]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_ciph.c
Change all our uses of CRYPTO_THREAD_run_once to use RUN_ONCE instead
[thirdparty/openssl.git] / ssl / ssl_ciph.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* ====================================================================
11 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
12 * ECC cipher suite support in OpenSSL originally developed by
13 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
14 */
15 /* ====================================================================
16 * Copyright 2005 Nokia. All rights reserved.
17 *
18 * The portions of the attached software ("Contribution") is developed by
19 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
20 * license.
21 *
22 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
23 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
24 * support (see RFC 4279) to OpenSSL.
25 *
26 * No patent licenses or other rights except those expressly stated in
27 * the OpenSSL open source license shall be deemed granted or received
28 * expressly, by implication, estoppel, or otherwise.
29 *
30 * No assurances are provided by Nokia that the Contribution does not
31 * infringe the patent or other intellectual property rights of any third
32 * party or that the license provides you with all the necessary rights
33 * to make use of the Contribution.
34 *
35 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
36 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
37 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
38 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
39 * OTHERWISE.
40 */
41
42 #include <stdio.h>
43 #include <ctype.h>
44 #include <openssl/objects.h>
45 #include <openssl/comp.h>
46 #include <openssl/engine.h>
47 #include <openssl/crypto.h>
48 #include "ssl_locl.h"
49 #include "internal/thread_once.h"
50
51 #define SSL_ENC_DES_IDX 0
52 #define SSL_ENC_3DES_IDX 1
53 #define SSL_ENC_RC4_IDX 2
54 #define SSL_ENC_RC2_IDX 3
55 #define SSL_ENC_IDEA_IDX 4
56 #define SSL_ENC_NULL_IDX 5
57 #define SSL_ENC_AES128_IDX 6
58 #define SSL_ENC_AES256_IDX 7
59 #define SSL_ENC_CAMELLIA128_IDX 8
60 #define SSL_ENC_CAMELLIA256_IDX 9
61 #define SSL_ENC_GOST89_IDX 10
62 #define SSL_ENC_SEED_IDX 11
63 #define SSL_ENC_AES128GCM_IDX 12
64 #define SSL_ENC_AES256GCM_IDX 13
65 #define SSL_ENC_AES128CCM_IDX 14
66 #define SSL_ENC_AES256CCM_IDX 15
67 #define SSL_ENC_AES128CCM8_IDX 16
68 #define SSL_ENC_AES256CCM8_IDX 17
69 #define SSL_ENC_GOST8912_IDX 18
70 #define SSL_ENC_CHACHA_IDX 19
71 #define SSL_ENC_NUM_IDX 20
72
73 /* NB: make sure indices in these tables match values above */
74
75 typedef struct {
76 uint32_t mask;
77 int nid;
78 } ssl_cipher_table;
79
80 /* Table of NIDs for each cipher */
81 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
82 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
83 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
84 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
85 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
86 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
87 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
88 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
89 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
90 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
91 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
92 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
93 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
94 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
95 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
96 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
97 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
98 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
99 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
100 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX */
101 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305},
102 };
103
104 static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX] = {
105 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
106 NULL, NULL
107 };
108
109 #define SSL_COMP_NULL_IDX 0
110 #define SSL_COMP_ZLIB_IDX 1
111 #define SSL_COMP_NUM_IDX 2
112
113 static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
114
115 #ifndef OPENSSL_NO_COMP
116 static CRYPTO_ONCE ssl_load_builtin_comp_once = CRYPTO_ONCE_STATIC_INIT;
117 #endif
118
119 /*
120 * Constant SSL_MAX_DIGEST equal to size of digests array should be defined
121 * in the ssl_locl.h
122 */
123
124 #define SSL_MD_NUM_IDX SSL_MAX_DIGEST
125
126 /* NB: make sure indices in this table matches values above */
127 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
128 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
129 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
130 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
131 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
132 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
133 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
134 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
135 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
136 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
137 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
138 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
139 {0, NID_sha512} /* SSL_MD_SHA512_IDX 11 */
140 };
141
142 static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = {
143 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
144 };
145
146 static const ssl_cipher_table ssl_cipher_table_kx[] = {
147 { SSL_kRSA, NID_kx_rsa },
148 { SSL_kECDHE, NID_kx_ecdhe },
149 { SSL_kDHE, NID_kx_dhe },
150 { SSL_kECDHEPSK, NID_kx_ecdhe_psk },
151 { SSL_kDHEPSK, NID_kx_dhe_psk },
152 { SSL_kRSAPSK, NID_kx_rsa_psk },
153 { SSL_kPSK, NID_kx_psk },
154 { SSL_kSRP, NID_kx_srp },
155 { SSL_kGOST, NID_kx_gost }
156 };
157
158 static const ssl_cipher_table ssl_cipher_table_auth[] = {
159 { SSL_aRSA, NID_auth_rsa },
160 { SSL_aECDSA, NID_auth_ecdsa },
161 { SSL_aPSK, NID_auth_psk },
162 { SSL_aDSS, NID_auth_dss },
163 { SSL_aGOST01, NID_auth_gost01 },
164 { SSL_aGOST12, NID_auth_gost12 },
165 { SSL_aSRP, NID_auth_srp },
166 { SSL_aNULL, NID_auth_null }
167 };
168
169 /* Utility function for table lookup */
170 static int ssl_cipher_info_find(const ssl_cipher_table * table,
171 size_t table_cnt, uint32_t mask)
172 {
173 size_t i;
174 for (i = 0; i < table_cnt; i++, table++) {
175 if (table->mask == mask)
176 return i;
177 }
178 return -1;
179 }
180
181 #define ssl_cipher_info_lookup(table, x) \
182 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
183
184 /*
185 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
186 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
187 * found
188 */
189 static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = {
190 /* MD5, SHA, GOST94, MAC89 */
191 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
192 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
193 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
194 /* GOST2012_512 */
195 EVP_PKEY_HMAC,
196 };
197
198 static int ssl_mac_secret_size[SSL_MD_NUM_IDX] = {
199 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
200 };
201
202 #define CIPHER_ADD 1
203 #define CIPHER_KILL 2
204 #define CIPHER_DEL 3
205 #define CIPHER_ORD 4
206 #define CIPHER_SPECIAL 5
207 /*
208 * Bump the ciphers to the top of the list.
209 * This rule isn't currently supported by the public cipherstring API.
210 */
211 #define CIPHER_BUMP 6
212
213 typedef struct cipher_order_st {
214 const SSL_CIPHER *cipher;
215 int active;
216 int dead;
217 struct cipher_order_st *next, *prev;
218 } CIPHER_ORDER;
219
220 static const SSL_CIPHER cipher_aliases[] = {
221 /* "ALL" doesn't include eNULL (must be specifically enabled) */
222 {0, SSL_TXT_ALL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0},
223 /* "COMPLEMENTOFALL" */
224 {0, SSL_TXT_CMPALL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0},
225
226 /*
227 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
228 * ALL!)
