm2
1418 & SSL_HANDSHAKE_MAC_MASK].mask
1419 & ctx->disabled_mac_mask) == 0) {
1420 sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1421 }
1422 }
1423
1424 if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1425 sk_SSL_CIPHER_free(tmp_cipher_list);
1426 return 0;
1427 }
1428
1429 sk_SSL_CIPHER_free(*cipher_list);
1430 *cipher_list = tmp_cipher_list;
1431
1432 return 1;
1433 }
1434
1435 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1436 {
1437 int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1438
1439 if (ret && ctx->cipher_list != NULL)
1440 return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1441 ctx->tls13_ciphersuites);
1442
1443 return ret;
1444 }
1445
1446 int SSL_set_ciphersuites(SSL *s, const char *str)
1447 {
1448 STACK_OF(SSL_CIPHER) *cipher_list;
1449 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
1450 int ret;
1451
1452 if (sc == NULL)
1453 return 0;
1454
1455 ret = set_ciphersuites(&(sc->tls13_ciphersuites), str);
1456
1457 if (sc->cipher_list == NULL) {
1458 if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1459 sc->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1460 }
1461 if (ret && sc->cipher_list != NULL)
1462 return update_cipher_list(s->ctx, &sc->cipher_list,
1463 &sc->cipher_list_by_id,
1464 sc->tls13_ciphersuites);
1465
1466 return ret;
1467 }
1468
1469 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1470 STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1471 STACK_OF(SSL_CIPHER) **cipher_list,
1472 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1473 const char *rule_str,
1474 CERT *c)
1475 {
1476 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1477 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1478 STACK_OF(SSL_CIPHER) *cipherstack;
1479 const char *rule_p;
1480 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1481 const SSL_CIPHER **ca_list = NULL;
1482 const SSL_METHOD *ssl_method = ctx->method;
1483
1484 /*
1485 * Return with error if nothing to do.
1486 */
1487 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1488 return NULL;
1489
1490 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1491 return NULL;
1492
1493 /*
1494 * To reduce the work to do we only want to process the compiled
1495 * in algorithms, so we first get the mask of disabled ciphers.
1496 */
1497
1498 disabled_mkey = ctx->disabled_mkey_mask;
1499 disabled_auth = ctx->disabled_auth_mask;
1500 disabled_enc = ctx->disabled_enc_mask;
1501 disabled_mac = ctx->disabled_mac_mask;
1502
1503 /*
1504 * Now we have to collect the available ciphers from the compiled
1505 * in ciphers. We cannot get more than the number compiled in, so
1506 * it is used for allocation.
1507 */
1508 num_of_ciphers = ssl_method->num_ciphers();
1509
1510 if (num_of_ciphers > 0) {
1511 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1512 if (co_list == NULL)
1513 return NULL; /* Failure */
1514 }
1515
1516 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1517 disabled_mkey, disabled_auth, disabled_enc,
1518 disabled_mac, co_list, &head, &tail);
1519
1520 /* Now arrange all ciphers by preference. */
1521
1522 /*
1523 * Everything else being equal, prefer ephemeral ECDH over other key
1524 * exchange mechanisms.
1525 * For consistency, prefer ECDSA over RSA (though this only matters if the
1526 * server has both certificates, and is using the DEFAULT, or a client
1527 * preference).
1528 */
1529 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1530 -1, &head, &tail);
1531 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1532 &tail);
1533 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1534 &tail);
1535
1536 /* Within each strength group, we prefer GCM over CHACHA... */
1537 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1538 &head, &tail);
1539 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1540 &head, &tail);
1541
1542 /*
1543 * ...and generally, our preferred cipher is AES.
1544 * Note that AEADs will be bumped to take preference after sorting by
1545 * strength.
1546 */
1547 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1548 -1, &head, &tail);
1549
1550 /* Temporarily enable everything else for sorting */
1551 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1552
1553 /* Low priority for MD5 */
1554 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1555 &tail);
1556
1557 /*
1558 * Move anonymous ciphers to the end. Usually, these will remain
1559 * disabled. (For applications that allow them, they aren't too bad, but
1560 * we prefer authenticated ciphers.)