229 */
230 {0, SSL_TXT_CMPDEF, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT, 0, 0, 0},
231
232 /*
233 * key exchange aliases (some of those using only a single bit here
234 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
235 * combines DHE_DSS and DHE_RSA)
236 */
237 {0, SSL_TXT_kRSA, 0, SSL_kRSA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
238
239 {0, SSL_TXT_kEDH, 0, SSL_kDHE, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
240 {0, SSL_TXT_kDHE, 0, SSL_kDHE, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
241 {0, SSL_TXT_DH, 0, SSL_kDHE, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
242
243 {0, SSL_TXT_kEECDH, 0, SSL_kECDHE, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
244 {0, SSL_TXT_kECDHE, 0, SSL_kECDHE, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
245 {0, SSL_TXT_ECDH, 0, SSL_kECDHE, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
246
247 {0, SSL_TXT_kPSK, 0, SSL_kPSK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
248 {0, SSL_TXT_kRSAPSK, 0, SSL_kRSAPSK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
249 {0, SSL_TXT_kECDHEPSK, 0, SSL_kECDHEPSK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
250 {0, SSL_TXT_kDHEPSK, 0, SSL_kDHEPSK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
251 {0, SSL_TXT_kSRP, 0, SSL_kSRP, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
252 {0, SSL_TXT_kGOST, 0, SSL_kGOST, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
253
254 /* server authentication aliases */
255 {0, SSL_TXT_aRSA, 0, 0, SSL_aRSA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
256 {0, SSL_TXT_aDSS, 0, 0, SSL_aDSS, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
257 {0, SSL_TXT_DSS, 0, 0, SSL_aDSS, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
258 {0, SSL_TXT_aNULL, 0, 0, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
259 {0, SSL_TXT_aECDSA, 0, 0, SSL_aECDSA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
260 {0, SSL_TXT_ECDSA, 0, 0, SSL_aECDSA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
261 {0, SSL_TXT_aPSK, 0, 0, SSL_aPSK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
262 {0, SSL_TXT_aGOST01, 0, 0, SSL_aGOST01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
263 {0, SSL_TXT_aGOST12, 0, 0, SSL_aGOST12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
264 {0, SSL_TXT_aGOST, 0, 0, SSL_aGOST01 | SSL_aGOST12, 0, 0, 0, 0, 0, 0,
265 0, 0, 0, 0},
266 {0, SSL_TXT_aSRP, 0, 0, SSL_aSRP, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
267
268 /* aliases combining key exchange and server authentication */
269 {0, SSL_TXT_EDH, 0, SSL_kDHE, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
270 {0, SSL_TXT_DHE, 0, SSL_kDHE, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
271 {0, SSL_TXT_EECDH, 0, SSL_kECDHE, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
272 {0, SSL_TXT_ECDHE, 0, SSL_kECDHE, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
273 {0, SSL_TXT_NULL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0},
274 {0, SSL_TXT_RSA, 0, SSL_kRSA, SSL_aRSA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
275 {0, SSL_TXT_ADH, 0, SSL_kDHE, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
276 {0, SSL_TXT_AECDH, 0, SSL_kECDHE, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
277 {0, SSL_TXT_PSK, 0, SSL_PSK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
278 {0, SSL_TXT_SRP, 0, SSL_kSRP, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
279
280 /* symmetric encryption aliases */
281 {0, SSL_TXT_3DES, 0, 0, 0, SSL_3DES, 0, 0, 0, 0, 0, 0, 0, 0, 0},
282 {0, SSL_TXT_RC4, 0, 0, 0, SSL_RC4, 0, 0, 0, 0, 0, 0, 0, 0, 0},
283 {0, SSL_TXT_RC2, 0, 0, 0, SSL_RC2, 0, 0, 0, 0, 0, 0, 0, 0, 0},
284 {0, SSL_TXT_IDEA, 0, 0, 0, SSL_IDEA, 0, 0, 0, 0, 0, 0, 0, 0, 0},
285 {0, SSL_TXT_SEED, 0, 0, 0, SSL_SEED, 0, 0, 0, 0, 0, 0, 0, 0, 0},
286 {0, SSL_TXT_eNULL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0, 0, 0, 0},
287 {0, SSL_TXT_GOST, 0, 0, 0, SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12, 0,
288 0, 0, 0, 0, 0, 0, 0, 0},
289 {0, SSL_TXT_AES128, 0, 0, 0, SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8, 0,
290 0, 0, 0, 0, 0, 0, 0, 0},
291 {0, SSL_TXT_AES256, 0, 0, 0, SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8, 0,
292 0, 0, 0, 0, 0, 0, 0, 0},
293 {0, SSL_TXT_AES, 0, 0, 0, SSL_AES, 0, 0, 0, 0, 0, 0, 0, 0, 0},
294 {0, SSL_TXT_AES_GCM, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM, 0, 0, 0, 0,
295 0, 0, 0, 0, 0},
296 {0, SSL_TXT_AES_CCM, 0, 0, 0,
297 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8, 0, 0, 0,
298 0, 0, 0, 0, 0, 0},
299 {0, SSL_TXT_AES_CCM_8, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8, 0, 0, 0, 0,
300 0, 0},
301 {0, SSL_TXT_CAMELLIA128, 0, 0, 0, SSL_CAMELLIA128, 0, 0, 0, 0, 0, 0, 0, 0,
302 0},
303 {0, SSL_TXT_CAMELLIA256, 0, 0, 0, SSL_CAMELLIA256, 0, 0, 0, 0, 0, 0, 0, 0,
304 0},
305 {0, SSL_TXT_CAMELLIA, 0, 0, 0, SSL_CAMELLIA, 0, 0, 0, 0, 0, 0, 0, 0, 0},
306 {0, SSL_TXT_CHACHA20, 0, 0, 0, SSL_CHACHA20, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
307
308 /* MAC aliases */
309 {0, SSL_TXT_MD5, 0, 0, 0, 0, SSL_MD5, 0, 0, 0, 0, 0, 0, 0, 0},
310 {0, SSL_TXT_SHA1, 0, 0, 0, 0, SSL_SHA1, 0, 0, 0, 0, 0, 0, 0, 0},
311 {0, SSL_TXT_SHA, 0, 0, 0, 0, SSL_SHA1, 0, 0, 0, 0, 0, 0, 0, 0},
312 {0, SSL_TXT_GOST94, 0, 0, 0, 0, SSL_GOST94, 0, 0, 0, 0, 0, 0, 0, 0},
313 {0, SSL_TXT_GOST89MAC, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12, 0, 0,
314 0, 0, 0, 0, 0, 0},
315 {0, SSL_TXT_SHA256, 0, 0, 0, 0, SSL_SHA256, 0, 0, 0, 0, 0, 0, 0, 0},
316 {0, SSL_TXT_SHA384, 0, 0, 0, 0, SSL_SHA384, 0, 0, 0, 0, 0, 0, 0, 0},
317 {0, SSL_TXT_GOST12, 0, 0, 0, 0, SSL_GOST12_256, 0, 0, 0, 0, 0, 0, 0, 0},
318
319 /* protocol version aliases */
320 {0, SSL_TXT_SSLV3, 0, 0, 0, 0, 0, SSL3_VERSION, 0, 0, 0, 0, 0, 0, 0},
321 {0, SSL_TXT_TLSV1, 0, 0, 0, 0, 0, TLS1_VERSION, 0, 0, 0, 0, 0, 0, 0},
322 {0, "TLSv1.0", 0, 0, 0, 0, 0, TLS1_VERSION, 0, 0, 0, 0, 0, 0, 0},
323 {0, SSL_TXT_TLSV1_2, 0, 0, 0, 0, 0, TLS1_2_VERSION, 0, 0, 0, 0, 0, 0, 0},
324
325 /* strength classes */
326 {0, SSL_TXT_LOW, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW, 0, 0, 0},
327 {0, SSL_TXT_MEDIUM, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM, 0, 0, 0},
328 {0, SSL_TXT_HIGH, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH, 0, 0, 0},
329 /* FIPS 140-2 approved ciphersuite */
330 {0, SSL_TXT_FIPS, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS, 0, 0, 0},
331
332 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
333 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, 0,
334 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0,
335 SSL_HIGH | SSL_FIPS, 0, 0, 0,},
336 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, 0,
337 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0,
338 SSL_HIGH | SSL_FIPS, 0, 0, 0,},
339
340 };
341
342 /*
343 * Search for public key algorithm with given name and return its pkey_id if
344 * it is available. Otherwise return 0
345 */
346 #ifdef OPENSSL_NO_ENGINE
347
348 static int get_optional_pkey_id(const char *pkey_name)
349 {
350 const EVP_PKEY_ASN1_METHOD *ameth;
351 int pkey_id = 0;
352 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
353 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
354 ameth) > 0) {
355 return pkey_id;
356 }
357 return 0;
358 }
359
360 #else
361
362 static int get_optional_pkey_id(const char *pkey_name)
363 {
364 const EVP_PKEY_ASN1_METHOD *ameth;
365 ENGINE *tmpeng = NULL;
366 int pkey_id = 0;
367 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
368 if (ameth) {
369 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
370 ameth) <= 0)
371 pkey_id = 0;
372 }
373 ENGINE_finish(tmpeng);
374 return pkey_id;
375 }
376
377 #endif
378
379 /* masks of disabled algorithms */
380 static uint32_t disabled_enc_mask;
381 static uint32_t disabled_mac_mask;
382 static uint32_t disabled_mkey_mask;
383 static uint32_t disabled_auth_mask;
384
385 void ssl_load_ciphers(void)
386 {
387 size_t i;
388 const ssl_cipher_table *t;
389
390 disabled_enc_mask = 0;
391 ssl_sort_cipher_list();
392 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
393 if (t->nid == NID_undef) {
394 ssl_cipher_methods[i] = NULL;
395 } else {
396 const EVP_CIPHER *cipher = EVP_get_cipherbynid(t->nid);
397 ssl_cipher_methods[i] = cipher;
398 if (cipher == NULL)
399 disabled_enc_mask |= t->mask;
400 }
401 }
402 #ifdef SSL_FORBID_ENULL
403 disabled_enc_mask |= SSL_eNULL;
404 #endif
405 disabled_mac_mask = 0;
406 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
407 const EVP_MD *md = EVP_get_digestbynid(t->nid);
408 ssl_digest_methods[i] = md;
409 if (md == NULL) {
410 disabled_mac_mask |= t->mask;
411 } else {
412 ssl_mac_secret_size[i] = EVP_MD_size(md);
413 OPENSSL_assert(ssl_mac_secret_size[i] >= 0);
414 }
415 }
416 /* Make sure we can access MD5 and SHA1 */
417 OPENSSL_assert(ssl_digest_methods[SSL_MD_MD5_IDX] != NULL);
418 OPENSSL_assert(ssl_digest_methods[SSL_MD_SHA1_IDX] != NULL);
419
420 disabled_mkey_mask = 0;
421 disabled_auth_mask = 0;
422
423 #ifdef OPENSSL_NO_RSA
424 disabled_mkey_mask |= SSL_kRSA | SSL_kRSAPSK;
425 disabled_auth_mask |= SSL_aRSA;
426 #endif
427 #ifdef OPENSSL_NO_DSA
428 disabled_auth_mask |= SSL_aDSS;
429 #endif
430 #ifdef OPENSSL_NO_DH
431 disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
432 #endif
433 #ifdef OPENSSL_NO_EC
434 disabled_mkey_mask |= SSL_kECDHEPSK;
435 disabled_auth_mask |= SSL_aECDSA;
436 #endif
437 #ifdef OPENSSL_NO_PSK
438 disabled_mkey_mask |= SSL_PSK;
439 disabled_auth_mask |= SSL_aPSK;
440 #endif
441 #ifdef OPENSSL_NO_SRP
442 disabled_mkey_mask |= SSL_kSRP;
443 #endif
444
445 /*
446 * Check for presence of GOST 34.10 algorithms, and if they are not
447 * present, disable appropriate auth and key exchange
448 */
449 ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id("gost-mac");
450 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) {
451 ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
452 } else {
453 disabled_mac_mask |= SSL_GOST89MAC;
454 }
455
456 ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] = get_optional_pkey_id("gost-mac-12");
457 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX]) {
458 ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
459 } else {
460 disabled_mac_mask |= SSL_GOST89MAC12;
461 }
462
463 if (!get_optional_pkey_id("gost2001"))
464 disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
465 if (!get_optional_pkey_id("gost2012_256"))
466 disabled_auth_mask |= SSL_aGOST12;
467 if (!get_optional_pkey_id("gost2012_512"))
468 disabled_auth_mask |= SSL_aGOST12;
469 /*
470 * Disable GOST key exchange if no GOST signature algs are available *
471 */
472 if ((disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) == (SSL_aGOST01 | SSL_aGOST12))
473 disabled_mkey_mask |= SSL_kGOST;
474 }
475
476 #ifndef OPENSSL_NO_COMP
477
478 static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
479 {
480 return ((*a)->id - (*b)->id);
481 }
482
483 DEFINE_RUN_ONCE_STATIC(do_load_builtin_compressions)
484 {
485 SSL_COMP *comp = NULL;
486 COMP_METHOD *method = COMP_zlib();
487
488 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE);
489 ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
490
491 if (COMP_get_type(method) != NID_undef && ssl_comp_methods != NULL) {
492 comp = OPENSSL_malloc(sizeof(*comp));
493 if (comp != NULL) {
494 comp->method = method;
495 comp->id = SSL_COMP_ZLIB_IDX;
496 comp->name = COMP_get_name(method);
497 sk_SSL_COMP_push(ssl_comp_methods, comp);
498 sk_SSL_COMP_sort(ssl_comp_methods);
499 }
500 }
501 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
502 return 1;
503 }
504
505 static void load_builtin_compressions(void)
506 {
507 RUN_ONCE(&ssl_load_builtin_comp_once, do_load_builtin_compressions);
508 }
509 #endif
510
511 int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc,
512 const EVP_MD **md, int *mac_pkey_type,
513 int *mac_secret_size, SSL_COMP **comp, int use_etm)
514 {
515 int i;
516 const SSL_CIPHER *c;
517
518 c = s->cipher;
519 if (c == NULL)
520 return (0);
521 if (comp != NULL) {
522 SSL_COMP ctmp;
523 #ifndef OPENSSL_NO_COMP
524 load_builtin_compressions();
525 #endif
526 *comp = NULL;
527 ctmp.id = s->compress_meth;
528 if (ssl_comp_methods != NULL) {
529 i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
530 if (i >= 0)
531 *comp = sk_SSL_COMP_value(ssl_comp_methods, i);
532 else
533 *comp = NULL;
534 }
535 /* If were only interested in comp then return success */
536 if ((enc == NULL) && (md == NULL))
537 return 1;
538 }
539
540 if ((enc == NULL) || (md == NULL))
541 return 0;
542
543 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
544
545 if (i == -1)
546 *enc = NULL;
547 else {
548 if (i == SSL_ENC_NULL_IDX)
549 *enc = EVP_enc_null();
550 else
551 *enc = ssl_cipher_methods[i];
552 }
553
554 i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
555 if (i == -1) {
556 *md = NULL;
557 if (mac_pkey_type != NULL)
558 *mac_pkey_type = NID_undef;
559 if (mac_secret_size != NULL)
560 *mac_secret_size = 0;
561 if (c->algorithm_mac == SSL_AEAD)
562 mac_pkey_type = NULL;
563 } else {
564 *md = ssl_digest_methods[i];
565 if (mac_pkey_type != NULL)
566 *mac_pkey_type = ssl_mac_pkey_id[i];
567 if (mac_secret_size != NULL)
568 *mac_secret_size = ssl_mac_secret_size[i];
569 }
570
571 if ((*enc != NULL) &&
572 (*md != NULL || (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
573 && (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
574 const EVP_CIPHER *evp;
575
576 if (use_etm)
577 return 1;
578
579 if (s->ssl_version >> 8 != TLS1_VERSION_MAJOR ||
580 s->ssl_version < TLS1_VERSION)
581 return 1;
582
583 if (FIPS_mode())
584 return 1;
585
586 if (c->algorithm_enc == SSL_RC4 &&
587 c->algorithm_mac == SSL_MD5 &&
588 (evp = EVP_get_cipherbyname("RC4-HMAC-MD5")))
589 *enc = evp, *md = NULL;
590 else if (c->algorithm_enc == SSL_AES128 &&
591 c->algorithm_mac == SSL_SHA1 &&