1561 */
1562 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1563 &tail);
1564
1565 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1566 &tail);
1567 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1568 &tail);
1569
1570 /* RC4 is sort-of broken -- move to the end */
1571 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1572 &tail);
1573
1574 /*
1575 * Now sort by symmetric encryption strength. The above ordering remains
1576 * in force within each class
1577 */
1578 if (!ssl_cipher_strength_sort(&head, &tail)) {
1579 OPENSSL_free(co_list);
1580 return NULL;
1581 }
1582
1583 /*
1584 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1585 */
1586 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1587 &head, &tail);
1588
1589 /*
1590 * Irrespective of strength, enforce the following order:
1591 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1592 * Within each group, ciphers remain sorted by strength and previous
1593 * preference, i.e.,
1594 * 1) ECDHE > DHE
1595 * 2) GCM > CHACHA
1596 * 3) AES > rest
1597 * 4) TLS 1.2 > legacy
1598 *
1599 * Because we now bump ciphers to the top of the list, we proceed in
1600 * reverse order of preference.
1601 */
1602 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1603 &head, &tail);
1604 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1605 CIPHER_BUMP, -1, &head, &tail);
1606 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1607 CIPHER_BUMP, -1, &head, &tail);
1608
1609 /* Now disable everything (maintaining the ordering!) */
1610 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1611
1612 /*
1613 * We also need cipher aliases for selecting based on the rule_str.
1614 * There might be two types of entries in the rule_str: 1) names
1615 * of ciphers themselves 2) aliases for groups of ciphers.
1616 * For 1) we need the available ciphers and for 2) the cipher
1617 * groups of cipher_aliases added together in one list (otherwise
1618 * we would be happy with just the cipher_aliases table).
1619 */
1620 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1621 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1622 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1623 if (ca_list == NULL) {
1624 OPENSSL_free(co_list);
1625 return NULL; /* Failure */
1626 }
1627 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1628 disabled_mkey, disabled_auth, disabled_enc,
1629 disabled_mac, head);
1630
1631 /*
1632 * If the rule_string begins with DEFAULT, apply the default rule
1633 * before using the (possibly available) additional rules.
1634 */
1635 ok = 1;
1636 rule_p = rule_str;
1637 if (HAS_PREFIX(rule_str, "DEFAULT")) {
1638 ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1639 &head, &tail, ca_list, c);
1640 rule_p += 7;
1641 if (*rule_p == ':')
1642 rule_p++;
1643 }
1644
1645 if (ok && (rule_p[0] != '\0'))
1646 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1647
1648 OPENSSL_free(ca_list); /* Not needed anymore */
1649
1650 if (!ok) { /* Rule processing failure */
1651 OPENSSL_free(co_list);
1652 return NULL;
1653 }
1654
1655 /*
1656 * Allocate new "cipherstack" for the result, return with error
1657 * if we cannot get one.