592 (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1")))
593 *enc = evp, *md = NULL;
594 else if (c->algorithm_enc == SSL_AES256 &&
595 c->algorithm_mac == SSL_SHA1 &&
596 (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1")))
597 *enc = evp, *md = NULL;
598 else if (c->algorithm_enc == SSL_AES128 &&
599 c->algorithm_mac == SSL_SHA256 &&
600 (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA256")))
601 *enc = evp, *md = NULL;
602 else if (c->algorithm_enc == SSL_AES256 &&
603 c->algorithm_mac == SSL_SHA256 &&
604 (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA256")))
605 *enc = evp, *md = NULL;
606 return (1);
607 } else
608 return (0);
609 }
610
611 const EVP_MD *ssl_md(int idx)
612 {
613 idx &= SSL_HANDSHAKE_MAC_MASK;
614 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
615 return NULL;
616 return ssl_digest_methods[idx];
617 }
618
619 const EVP_MD *ssl_handshake_md(SSL *s)
620 {
621 return ssl_md(ssl_get_algorithm2(s));
622 }
623
624 const EVP_MD *ssl_prf_md(SSL *s)
625 {
626 return ssl_md(ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
627 }
628
629 #define ITEM_SEP(a) \
630 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
631
632 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
633 CIPHER_ORDER **tail)
634 {
635 if (curr == *tail)
636 return;
637 if (curr == *head)
638 *head = curr->next;
639 if (curr->prev != NULL)
640 curr->prev->next = curr->next;
641 if (curr->next != NULL)
642 curr->next->prev = curr->prev;
643 (*tail)->next = curr;
644 curr->prev = *tail;
645 curr->next = NULL;
646 *tail = curr;
647 }
648
649 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
650 CIPHER_ORDER **tail)
651 {
652 if (curr == *head)
653 return;
654 if (curr == *tail)
655 *tail = curr->prev;
656 if (curr->next != NULL)
657 curr->next->prev = curr->prev;
658 if (curr->prev != NULL)
659 curr->prev->next = curr->next;
660 (*head)->prev = curr;
661 curr->next = *head;
662 curr->prev = NULL;
663 *head = curr;
664 }
665
666 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
667 int num_of_ciphers,
668 uint32_t disabled_mkey,
669 uint32_t disabled_auth,
670 uint32_t disabled_enc,
671 uint32_t disabled_mac,
672 CIPHER_ORDER *co_list,
673 CIPHER_ORDER **head_p,
674 CIPHER_ORDER **tail_p)
675 {
676 int i, co_list_num;
677 const SSL_CIPHER *c;
678
679 /*
680 * We have num_of_ciphers descriptions compiled in, depending on the
681 * method selected (SSLv3, TLSv1 etc).
682 * These will later be sorted in a linked list with at most num
683 * entries.
684 */
685
686 /* Get the initial list of ciphers */
687 co_list_num = 0; /* actual count of ciphers */
688 for (i = 0; i < num_of_ciphers; i++) {
689 c = ssl_method->get_cipher(i);
690 /* drop those that use any of that is not available */
691 if (c == NULL || !c->valid)
692 continue;
693 if (FIPS_mode() && (c->algo_strength & SSL_FIPS))
694 continue;
695 if ((c->algorithm_mkey & disabled_mkey) ||
696 (c->algorithm_auth & disabled_auth) ||
697 (c->algorithm_enc & disabled_enc) ||
698 (c->algorithm_mac & disabled_mac))
699 continue;
700 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
701 c->min_tls == 0)
702 continue;
703 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
704 c->min_dtls == 0)
705 continue;
706
707 co_list[co_list_num].cipher = c;
708 co_list[co_list_num].next = NULL;
709 co_list[co_list_num].prev = NULL;
710 co_list[co_list_num].active = 0;
711 co_list_num++;
712 /*
713 * if (!sk_push(ca_list,(char *)c)) goto err;
714 */
715 }
716
717 /*
718 * Prepare linked list from list entries
719 */
720 if (co_list_num > 0) {
721 co_list[0].prev = NULL;
722
723 if (co_list_num > 1) {
724 co_list[0].next = &co_list[1];
725
726 for (i = 1; i < co_list_num - 1; i++) {
727 co_list[i].prev = &co_list[i - 1];
728 co_list[i].next = &co_list[i + 1];
729 }
730
731 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
732 }
733
734 co_list[co_list_num - 1].next = NULL;
735
736 *head_p = &co_list[0];
737 *tail_p = &co_list[co_list_num - 1];
738 }
739 }
740
741 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
742 int num_of_group_aliases,
743 uint32_t disabled_mkey,
744 uint32_t disabled_auth,
745 uint32_t disabled_enc,
746 uint32_t disabled_mac,
747 CIPHER_ORDER *head)
748 {
749 CIPHER_ORDER *ciph_curr;
750 const SSL_CIPHER **ca_curr;
751 int i;
752 uint32_t mask_mkey = ~disabled_mkey;
753 uint32_t mask_auth = ~disabled_auth;
754 uint32_t mask_enc = ~disabled_enc;
755 uint32_t mask_mac = ~disabled_mac;
756
757 /*
758 * First, add the real ciphers as already collected
759 */
760 ciph_curr = head;
761 ca_curr = ca_list;
762 while (ciph_curr != NULL) {
763 *ca_curr = ciph_curr->cipher;
764 ca_curr++;
765 ciph_curr = ciph_curr->next;
766 }
767
768 /*
769 * Now we add the available ones from the cipher_aliases[] table.
770 * They represent either one or more algorithms, some of which
771 * in any affected category must be supported (set in enabled_mask),
772 * or represent a cipher strength value (will be added in any case because algorithms=0).
773 */
774 for (i = 0; i < num_of_group_aliases; i++) {
775 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
776 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
777 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
778 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
779
780 if (algorithm_mkey)
781 if ((algorithm_mkey & mask_mkey) == 0)
782 continue;
783
784 if (algorithm_auth)
785 if ((algorithm_auth & mask_auth) == 0)
786 continue;
787
788 if (algorithm_enc)
789 if ((algorithm_enc & mask_enc) == 0)
790 continue;
791
792 if (algorithm_mac)
793 if ((algorithm_mac & mask_mac) == 0)
794 continue;
795
796 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
797 ca_curr++;
798 }
799
800 *ca_curr = NULL; /* end of list */
801 }
802
803 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
804 uint32_t alg_auth, uint32_t alg_enc,
805 uint32_t alg_mac, int min_tls,
806 uint32_t algo_strength, int rule,
807 int32_t strength_bits, CIPHER_ORDER **head_p,
808 CIPHER_ORDER **tail_p)
809 {
810 CIPHER_ORDER *head, *tail, *curr, *next, *last;
811 const SSL_CIPHER *cp;
812 int reverse = 0;
813
814 #ifdef CIPHER_DEBUG
815 fprintf(stderr,
816 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
817 rule, alg_mkey, alg_auth, alg_enc, alg_mac, min_tls,
818 algo_strength, strength_bits);
819 #endif
820
821 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
822 reverse = 1; /* needed to maintain sorting between
823 * currently deleted ciphers */
824
825 head = *head_p;
826 tail = *tail_p;
827
828 if (reverse) {
829 next = tail;
830 last = head;
831 } else {
832 next = head;
833 last = tail;
834 }
835
836 curr = NULL;
837 for (;;) {
838 if (curr == last)
839 break;
840
841 curr = next;
842
843 if (curr == NULL)
844 break;
845
846 next = reverse ? curr->prev : curr->next;
847
848 cp = curr->cipher;
849
850 /*
851 * Selection criteria is either the value of strength_bits
852 * or the algorithms used.
853 */
854 if (strength_bits >= 0) {
855 if (strength_bits != cp->strength_bits)
856 continue;
857 } else {
858 #ifdef CIPHER_DEBUG
859 fprintf(stderr,
860 "\nName: %s:\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
861 cp->name, cp->algorithm_mkey, cp->algorithm_auth,
862 cp->algorithm_enc, cp->algorithm_mac, cp->algorithm_ssl,
863 cp->algo_strength);
864 #endif
865 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
866 continue;
867 if (alg_auth && !(alg_auth & cp->algorithm_auth))
868 continue;
869 if (alg_enc && !(alg_enc & cp->algorithm_enc))
870 continue;
871 if (alg_mac && !(alg_mac & cp->algorithm_mac))
872 continue;
873 if (min_tls && (min_tls != cp->min_tls))
874 continue;
875 if ((algo_strength & SSL_STRONG_MASK)
876 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
877 continue;
878 if ((algo_strength & SSL_DEFAULT_MASK)
879 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
880 continue;
881 }
882
883 #ifdef CIPHER_DEBUG
884 fprintf(stderr, "Action = %d\n", rule);
885 #endif
886
887 /* add the cipher if it has not been added yet. */
888 if (rule == CIPHER_ADD) {
889 /* reverse == 0 */
890 if (!curr->active) {
891 ll_append_tail(&head, curr, &tail);
892 curr->active = 1;
893 }
894 }
895 /* Move the added cipher to this location */
896 else if (rule == CIPHER_ORD) {
897 /* reverse == 0 */
898 if (curr->active) {
899 ll_append_tail(&head, curr, &tail);
900 }
901 } else if (rule == CIPHER_DEL) {
902 /* reverse == 1 */
903 if (curr->active) {
904 /*
905 * most recently deleted ciphersuites get best positions for
906 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
907 * in reverse to maintain the order)
908 */
909 ll_append_head(&head, curr, &tail);
910 curr->active = 0;
911 }
912 } else if (rule == CIPHER_BUMP) {
913 if (curr->active)
914 ll_append_head(&head, curr, &tail);
915 } else if (rule == CIPHER_KILL) {
916 /* reverse == 0 */
917 if (head == curr)
918 head = curr->next;
919 else
920 curr->prev->next = curr->next;
921 if (tail == curr)
922 tail = curr->prev;
923 curr->active = 0;
924 if (curr->next != NULL)
925 curr->next->prev = curr->prev;
926 if (curr->prev != NULL)
927 curr->prev->next = curr->next;
928 curr->next = NULL;
929 curr->prev = NULL;
930 }
931 }
932
933 *head_p = head;
934 *tail_p = tail;
935 }
936
937 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
938 CIPHER_ORDER **tail_p)
939 {
940 int32_t max_strength_bits;
941 int i, *number_uses;
942 CIPHER_ORDER *curr;
943
944 /*
945 * This routine sorts the ciphers with descending strength. The sorting
946 * must keep the pre-sorted sequence, so we apply the normal sorting
947 * routine as '+' movement to the end of the list.
948 */
949 max_strength_bits = 0;
950 curr = *head_p;
951 while (curr != NULL) {
952 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
953 max_strength_bits = curr->cipher->strength_bits;
954 curr = curr->next;
955 }
956
957 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
958 if (number_uses == NULL) {
959 SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT, ERR_R_MALLOC_FAILURE);
960 return (0);
961 }
962
963 /*
964 * Now find the strength_bits values actually used
965 */
966 curr = *head_p;
967 while (curr != NULL) {
968 if (curr->active)
969 number_uses[curr->cipher->strength_bits]++;
970 curr = curr->next;
971 }
972 /*
973 * Go through the list of used strength_bits values in descending
974 * order.
975 */
976 for (i = max_strength_bits; i >= 0; i--)
977 if (number_uses[i] > 0)
978 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
979 tail_p);
980
981 OPENSSL_free(number_uses);
982 return (1);
983 }
984
985 static int ssl_cipher_process_rulestr(const char *rule_str,
986 CIPHER_ORDER **head_p,
987 CIPHER_ORDER **tail_p,
988 const SSL_CIPHER **ca_list, CERT *c)
989 {
990 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
991 int min_tls;
992 const char *l, *buf;
993 int j, multi, found, rule, retval, ok, buflen;
994 uint32_t cipher_id = 0;
995 char ch;
996
997 retval = 1;
998 l = rule_str;
999 for (;;) {
1000 ch = *l;
1001
1002 if (ch == '\0')
1003 break; /* done */
1004 if (ch == '-') {
1005 rule = CIPHER_DEL;
1006 l++;
1007 } else if (ch == '+') {
1008 rule = CIPHER_ORD;
1009 l++;
1010 } else if (ch == '!') {
1011 rule = CIPHER_KILL;
1012 l++;
1013 } else if (ch == '@') {
1014 rule = CIPHER_SPECIAL;
1015 l++;
1016 } else {
1017 rule = CIPHER_ADD;
1018 }
1019
1020 if (ITEM_SEP(ch)) {
1021 l++;
1022 continue;
1023 }
1024
1025 alg_mkey = 0;
1026 alg_auth = 0;
1027 alg_enc = 0;
1028 alg_mac = 0;
1029 min_tls = 0;
1030 algo_strength = 0;
1031
1032 for (;;) {
1033 ch = *l;
1034 buf = l;
1035 buflen = 0;
1036 #ifndef CHARSET_EBCDIC
1037 while (((ch >= 'A') && (ch <= 'Z')) ||
1038 ((ch >= '0') && (ch <= '9')) ||
1039 ((ch >= 'a') && (ch <= 'z')) ||
1040 (ch == '-') || (ch == '.') || (ch == '='))
1041 #else
1042 while (isalnum(ch) || (ch == '-') || (ch == '.') || (ch == '='))
1043 #endif
1044 {
1045 ch = *(++l);
1046 buflen++;
1047 }
1048
1049 if (buflen == 0) {
1050 /*
1051 * We hit something we cannot deal with,
1052 * it is no command or separator nor
1053 * alphanumeric, so we call this an error.
1054 */
1055 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
1056 SSL_R_INVALID_COMMAND);
1057 retval = found = 0;
1058 l++;
1059 break;
1060 }
1061
1062 if (rule == CIPHER_SPECIAL) {
1063 found = 0; /* unused -- avoid compiler warning */
1064 break; /* special treatment */
1065 }
1066
1067 /* check for multi-part specification */
1068 if (ch == '+') {
1069 multi = 1;
1070 l++;
1071 } else
1072 multi = 0;
1073
1074 /*
1075 * Now search for the cipher alias in the ca_list. Be careful
1076 * with the strncmp, because the "buflen" limitation
1077 * will make the rule "ADH:SOME" and the cipher
1078 * "ADH-MY-CIPHER" look like a match for buflen=3.
1079 * So additionally check whether the cipher name found
1080 * has the correct length. We can save a strlen() call:
1081 * just checking for the '\0' at the right place is
1082 * sufficient, we have to strncmp() anyway. (We cannot
1083 * use strcmp(), because buf is not '\0' terminated.)