1658 */
1659 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1660 OPENSSL_free(co_list);
1661 return NULL;
1662 }
1663
1664 /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1665 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1666 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1667
1668 /* Don't include any TLSv1.3 ciphers that are disabled */
1669 if ((sslc->algorithm_enc & disabled_enc) != 0
1670 || (ssl_cipher_table_mac[sslc->algorithm2
1671 & SSL_HANDSHAKE_MAC_MASK].mask
1672 & ctx->disabled_mac_mask) != 0) {
1673 sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1674 i--;
1675 continue;
1676 }
1677
1678 if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1679 OPENSSL_free(co_list);
1680 sk_SSL_CIPHER_free(cipherstack);
1681 return NULL;
1682 }
1683 }
1684
1685 OSSL_TRACE_BEGIN(TLS_CIPHER) {
1686 BIO_printf(trc_out, "cipher selection:\n");
1687 }
1688 /*
1689 * The cipher selection for the list is done. The ciphers are added
1690 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1691 */
1692 for (curr = head; curr != NULL; curr = curr->next) {
1693 if (curr->active) {
1694 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1695 OPENSSL_free(co_list);
1696 sk_SSL_CIPHER_free(cipherstack);
1697 OSSL_TRACE_CANCEL(TLS_CIPHER);
1698 return NULL;
1699 }
1700 if (trc_out != NULL)
1701 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1702 }
1703 }
1704 OPENSSL_free(co_list); /* Not needed any longer */
1705 OSSL_TRACE_END(TLS_CIPHER);
1706
1707 if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1708 sk_SSL_CIPHER_free(cipherstack);
1709 return NULL;
1710 }
1711 sk_SSL_CIPHER_free(*cipher_list);
1712 *cipher_list = cipherstack;
1713
1714 return cipherstack;
1715 }
1716
1717 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1718 {
1719 const char *ver;
1720 const char *kx, *au, *enc, *mac;
1721 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1722 static const char *const format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1723
1724 if (buf == NULL) {
1725 len = 128;
1726 if ((buf = OPENSSL_malloc(len)) == NULL)
1727 return NULL;
1728 } else if (len < 128) {
1729 return NULL;
1730 }
1731
1732 alg_mkey = cipher->algorithm_mkey;
1733 alg_auth = cipher->algorithm_auth;
1734 alg_enc = cipher->algorithm_enc;
1735 alg_mac = cipher->algorithm_mac;
1736
1737 ver = ssl_protocol_to_string(cipher->min_tls);
1738
1739 switch (alg_mkey) {
1740 case SSL_kRSA:
1741 kx = "RSA";
1742 break;
1743 case SSL_kDHE:
1744 kx = "DH";
1745 break;
1746 case SSL_kECDHE:
1747 kx = "ECDH";
1748 break;
1749 case SSL_kPSK:
1750 kx = "PSK";
1751 break;
1752 case SSL_kRSAPSK:
1753 kx = "RSAPSK";
1754 break;
1755 case SSL_kECDHEPSK:
1756 kx = "ECDHEPSK";
1757 break;
1758 case SSL_kDHEPSK:
1759 kx = "DHEPSK";
1760 break;
1761 case SSL_kSRP:
1762 kx = "SRP";
1763 break;
1764 case SSL_kGOST:
1765 kx = "GOST";
1766 break;
1767 case SSL_kGOST18:
1768 kx = "GOST18";
1769 break;
1770 case SSL_kANY:
1771 kx = "any";
1772 break;
1773 default:
1774 kx = "unknown";
1775 }
1776
1777 switch (alg_auth) {
1778 case SSL_aRSA:
1779 au = "RSA";
1780 break;
1781 case SSL_aDSS:
1782 au = "DSS";
1783 break;
1784 case SSL_aNULL:
1785 au = "None";
1786 break;
1787 case SSL_aECDSA:
1788 au = "ECDSA";
1789 break;
1790 case SSL_aPSK:
1791 au = "PSK";
1792 break;
1793 case SSL_aSRP:
1794 au = "SRP";
1795 break;
1796 case SSL_aGOST01:
1797 au = "GOST01";
1798 break;
1799 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1800 case (SSL_aGOST12 | SSL_aGOST01):
1801 au = "GOST12";
1802 break;
1803 case SSL_aANY:
1804 au = "any";
1805 break;
1806 default:
1807 au = "unknown";
1808 break;
1809 }
1810
1811 switch (alg_enc) {
1812 case SSL_DES:
1813 enc = "DES(56)";
1814 break;
1815 case SSL_3DES:
1816 enc = "3DES(168)";
1817 break;
1818 case SSL_RC4:
1819 enc = "RC4(128)";