1084 */
1085 j = found = 0;
1086 cipher_id = 0;
1087 while (ca_list[j]) {
1088 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1089 && (ca_list[j]->name[buflen] == '\0')) {
1090 found = 1;
1091 break;
1092 } else
1093 j++;
1094 }
1095
1096 if (!found)
1097 break; /* ignore this entry */
1098
1099 if (ca_list[j]->algorithm_mkey) {
1100 if (alg_mkey) {
1101 alg_mkey &= ca_list[j]->algorithm_mkey;
1102 if (!alg_mkey) {
1103 found = 0;
1104 break;
1105 }
1106 } else
1107 alg_mkey = ca_list[j]->algorithm_mkey;
1108 }
1109
1110 if (ca_list[j]->algorithm_auth) {
1111 if (alg_auth) {
1112 alg_auth &= ca_list[j]->algorithm_auth;
1113 if (!alg_auth) {
1114 found = 0;
1115 break;
1116 }
1117 } else
1118 alg_auth = ca_list[j]->algorithm_auth;
1119 }
1120
1121 if (ca_list[j]->algorithm_enc) {
1122 if (alg_enc) {
1123 alg_enc &= ca_list[j]->algorithm_enc;
1124 if (!alg_enc) {
1125 found = 0;
1126 break;
1127 }
1128 } else
1129 alg_enc = ca_list[j]->algorithm_enc;
1130 }
1131
1132 if (ca_list[j]->algorithm_mac) {
1133 if (alg_mac) {
1134 alg_mac &= ca_list[j]->algorithm_mac;
1135 if (!alg_mac) {
1136 found = 0;
1137 break;
1138 }
1139 } else
1140 alg_mac = ca_list[j]->algorithm_mac;
1141 }
1142
1143 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1144 if (algo_strength & SSL_STRONG_MASK) {
1145 algo_strength &=
1146 (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1147 ~SSL_STRONG_MASK;
1148 if (!(algo_strength & SSL_STRONG_MASK)) {
1149 found = 0;
1150 break;
1151 }
1152 } else
1153 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1154 }
1155
1156 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1157 if (algo_strength & SSL_DEFAULT_MASK) {
1158 algo_strength &=
1159 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1160 ~SSL_DEFAULT_MASK;
1161 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1162 found = 0;
1163 break;
1164 }
1165 } else
1166 algo_strength |=
1167 ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1168 }
1169
1170 if (ca_list[j]->valid) {
1171 /*
1172 * explicit ciphersuite found; its protocol version does not
1173 * become part of the search pattern!
1174 */
1175
1176 cipher_id = ca_list[j]->id;
1177 } else {
1178 /*
1179 * not an explicit ciphersuite; only in this case, the
1180 * protocol version is considered part of the search pattern
1181 */
1182
1183 if (ca_list[j]->min_tls) {
1184 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1185 found = 0;
1186 break;
1187 } else {
1188 min_tls = ca_list[j]->min_tls;
1189 }
1190 }
1191 }
1192
1193 if (!multi)
1194 break;
1195 }
1196
1197 /*
1198 * Ok, we have the rule, now apply it
1199 */
1200 if (rule == CIPHER_SPECIAL) { /* special command */
1201 ok = 0;
1202 if ((buflen == 8) && strncmp(buf, "STRENGTH", 8) == 0)
1203 ok = ssl_cipher_strength_sort(head_p, tail_p);
1204 else if (buflen == 10 && strncmp(buf, "SECLEVEL=", 9) == 0) {
1205 int level = buf[9] - '0';
1206 if (level < 0 || level > 5) {
1207 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
1208 SSL_R_INVALID_COMMAND);
1209 } else {
1210 c->sec_level = level;
1211 ok = 1;
1212 }
1213 } else
1214 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
1215 SSL_R_INVALID_COMMAND);
1216 if (ok == 0)
1217 retval = 0;
1218 /*
1219 * We do not support any "multi" options
1220 * together with "@", so throw away the
1221 * rest of the command, if any left, until
1222 * end or ':' is found.
1223 */
1224 while ((*l != '\0') && !ITEM_SEP(*l))
1225 l++;
1226 } else if (found) {
1227 ssl_cipher_apply_rule(cipher_id,
1228 alg_mkey, alg_auth, alg_enc, alg_mac,
1229 min_tls, algo_strength, rule, -1, head_p,
1230 tail_p);
1231 } else {
1232 while ((*l != '\0') && !ITEM_SEP(*l))
1233 l++;
1234 }
1235 if (*l == '\0')
1236 break; /* done */
1237 }
1238
1239 return (retval);
1240 }
1241
1242 #ifndef OPENSSL_NO_EC
1243 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1244 const char **prule_str)
1245 {
1246 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1247 if (strncmp(*prule_str, "SUITEB128ONLY", 13) == 0) {
1248 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1249 } else if (strncmp(*prule_str, "SUITEB128C2", 11) == 0) {
1250 suiteb_comb2 = 1;
1251 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1252 } else if (strncmp(*prule_str, "SUITEB128", 9) == 0) {
1253 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1254 } else if (strncmp(*prule_str, "SUITEB192", 9) == 0) {
1255 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1256 }
1257
1258 if (suiteb_flags) {
1259 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1260 c->cert_flags |= suiteb_flags;
1261 } else
1262 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1263
1264 if (!suiteb_flags)
1265 return 1;
1266 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1267
1268 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1269 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST,
1270 SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1271 return 0;
1272 }
1273 # ifndef OPENSSL_NO_EC
1274 switch (suiteb_flags) {
1275 case SSL_CERT_FLAG_SUITEB_128_LOS:
1276 if (suiteb_comb2)
1277 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1278 else
1279 *prule_str =
1280 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1281 break;
1282 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1283 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1284 break;
1285 case SSL_CERT_FLAG_SUITEB_192_LOS:
1286 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1287 break;
1288 }
1289 return 1;
1290 # else
1291 SSLerr(SSL_F_CHECK_SUITEB_CIPHER_LIST,
1292 SSL_R_ECDH_REQUIRED_FOR_SUITEB_MODE);
1293 return 0;
1294 # endif
1295 }
1296 #endif
1297
1298 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, STACK_OF(SSL_CIPHER)
1299 **cipher_list, STACK_OF(SSL_CIPHER)
1300 **cipher_list_by_id,
1301 const char *rule_str, CERT *c)
1302 {
1303 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
1304 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1305 STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list;
1306 const char *rule_p;
1307 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1308 const SSL_CIPHER **ca_list = NULL;
1309
1310 /*
1311 * Return with error if nothing to do.
1312 */
1313 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1314 return NULL;
1315 #ifndef OPENSSL_NO_EC
1316 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1317 return NULL;
1318 #endif
1319
1320 /*
1321 * To reduce the work to do we only want to process the compiled
1322 * in algorithms, so we first get the mask of disabled ciphers.
1323 */
1324
1325 disabled_mkey = disabled_mkey_mask;
1326 disabled_auth = disabled_auth_mask;
1327 disabled_enc = disabled_enc_mask;
1328 disabled_mac = disabled_mac_mask;
1329
1330 /*
1331 * Now we have to collect the available ciphers from the compiled
1332 * in ciphers. We cannot get more than the number compiled in, so
1333 * it is used for allocation.
1334 */
1335 num_of_ciphers = ssl_method->num_ciphers();
1336
1337 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1338 if (co_list == NULL) {
1339 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
1340 return (NULL); /* Failure */
1341 }
1342
1343 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1344 disabled_mkey, disabled_auth, disabled_enc,
1345 disabled_mac, co_list, &head,
1346 &tail);
1347
1348 /* Now arrange all ciphers by preference. */
1349
1350 /*
1351 * Everything else being equal, prefer ephemeral ECDH over other key
1352 * exchange mechanisms.
1353 * For consistency, prefer ECDSA over RSA (though this only matters if the
1354 * server has both certificates, and is using the DEFAULT, or a client
1355 * preference).
1356 */
1357 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1358 -1, &head, &tail);
1359 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1360 &tail);
1361 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1362 &tail);
1363
1364
1365 /* Within each strength group, we prefer GCM over CHACHA... */
1366 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1367 &head, &tail);
1368 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1369 &head, &tail);
1370
1371 /*
1372 * ...and generally, our preferred cipher is AES.
1373 * Note that AEADs will be bumped to take preference after sorting by
1374 * strength.
1375 */
1376 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1377 -1, &head, &tail);
1378
1379 /* Temporarily enable everything else for sorting */
1380 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1381
1382 /* Low priority for MD5 */
1383 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1384 &tail);
1385
1386 /*
1387 * Move anonymous ciphers to the end. Usually, these will remain
1388 * disabled. (For applications that allow them, they aren't too bad, but
1389 * we prefer authenticated ciphers.)