1820 break;
1821 case SSL_RC2:
1822 enc = "RC2(128)";
1823 break;
1824 case SSL_IDEA:
1825 enc = "IDEA(128)";
1826 break;
1827 case SSL_eNULL:
1828 enc = "None";
1829 break;
1830 case SSL_AES128:
1831 enc = "AES(128)";
1832 break;
1833 case SSL_AES256:
1834 enc = "AES(256)";
1835 break;
1836 case SSL_AES128GCM:
1837 enc = "AESGCM(128)";
1838 break;
1839 case SSL_AES256GCM:
1840 enc = "AESGCM(256)";
1841 break;
1842 case SSL_AES128CCM:
1843 enc = "AESCCM(128)";
1844 break;
1845 case SSL_AES256CCM:
1846 enc = "AESCCM(256)";
1847 break;
1848 case SSL_AES128CCM8:
1849 enc = "AESCCM8(128)";
1850 break;
1851 case SSL_AES256CCM8:
1852 enc = "AESCCM8(256)";
1853 break;
1854 case SSL_CAMELLIA128:
1855 enc = "Camellia(128)";
1856 break;
1857 case SSL_CAMELLIA256:
1858 enc = "Camellia(256)";
1859 break;
1860 case SSL_ARIA128GCM:
1861 enc = "ARIAGCM(128)";
1862 break;
1863 case SSL_ARIA256GCM:
1864 enc = "ARIAGCM(256)";
1865 break;
1866 case SSL_SEED:
1867 enc = "SEED(128)";
1868 break;
1869 case SSL_eGOST2814789CNT:
1870 case SSL_eGOST2814789CNT12:
1871 enc = "GOST89(256)";
1872 break;
1873 case SSL_MAGMA:
1874 enc = "MAGMA";
1875 break;
1876 case SSL_KUZNYECHIK:
1877 enc = "KUZNYECHIK";
1878 break;
1879 case SSL_CHACHA20POLY1305:
1880 enc = "CHACHA20/POLY1305(256)";
1881 break;
1882 default:
1883 enc = "unknown";
1884 break;
1885 }
1886
1887 switch (alg_mac) {
1888 case SSL_MD5:
1889 mac = "MD5";
1890 break;
1891 case SSL_SHA1:
1892 mac = "SHA1";
1893 break;
1894 case SSL_SHA256:
1895 mac = "SHA256";
1896 break;
1897 case SSL_SHA384:
1898 mac = "SHA384";
1899 break;
1900 case SSL_AEAD:
1901 mac = "AEAD";
1902 break;
1903 case SSL_GOST89MAC:
1904 case SSL_GOST89MAC12:
1905 mac = "GOST89";
1906 break;
1907 case SSL_GOST94:
1908 mac = "GOST94";
1909 break;
1910 case SSL_GOST12_256:
1911 case SSL_GOST12_512:
1912 mac = "GOST2012";
1913 break;
1914 default:
1915 mac = "unknown";
1916 break;
1917 }
1918
1919 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1920
1921 return buf;
1922 }
1923
1924 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1925 {
1926 if (c == NULL)
1927 return "(NONE)";
1928
1929 /*
1930 * Backwards-compatibility crutch. In almost all contexts we report TLS
1931 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1932 */
1933 if (c->min_tls == TLS1_VERSION)
1934 return "TLSv1.0";
1935 return ssl_protocol_to_string(c->min_tls);
1936 }
1937
1938 /* return the actual cipher being used */
1939 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1940 {
1941 if (c != NULL)
1942 return c->name;
1943 return "(NONE)";
1944 }
1945
1946 /* return the actual cipher being used in RFC standard name */
1947 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1948 {
1949 if (c != NULL)
1950 return c->stdname;
1951 return "(NONE)";
1952 }
1953
1954 /* return the OpenSSL name based on given RFC standard name */
1955 const char *OPENSSL_cipher_name(const char *stdname)
1956 {
1957 const SSL_CIPHER *c;
1958
1959 if (stdname == NULL)
1960 return "(NONE)";
1961 c = ssl3_get_cipher_by_std_name(stdname);
1962 return SSL_CIPHER_get_name(c);
1963 }
1964
1965 /* number of bits for symmetric cipher */
1966 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1967 {
1968 int ret = 0;
1969
1970 if (c != NULL) {
1971 if (alg_bits != NULL)
1972 *alg_bits = (int)c->alg_bits;
1973 ret = (int)c->strength_bits;
1974 }
1975 return ret;
1976 }
1977
1978 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1979 {
1980 return c->id;
1981 }
1982
1983 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1984 {
1985 return c->id & 0xFFFF;
1986 }
1987
1988 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1989 {
1990 SSL_COMP *ctmp;
1991 int i, nn;
1992
1993 if ((n == 0) || (sk == NULL))
1994 return NULL;
1995 nn = sk_SSL_COMP_num(sk);
1996 for (i = 0; i < nn; i++) {