1390 */
1391 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1392 &tail);
1393
1394 /*
1395 * ssl_cipher_apply_rule(0, 0, SSL_aDH, 0, 0, 0, 0, CIPHER_ORD, -1,
1396 * &head, &tail);
1397 */
1398 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1399 &tail);
1400 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1401 &tail);
1402
1403 /* RC4 is sort-of broken -- move the the end */
1404 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1405 &tail);
1406
1407 /*
1408 * Now sort by symmetric encryption strength. The above ordering remains
1409 * in force within each class
1410 */
1411 if (!ssl_cipher_strength_sort(&head, &tail)) {
1412 OPENSSL_free(co_list);
1413 return NULL;
1414 }
1415
1416 /*
1417 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1418 * TODO(openssl-team): is there an easier way to accomplish all this?
1419 */
1420 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1421 &head, &tail);
1422
1423 /*
1424 * Irrespective of strength, enforce the following order:
1425 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1426 * Within each group, ciphers remain sorted by strength and previous
1427 * preference, i.e.,
1428 * 1) ECDHE > DHE
1429 * 2) GCM > CHACHA
1430 * 3) AES > rest
1431 * 4) TLS 1.2 > legacy
1432 *
1433 * Because we now bump ciphers to the top of the list, we proceed in
1434 * reverse order of preference.
1435 */
1436 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1437 &head, &tail);
1438 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1439 CIPHER_BUMP, -1, &head, &tail);
1440 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1441 CIPHER_BUMP, -1, &head, &tail);
1442
1443 /* Now disable everything (maintaining the ordering!) */
1444 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1445
1446 /*
1447 * We also need cipher aliases for selecting based on the rule_str.
1448 * There might be two types of entries in the rule_str: 1) names
1449 * of ciphers themselves 2) aliases for groups of ciphers.
1450 * For 1) we need the available ciphers and for 2) the cipher
1451 * groups of cipher_aliases added together in one list (otherwise
1452 * we would be happy with just the cipher_aliases table).
1453 */
1454 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1455 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1456 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1457 if (ca_list == NULL) {
1458 OPENSSL_free(co_list);
1459 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
1460 return (NULL); /* Failure */
1461 }
1462 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1463 disabled_mkey, disabled_auth, disabled_enc,
1464 disabled_mac, head);
1465
1466 /*
1467 * If the rule_string begins with DEFAULT, apply the default rule
1468 * before using the (possibly available) additional rules.
1469 */
1470 ok = 1;
1471 rule_p = rule_str;
1472 if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1473 ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
1474 &head, &tail, ca_list, c);
1475 rule_p += 7;
1476 if (*rule_p == ':')
1477 rule_p++;
1478 }
1479
1480 if (ok && (strlen(rule_p) > 0))
1481 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1482
1483 OPENSSL_free(ca_list); /* Not needed anymore */
1484
1485 if (!ok) { /* Rule processing failure */
1486 OPENSSL_free(co_list);
1487 return (NULL);
1488 }
1489
1490 /*
1491 * Allocate new "cipherstack" for the result, return with error
1492 * if we cannot get one.
1493 */
1494 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1495 OPENSSL_free(co_list);
1496 return (NULL);
1497 }
1498
1499 /*
1500 * The cipher selection for the list is done. The ciphers are added
1501 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1502 */
1503 for (curr = head; curr != NULL; curr = curr->next) {
1504 if (curr->active
1505 && (!FIPS_mode() || curr->cipher->algo_strength & SSL_FIPS)) {
1506 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1507 OPENSSL_free(co_list);
1508 sk_SSL_CIPHER_free(cipherstack);
1509 return NULL;
1510 }
1511 #ifdef CIPHER_DEBUG
1512 fprintf(stderr, "<%s>\n", curr->cipher->name);
1513 #endif
1514 }
1515 }
1516 OPENSSL_free(co_list); /* Not needed any longer */
1517
1518 tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1519 if (tmp_cipher_list == NULL) {
1520 sk_SSL_CIPHER_free(cipherstack);
1521 return NULL;
1522 }
1523 sk_SSL_CIPHER_free(*cipher_list);
1524 *cipher_list = cipherstack;
1525 if (*cipher_list_by_id != NULL)
1526 sk_SSL_CIPHER_free(*cipher_list_by_id);
1527 *cipher_list_by_id = tmp_cipher_list;
1528 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,
1529 ssl_cipher_ptr_id_cmp);
1530
1531 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1532 return (cipherstack);
1533 }
1534
1535 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1536 {
1537 const char *ver;
1538 const char *kx, *au, *enc, *mac;
1539 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1540 static const char *format =
1541 "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n";
1542
1543 if (buf == NULL) {
1544 len = 128;
1545 buf = OPENSSL_malloc(len);
1546 if (buf == NULL)
1547 return NULL;
1548 } else if (len < 128)
1549 return NULL;
1550
1551 alg_mkey = cipher->algorithm_mkey;
1552 alg_auth = cipher->algorithm_auth;
1553 alg_enc = cipher->algorithm_enc;
1554 alg_mac = cipher->algorithm_mac;
1555
1556 ver = ssl_protocol_to_string(cipher->min_tls);
1557
1558 switch (alg_mkey) {
1559 case SSL_kRSA:
1560 kx = "RSA";
1561 break;
1562 case SSL_kDHE:
1563 kx = "DH";
1564 break;
1565 case SSL_kECDHE:
1566 kx = "ECDH";
1567 break;
1568 case SSL_kPSK:
1569 kx = "PSK";
1570 break;
1571 case SSL_kRSAPSK:
1572 kx = "RSAPSK";
1573 break;
1574 case SSL_kECDHEPSK:
1575 kx = "ECDHEPSK";
1576 break;
1577 case SSL_kDHEPSK:
1578 kx = "DHEPSK";
1579 break;
1580 case SSL_kSRP:
1581 kx = "SRP";
1582 break;
1583 case SSL_kGOST:
1584 kx = "GOST";
1585 break;
1586 default:
1587 kx = "unknown";
1588 }
1589
1590 switch (alg_auth) {
1591 case SSL_aRSA:
1592 au = "RSA";
1593 break;
1594 case SSL_aDSS:
1595 au = "DSS";
1596 break;
1597 case SSL_aNULL:
1598 au = "None";
1599 break;
1600 case SSL_aECDSA:
1601 au = "ECDSA";
1602 break;
1603 case SSL_aPSK:
1604 au = "PSK";
1605 break;
1606 case SSL_aSRP:
1607 au = "SRP";
1608 break;
1609 case SSL_aGOST01:
1610 au = "GOST01";
1611 break;
1612 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1613 case (SSL_aGOST12 | SSL_aGOST01):
1614 au = "GOST12";
1615 break;
1616 default:
1617 au = "unknown";
1618 break;
1619 }
1620
1621 switch (alg_enc) {
1622 case SSL_DES:
1623 enc = "DES(56)";
1624 break;
1625 case SSL_3DES:
1626 enc = "3DES(168)";
1627 break;
1628 case SSL_RC4:
1629 enc = "RC4(128)";
1630 break;
1631 case SSL_RC2:
1632 enc = "RC2(128)";
1633 break;
1634 case SSL_IDEA:
1635 enc = "IDEA(128)";
1636 break;
1637 case SSL_eNULL:
1638 enc = "None";
1639 break;
1640 case SSL_AES128:
1641 enc = "AES(128)";
1642 break;
1643 case SSL_AES256:
1644 enc = "AES(256)";
1645 break;
1646 case SSL_AES128GCM:
1647 enc = "AESGCM(128)";
1648 break;
1649 case SSL_AES256GCM:
1650 enc = "AESGCM(256)";
1651 break;
1652 case SSL_AES128CCM:
1653 enc = "AESCCM(128)";
1654 break;
1655 case SSL_AES256CCM:
1656 enc = "AESCCM(256)";
1657 break;
1658 case SSL_AES128CCM8:
1659 enc = "AESCCM8(128)";