1997 ctmp = sk_SSL_COMP_value(sk, i);
1998 if (ctmp->id == n)
1999 return ctmp;
2000 }
2001 return NULL;
2002 }
2003
2004 #ifdef OPENSSL_NO_COMP
2005 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
2006 {
2007 return NULL;
2008 }
2009
2010 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
2011 *meths)
2012 {
2013 return meths;
2014 }
2015
2016 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2017 {
2018 return 1;
2019 }
2020
2021 #else
2022 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
2023 {
2024 load_builtin_compressions();
2025 return ssl_comp_methods;
2026 }
2027
2028 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
2029 *meths)
2030 {
2031 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
2032 ssl_comp_methods = meths;
2033 return old_meths;
2034 }
2035
2036 static void cmeth_free(SSL_COMP *cm)
2037 {
2038 OPENSSL_free(cm);
2039 }
2040
2041 void ssl_comp_free_compression_methods_int(void)
2042 {
2043 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
2044 ssl_comp_methods = NULL;
2045 sk_SSL_COMP_pop_free(old_meths, cmeth_free);
2046 }
2047
2048 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2049 {
2050 SSL_COMP *comp;
2051
2052 if (cm == NULL || COMP_get_type(cm) == NID_undef)
2053 return 1;
2054
2055 /*-
2056 * According to draft-ietf-tls-compression-04.txt, the
2057 * compression number ranges should be the following:
2058 *
2059 * 0 to 63: methods defined by the IETF
2060 * 64 to 192: external party methods assigned by IANA
2061 * 193 to 255: reserved for private use
2062 */
2063 if (id < 193 || id > 255) {
2064 ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2065 return 1;
2066 }
2067
2068 comp = OPENSSL_malloc(sizeof(*comp));
2069 if (comp == NULL)
2070 return 1;
2071
2072 comp->id = id;
2073 comp->method = cm;
2074 load_builtin_compressions();
2075 if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
2076 OPENSSL_free(comp);
2077 ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2078 return 1;
2079 }
2080 if (ssl_comp_methods == NULL || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
2081 OPENSSL_free(comp);
2082 ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
2083 return 1;
2084 }
2085 return 0;
2086 }
2087 #endif
2088
2089 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2090 {
2091 #ifndef OPENSSL_NO_COMP
2092 return comp ? COMP_get_name(comp) : NULL;
2093 #else
2094 return NULL;
2095 #endif
2096 }
2097
2098 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2099 {
2100 #ifndef OPENSSL_NO_COMP
2101 return comp->name;
2102 #else
2103 return NULL;
2104 #endif
2105 }
2106
2107 int SSL_COMP_get_id(const SSL_COMP *comp)
2108 {
2109 #ifndef OPENSSL_NO_COMP
2110 return comp->id;
2111 #else
2112 return -1;
2113 #endif
2114 }
2115
2116 const SSL_CIPHER *ssl_get_cipher_by_char(SSL_CONNECTION *s,
2117 const unsigned char *ptr,
2118 int all)
2119 {
2120 const SSL_CIPHER *c = SSL_CONNECTION_GET_SSL(s)->method->get_cipher_by_char(ptr);
2121
2122 if (c == NULL || (!all && c->valid == 0))
2123 return NULL;
2124 return c;
2125 }
2126
2127 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2128 {
2129 return ssl->method->get_cipher_by_char(ptr);
2130 }
2131
2132 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2133 {
2134 int i;
2135 if (c == NULL)
2136 return NID_undef;
2137 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2138 if (i == -1)
2139 return NID_undef;
2140 return ssl_cipher_table_cipher[i].nid;
2141 }
2142
2143 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2144 {
2145 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2146
2147 if (i == -1)
2148 return NID_undef;
2149 return ssl_cipher_table_mac[i].nid;
2150 }
2151
2152 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2153 {
2154 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2155
2156 if (i == -1)
2157 return NID_undef;
2158 return ssl_cipher_table_kx[i].nid;
2159 }
2160
2161 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2162 {
2163 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2164
2165 if (i == -1)
2166 return NID_undef;
2167 return ssl_cipher_table_auth[i].nid;
2168 }
2169
2170 int ssl_get_md_idx(int md_nid) {
2171 int i;
2172
2173 for(i = 0; i < SSL_MD_NUM_IDX; i++) {
2174 if (md_nid == ssl_cipher_table_mac[i].nid)
2175 return i;
2176 }
2177 return -1;
2178 }
2179
2180 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2181 {
2182 int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2183
2184 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2185 return NULL;
2186 return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2187 }
2188
2189 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2190 {
2191 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2192 }
2193
2194 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2195 size_t *int_overhead, size_t *blocksize,
2196 size_t *ext_overhead)
2197 {
2198 int mac = 0, in = 0, blk = 0, out = 0;
2199
2200 /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2201 * because there are no handy #defines for those. */
2202 if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2203 out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2204 } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2205 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2206 } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2207 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2208 } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2209 out = 16;
2210 } else if (c->algorithm_mac & SSL_AEAD) {
2211 /* We're supposed to have handled all the AEAD modes above */
2212 return 0;
2213 } else {
2214 /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2215 int digest_nid = SSL_CIPHER_get_digest_nid(c);
2216 const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2217
2218 if (e_md == NULL)
2219 return 0;
2220
2221 mac = EVP_MD_get_size(e_md);
2222 if (mac <= 0)
2223 return 0;
2224 if (c->algorithm_enc != SSL_eNULL) {
2225 int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2226 const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2227
2228 /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2229 known CBC cipher. */
2230 if (e_ciph == NULL ||
2231 EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2232 return 0;
2233
2234 in = 1; /* padding length byte */
2235 out = EVP_CIPHER_get_iv_length(e_ciph);
2236 if (out < 0)
2237 return 0;
2238 blk = EVP_CIPHER_get_block_size(e_ciph);
2239 if (blk <= 0)
2240 return 0;
2241 }
2242 }
2243
2244 *mac_overhead = (size_t)mac;
2245 *int_overhead = (size_t)in;
2246 *blocksize = (size_t)blk;
2247 *ext_overhead = (size_t)out;
2248
2249 return 1;
2250 }
2251
2252 int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2253 {
2254 const SSL_CERT_LOOKUP *cl;
2255
2256 /* A provider-loaded key type is always enabled */
2257 if (idx >= SSL_PKEY_NUM)
2258 return 0;
2259
2260 cl = ssl_cert_lookup_by_idx(idx, ctx);
2261 if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2262 return 1;
2263 return 0;
2264 }
2265
2266 /*
2267 * Default list of TLSv1.2 (and earlier) ciphers
2268 * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2269 * Update both macro and function simultaneously
2270 */
2271 const char *OSSL_default_cipher_list(void)
2272 {
2273 return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2274 }
2275
2276 /*
2277 * Default list of TLSv1.3 (and later) ciphers
2278 * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2279 * Update both macro and function simultaneously
2280 */
2281 const char *OSSL_default_ciphersuites(void)
2282 {
2283 return "TLS_AES_256_GCM_SHA384:"
2284 "TLS_CHACHA20_POLY1305_SHA256:"
2285 "TLS_AES_128_GCM_SHA256";
2286 }