1660 break;
1661 case SSL_AES256CCM8:
1662 enc = "AESCCM8(256)";
1663 break;
1664 case SSL_CAMELLIA128:
1665 enc = "Camellia(128)";
1666 break;
1667 case SSL_CAMELLIA256:
1668 enc = "Camellia(256)";
1669 break;
1670 case SSL_SEED:
1671 enc = "SEED(128)";
1672 break;
1673 case SSL_eGOST2814789CNT:
1674 case SSL_eGOST2814789CNT12:
1675 enc = "GOST89(256)";
1676 break;
1677 case SSL_CHACHA20POLY1305:
1678 enc = "CHACHA20/POLY1305(256)";
1679 break;
1680 default:
1681 enc = "unknown";
1682 break;
1683 }
1684
1685 switch (alg_mac) {
1686 case SSL_MD5:
1687 mac = "MD5";
1688 break;
1689 case SSL_SHA1:
1690 mac = "SHA1";
1691 break;
1692 case SSL_SHA256:
1693 mac = "SHA256";
1694 break;
1695 case SSL_SHA384:
1696 mac = "SHA384";
1697 break;
1698 case SSL_AEAD:
1699 mac = "AEAD";
1700 break;
1701 case SSL_GOST89MAC:
1702 case SSL_GOST89MAC12:
1703 mac = "GOST89";
1704 break;
1705 case SSL_GOST94:
1706 mac = "GOST94";
1707 break;
1708 case SSL_GOST12_256:
1709 case SSL_GOST12_512:
1710 mac = "GOST2012";
1711 break;
1712 default:
1713 mac = "unknown";
1714 break;
1715 }
1716
1717 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1718
1719 return (buf);
1720 }
1721
1722 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1723 {
1724 if (c == NULL)
1725 return "(NONE)";
1726
1727 /*
1728 * Backwards-compatibility crutch. In almost all contexts we report TLS
1729 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1730 */
1731 if (c->min_tls == TLS1_VERSION)
1732 return "TLSv1.0";
1733 return ssl_protocol_to_string(c->min_tls);
1734 }
1735
1736 /* return the actual cipher being used */
1737 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1738 {
1739 if (c != NULL)
1740 return (c->name);
1741 return ("(NONE)");
1742 }
1743
1744 /* number of bits for symmetric cipher */
1745 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1746 {
1747 int ret = 0;
1748
1749 if (c != NULL) {
1750 if (alg_bits != NULL)
1751 *alg_bits = (int) c->alg_bits;
1752 ret = (int) c->strength_bits;
1753 }
1754 return ret;
1755 }
1756
1757 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1758 {
1759 return c->id;
1760 }
1761
1762 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1763 {
1764 SSL_COMP *ctmp;
1765 int i, nn;
1766
1767 if ((n == 0) || (sk == NULL))
1768 return (NULL);
1769 nn = sk_SSL_COMP_num(sk);
1770 for (i = 0; i < nn; i++) {
1771 ctmp = sk_SSL_COMP_value(sk, i);
1772 if (ctmp->id == n)
1773 return (ctmp);
1774 }
1775 return (NULL);
1776 }
1777
1778 #ifdef OPENSSL_NO_COMP
1779 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1780 {
1781 return NULL;
1782 }
1783 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1784 *meths)
1785 {
1786 return meths;
1787 }
1788 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1789 {
1790 return 1;
1791 }
1792
1793 #else
1794 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1795 {
1796 load_builtin_compressions();
1797 return (ssl_comp_methods);
1798 }
1799
1800 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1801 *meths)
1802 {
1803 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
1804 ssl_comp_methods = meths;
1805 return old_meths;
1806 }
1807
1808 static void cmeth_free(SSL_COMP *cm)
1809 {
1810 OPENSSL_free(cm);
1811 }
1812
1813 void ssl_comp_free_compression_methods_int(void)
1814 {
1815 STACK_OF(SSL_COMP) *old_meths = ssl_comp_methods;
1816 ssl_comp_methods = NULL;
1817 sk_SSL_COMP_pop_free(old_meths, cmeth_free);
1818 }
1819
1820 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1821 {
1822 SSL_COMP *comp;
1823
1824 if (cm == NULL || COMP_get_type(cm) == NID_undef)
1825 return 1;
1826
1827 /*-
1828 * According to draft-ietf-tls-compression-04.txt, the
1829 * compression number ranges should be the following:
1830 *
1831 * 0 to 63: methods defined by the IETF
1832 * 64 to 192: external party methods assigned by IANA
1833 * 193 to 255: reserved for private use
1834 */
1835 if (id < 193 || id > 255) {
1836 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
1837 SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
1838 return 0;
1839 }
1840
1841 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE);
1842 comp = OPENSSL_malloc(sizeof(*comp));
1843 if (comp == NULL) {
1844 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1845 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
1846 return (1);
1847 }
1848
1849 comp->id = id;
1850 comp->method = cm;
1851 load_builtin_compressions();
1852 if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
1853 OPENSSL_free(comp);
1854 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1855 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
1856 SSL_R_DUPLICATE_COMPRESSION_ID);
1857 return (1);
1858 }
1859 if (ssl_comp_methods == NULL
1860 || !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
1861 OPENSSL_free(comp);
1862 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1863 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
1864 return (1);
1865 }
1866 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE);
1867 return (0);
1868 }
1869 #endif
1870
1871 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
1872 {
1873 #ifndef OPENSSL_NO_COMP
1874 return comp ? COMP_get_name(comp) : NULL;
1875 #else
1876 return NULL;
1877 #endif
1878 }
1879
1880 /* For a cipher return the index corresponding to the certificate type */
1881 int ssl_cipher_get_cert_index(const SSL_CIPHER *c)
1882 {
1883 uint32_t alg_a;
1884
1885 alg_a = c->algorithm_auth;
1886
1887 if (alg_a & SSL_aECDSA)
1888 return SSL_PKEY_ECC;
1889 else if (alg_a & SSL_aDSS)
1890 return SSL_PKEY_DSA_SIGN;
1891 else if (alg_a & SSL_aRSA)
1892 return SSL_PKEY_RSA_ENC;
1893 else if (alg_a & SSL_aGOST12)
1894 return SSL_PKEY_GOST_EC;
1895 else if (alg_a & SSL_aGOST01)
1896 return SSL_PKEY_GOST01;
1897
1898 return -1;
1899 }
1900
1901 const SSL_CIPHER *ssl_get_cipher_by_char(SSL *ssl, const unsigned char *ptr)
1902 {
1903 const SSL_CIPHER *c = ssl->method->get_cipher_by_char(ptr);
1904
1905 if (c == NULL || c->valid == 0)
1906 return NULL;
1907 return c;
1908 }
1909
1910 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
1911 {
1912 return ssl->method->get_cipher_by_char(ptr);
1913 }
1914
1915 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
1916 {
1917 int i;
1918 if (c == NULL)
1919 return NID_undef;
1920 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
1921 if (i == -1)
1922 return NID_undef;
1923 return ssl_cipher_table_cipher[i].nid;
1924 }
1925
1926 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
1927 {
1928 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
1929
1930 if (i == -1)
1931 return NID_undef;
1932 return ssl_cipher_table_mac[i].nid;
1933 }
1934
1935 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
1936 {
1937 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
1938
1939 if (i == -1)
1940 return NID_undef;
1941 return ssl_cipher_table_kx[i].nid;
1942 }
1943
1944 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
1945 {
1946 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
1947
1948 if (i == -1)
1949 return NID_undef;
1950 return ssl_cipher_table_auth[i].nid;
1951 }
1952
1953 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
1954 {
1955 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
1956 }